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In [15] we introduced a notion of spectrum for a commuting tuple of operators on a
Banach space. The main objective of this paper is to develop a corresponding analytic
functional calculus.

If X is a Banach space and x=(a, ..., @,) a commuting tuple of operators on X,
then associated with « is a certain chain complex (the Koszul complex). If this chain
complex is exact then we say « is non-singular. The spectrum, Sp(«, X), of  on X is
defined to be the set of 2€C" such that the tuple z —ax=(2; —ay, ..., 2, —a,) is singular (cf.
[15], § 1). The set Sp(a, X), defined in this manner, is compact and non-empty and has
several other properties that cause it to deserve the name spectrum (cf. [15], § 3).

Classically, one would define the spectrum of o in terms of some commutative Banach
algebra of operators containing a,, ..., a,. If 4 is such an algebra, then o is non-singular
relative to 4 if the equation

ab,+... +a,b, =id

has a solution for by, ..., b,€A4. A point 2€C" is in the spectrum of « relative to 4 (Sp, ()
if z—a is singular relative to 4.

One disadvantage of the classical notion of joint spectrum is that it depends intrinsi-
cally on the algebra A and it is not clear that there is an optimum choice for 4. Further-
more, it may be very difficult to decide whether or not equation (1) has a solution in a
given situation; hence, Sp, (&) may be very difficult to compute.

The spectrum, Sp («, X), that we have chosen does not involve questions of solvability
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of an operator equation like (1). It is based on a notion of non-singularity which is a direct
generalization to several operators of the idea of a single operator being both injective and
surjective. Furthermore, if 4 is any commutative Banach algebra containing a, ..., a,,
then Sp(x, X)=Sp,(«). There are examples where this containment is proper regardless
of how A is chosen (cf. [15], § 4).

Of course, the functional calculus is the main reason behind any interest that exists
in a notion of spectrum. If 4 is a commutative Banach algebra, a,, ..., a,€ 4, and A(Sp, («))
denotes the algebra of functions analytic in a neighborheod of Sp, (x), then there is a homo-
morphism f—f(x) of A(Sp, («)) into A such that 1(x)=id and z(x)=a, for i=1, ..., n.
This very deep and useful result was proved by Shilov [14] for finitely generated algebras
and by Arens—Calderon [4], Arens [3], and Waelbrock [16] for general algebras. Adaptations
of the Cauchy—Weil integral formula provide the basis for [14] and [3].

, Our main purpose here is to prove that a version of the Shilov—Arens-Calderon
Theorem remains valid for tuples of operators with the spectrum chosen as Sp («, X).
Since Sp («, X) is generally smaller than spectra defined in other ways, we obtain a richer
functional calculus. The theorem is as follows: there is a homomorphism f— f(a) of
A(Sp (e, X)) into (a)”, the algebra of all operators on X that commute with all operators
commuting with each a;, such that 1(«) =id and z,{«) =a;. (Theorem 4.3 and Corollary 4.4.)

As in [3], we shall obtain the map f—f(x) via an abstract form of the Cauchy—Weil
integral. However, the version of the Cauchy—Weil integral we use here, and the methods
we use to obtain it, appear to be quite new and possibly of independent interest. In fact,
a second major objective of this paper is to give a detailed development of a quite general
form of the Cauchy-Weil integral. We pause to outline some of the features of this develop-
ment.

Let X be a Banach space, U a domain in ¢", and a=(ay, ..., @,) a commuting tuple of
analytic operator valued functions on U with values in the space L(X) of bounded linear
operators on X. If the tuple a(z) =(a,(2), ..., @,(2)) is non-singular for 2€ U\ K, where K

is some compact subset of U, then in § 3 we define a continuous linear map

f—>f Rynf@)Ad2 A ... Ad2, (2)
v

from the space of analytic X-valued functions on U to X. This map satisfies several trans-
formation laws which justify calling it a Cauchy—Weil integral. Furthermore, the expres-
sion [y Ry, f(2) Adz, A ... Adz, depends analytically (continuously) on any parameter on
which « and f depend analytically (continuously). If « is the scalar valued tuple x(z)=

Z2—w=(2; —wWy, ..., 2, —w,) for some w€ U, then we obtain the Cauchy-Weil integral formula
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flw)= @;—i),,vaz_wf(z) Adzy A ... Ndz,.

Versions of the Cauchy—Weil integral have been published by many authors, notably
Weil [17], Arens [3], and Gleason [8]. In Arens’ version ay, ..., a, and f are allowed to have
values in a Banach algebra 4. He assumes that a,(2)b, +... +a,(z)b, =id has a solution in 4
for each 2€ U\ K. Our version appears considerably stronger since we make no assump-
tions regarding the solvability of such an equation.

Our development of the Cauchy-Weil integral is almost entirely algebraic. In § I we
use the formalism of exterior algebra to construct a map f— R, f which supplies the inte-
grand of the Cauchy—Weil integral. We construct the map R, in a quite general algebraic
context. In order to apply the results of § 1 to the situation which interests us, it is neces-
sary to construct in § 2 a special space of vector valued functions which we call (U, X).
If we were using a classical notion of spectrum based on solvability of an operator equation
like (1), then it would suffice to use for B(U, X) the space of O® X-valued functions on U.
Section 2 would not be necessary in this situation.

In § 3 we apply the results of § 1 to the space constructed in § 2 and obtain our Cauchy—
Weil integral. An interesting feature of our construction is this: we do not use geometric
integration theory; the only integration that appears is ordinary Lebesgue integration in
C”. All of the combinatorial considerations involved in the Canchy-Weil integral are taken
care of by the algebraic construction of R,in §1. This approach makes it very easy to obtain
a variety of transformation laws for the Cauchy-Weil integral. We also obtain an analogue
of Fubini’s Theorem which relates an iterated Cauchy-Weil integral to a double integral.

In § 4 obtain the analytic functional calculus and investigate some of its properties.
The functional calculus makes it possible, in § 5, to obtain geometric relationships between

Sp («, X) and Sp, (&) for various choices of a Banach algebra 4.

1. Algebraic machinery

In this section we distill the algebraic portion of our development of the Cauchy—Weil
integral. Our basic tool is elementary exterior algebra. We refer the reader to MacLane
and Birkoff [12], Chapter XVI, for background in this area.

We shall work in the context of modules over a commutative ring. Although eventually
we shall be concerned with modules which arise as function spaces with considerable
additional structure, the discussion is much simpler if we ignore the additional structure
at this stage.

We shall freely use terminology and elementary results from the theory of cochain
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complexes. We shall attempt to use terminology consistent with [11], Chapter 2, with one
exception: a cochain map will be a homomorphism of graded modules which commutes
with the coboundary map—we do not insist that it be of degree zero.

Throughout this section K will be a fixed commutative ring with identity. Modules
will be K-modules unless otherwise specified. Tensor product will mean tensor product

over K.

Notation 1.1. If ¢ =(s,, ..., 8,) is an n-tuple of indeterminates, then A[¢] will denote the
exterior algebra (over K) with generators s,, ..., 8,, while A”[¢] will denote the module
consisting of elements of degree p in Afo] (cf. [12], XVI, § 6).

If X is any module, then X® A[o] and X ® A”[o] will be denoted by Alg, X] and
A?[o, X] respectively. An element & ® s;, A ... A s,pEA” [o, X] will be written simply as
x8;, A ... As;,. Note that Afe, X]={A?[g, X1}, is a graded module (cf. [11] or [12]).

If 4 is an algebra (over K) then A[o, 4] has the structure of a graded algebra under
the operation (a, f)—>o A 8, where if

x= . Zj ajx...fpsfl/\ “ee /\Sjpe Ap[Gy A]

N »

and ﬂzk Zk bry .ty Sicy A - A 81, € Ao, A]
VT

then ahAf= Ek (@ edp Oy okig) S5 A oo NS1p A Sy A o ASi, € APV (g, A].
J1..

- e
Of course, if 4 fails to be commutative then Ao, A] will not be an exterior algebra, i.e.: it
will not be true that oA x=0 for every a. In fact, if a=a,8,+... +a,5,€Al[c, 4], then
aha=2(@0;-a;a,) 8,78,
If X is a module and 4 an algebra of endomorphisms of X, then the graded algebra
Afo, A] acts on the graded module Afo, X] via the operation (o, )~y =a Ay, where if

o 22(141.__]1, Sj, At N8, € AP[o, A]
and Y= Tuy ke St A -+ A S, € A, X]
then AAY = D (@, iy Ty ig) S A ooe A Ssp NSy A oo A S, € AP [0, X].

If a=a.8,+... +a,s,€A'[o, A] then py—>a Ay is a graded module homomorphism of
degree 1 (i.e.:« maps AP[o, X] to AP+ [g, X] for each p). If & A & =0then « acts as a cobound-

ary operator on Afg, X]. This happens if and only if a; a;,=a;a; for ¢, j=1, ..., n.

Definition 1.2. If X is a module then &€ (X) will denote its algebra of endomorphisms.

An element «=a,3,+... +a,s, €A, £(X)] will be called commutative if a A x=0.
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If x€A'[o, £(X)] is commutative, then we denote by F(X, «) the cochain complex
whose graded module is A[g, X] and whose coboundary operator is «. The cohomology of
F(X, o) is the graded module H(X, a)={H?(X, «)}, where H?(X, a)=ker {ox: A”[o, X]—
AP o, XT}Im {a: A*"[¢, X]— A0, X]}.

We shall say that «=a,s,-+...+a,s, is non-singular on X if the complex F(X, )
is exact, i.e., if H?(X, a) =0 for each p.

The reader who is familiar with [15] will note that we seem to be changing horses
in mid-stream. In [15] we declared a tuple e =(a,, ..., @,) of endomorphisms of X to be
non-singular if a certain chain complex E(X, «) (the Koszul complex) was exact. In the
above definition we have said « is non-singular if the cochain complex F(X, «) is exact.
However, it is trivial to check that if the grading in F(X, a) is reversed by replacing p
by n —p, then one obtains a chain complex isomorphic to E(X, «). Hence, which of these
we use is purely a matter of convenience. We have chosen to use F(X, ) here because it
not only formally resembles a complex of differential forms, but in some situations in § 3
it will actually be a complex of differential forms. In these situations it would be needlessly
confusing to depart from the standard symbolism for differential forms.

For convenience, we now restate three lemmas from [15] that we shall have several

occasions to use.

Lemma 1.3. (Lemma 1.3 of [15].) Let ay, ... a,, by, ..., b,, be mutually commuting endo-
morphisms of X and set a=a;8+...4+a,8,, B=bit;+...4+b,t,, c@B=a,8+... +a,s, +
bty +... +b,t, where o=(sy, ..., 8,), T=(ty, ..., tw), amd CUT=(8y, ..., t,;) are tuples of in-

determinates. If « is non-singular on X, then so is @ B

Lemma 1.4. (Lemma 1.1 of [15]). If a=a, s, + ... +a,s, where (a,, ..., a,) is @ commuting
n-tuple of endomorphisms of X, then H(X, ) may be considered a graded left module over the
algebra A of elements of E(X) that commute with each a; (since ker {a: A’[o, X]-A?* [, X1}
and Im {o: A*"*o, X]->A%[a, X} are invariant under A for each p). Under this action of A
on H(X, x) we have a; H(X, a)=0 for i=1, ..., n. Hence, if the ideal generated by a, ...,a,
in Ais A, then H(X, a)=0 and « is non-singular on X.

