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1. Introduction

Let X be a compact, connected n-dimensional Riemannian manifold of class C3, with
interior Q and nonvoid boundary X. Moreover, let 1 be a complete Riemannian manifold
without boundary of dimension N >2, and of class 3. To every mapping U: X~ M of

class C! one can associate an energy E(U) defined by
E(U)=f e(U)dR". (1.1)
X

Here R™ stands for the n-dimensional Lebesgue measure on X induced by its metric

while the energy density
C(U) = %trx< U*, U*>m

is the trace of the pull-back of the metric tensor of 1 under the mapping U taken with
respect to the metric tensor of X. A mapping U: Q~ M is said to be karmonic if it is of
class C? and satisfies the Euler-Lagrange equations of the energy functional. In local
coordinates, these can be written in the form

Axw' +(u)ys D u'Dyu =0, 1<I<N, (1.2)
where

AX — '}’_1/2D¢('}/1/2}’aﬂDﬂ)

is the Laplace-Beltrami operator on X. Here and in the sequel we use the following nota-
tions: y,, are the coefficients of the metric of X, with respect to some local coordinate

system, (y2f) is the inverse of (y,s), and y =det (y,4). The coefficients of the metric of ™M
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are denoted by g, with (g%) being the inverse of (g,,), while [}, are the Christoffel symbols.
Greek indices «, §, ... are to be summed from 1 to n, Latin indices i, j, ... from 1 to N. The
Einstein summation convention is used.

Our object is to solve the Dirichlet problem, i.e. to find a harmonic mapping U whose
restriction to X coincides with a given function @: X—~ M.

In order to give a precise statement of our results we introduce the notion of normal
range of a point P€ M as the complement of the cut locus of P in M, i.e. the maximal
domain of any normal coordinate system with center P. Our assumption on the Dirichlet
data @ will be that ®(X) is contained in & geodesic ball

Ku(P) ={QEM; dist (@, P) < M}
which lies within normal range of all of its points. For a discussion of this condition, which
is implied by a strong convexity condition, we refer to section 2.

We can now formulate the following theorem which is a consequence of Theorems 2,
3, and 4 below.

THEOREM 1. Assume that the image of ® € CHE, M) is contained in a ball X, (Q) which

lres within normal range of all of its points, and for which
M <7/(2Vx) (1.3)

where x>0 is an upper bound for the sectional curvature of M. Then these is a harmonic
mapping U of class C*(2, M) N CUX, ‘M) such that U|yx =D and U(X)<= K (Q).

In the case n=1 this is a well-known result about geodesics. For n =2 the theorem can
be derived from the work of Morrey [16], taking our estimates (2.2) and (2.3) into account.
However, since Morrey’s main tool, a regularity theorem for minima of certain variational
problems, is true only for n =2 this approach cannot immediately be carried over to higher
dimensions. The variational method due to Eliasson {4] and K. Uhlenbeck [19] is not
applicable to the Dirichlet problem for harmonic maps, since it rests in an essential way
on the assumption that the boundary of X is void.

In arbitrary dimensions, the first boundary value problem for harmonic maps was
recently solved by R. S. Hamilton [6] provided that the sectional curvature of M is non-
positive. The approach of Hamilton, as well as that of the preceding work by Eells and
Sampson [3], and Hartman [7], is to deal with the parabolic system connected with (1.2).

The present authors [9] recently reproved parts of Hamilton’s results using degree
theory and a priori estimates, much in the spirit of [2]. In [10] they extended their method
to include manifolds also of possibly positive curvature, assuming that M <z/(4 V) instead
of (1.3).
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In the present paper we shall use the direct method of the calculus of variations to con-

struct a “weak’ solution U of the problem
E(U)—>min

with the side conditions U|x=® and U(X)< K, (Q), where M<M’<n/(2V;_¢). Then an
appropriate maximum principle implies that U is in fact & weak solution of (1.2), and satis-
fies U(X)< X,(Q). Next we derive a regularity theorem which shows that this weak
solution is actually a classical solution. The proof of this result is based on the methods of
[11], but an important idea is borrowed from Wiegner [22]. Finally we complete the proof
of Theorem 1 by showing that the regularity of U holds also onto the boundary. In fact,
we shall give more precise results on the boundary behavior than that stated in Theorem 1.

At the end of the paper we exhibit an example of a weakly harmonic mapping
U: X~ M =48" which is disecontinuous and satisfies U(X)< X, (@) with M =x/(2 V).

Hence our regularity result is optimal in this respect. It is tempting to conjecture that
the Dirichlet problem for harmonic mappings cannot be solved in general if the condition
(1.3) is violated.

2. Auxiliary differential geometric estimates

The following functions will enter in our estimates:

tVv ctg (tV/v) >0, O0<t<ally

a,(t) = o L if

tV —v ctgh (tV —») <0, 0<i<o

sin (£V%)
tVv

sinh (t) —v)

tV—v

>0, O0<t<m/Vv

<0, 0<t<oo

LEmMMA 1. Let u=(ul, u2, ..., u¥) be normal coordinates on M associated with an arbi-
trarily chosen normal chart N(Q) around @ such that Q has coordinates (0, 0, ..., 0). Denote by
gu(w), Dix(w), and Ty (u) the coordinates of the first fundamental form and the Christoffel
symbols, respectively, in this coordinate system. Assume that the sectional curvature K of M
satisfies

o <K<x with —oo < <0<y <oo,

Then for all u satisfying |u| = (w'u')!'? <at/Vx and for all £ ERY we have the following estimates

{an( {uf)— l}g,k(u){-"f" ST p(w) wg'E < {am( ful)— l}gik(u) gk (2.1)
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{6lk —au{|ul )gﬂc(u)}fté—k <F5k(u)ul§i§k < {5tk —a,(]ul )gtk(u)}éifk (2.2)
B(ul) €6 < gufu) E'€F <bE(|u]) £'€". 2.3)

Proof. The estimates (2.1) and (2.3) follow from Rauch’s comparison theorem (for a
prooi, cf. [8], Lemma 6). To verify (2.2) we use Gauss’ lemma (cf. [5], p. 136). For normal

coordinates we obtain
g ulu)uf = o'
whence by differentiation

ﬁk(u)u’ = O —Guelw) =T g () . (2.4)

Now (2.2) follows immediately from (2.