Lemuma 1.5. (Lemma 1.2 of [15]). Let X, Y, and Z be modules over a fixed algebra A,
ay, .y @, be mutually commuting elements of A, and a=a,8,+ ... +a,s,. If 0> X—>Y—Z~0
1S a short exact sequence of A-modules, then there is a corresponding short exact sequence
0—-F(X, oc)—u—:F(Y, oc)y—’:F(Z, )0 of cochain maps (™ =u®id: AJo, X]->Afo, Y] and
v" =v®id: Afe, Y1 Alo, Z]), which induces a long exact sequence

> HYX, o) > H(Y, ) > HYZ, a) > H* "X, @) > ...
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of cohomology. Hence, if « 1s non-singular on any two of X, Y, and Z then it is non-singular on
the third as well.

Our development of the Cauchy-Weil integral will be based on properties of certain
transformations of Afo, X]. Most of these transformations fall into a special category which

we now describe.

Definition 1.6. Let X and Y be modules and ¢ =(sy, ..., 8,), T=(t;, ..., t,) tuples of
indeterminates. By a special transformation : Ao, X]—A[r, Y] we shall mean a graded
module homomorphism (of degree zero) determined by a homomorphism %% XY and

an m x n-matrix (u,;,) of commuting elements of €(Y) in the following way:

U Ty dp iy A e A 81p) = 200 (@ 1) U88) Ao A U(S1),
where w(s) =uyt +... Fuyt, for j=1,...,n,

(Here we agree that yu,,=u,(y) for y€Y).
Note that if 1 <j; <j,<...<j,<n and z€X

then w(@S), A ... A S) =u () ulsy,) A ... Aulsy,)

=0 (2) (Ugg, byt eee F Uy ) A ooe A (Uag by oo+ Umgy )

= > (u;li,...ui,;,,uo(x))t,‘ Ao Ay,

Iy ip

= 2> (det (uikfl)k,luo(x)) b A Ay,

iy <idy... <ip

if u is a special transformation determined by (u°, {u,;}).

Lemma 1.7. Let u: Ao, X]>Alr, Y] be a special transformation. Let (a,, ..., a,)
and (b, ...b,) be commuting tuples of elements of E(X) and E(Y) respectively and set o=
a;8;+...+a,8, and B=bt,+... +b,t,. Then u is a cochain map from F(X, a) to F(X, p) if
and only if the diagram

o
X — A'[¢,X]

NG

Y -2 A7, 7)

18 commutative, where u' is u restricted to Ao, X]. Of course, in this case u induces a homo-
morphism w*: H(X, o)~ H(Y, B) of cohomology (cf. [11], Chapter 2).
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Proof. We must prove that the diagram

Ao, X] —— AP [g, X]

uJ ul (1.1)

Ap[r, Y] _p;_’ Ap+1[t: Y]

is commutative for every p if it is commutative for p=0.

Hence, let yp=wzs; A... A8, €AP[0, X]. Then wufoy)=wu(oxAs; A... Asj)=ul{ax)A
u(8;,) A ... Aulsy,). However, commutativity of (1.1) for p =0 implies that u{ax)=pF{u%x)).
Hence, u(ayp) =pul(x)) Auls,) A ... Au(s;,) =pud(z) Au(s,) A ... ANu(s,)) =P(uyp), and (1.1) is
commutative for every p.

We are now prepared to construct what will eventually be the integrand of our Cauchy—
Weil integral.

Definition 1.8. Let B,=B be K-modules and let £(B|B,) be the algebra of endo-
morphisms in € (B) which leave B, invariant. Let (ay, ..., a,, dy, ..., d,) be a commuting
tuple of elements of £ (B|B,) and set a =a, 8, +... +a,8,, § =dit; +... + dut,. We shall then
call (3B, By, «, 6) a Cauchy—Weil system if « is non-singular on B/B, (which is an & (B|Byy)-
module since B, is invariant under & (B|B,)).

If (B, By, o, 6) is a Cauchy—Weil system, then we shall construct a homomorphism
R,: H*(B, §)~H"*?(%B,, 6) for each p. The map R, will be the composition of the three
homomorphisms constructed below.

If FEA?[1, B] we set sSF=FAsA... 8, EA™?[c U7, B]. Note that séF =
OF NsyN.hsy,=aF As A As,+0F As A...As,, since aAs;A...As, =0. Hence, s0F =
(x@O) FAs; Ao As,=(ax®S)sF. Thus, s: F(B, §)> F(B, a®J) is a cochain map of de-
gree n. It follows that s induces a homomorphism s*: H(8B, 8)—>H (B, a@®d) of degree n.

Let i: By~>B be the inclusion map. We have that 0—B,—B—~B/B,~0 is an exact
sequence which may be considered an exact sequence of £ (B|B,)-modules. By hypothesis
a is non-singular on B/B,. By Lemma 1.3, @4 is also non-singular on B/B,. It follows from
Lemma 1.5 that ¢*: H(B,, a ®3)—~H(B, a®d) is an isomorphism.

Finally, let 7: Alo U, Byl Alr, B,) be the special transformation (cf. 1.6) such that
7% B,—>B, is the identity and n(s)=0 (=1, .., n), #lt;)=t, (j=1, .., n). Note that
7(x®0)f=0f for f€B,. It follows from 1.7 that m: F(B,, a®d)—> F(B,, d) is a cochain
map of degree zero and induces a map n*: H(B,, a®d)—~> H(B,, 5).

Definition 1.9. If (B, By, «, 8) is a Cauchy—Weil system, then for each p we define
R,: H?(B, 6)-=H"+*(B,, 8) to be the composition of the maps
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H2(B, 8)>> H™2(B, 0@0)-— H"P(B,, 2 ®8) > H™? (B,, 8)

defined above, followed by multiplication by (—1)".
The properties we require of the Cauchy—-Weil integral will follow from certain in-
variance properties of the map R,. Developing these invariance properties occupies the

remainder of the section.

ProrosiTion 1.10. Let (B, By, «, 8) and (B, Bo, &', 8') be Cauchy-Weil systems,
where x=a,8;+... +a,8,, & =a18;+...4+ans,, 0=dit;+... +d,t,, and & =dit; +...+dptp.
Let u: Alr, B~ A7, B'] be a special transformation which satisfies the following conditions:

(1) w%: B—>B' maps B, into B,;

(2) B, is invariant under each ;s

(3) wa;f =a;u’f for i=1, ..., n and f€B;

(4) the diagram

é
B —— Al[r, B]

e, L
6,
B —— A'[7, 5]

is commutative.
Then, if w*: H(B, )~ H(B', &) is the map guaranteed by 1.7, the diagram

R,
H*(B,8) —— H"?(B,,d)

l u* l u*
R,
H*(®',8') — H™**(B,,8')
18 commutative.

Proof. Conditions (1) and (2) on u simply guarantee that u: Alr, B]—>A[r’, B’] maps
Alr, B,] into A[7, B,].

We define a special transformation «”: AloU 1, B]=AloU 7', B'] by setting 40 =u?:
BB, 4(t;) =ult;) (j=1,...,m), and 4(s;)=s; (:=1, ..., m). It then follows from 1.7 and
conditions (3) and (4) on w, that each of u: F(B, 8)—>F(B’, ), u: F(B,, 6)—>F(By, 0'),
@: F(B, a @)~ F(B', « ®8'), and 4: F(By, D)~ F(B,, o’ ®J') is a cochain map. Further-

more, the following diagram is commutative:

F(B,0) > F(®B,a®d) - F(B,a@d) = F(B, )
J | a Ju
F®.8) % P, « @) i F(®B, o @8) = F(B, )
It follows that u*R,=R, .u*. ‘
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In the above proposition, the transformation « did not effect « in any essential way.

In the next proposition we derive the affect on R, of a transformation of «.

ProrosirionN 1.11. Let (B, By, «, 0) and (B, By, B, 6) be Cauchy—Weil systems, where
C= 8+ 0S8y, B=byS1 ... +bysy and d=dit, +...+dpt,. If « and B are related by
bi=2uya; (t=1, ..., n), where {u;} is an n x n-matriz of elements of E(B|By) which commute
with each other and with ay, ..., a,, dy, ..., d,, then Rgodet (u;;)=R,.

Proof. Consider the special transformation u: AloU 7, B]-> Ao’ U t, B], where v BB
is the identity and w(s;)=> u,, s, u(t;)=¢;. This carries A[oU1, B,] into Alo’U7, Byl
and w: F(B, a®d)->F(B, @) and u: F(B,, a®d)—~>F(B,, ®S) are cochain maps.

Furthermore, the following diagram is commutative:

F®,8) 3PS, a0 L F(®By,0@8) = F(B,, )
l det (1) l % l % l id
F(B,8) > F(B, @) 3 F (B, D0) = F(By, ),

where det (u;;) € E(B|B,) determines a cochain map det (u,,): F(B, 8)— F(B, §), since each
u;; commutes with d,, ..., d,,. Upon passing to cohomology, the proposition follows from
the commutativity of this diagram.

If (B, By, «, d) is a Cauchy—Weil system, then each a; commutes with each d;. Hence,
each a,; acts as an endomorphism of H?(%, §). We then have:

ProrosiTioN 1.12. If (B, By, o, 0) is a Cauchy-Weil system and a=a,8; +... +a,8,,
then B oa;: H?(B, §)—~H" (B, 6) is zero for each 1.

Proof. It follows from 1.4, that a, H"*?(B, a®8) =0 for each i. The proposition follows
from this and the definition of R,.

Our next result is a factorization lemma which will yield a formula relating iterated
and double Cauchy-Weil integrals.

ProrosiTioN 1.13. Let B,=B,<B be modules and a, ..., a,, by, ..., by, dyy ooy dpy
commuting elements of E(B) which leave B, and B, invariant. Let a=a,8;+...+a,s,,
B=bys1+...+b,8y, and d=dit,+...+d,t,. If (B, By, «, 8) and (B, By, B, ) are Cauchy-
Weil systems, then so is (B, By, a D, 8) and the following diagram is commutative:

Ra@
Hﬂ(%’ 6) s 'S Hn+n’+ﬁ(§80’ 6)

R, Rﬂ

Hn+11 (%p 6)
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Proof. Since 0->B,/B,—~B/B,—~B/B,—~0 is a short exact sequence and « is non-
singular on B/B, and 8 is non-singular on B,/B,, 1.3 and 1.5 imply that «®F is non-
singular on B/B, and (B, B, «®F, J) is a Cauchy-Weil system. Now consider the diagram

sAS

F(B,6) — F(B,a@pDd) — h F(%l,a@ﬁcea)i—F(ﬂ%,,,a@ﬁ@zi)f»F(%o,é)

T T N ]

8

FB,a08) < FB,a08) = F®.8) > F®,p00) <L F(®,p00)

where sf=f/\sﬂ\ e NSy SF=FASIA . A8pey(SAS)Vf=FAS A ... NSy ASIA oo A Sy T1(85) =0
for =1, ..., n, my(s{)=s; for i=1, ..., n', m(t)) =t, for i=1, ..., m, ;y(s() =0 for i=1, ..., n’,
7e(E;) =t; for i=1, ..., m, and 7(s;) =n(s;) =0 for i=1, ..., n, j=1, ..., n’, =(t,)=¢, for i=1,
..., m. The maps ¢, and ¢, are induced by the inclusions #,: B;—B and 7,: By~ B,.

The diagram is clearly commutative and each of its maps is a cochain map. On pass-
ing to cohomology, we have R,=(—1)"aji1 's* Rp=(—1)"mzis 's™, and R,g;=
(=)™ a*ip 141" s A &')*, since i: By—> B is 1, 04,. The commutativity of the above diagram
now implies that R,g,=RzoR,.

Proposition 1.10 shows that R,: H?(B, 8)—>H"*?(B,, 8) is “‘natural” relative to a certain
class of transformations of . The final proposition of this section is another result concern-
ing the “naturality” of R, relative to 4. This result is not needed in our development of the
Cauchy-Weil integral or the functional calculus. However, we will need it to obtain a rela-
tion between the spectrum of a tuple (f(«), ..., fn(x)) and the spectrum of x={(a,, ..., a,)
for fi, ..., fn€UASP (@, X)) (cf. Theorem 4.8).

Let (B, By, «, 6@P) be a Cauchy-Weil system, where aa=a,8;+... +a,8,, 0=d,;+
ceeFdpty, and B=b,t +... + b,t,. Without loss of generality we may assume that b,, ..., b,,
are elements of the ground ring K so that all of the objects in the discussion are modules
over a ring containing these elements. In particular we may consider (b, ..., b,) as a
tuple of operators on H?($B, 6) and H?(B,, ) for each p.

There are two ways of constructing a map Ri: HP(HYSB, d), f)—~H"(H"(B,, 6), )
using the tuple &. On the one hand, we could compute RB,: H(B, d)—>H"(B,, d) for the
Cauchy—Weil system (B, By, «,8) and then let R}: HP(HYSB,8), B)—~ HP(H(B,, 6), )
be the map induced on cohomology by the corresponding cochain map R,: F(H(B, d), §)—
F(H™(B,, 6), B). On the other hand, there are natural maps j*: H?(H°(B, 8), )~ H*(B,0 ®p)
and k*: H™?(B,, 6®B)->H*(HYB,, 6), B) which we shall describe below. Hence, we could
define Ry as k*R,j*: HP(HY(SB, §), p)~H (H"B, J), f), where R,: H*(B, d®p)—
H"*?(B,, 6@ p) is computed for the Cauchy-Weil system (B, B,, «, d®B). We shall show
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that these two definitions of R} agree. There is a very short proof based on the theory
of spectral sequences and the fact that j* and &* are just edge homomorphisms {cf. [11],
Chapter XI). However, we shall attempt to give a more elementary proof.

Let j: HO(®B, §)=ker {6: B—+Al[r, B]}>B be the inclusion map and consider the
corresponding inclusion §~: Alz’, HYB, 8)]>A[z U7, B]. Note that since 6 =0 on HY(B, J)
we have that j~: F(HYB, 8), )~ F(B, 6®P)is a cochain map and, hence, it induces a map
i*: H(HY(B, 8), )~ H(B, ).

Let k: A™z, Byl—=H"(By, 6) = A"z, B,)/Im {8: A* [, ] A"z, 5]} be the factor map.
There is a corresponding factor map k™ : A[rU1’, B,]—Alr’, HYB,, 6)] defined by k"p =0
if  has degree less than n in ¢, ..., ¢, and k" y =ky if y has degree n in t,, ..., t,. Since ker &k~
contains Im {0: A[zU 7', By]+A[zU 7', Bel}, themap k™ : F(B,, SOF)—~ F(H"(B,, 8), B) is a
cochain map of degree -» and induces a map k*: H**?(B,, § ® )~ H?(H"(B,, 6), B) for each p.

ProrosiTion 1.14. Let «, B, 6 and j* and k* be as above. Let R%: HP(HY(B, 9), B)—~
HY(H"(B,, 8), f) be induced by R,. HYB,6)~H"B,, 6) and let R,: HY (B, d®B)—>H"
(3B, 0®pP) be the map R, relative to the Cauchy—Weil system (B, By, «, 6@ L). Then the fol-

lowing diagram is commutative:
%

HP (BB, 8), ) —— B2(H" By, 8), )
7'* k*
B,
H?(B,0®p). —— H"**(B,, 60p)

Proof. Let C denote either B or B, and y either § or «®d. We introduce a filtration in
F(C, y®p) by letting D*F(C, y ®p) be the subcomplex of F(C, y ®f) consisting of elements
of degree at least p in #i, ..., t,,. Note that for each p there is a cochain map v: D*F(C,y @)~
F(A?[v, C), ) of degree —p defined by vy =0 for y€ D**1F(C, y ®B) and vy =y considered
as an element of Afr, A”[7’, B]}if p has degree pin t;, ..., t),.

The maps s, ¢, and 7 of Definition 1.9 for the Cauchy-Weil system (B, B, «, 6®f)

respect the filtration {D*}. Hence, we have the following commutative diagram of cochain
maps:

FB,308) > FB,a0008) < F®,a000p) = FB,00p)
[u Ju fu [u
D*F(®B,80p) > D°F(B,00®p) ~ D F(By a0d®f) = DFB, s0p)

v v v v

F(A?[7', 8], 6) 4 F(A?[7, B], a®6) L FA[Y, B,], a® ) z F(A?[7',B,), 8)
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where % is the inclusion map. Note that since A?[7’, B] is just a direct sum of copies of
B the map 31 F(A[7', Byl, «®8)—~ F(A?[7', B], a®d) induces an isomorphism of coho-
mology. Using this fact, the map v, and induction on = —p, one can prove that ©: D?F(B,,
@D~ D' F(B, add®P) also induces an isomorphism of cohomology. Hence, with

R,=(—1)"n**1s* we have a commutative diagram

H”(B,0®p) e H"7 (B, 6 f)
T u* I u*
H?(DPF(B, 60 B)) Be e (D" F(By, 6@ )
lv* l v*
H°(A?[7',B], 8) = A°[/, H*(B, 8)] i» A?[7', H™(B,, 8)] = H"(A?[7",B,], 9).

Furthermore, for each p, v* maps H?(D*F(B, 6®p)) and H"*?(D*F(B,, 6®P)) into
ker {§: A7[7", HY(B, 8)]~ A?*1[v', HY(B, 8)]} and ker {B: A”[v', H"(By, 8)]~ A**1[7’, H"(B,, )]}

respectively. Hence, v* induces maps v** so the following diagram is commutative:

R,
H*(B,0p) —— H"?(B,, 6D p)
K [
R,
H?(DPF(B,0®p)) —— H" ?(D*F(By, 6D P))

[ o [ 0%

£

R}
H*(H°(B,6),f) —— HP(H"(3,9),p).

To complete the proof, we simply note that v**: H?(D?F(B, 6®8))~H"(HYB, ), B)
is an isomorphism and j*=u*(»**)-1, and that u*: H"?(D"F(B,, 6DB))~>H"+?(B,, 6®P)

is an isomorphism and k* =v**(uw¥)1.

CoroLLARY 1.15. Let a,, ..., a,, by, ..., b, be elements of the ground ring K and d,, ..., d,,
a commuting tuple in E(B|B,). Let a=a,8;+...+ 0,5, f=bysi+...+b,87, 6=dyt;+... +
dnt,, (x—pB)=(a,—by)s]+...+(a,—b,)s,, and suppose (B, B, «, d) and (B, By, B, 8) are
Cauchy—Weil systems. Then the maps B,: HYDB, §)~>H"(B,, 6) and Rs: HY(B, 6)~H"(B,, 0)
induce identical homomorphisms of H?(HY(B, d), (x —p)) tnto H*(H™(B, J), (o —p)) for each p.

Proof. By Proposition 1.14 it suffices to show that R,: H?®B, dO(« -/
H™2(B,, 0@ (a—p)) and Ry H(B, 6@ (a—~f))~>H"*?(By, 0D (x—p)) are the same homo-
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morphism. To do this, we define a special transformation u: F(B, a®é®(x—p))~
F(B, Boo®(x—p)) by defining u0=id: B>B and w(t,) =t;, u(s;)=s; —si, and u(s;)=s.

Then the following is a commutative diagram of cochain maps:

{a

F(B,60 (@) > F®B,a0d®@—p) ~ F(Bya®o®(x—p) = F(B, 60— p)
Iid |w | [ id
FB,80(@—F) & P®B, 000 (—p) + FByfoo®@—f) = F(B0 50 (- f)

On passing to cohomology, we conclude that

R, = Ry H(B, 0@ (—p)) > H"*(B,, 6@ (x —)).

2. A special function space

In § 3 we shall develop the Cauchy-Weil integral by applying the results of §1 to a
Cauchy—Weil system (B, B,, «, §) in which 8 is a space of vector valued functions on a
domain U< € and B, is the subspace of B consisting of functions with compact support.

In this section we introduce the space B and develop its relevant properties.

Notation 2.1. If X is a Frechet space and U a locally compact Hausdorff space, then
C{U, X) will denote the space of continuous X-valued functions on U with the compact-
open topology. If U< C" is a domain, then A(U, X) will denote the space of analytic X-
valued functions on U, also with the compact-open topology. The theory of analytic
functions with values in a Frechet space does not differ in any essential way from the
theory of numerical valued analytic functions. We refer the reader to [5] and [7] for discus-
sions of this matter.

If X and Y are Frechet spaces, then L(X, Y) will denote the space of continuous linear
maps from X to ¥ with the topology of uniform convergence on bounded subsets of X.

In [15} we discussed parameterized chain complexes. We shall be using cochain

complexes in this paper. Hence, we restate Definition 2.1 of [15] as follows:

Definition 2.2. Let { Y7} be a family of Banach spaces indexed by the integers and let U
be a locally compact Hausdorff space. Let {a’} be an indexed family of maps with
a?€C(U, L(Y?, Y?*1)) for each p. If a?(z) o a”}(z) =0 for each p and each z € U, then we shall
call Y ={Y?, «”} a parameterized cochain complex on U. If, in addition, U is a domain in
C" and o €A(U, L(Y?, Y*-1)) for each p, then we shall call ¥ an analytically parameterized

cochain complex.
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If Y={Y? «”} is a parameterized (analytically parameterized) cochain complex on
U and V is an open subset of U, then C(V, Y) (A(V, Y)) will denote the cochain complex
{C(V, Y7), &’} ({A(V, Y?), «’}), where (aff)(2) =a?(z)f(z) for zEV, fEC(V, Y?) (A(V, ¥?)).
The following is a restatement of Theorems 2.1 and 2.2 of [15]:

Lemma 2.3. If Y={Y?, o} is a parameterized cochain complex on U, then for each
p the set of z€U for which Y(z)={Y?, a®(z)} is exact at the pth stage is an open set. If Y(z)
is exact for all z€V, where V is an open set in U, then C(V, Y) is exact.

If U=U,x..xU, is a polydisc in C*, Y s analytically parameterized on U, and Y (z)
is exact for each z€ U, then A(U, Y) 1s also exact.

Given a domain U< (" and a Banach space X, we seek a space B(U, X) of X-valued
functions on U which has certain special properties. Specifically, we need that B(U, X) is
closed under multiplication by functions in C®(U), the differential operators 0/0z,, ..., 9/0Z,
act on B(U, X), and B(U, Y) is exact whenever Y is an analytically parameterized cochain
complex such that Y(z) is exact for each 2€ U. The obvious choice is C*(U, X). Unfortuna-
tely, we have been unable to prove that C=(U, Y) is exact when Y is a pointwise exact
analytically parameterized complex. Hence, we are forced to seek another choice for
B(U, X).

Our choice is the following: B(U, X) will be the subspace of C(U, X) consisting of
functions f for which the derivatives (8/0Z,)™ ... (6/0Z,)"* f (in the distribution sense) are

elements of C(U, X) for all multi-indices (py, ..., ,). We make this more precise below.

Definition 2.4. Let X be a Frechet space and U a domain in C. If f, g€ C(U, X) we shall
say f€BYU, X) and (9/6%)f =g provided

[ s e

for every @ € D(U) —the space of (' functions with compact support in U.

We define B(U, X) for k> 1 by saying f € B*(U, X) if f€ BYU, X) and &f/oz € B~ (U, X).
We set BY(U, X)=C(U, X).

Note that the fact that X is complete insures that both integrals in (2.1) exist. Clearly,
equation (2.1) uniquely defines g =28f/9Z in terms of f.

We topologize B*(U, X) in the following manner: we give B%(U, X) the Frechet space
topology in which a sequence {f,} converges to zero if and only if (9/6z)"f,~0 uniformly on
compact subsets of U for p=0,1, ..., £.

One might suspect that it is always the case that BY(U, X) =C¥U, X). It is true that
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a real valued function in B*(U, C) is also in C¥(U). However, the function z—>zIn|In|z| |
is in BY(D, C) but not in CY(D), where D is the unit disc.

The next few lemmas develop elementary properties of the class B*. For convenience,
we set 8/6Z=28 and (0/03)* =&".

Lemuma 2.5. If feBYU, X) and ¢ €C2(U) then pf €BY(U, X) and d(¢pf) = (0p) f +p(0f).
Proof. This is an elementary computation.

Lemwma 2.6. If f€EBYU, X) then there is a sequence {f,} of functions in C(U, X)
such that f,—~f in the topology of B*(U, X).

Proof. 1f {€B*(U, X) has compact support, we may consider f an element of B*(C, X).
We let {u,,} < D(C) be a convolution approximate identity. Then u, % f € C°(C, X), 8°(u, % f) =
u, % (0%f) for p=0, 1, ..., k, and 8°(u,* f)—~>0°f uniformly for p=0, 1, ..., k. Hence, f is the
limit of a sequence in C*(U, X) if f has compact support. By 2.5 every element of (U, X)
is the limit of a sequence of elements with compact support. The lemma follows.

The next Lemma is obviously true for f€C®(U, X) and in view of 2.8, it is true for all
JEBHU, X):

Lemma 2.7. If X and Y are Frechet spaces and o €W(U, L(X, Y)), J€B*(U, X) then
af EBU, Y) and o(af) = x(Bf), where af(z) =a(z)f(z).

Lemma 2.8. If f€EC(U, X) and k=0, then fEB**YU, X) if and only if there is a
gEB(U, X) such that every compact set K< U is contained in a compact set D< U with piece-
wise smooth boundary such that

Hz)= L Uab (C—2) () ds + JL (C—2)7'g(0) dC A df] (2.2)

2mi
for every z€int D.

Proof. If f€0~(U, X) and 8f=g, then (2.2) is just the generalized Cauchy integral
formula (cf. [10], 1.2.1). It follows from 2.6 that (2.2) holds for all f€B**(U, X).

To prove the converse, we let @ €ED(U) and choose a compact set D containing the
support of ¢. If we assume (2.2) holds for 7, g, D with f€C(U, X) and g €B*(U, X), then

2 ﬂiffé(p () fz)dz ndZ= ff {fan dp(z) (E—2)"2() dC} dz A dZ

+ ff {ffbap(z) (& —2)g(8)dE A df} dzpndi. (2.3)
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If we reverse the order of integration and replace z by w+¢, then (2.3) becomes

—fa f(C){fféqo(w—#é‘) w’ldw/\d@?)}dé—ff g(é‘){fj&p(w—l—é) w‘ldw/\d&)}dz/\dé. (2.4)

If we use the fact that (2.2) holds for C®-functions and that ¢ has compact support
in D, then (2.4) becomes

-m{f f@)dﬁﬁ dmdc}——zmﬂm)g OdzndE. (25)

It follows that equation (2.1) holds for f and ¢ and that f€B*+1(U, X) and &f —¢.

LemMa 2.9. Let U<C be a domain and V a domain with compact closure tn U. If
k>0 and geB*(U, X) then there exists f€ B YU, X) such that of =g on V.

Proof. By multiplying g by a 0 function which is one on ¥ and has compact support
in U, we obtain ¢,€8% U, X) such that g, has compact support and g,=g on V. We set

f(z)= 2-% jf(é —2)7'g,(0) dC nd.

It follows from Lemma 2.8 that f€B**Y(U, X) and of =g,.

We now proceed to the case of several variables. Let U be a domain in €* and X a
Frechet space. For each i, we denote the operator 86z, = 1[6/6x, 4 1(8/3y,)] by 9,. As in Defini-
tion 2.4, if fEC(U, X) we shall say 8,f€C(U, X) if there is a g€ C(U, X) (g=0,f) such that

fu (Byp) fdm = — ftpgdm (2.6)
for every p € D(U), where m is Lebesgue measure in C".

Lemwma 2.10. If feC(U, X), 3,f€C(U, X), and 0,3,f) €C(U, X) for some pair i, §, then
8,/€C(U, X) and 8,(0,{)=8;(0; f).

Proof. Since the hypothesis and conclusion are clearly local statements about functions
in (U, X), we may assume without loss of generality that U=U, x... x U, is a polydisc

and f has compact support in U. Also, we may assume 1 =n.

We set Jf 0,0, f(21 v s 20-1, §) (L —2,) 1AL N AE,
2m

and ~5= ff FEas eon s 2non, O (E—2,)"2dE A dE.
k22
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Note that », g€C(U, X) and ;g = h. Furthermore, since f has compact support, it follows
from Lemma 2.8 that g=f. Hence, 8, f=h€C(U, X). That 3,5, f) =&,(3, f) follows from the
fact that 8,8,¢=2,0,¢ for p€D(U).

The above lemma makes it possible to define, in a non-ambiguous manner, a space
BIU, X) for each multi-index §=(jy, ..., jn)-

Definition 2.11. If j=(0, ..., 0) is the zero index, we set BY(U, X)=C(U, X). For each
tlet1,=(0,...,0,1,0, ..., 0) (1 in the ¢th position). If j = (§y, ..., ) (0 <j, < o) and B/(U, X)
has been defined, we define B4 U, X)={feC(U, X): 3,feB/(U, X)}.

1f j and k are multi-indices with j <k (j, <k, for each ¢) then we define 3’: B*(U, X)—>
B-I(U, K) by 8'=0" ... o™

Without Lemma 2.10, the above definition would be ambiguous since there are many
ways to form a multi-index § by beginning with 0 and successively adding indices 1,.

As before, we give B*(U, X) the Frechet space topology in which f,~0 if &/f,—~0
uniformly on compact sets for each j<k.

Let U and V be domains in C* and C™ respectively. We may identify C(U x ¥, X)
and C(U, C(V, X)) by identifying the function (z, w)—~>f(z, w) in C(U x V, X) with the
function z—f(z, -) in C(U, C(V, X)). If §=(jy, .s Ju)s k=(ky, ..., k), and jUk= (5;, ...,
Jns Ry -os k), then it is evident that this identification also identifies BV¥(U x ¥, X) with
BIU, BV, X)).

We now introduce a special notation for use in the next two lemmas. If j =(j,, ..., 4,)
where j,=0,1, 2, ... or §,= — oo for each 4, then B?(U, X) will represent the subspace of
C(U, X) consisting of functions f such that f is analytic in 2, if j,= —co and f€B(U, X)
for j'=(f1, ..., ), Where j;=0 if j;= —oco and j; =7, if j; = —oo.

By B%[X] we will mean the sheaf of germs of the presheaf V-8V, X) for Ve U
(cf. [6], or [9], IV).

Lemma 2.12. For each j=(f, .-y Ja) (ju= —o0, 0r 0, 1, 2, ...) and for each i=1, ..., n
with §,+ — oo, the sequence

o
0By 4 [X] > By [X]—> B, [X] 0
ts exact, where oo ;=(0, ..., o0, 0, ..., 0) and 1,=(0, ..., 1, ..., 0) (oo resp. 1 in the ith position).

Proof. If f€B/*+%(V, X) for some domain V< X, then 9, f =0 implies that f is analytic
in the variable 2, on V. Hence, f€B~(V, X).
If z,€ U and f€B/(V, X) for some neighborhood V of z,, then it follows from Lemma

2.9 that there is a function g€B/+34(V1, X) for some possibly smaller neighborhood V!
2—702902 Acta mathematica. 125. Imprimé le 17 Septembre 1970.
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such that 2,g=f on V1. To see this, note that if V=V, x...x ¥V, is a polydise, we may
write B/(V, X)=B%V, X’) where X'=B"(Vyx..xV,_x Vi1 x..xV,, X) and § =
(J1s +es Jim1s J1+1s ++» 1n)- This reduces the problem to the one dimensional situation deseribed
in Lemma 2.9.

On passing to germs, the above considerations show that ¢,: B [ X]—> B, [X]is a

surjective map with kernel B} > X].

LemMma 2.13. Let Y ={Y?, o} be an analytically parameterized cochain complex on a
domain U<C". If Y(z) is exact for each point z of U, then the complex B[ Y] ={B,[Y?], «*}

is an exact sequence of sheaves on U for each multi-index j=(j;, ..., Ja) (j;= —o0,0,1,...).

Proof. It follows from Proposition 2.3 that if each j; is — oo or 0 then BL[Y] is exact.
The proof for general j proceeds by induction.

Suppose B[ Y] is exact for all k<j, where j=(jy, ..., j,) and k<j means k,<j, for all
¢ and inequality holds for some 7. We may assume that j;,>0 for at least one 7. Then, by

Lemma 2.12 the sequence

. % .
0B 2 [X]-> By [X]— B [X]->0
3
is exact. Hence, 0B [Y]-B, [Y]— B [Y]-0

is an exact sequence of cochain complexes (of sheaves). By the induction hypothesis,
By [ Y] and By 4[Y] are both exact. It follows that BL[Y] is also exact (cf. [11],
Chapter 2). This completes the induction.

LeMma 214, If Y is an analytically parameterized cochain complex on U<C" and
if Y(z) is exact for each z€ U, then B¥(U, Y) is exact for k=(ky, ..., k,) (k;=0).

Proof. Each of the spaces B¥(V, Y?) (V< U) is closed under multiplication by functions
in C°(U) (cf. Lemma 2.5). It follows that BY[Y?] is a fine sheaf for each p (cf. [6] or [9]).
Hence, by Lemma 2.13, BE5[Y] is an exact sequence of fine sheaves. It follows that the
corresponding sequence of global sections B*(U, Y} is also exact (cf. [9], VI or [6], II, 4).
We are now ready to define (U, X) and prove that it possesses the properties that we

require.

Definition. 2.15. If X is a Frechet space and U < C" a domain, then we define B(U, X) =
N{BI(U, X): j=(y, ..., ja), j:=0}. We give B(U, X) the Frechet space topology in which

.0 if and only if ¢’f,~>0 uniformly on compact sets for each j.
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TurorEM 2.16. The space B(U, X) kas the following properties:

(1) BU, X) s closed under multiplication by functions in C°(U);

(2) if fEB(U, X) then d'fe€B(U, X) for each multi-index j=(j, ..., j,) and WU, X) =
{feBU, X): 8,f=0 for i=1, ..., n};

(3) if ¢ VU is an’ analytic map, then ¢*: C(U, X)~C(V, X) maps B(U, X) into
BV, X);

4) of X1 and X, are Banach spaces and a€ WU, L(X,, X,)), then af €B(U, X,) for
each fEB(U, X,);

(8) if Y s an analytically parameterized cochain complex of Banach spaces on U and
Y (2) us exact for each z€U, then B(U, Y) is also exact.

Proof. Properties (1), (2), (3), and (4) are routine in view of the preceding lemmas.
Hence, we concentrate on part (5).

Suppose each Y? is a Banach space and f€B(U, Y?) with a?f<=0. If j(¢9)=(3, 4, ..., ?)
for ©=0, 1, ..., then 2.14 implies that there exists g,€ B (U, Y?71) for each ¢ such that
a?~1g,=f. Also, since a?1(g,,, —¢;) =0, we may choose h;€ B/ (U, ¥Y?"?) such that «*~%h,=
gi1—9: We then have

m—1
In=go+ ZO a?~2h; for each m.
1=

Clearly, B(U, Y?-2) is dense in B/? (U, Y7-2) for each i. Hence, if V is a domain with
compact closure in U, we may choose k€ B(U, ¥Y7-2) such that [07h(z) -k, (z)|| <1/2
for all z€V and § <j(s). f h=220(h;—k,;) and g =g, 4 «®~2h, then «’~1g=f and for each m

m—1 oo
g9=9m— o i—zo k,+ “p721_2 (hy — k).

Sines D2, &/ (h; —k;) converges uniformly on V for each j <j(m), we conclude that
geEB(V, ¥ ),

Since the above argument works for any V with compact closure in U and since
B(U, Y*-1) is closed under multiplication by functions in C®(U), a standard partition of

unity argument yields that B(U, Y) is exact.

We should point out that the construction of the space B(U, X) can be carried out if
X is any quasi-complete locally convex topological vector space. However, the resnlts
on exactness of B(U, Y), when Y is a pointwise exact parameterized cochain complex,
use the fact that each ¥” is a Banach space in an essential way. This is the only barrier
to extending all of our results to some very general category of topological vector spaces.

Since Lemma 2.3 is patently false if it is not true that each Y? is a Banach space, an
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extension of these results to a larger class of topological vector spaces will require a
strengthened notion of exactness at a point for a parameterized cochain complex. A similar
problem occurs in the spectral theory of an operator on a topological vector space which is
not a Banach space. The approach to this problem used in [1] and [13] may suggest ways
of extending the results of this paper.

3. The Cauchy-Weil integral

It is now a simple matter to combine the results of the preceding two sections to

obtain a very general form of the Cauchy—Weil integral.

Notation 3.1. Throughout this section X will be a Banach space and L(X) will denote
the space of bounded linear operators on X.
Let UcC"™ be a domain. We shall write points of U in the form (z, w) =

(%15 ++v» 2p, Wy .. , Wy,). Corresponding to the coordinates in C"*™ we choose tuples of in-

7]
determinates dZ = (dZ;, ... , d%,), dw = (@, ... , dib,). We consider a_ . 82,, 8:)1 , —35);

to be operators on B(U, X) and set 9, = dzl +. + 6 dz,,EA1 [dz, E(B(U, X))] and
8w=8—w— div,+ .. + dw,,,eAl[dw EBU, X))] (cf. §1).

Let ay, ..., a, be operator valued functions in (U, L(X)) such that a;(z, w)a,(z, w)=
a;(z, w)a;(z, w) for each ¢, § and each (z, w)€EU. We choose a tuple of indeterminates
0={8, ..., 8,) and set a=a,8 +... +a,8, and a2z, w)=a,(2, w)$; +... +a,(z, w)s,. Each a,
is considered an operator on B(U, X), where a,f(z, w)=a(z, w)f(z, w).

For our ground ring K we choose an arbitrary commutative subring of A(U, L(X))
whose elements commute with a,, ..., a,. We may then consider B(U, X) to be a K-module

and ay, ..., a,, 0/0%, ..., 0]0%Z,, low,, ..., 0/0Ww,, to be module endomorphisms.

Definition 3.2. Let n,: C**™—C™ be the projection of C**™ on its last m coordinates
and set V=m,U.

A closed subset K< U will be called z-compact if K n {€" xL} is compact in U for
each compact set L< V.

The submodule of B(U, X) consisting of functions with compact support (z-compact
support) will be called By(U, X) (B,(U, X)).

3.3 LEmMMmA. The space B(U, X)/By(U, X) is the inductive limit of the system {B(V, X):
Ve U, U\V compact}, where {V: V= U, U\ V compact} is directed downward by inclusion
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and for V,< V, we map B(V,, X) into B(V,, X) by restriction. The same statement holds for
BU, X)[B,(U, X) with compact replaced by z-compact.

Proof. The restriction map »: B(U, X)—B(V, X) obviously induces a homomorphism
»" of B(U, X) into lim {B(V, X); V< U, U\V compact} whose kernel is B,(U, X). Hence,
we need only show that »” is surjective.

If V< U, U\V is compact, and f€ B(V, X) then there exist compact sets K; and K,
with U\V<int K;< K;<int K,c K, U. We may choose g€ C®(U) such that ¢=0
on K, and p=10on U\K,. Ifg=¢fon Vandg=0on U\V, then g€ B(U, X) and g agrees
with f on U\ K,. Hence, »" g is the element of lim {B(V, X)} determined by f.

3.4 LEMMA. If the set S(x), of points (z, w)EU for which a(z, w)=a,(z, w)s;+ ...+
a.{z, w)s, is singular on X, is z-compact in U, then (B(U, X), B,(U, X), a, 8,08,) is a
Cauchy-Weil system (cf. Def. 1.8).

Proof. Clearly each of

0 o 0 0
Aysoon s Qpy Ty ey Ty T s 20ed me
9%, 0%, 0w, 1y,
leaves B, (U, X) invariant. Furthermore, as we mentioned earlier, any pair of these oper-
ators commute. Hence, it suffices to prove that « is non-singular on B/3B,.
By hypothesis, S{&) is z-compact. If ¥V =U\S(a) then for (z, w)€V the complex
F(X, afz, w)) is exact (cf. Def. 1.2). It follows from Theorem 2.16 that the complex

FEB(V',X), ) =B(V', F(X, «))

is exact for any open set V' < V. Since inductive limits preserve exactness it follows that

F(B/B,, z) is exact, i.e., « is non-singular on B/B,.
We now have that if S(«)} is z-compact in U, then the homomorphism
R, H*(B(U, X),0,®3,)—~H"**(B,(U, X),,®,)

of Def. 1.9 is defined. To complete our Cauchy-Weil integral, we will use the Lebesgue
integral in €" to define a homomorphism of H"*? (B, (U, X), 3,®J,,) into H*(B(V, X), 2,,).
t7j 0 0 0 =
It = I —dZ ...t dz,= )
d, o, dz; + ...+ 7. dz, + 8 az, -+ + o, dz,=0,+0,
then the map f—~fAdz A ... Adz, (f€ F(B,(U, X),3,®0,) defines a cochain map of degree
n from F(B,(U, X),9,®3,) into F(B,(U, X),,08,D3,).



22 JOSEPH L. TAYLOR

We define a cochain map f— [ f of F(B,(U, X), d,®3,,) into F(B,(V, X),,) in the
following way: we write f=gdZ Adzy A ... AdE, Adz, +h, where h contains only terms of

degree less than 2# in dzy, ..., dz,, d%,, ..., d%,; then
ff= fg(z, w)dZ Adzy A ... NAZ, N d2,

is (2¢)" times the ordinary Lebesgue integral of g, where for each weV, z->g(z, w) 18 con-
sidered a function with compaet support in C" with values in A[dw, X].
Note that

f(dz@éw)f:f(éwg) dz, Adzy A ... NdZ, A dz, +fdzh+f5wh
= f(éwg) di ANd2y A ... AdEnAdzn+f5wh=f5wf.

This is due to the fact that [d,h—=0 since k(z, w) has compact support in z for each w
(Stokes Theorem). Hence f— ff is a cochain map of degree —2n.

If we combine the maps f—>fAdz A...Adz, and g— [¢g we obtain a cochain map
f=>ffradey A Ndz, of F(B, (U, X),8,838,)—~F(B(V, X),3,) of degree —n. We shall
occasionally denote this map by g.

It follows that o defines a homomorphism g*: H™*(B,(U, X), 8)~H*(B(V, X), ,,)
for each g. We shall also denote this homomorphism by f— [fAdz A ... Adz,.

Definition 3.5. if U<C"™™ is a domain, X a Banach space, a, ..., ¢, €A(U, (X)) a
commuting n-tuple such that «(z, w) =a,(z, w)s; +... +a,(z, w)s, s non-singular except on
a z-compact subset of U, then for each f€ H(B(U, X), 3,®3,) the Cauchy-Weil integral

of f with respect to « is the element
0*Ryf= f(Ra,) Adzy A .. Adz,

of H(B(V, X), 8,), where V=n,U.

Note that if p=0 then HYB(U, X), 8,®3,)=W(U, X). H(B(V, X), 0,)=A(V, X),
and so the Cauchy-Weil integral maps A(U, X) into A(V, X). It is the case p =0 that really
interests us; however, for technical reasons wé must consider the integral in each degree
until we complete some additional machinery.

Also note that if m =0, then we consider €™ to be the singleton point {0} and set
V={0}, BV, X)=X, F(B(V, X), &,)=H?(B(V, X), 5,)=X for p=0 and 0 otherwise.
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In this case, f R,fAdz, A ... Adz, is zero if f€ HP(B(U, X), 8) with p 40 and is an element
of X if p=0.
The key to computing the Cauchy-Weil integral for specific 4, ..., @, is an analogue

of Fubini’s Theorem which we present below.

TarorremM 3.6. Let U be a domain in C"™ and V =x, U< C™ Let a,, ..., a, EA(U, L(X))
and by, ..., b, €AV, L(X)) be commuting tuples with a;(z, w)b;(w) =b;(w)a,(z, w) fori=1, ..., n,
j=1, ..., m and (z, w)€U. Let x=a,8,+... +a,s, and B=b;s;+... +b, s, and suppose S(x)
18 z-compact in U and S(B) is compact in V. Then for each fEA(U, X),

fRafAdZIA v A2, €WV, X) = H°(B(V, X), 8,)

and fRﬁ{JRafAdzlA.../\dz,,}/\dwl/\.../\dw,,

=fRa@,;f/\dzI/\... Adz, Adw A ... Ndw, € X.

Proof. Recall that 38,(U, X) is the space of functions in B(U, X) with z-compact sup-
port, and By(U, X) is the space of functions in B(U, X) with compact support. The hypo-
thesis on « and § guarantee that (B(U, X), B,(U, X), a, 9,®3,,) and (BU, X), By(U, X),
B, 8,93,) are both Cauchy-Weil systems. By Proposition 1.13, (B(U, X), By(U, X),
a®f, 9,®3,) is also a Cauchy-Weil system and R,3,=R;0R,. Hence, we may write

fanrmRa@ﬂf/\dzl/\ e Az Adw A L. Adw,

=f {J‘ RﬁORaf/\dzlf\...Adzn}/\dwl/\.../\dwn.
e

To complete the proof, we need only show that the diagram

R
H"(B,(U, X),3) —2 H*n(B,(U, X),3)
et |
_ Ry -
HO(%(V’X), aw) - Hm(sso(V’X)saw)

is commutative, where o,: F(B,(U, X), 8)—>F(By(V, X), 3,) is defined by g,(f)=fen f A
dzy A...Adz, and g is the corresponding map of cohomology. However, this follows
readily, since the fact that b,, ..., b, are independent of z forces the following diagram
to be commutative:
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F(%l(UsX)agz(‘Déw) f” F(%I(Uax)s ﬁ@gz@gw) i F(%O(Uax)sﬂ@)éz@éw) ﬁ F(%O(UaX)iéz(ng)

lez Je: Je. | e

I4

8

FB(V,X),3,) > FBY,X),p05,) — F®BV.X),803,) = F®BV,X),5,)
(cf. Definition 1.9). This completes the proof.

If U and a=a,8;+... +a,s, satisfy the conditions of Definition 3.5, then for each
w€V =n, U and fEA(U, X) there are two ways of obtaining an element of X. One could
compute g=f R, fAdeyA...Ndz, €U(V, X) and then evaluate at w, or one could set
a¥(2) = a(z, w) and f*(2) =f(z, w) and compute fc« R,wf® Adzy A ... Ndz, € X. We shall show
that these yield the same result. This makes Theorem 3.6 much more useful than it would

be otherwise.

Lemuma 3.7. If U, X, and o satisfy the conditions of Definition 3.5, w€V =mn,U,
and o (z) =a(z, w) then for each f€A(U, X) we have

(f R,fradzA... /\dz,,) (w)=f Bowfondzy A ... Ndz,,
ct c
where f“(z) =f(z, w).

Proof. Let U,,= {z€C™ (z, w) € U} and consider the special transformation u: F(B(U, X),
9,8,) > F(B(U,, X),d,) determined by (u%)(2)=f(z, w)=f“(z) for fEB(U, X) and
w(dz)<dz, w(d@,)=0 for i=1, ...,n, j=1,..,m (cf. Def. 1.6). Clearly u®a,f)=0;" u°(f)
for f€B(U, X). Hence, it follows from Proposition 1.10 that the diagram

R, o
H° (%(Uy X)a 5263510) _— Hﬂ(%(U: X): 8z@aw)
[ur Jur
- Raw -
H°(B(U,, X),2,) — H*(B(U,,X),d,)
is commutative.

Also, u* clearly commutes with the map g— j' g Adz, A ... Ndz,. Hence,
u*fRaf/\ dzg A ... N2, =fR,,m'u*f/\dzl/\ .. Nd2zy,

which is precisely the conclusion of the Lemma.

The above lemma makes the following notation unambiguous: for f€N(U, X) and w€V,
we set
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J‘(Ru(z,w) f(z> w)) A dzl Ao A dzn = (J\Raf A dzl Ao A dzn) (UJ)

= fRanw/\dzl/\ . ANz,

This is analogous to writing [ f(z, y)dz for the integral of a function of two variables with
respect to one of these variables.

With Theorem 3.5 and Lemma 3.6 out of the way, we may restrict attention to the
case where m =p =0, which is our real interest. That is, U will be a domain in C*, (a,, ..., @,)
a commuting n-tuple in YU, L(X)) such that x=a,s; +... +a,s, i8 non-singular except
on a compact subset of U, and we consider — fR,f Adz A ... Adz, a map from Y(U, X)
to X. This will be the setting for the next four Theorems.

Prorositron 3.7. If A is the algebra of all operators on X which commute with a,(z)
for each i and each z€U, then f— § R,f Ade, A ... Adz, is an A-module homomorphism from
AU, X) to X. Furthermore, if f=a,9,+...+a,g, for some gy, ..., 9, € WU, X), then R, fA
dzy A ... Ndz, =0.

Proof. By construction, R, is a K-module homomorphism for any commutative ring
K<W(U, X) consisting of elements which commute with each a;. In particular, K could be
chosen to be any commutative subring of 4 (where elements of 4 are considered to be

constant functions on U). Hence, a € 4 implies that
fRaaf/\dzl/\ e ANdz, = faRafAdzl A..- Adzn;—afRaf/\dzl/\ o Adz,.
If f=a,9,+... +a,g,, then R,f=0 by Proposition 1.12.

PROPOSITION 3.8. Let X~ Y be a bounded linear map from the Banach space X to
the Banach space Y and a,, ..., a,€ WU, L(X)), by, ..., b, €W(U, L(Y)) be commuting n-tuples
with w(a,(2)x) =b;(z)u(x) for all i,z. If a=a,8,+... +a,s,, B=b;8+... +b,s,, and S(a) and
S(B) are both compact in U, then

ufRaf/\dzl/\ Adzn=fRﬂu/Adz1/\ .o AdZ,

for every f€A(U, X)

Proof. This follows directly from Proposition 1.10.
As an application of the above theorem, we prove the continuity of the map
f—= §R,f Adz A ... Adz,.Suppose A is & compact Hausdorff spaceand a, ..., EC(U x A, L(X))
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is a commuting tuple of operator valued functions such that z—a;(z, 1) is analytic on
U for each A€A. If we set ¥ =C(A, X) then each a, determines an element a; € {(U, L(Y)),
where (a;(2)f)(A)=a;(z, A)f(A) for fECA, X)=Y. If a=a,s;+...+a,s, is non-singular
except on a compact subset of U x A, then it follows from Lemma 2.3 that o’ —ays; +... +
a, 8, is non-singular on Y, except for z in a compact subset of U.

If f€ C(U x A, X) is analytic in z€U for each A€EA, then f' € A(U, Y), where f(z) =
f(z,+). Hence, the Cauchy-Weil integral { R,.f Adz, A ... Adz, exists and is an element of
Y=C(A, X).

Now fix A€A and consider the Cauchy-Weil integral [ R, 1, /(z, A) Adzy A... Adz, =
S Roy. nf(+,A)dzy A ... Adz, €X. Since the evaluation map u;: O(A, X)—X and the tuples

o and «(-, 1) satisfy the conditions of Theorem 3.8 we have that

(fRa,f' Adz A A dz,,) )= fRa(z,l, fz, ) Adzy A ... Adz,

for each 1€ A. Hence, we have the following corollary to Theorem 3.8:

CorOLLARY 3.9. With A, «, and f as above we have

A f Buioy (5 A A2y .. 2,

s a continuous function of AEA.

If {f} is a sequence in (U, X) which converges uniformly on compact sets to
F€UA(U, X), then we let A be the one point compactification of the positive integers and
set f(z, 0) =f,(2) for =1, 2; ... and f(z, oo) =f(z). We set (2, i) =w(z) for i=1, 2, ...,00. The

above corollary then implies that

fRaf,/\dzl/\ Adz,,—»fRaf/\dzl/\ coo Adzy.

Hence, we have

CoROLLARY 3.10. The map f— [ R,f Adzy A ... Adz, is a continuous map from A(U, X)
to X, where (U, X) is given the topology of uniform convergence on compact sets.

The next theorem shows that the Cauchy-Weil integral is, in a sense, independent of U.
Strictly speaking, it is the map R, which depends on U and not the map ot =
(f—=§frdzy A ... Ndz,). However, we shall still use the symbol [yR,fAdz, A ... Adz, to in-
dicate the Cauchy-Weil integral of f€A(U, X) computed relative to the Cauchy-Weil
system (B(U, X), By(U, X), «, 9).
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ProrositioN 3.11. Let U, and U, be domains in C" and ay, ..., 4, €EW(U,U Uy, X) a
commuting tuple. If o =a,8,+ ... +a,s, and S(x) N U;=8(«) N Uy is compact, then

f Ra,]‘/\dzl/\.../\dzn=Jv Ryfrndz A ... Ndz2,
U Us

for every fEA(U,V U,, X).

Proof. Without loss of generality we may assume that U, < U, and S(x) N U, is a com-
pact subset of /. This ensures that if we consider By(U;, X) to be a subspace of By(U,, X),
then (B(U,, X), B(Uy, X), «, 0) is a Cauchy-Weil system. Likewise, (B(U,, X), By(Us,, X),
a, 0) and (B(Uy, X), By(U,, X), «, ) are Cauchy-Weil systems.

If w: B(U,, X)—>B(U,, X) is restriction and v: By(U,, X)—By(U,, X) is inclusion, then
the following diagram is commutative:

1

58(Uz,X) i %O(UZ?X)
seIid Iv
BULX) L By(U,, X)
lu Iid
§B(U1,X) i %O(UI,X).

The proposition now follows from a double application of Proposition 1.10.

The following proposition is an immediate consequence of Proposition 1.11:

Prorositrion 3.12. Let ay, ..., a, and b, ..., b, be commuting tuples of elements of
WU, L(X)) which are related by b;= u;,a;, where (u;;) is an n x n-matriz of commuting
elements of (U, L(X)) which commute with each a; and each b,. If a=a,s, + ... +a,s, and
B=bys;+...+b,s, are both non-singular off some compact subset of U, then

J-Ra(det (ug)l Adz, A ..o Adz, = fR,;f Adz A ... Adz,,

for-every fEA(U, X).

If U and V are connected domains in €" and ¢: U~V is a proper analytic map, then

except on a set of measure zero ¢ is a k-sheeted covering map for some integer & (cf. [9],
IIL. B. 21).

TaEoREM 3.13. Let U and V be connected domains in C", where we use coordinate systems

21 ooy 2 ONA Wy, ..., wy in U and V respectively. Let p: U~V be a proper analytic map which
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is o k-sheeted analytic cover (cf. [9], 1I1. B.). If ay, ..., a, €WV, X) i5s a commuting tuple
ond a=a,8 +...+a,8, is non-singular except on a compact subset K<V, then aop=
@, 098, +... +a,00s, is non-singular except on the compact subset g~ (K) of U, and

kfRa//\dwl/\ . Adw, =fdet (@) (Buopfo@) AdZy A ... N2y,
where ¢’ is the matriz (%)
0z

Proof. Consider the special transformation u: F(B(V, X), 8,)~F(B(U, X), 0,) de-
fined by uy(f) =fog for fEB(V, X) and

_ Py ,_ AN
u(di,) = Z—a? dz =72 (5(5—;) dz;.

It follows from the chain rule and Proposition 1.7 that u is a cochain map. Hence, by
Proposition 1.10 we have

‘Rao ¢(f°<P) =Raocp(uf) =u(R,f)= (det ‘PI) (Raf)°(p'

Hence, (det ¢') R, q(fop)=|det ¢’ |2(R,flop. However, |det a’|? is the Jacobian of the
transformation ¢ as a map from U< R®* to V< R*". Hence, it follows from the change of

variables formula for the Lebesgue integral in R*" that
f(det @) Ruop(fo@) Nd2y A ... N2, = f|det @' F(R.lopndz A... Adz,
=Ichaf/\dw1/\ Y

We conclude this section by showing that our version of the Cauchy-Weil integral

behaves as it should in the usual special cases.

LeMMA 3.14. Let U be a domain in C, a € W(U, L(X)) an operator valued function such
that a—\(z) exists except on a compact subset K< U, and T a Jordan curve in U with K con-

tained in the union of the bounded complementary components of I'. Then if o —as, we have:

J.Raf Adz == fr a1 () f(z)dz
for every fEN(U, X).

Proof. We compute R,: H(B(U, X), 8)—~HYB(U, X), 5). We let f€A(U, X) and refer
to Definition 1.9. We have sf=fs, € Al[eU dZ, B(U, X)].
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Let V be a domain with compact closure such that K< V< V<int I'. If we multiply
a~1(z)f(z) by an appropriate function in C®(U), we obtain g€B(U, X) such that g(z)=
a-1(2)f(z) on U\V. It follows that 8y =(0g/0Z) dZ has compact support in U. We set h=
fs,—ang—0g=(f—ag)s, —(8g/07)dz.

Since ag=f on U\V we have that h has compact support and h€Al[o U dz, By(U, X)].
Note that sh€AfoUdz, B(U, X)] is equal to sf—(xDd)g. It follows that s*[f]=1*[k],
where [ ] represents cohomology class. v

Note that wh =n(fs; —ags, — (0g/0Z)dZ) = — (0g/0Z)dZ = —Bg. Hence, R, f= —m*1*s*f=

[g] and
f R,f Adz =f og Adz = f d(g A dz) = frgdz = fra_l(z) f(z) d=.

This completes the proof.

If we combine the above Lemma with Theorem 3.5 and use induction, we obtain:

CorOLLARY 3.15. Let U=U, x ... x U, be a polydomain in C* and let a,€ WU, L(X))

fori= , n. If aq, .., a, commute and a;? exists off a compact set K ; of U, for each , then
f R.fAdz A ... Ndz, =f f arl(zy) ... a:1(z,) f(z) dz, dz, ... dz,,
v r, Jr,

where for each i, I, is a Jordan curve in U, with K,<int T',.

Finally, we have:

THEOREM 3.16. Let U be a domain in C*, we€U, and set z—w=(2,—w;) s, + ... +
(2o —w,) 8,. Then for any f€ AU, X),

f(w J‘ (Re wf Z) /\dzl /\dzn'

(27w)

Proof. By Theorem 3.11, we may assume U is a polydisc containing w. The theorem
then follows from Corollary 3.15 and the ordinary Cauchy integral formula.
Note that, now that we have Theorem 3.16, we can use Theorem 3.13 to derive a

formula for the number of sheets k in an analytic cover ¢: U— V. In fact, if ¢ =(¢y, ..., @,),

W€ @(U), aw)=(w, —wl)s; +... +(w,—wl)s, and ¢ = (36(:1)

then

1 ' _ K _
WfUdet(¢)(Rawl)/\dzl/\.../\dzn—(2m,)n fVRal/\dwl/\.../\dwn k.
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4. The functional calculus

We now develop an analytic functional calculus for a commuting »-tuple of operators
on a Banach space. The form of the Cauchy-Weil integral that we have developed makes

this task almost as easy for n-operators as it is for a single operator.

Notation 4.1. In this section, X will be a Banach space and (a, ..., a,) will be a com-
muting tuple of operators on X. We set a=a,s, +... +a,5,EAlg, L(X)].

In [15] we defined Sp («, X) to be the set of all z€€C" such that z—x=(2; —a,)s, +... +
(2, —@y)s, is singular on X. The set Sp («, X) is always a compact non-empty subset of the

closed polydisc D, of multiradius » = (,, ..., v,), where v,=lim ||a} || (cf. [15], § 3).

Definition 4.2. If f€U(T) for some open set U > Sp («, X), then for each x € X we define

fle) x= (275%)" fU(Rz_zf(z) ) Adz A ... Ndz,.

For the convenience of the reader, we recall briefly the steps involved in computing
the above expression. Since z —a is non-singular except on Sp(a, X)< U, it follows that
(BU, X), By(U, X), z—«, 8,) is a Cauchy-Weil system (cf. Def. 1.8 and Lemma 3.4).
Here, we set m =0 in Lemma 3.4 so that the variables wy, ..., w,, do not appear and we have
By(U, X)=B,(U, X). It follows that the map R, ,: H*(B(U, X), &,)~H"*?(B(U, X), 3,)
of Definition 1.9 is defined. With p =0 this yields a map R,_,: (U, X)—~H"(B,(U, X), 0.).
Hence, if € A(U) then (z—f(z)x)€ (U, X) and R,_,f(2)x has a representative g which is a
differential form of degree n in dz,, ..., dz, with coefficients in By(U, X). Thus, g Adz; A
... Adz, is a differential form of degree 2n with coefficients in By(U, X). We integrate this
over U to obtain

(2mi)" f(x) x ZJ(RZ_“ fRYx) Ndzy A ... Adz €EX.

Note that if a=(a) (@ €L(X)) is a singleton, then Sp («, X)={2€0: z—a is not in-

vertible} since the complex F(X,z—«) is simply the sequence 0->X =% X 0. Further

more, by Lemma 3.14 we have
JRB,uf(z) xAdz = f (z—a) " f(z) vdz
r

for a Jordan curve I'< U which encloses Sp («, X). Hence, in the case of a single operator,
the expression f(a)z of Definition 4.2 agrees with that determined by the classical opera-
tional calculus.

TrEoREM 4.3. If U is an open set contatning Sp (x, X), then f—f(o) is a continuous
homomorphism of the algebra W(U) into the Banach algebra (x)" of all operators on X which
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commute with all operators commuting with each a;. Furthermore, 1 (o) =id and z,(o) =a; for

1=1, ..., n.

Proof. 1t follows from Proposition 3.7 and Corollary 3.10 that (f, )~ f(a) is a con-
tinuous linear map of (V) x X into X and that f(«) commutes with each operator that
commutes with each a,. Hence, f— f(x) is a continuous map into («)” with the norm topology.

To prove that 1 («)=id and z(«) =a, for each ¢, note that for any polynomial P and
2€X, the funtion z—P(z)x is in Y(C", X). Since, z; —a;€EN(C, X) for each ¢, it follows from
Proposition 3.11 that we may replace U with C* without loss of generality. It then follows
from Corollary 3.15 that

1

Plx)x= Gy

f(: (B, o PR)T) A2y A ... Nd2,

1
=(2_m')—"fr f (zr—ay) e (2, — ) T P(E) 22y A ... Ndzy=Play, ..., a,) x

for Ty, ..., T, sufficiently large circles.

To prove that f—f(x) is multiplicative, note that

fle) gla)xe = E}zl_zﬁ fURz_af(z) {fv (By—ag(w)x) Adwy A ... A dwn} Adzy A ... ndz,

1

= G fUXU{R(w_u,g(z_a,f(z) gw) x} Adwy A ... Adw, Adzy A ... N dz,,

by Theorem 3.6. If we transform the tuple (w,—a,, ..., w,~a,, 2, —0y, ..., z2,~—a,) by the
matrix (u;;), where u;;=1if i =7, u;;= —1 if j=n+4, and u;;=0 otherwise, then we obtain
the tuple (w, —z,, ..., w, —2,, 2, — 0y, ..., 2, —a,). Also, since det (u,;) =1 it follows from Propo-
sition 3.12 that

1
7o —\on {R(w—a)®(z—a) .f(z) g(w) ‘73} A dwl A oo Ndwn A dzl ARSI dzn
(270) UxXU
1
= (2ni)2n fUXU{R(w—z)@(z—a)f(z) g(w) x} A dwl ARTPIA dwn I dzl ARTIAN dzn

1
= (z—mjz_n JUR(z—a)f(z) {J‘U (R(w-z)g(w) :l:) A dwl AN dwn} A le AT A dzn

1 .
= (270)" fu (Re-ayf2)gR)X) Adzy A ... Az, = (fg) () - =.

Hence, f(a)g(a) =(fg)(«) and the proof is complete.
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If A(Sp (&, X)) denotes the algebra of functions defined and analytic in some neighbor-
hood of Sp (a, X) —that is, the inductive limit of the spaces (U) over neighborhoods U
descending on Sp (@, X) —then since Proposition 3.11 implies that the map f—f(«) com-

mutes with restriction, we have the following corollary to Theorem 4.3:

CoROLLARY 4.4. The map f—f(«) of Theorem 4.3 defines a homomorphism of A(Sp(a, X))

into (a)".

The following invariance law for the functional calculus follows directly from Proposi-
tion 3.8:

ProprosiTioN 4.5. Let X and Y be Banach spaces and u: X~ Y a bounded linear map.
Let ay, ..., a,€ L(X) and by, ..., b, € L(Y) be commuting tuples related by ua,=b;u for i=1,...,n.
If f is analytic in a neighborhood of Sp (a, X)U Sp(8,Y), then uf(x)=f(B)u.

Note that at this point we have all of the conclusions of the usual Shilov—Arens—
Calderon Theorem. In fact, if 4 is a commutative Banach algebra with identity and
"ay, ..., a,€A, then we may consider a;, ..., @, to be operators on A via the regular repre-
sentation. It turns out that Sp(e«, A) is then just the usual spectrum of an n-tuple in a
Banach algebra (cf. [15]). In this case, the functional calculus of Theorem 4.3 reduces to
the usual functional calculus in a commutative Banach algebra. If % is a complex homo-
morphism of A4, then Proposition 4.5—with v=h, Y =C, and b,=h(a;)—implies that

h(f(@) =f(R(ay), -.., B(a,)).
Our next Proposition gives a powerful relationship between the functional calculi

for two different tuples of operators.

ProrosiTION 4.6. Let a,, ..., a,, b, ..., b, be a commuting tuple of operators on X and
set 0 =(ay, ..., @), f=(by, ..., by), and e — B =(a, —by, ..., a,—b,). If f is analytic in a neighbor-
hood of Sp («, X)U Sp (B, X) then f(a) —f(B) acts as the zero operator on H?(X, o — ) for each p.

Proof. Let U > Sp(«, X)U Sp (B, X). If f€UA(U) and k€ F*(X, o —f), then
1
U@~ 1PN b= s [ (Rea = Re MR A

(recall FP(X, x—f) is a direct sum of (:) copies of X). Now, by Corollary 1.15, (R,_, —

R,_p)[(z)k is cohomologous to zero as an element of F?(H"(By(U, X), 3,), a—p). Also, the
integral commutes with the coboundary operator determined by a —f. Hence, (f(er) —f(8)) &



THE ANALYTIC-FUNCTIONAL CALCULUS FOR SEVERAL COMMUTING OPERATORS 33

is cohomologous to zero in F?(X, e —f). It follows that f(«)-f(f) is the zero operator on
H(X, e —p).

CorROLLARY 4.7. If a=(a, ..., a,) is a commuting tuple of operators on X, U a domain
containing Sp («, X), and fE€A(U), then for each z€ U the operator f(e) acts as the scalar opera-
tor f(z) on H*(X, z— ) for each p.

This serves as an effective tool in pinpointing the action of the operator f(«) on X—as
we shall see in the next theorem.

THEOREM 4.8. Let x=(ay, .., a,) be a commuting tuple in L(X), U a domain containing
Sp (e, X), and fy, ..., fo,€W(U). Let f: U—~C™ be defined by f(2) =(f1(2), ..., [m(2)) and let f(x)
be the tuple of operators (fy(a), ..., fu(a)). Then Sp(f(e), X)=Ff(Sp (o, X)).

Proof. 1t follows from Theorem 3.2 of [15] that the spectrum of f(ot) = (f,(«), ..., fm(e))
is the projection on the last m-coordinates of the spectrum of (ay, ..., @, f1(&), ..., fu{)) =
a@f(e). Hence, it suffices to prove that the spectrum of a®f(x) is {(z, w)€C"™™
2€ Sp («, X), w=f(2)}. To prove this it is sufficient to prove that if z€ Sp(«, X) then
(2 — ) ® f(«) is non-singular if and only if f(z) +0. We prove this by induction on .

We assume that m >0 is an integer such that the following two statements are true of
any m-tuple f,, ..., f, €A(U) and any z€U:

(1) if g€A(U) then g(x) acts as the scalar operator ¢g(z) on H(X, (2 —a)@ f(a)); and
(2) (R—o)®f(x) is non-singular on X if and only if f(z) 0.

Let fy, ..., fny1 be an (m+1)-tuple in A(U). By Lemma 1.3 of [15], there is an exact
sequence

e HY(X, (2—a) O f(0) ~ HY(X, (2 —a)Df () > H**1(X, (2 — ) D f(0))

f—mil(—“ZH”“(X, (z—ax)®Df(a)) ...
where f = (fy, ..., fms1) a0d f=(fy, ..., fr). If g€A(U) then g(x) acts as g(z) on H(X, (z—a)®
f(e)) for each p. It follows from the above sequence that g(x) acts as g(z) on H?(X, (z —a)®
f'()) as well. Also, since f,,.1(o) acts a8 f,41(2) on H(X, (z — ) @ f(«)) for each p it follows
that H(X, (z—o)®f (@) =0 if f,,1(2) =0 and H(X, (z—)®f (a)) ~ H*(X, (2 — )@ f(«))
if fmi1(2) =0. Hence, since statement (2) above holds for f,, ..., f,, it continues to hold for
Fi o Fsa

Since (1) and (2) clearly hold if m =0, they hold for all m by induction. This completes
the proof.

3 — 702902 Acta mathematica. 125. Imprimé le 18 Septembre 1970.
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We close this section with an extension of the Shilov idempotent theorem (cf. [14]).
That it is a true extension stems from two facts. First, our spectrum Sp (er, X) is in general
smaller—hence more likely to be disconnected—than the spectrum of a=(ay, ....a,) as
computed in terms of some enveloping commutative Banach algebra of operators. Second,
Sp (&, X) is likely to be computable in situations where it is virtually impossible to tell

when an operator equation (z, —a,)b, +... +(z, —,)b, =id can or cannot be solved.

TueorEM 4.9. If a=(ay, ..., a,) s ¢ commuling tuple of operators on X, and if
Sp (¢, X)=K, U K, where K, and K, are disjoint compact sets, then there are closed subspaces
X, and X, of X such that:

() X=X,0X,;
(2) X, and X, are invariant under any operator which commutes with each a;; and
(3) Sp(«, X;) =K, and Sp (o, X,) = K.

Proof. Let U, and U, be disjoint open sets in €* containing K, and K, respectively.
If 4y, is the characteristic function of U, then y, € A(U,U U,). Hence, there exists an
idempotent p€(x)” such that yy,(a)=p. If X;=Imp and X,=Ker p, then (1) and (2)
above clearly hold for X,, X,. Condition (3) follows from Theorem 4.8 applied to the tuples

(Z1 X015 oo ZaXo,) BNA (21 X0, oos 2nXus)-

CororLLARY 4.10. If z is an isolated point of Sp(a, X), then X =X, ® X, where each
z;—a; is quasi-nilpotent on X, and z¢Sp (a, X,).

5. Spectral hull

The functional calculus allows us to derive relationships between our notion of spectrum

and notions based on Banach algebra theory.

Notation 5.1. Let X be a Banach space and 4 a Banach algebra of operators on X,

If a=(ay, ..., a,) is a tuple of operators in the center of 4 and w€C", then we shall say
w€ Sp, («) if the equation

(wy—a)by +... +(w, —a,)b, =id (5.1)

fails to have a solution for b,, ..., b,€A4. We pointed out in [15] that Sp, (x)=Sp («, 4),
if a,, ..., @, are considered operators on 4 via multiplication.

If A is an algebra of operators, then A’ will denote the algebra of all operators that
commute with each element of 4. If () denotes the Banach algebra generated by a,, ..., a,
in L(X), then for any Banach algebra 4 with a,, ..., a, € center (4) we have ()< A< ()’
and Sp (o, X) < Spea (@) < Sps ()< Spiay (o) (cf. [15], § 4).
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Let A(ax) denote the norm closure of the algebra of operators of the form f(«) for f
analytic in a neighborhood of Sp (e, X). Note that («), («)”, and U(x) are commutative

algebras and (o) = U(x) < («)" < («)’. Hence, we have
Sp (2, X) = Spea) (&) < 8Py (@) < Spatiar (#) < Spa (). (5.2)

There are examples where each of the containments in (5.2) are proper. Examples
where Spya (2) +=Sp((e) abound; one such example is the single operator f—zf on
C(I"), where I is the unit circle. In § 4 of [15] we gave an example where Sp («, X) =Sp(,). («).
We shall reproduce this example here and show how it can be modified to obtain examples
in the other two cases.

Let D be a compact polydisc and U an open polydise with compact closure such that
0€int D Dc U< (2. Weset V=U\D. Let O(V) be the space of continuous functions on
the closure ¥V of ¥ and CY(¥) be the subspace of C(V) consisting of functions with uni-
formly continuous first partial derivatives on V. We give C(¥) the sup norm. For f€0Y(V)
we define ||| to be the sum of the sup norms of f and its first partial derivatives. We set
X=cyVyecC(V).

We define five operators on X as follows: a,(f, 9)=1{(21f, 2:19), as{f. 9)= (221, 229),
as(f, 9)=(0, 8f/0Z,), a,lf, g)=(0, 6f[0Z;), and a4(f, g) =(O0, f). Note that (a,, ..., a5) is a com-
muting tuple of bounded linear operators on X. Note also that (a,, a,)’ contains all operators
of the form (f, g)— (f, hg) (RECY D)) as well as ay, a,, and ay.

Since 0¢ V the equation 2z, k, +2,h, =1 can be solved for hy, h, € CY(V). It follows that
0¢Spig,.0,) (a1, @5). However, 0€Spy,, 4,1 (a4, a5), for if we could solve a,b, +a,b,=1 with
b;, by€(ay, a,)" then this equation would remain valid on X,/X,, where X, =kera, N kera, =
{(f, 9)€X: f is analytic on V} and X,=ker a;={(0, g) € X}: however, X,/X, is isomorphic
to the space of continuous functions on U which are analytic on U (cf. [15], § 4). Since

0€U and a,f=2,{, ayf =2,f we have a contradiction. Hence,

Sp(al.al)” (a17 a’2) + Sp(al,a,)' (al’ a2)'

A similar argument (which appears in [15]) shows that Sp (e, X)=+Sp- () for
x={ay, ..., a).

It is simpler to obtain an example where Spy(y) () +=Spw (). We let ¥ and O(V)
be as above. Let X =C(V) and define a,€L(X) (i =1, 2) by a;f=z;f. It can be shown that
(a4, @;)" consists of the operators f—hf, where h€C(V). It follows that 0¢Sp(,, g, (@1, ds).
However, %(a,, a,) is the algebra of operators of the form f—gf, where g is continuous on
V and analytic on V. Any such g can be uniquely extended to be analytic on U (cf. [9], I).

Since 0€U we have 0€S8py(q, 4, (a1, a5)-
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It turns out that Sp(,) («) and Spyy,) («) are determined by the geometry of Sp («, X)
as a subset of C".

If K<C" is compact, then the polynomial hull of K is {z€C": |p(z)| <sup,cx|p(w)|}
for all polynomials p} (cf. [9]).

THEOREM 5.2. For any commuting tuple a=(a,, ..., a,), Spiwy(x) s the polynomial
hull of Sp (a, X).

Proof. Since () is the closure of the image of the map p—p(e) from the algebra P of
polynomials into (e), the spectrum of « is just the set of z€C" for which the complex homo-
morphism p—p(z) of P extends to a complex homomorphism of («). It is easily seen that this

set is exactly the polynomial hull of Sp («, X).

Definition 5.3. If K< C" is compact then the spectral hull of K is the set of all we("
such that the equation
(1 —w) i(2) + . + (2 —wa) falz) = 1 (5.3)

fails to have a solution for f,, ..., f, analytic in a neighborhood of K.

THEOREM 5.4. For any commuting n-tuple a=(a,, ..., a,) of operators, Spu (o) s
the spectral hull of Sp (x, X).

Proof. It suffices to show that for w€C" equation (5.3) can be solved for f,, ..., f, €
A(Sp («, X)) if and only if equation (5.1) can be solved for by, ..., b, €H(x).

If £, ..., [, € ASp (o, X)) satisfy equation (5.3) then clearly the operators b, =f, (a),
wrey Dy =F(), given by the functional calculus, satisfy equation (5.1).

Conversely, if by, ..., b,€U(c) satisfy (5.1), then there exist functions g, ..., ¢,€
A(Sp («, X)) such that ||(w; —ay)(gy(x) —by) +... +(w, —a,) (g, () — b,)|| <1. It follows that
(wy —ay)gy(&) + ... + (w, —a,)g.(x) =h{x) is invertible in A(e), where A(z)=(w, —2z;)g,(2)+
e+ (w, —2,)g,(z). However, it follows from Theorem 4.8 that A cannot vanish on Sp (e, X)
if A(e) is invertible. Hence, A1 €A(Sp («, X)) and f, =h gy, ..., f[,=h"1g, is a solution of
{5.3).

A compact set K< (" is polynomially convex if it is equal to its polynomial hull.

Similarly, we call K spectrally convex if it is equal to its spectral hull.

THEOREM 5.5. If Sp(«, X) is polynomially convex, then Sp,(x)=Sp (e, X) for any
closed subalgebra A<I(X) with a,, ..., a, €Ecenter (4).

If Sp(a,X) s spectrally convex, then Sp,(a) =Sp(ax, X) for any closed subalgebra
A< L(X) such that A(x)< center (4).

Proof. 1t a,, ..., a,€center (4) then («)< A4 and Sp («, X)=Sp, («)=Sp, («). By The-
orem 5.2, if Sp (e, X) is polynomially convex then Sp («x, X) =Sp, () =Sp, (c).
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If ()< center (A) then Sp (x, X)<=Sp, (o)< Spea) () and Theorem 5.3 implies the
three are equal if Sp (e, X) is spectrally convex.

There are several conditions that ensure that a set K<C" is spectrally convex. For
example, K is spectrally convex if K has trivial cohomology relative to the sheaf of germs
of analytic functions. Hence, K is spectrally convex if it is an (U)-convex subset of a
domain of holomorphy U (cf. [9)).

We close with a few comments concerning the algebra («). It follows from Theorem
4.8 that A(e) is closed under the application of analytic functions. Hence, A(x) may be
viewed as an analytic functional completion of the algebra («). Warning: although it is
true that Spy, («) is the spectral hull of Sp(«, X), this may not be the maximal ideal
space of A(x). If A is the maximal ideal space of A(«) and a7, ..., a, are the Gelfand trans-
forms of the elements a,, ..., @,, then the map &: A—~C" (&=(ay , ..., @, )) maps A onto the
spectral hull of Sp («, X). However, ay , ..., a, may fail to separate points of A. We give an

example to show what can happen.

Example 5.6. Let r;>r,>... be a sequence of positive numbers converging to zero
and, with n>1, set S,={z€C™ |z| =(|2,|2+ ...+ |2,| ¥ =r,}. We set K={0}U (U715
and X =C(K). The operators a,, ..., a, are defined by (a,f)(z) =2,f(2).

If f is a function defined and analytic in a neighborhood of a set of the form
{z€C™ r—e<|z| <r-+e} then f has a unique extension to a function analytic on {z€C™
|z] <r+e} provided n>1 (cf. [9]). It follows that the spectral hull of the set K above is
{z€C™: |z| <ry}.

Since the equation (z; —wy)f,(2) + ... + (2, —w,) f.(2) =1 can be solved for f,, ..., f, €EC(K)
if w=(wy, ..., w,)¢K, we have Sp(a, X)<=Spy (x)= K. On the other hand, if we€K
then the above equation cannot be solved for f,, ..., f,€C(K)=X; hence, the map
(w—a)* " F*" X, w—a)=®"X—>X=F4X, w—o) fails to be onto, and the complex
F(X, w—«a) is not exact (cf. Def. 1.2). Tt follows that Sp («, X) =K and Spe,) (o) is the
spectral hull of K which is {z€C™ |z| <r,}. Note, however, that the maximal ideal space
A of A(«) is the one point compactification of the disjoint union of the sets {z€C™: |z| <r}.
This follows from the fact that A(K)~ @72; A({z: |2| <r.}). The map &: A—>Spy (x)=
{: |2| <r,} is just the map induced on A by the inclusions {z: |z| <r;}->{z: |z| <r,}. The
inverse image of zero under this map is an infinite set. Hence, & is not even a light map.

Note one other thing about this example. The algebra U(x) contains a non-trivial
projection corresponding to each of the sets {z: |z| =r,}. The version of the Shilov idempo-
tent Theorem given in 4.9 detects these projections since each {z: |z| =r,} is a component
of Sp(«,X). However, Spy (a)={z: |z| =r,} is connected and does not indicate the
existence of these projections.
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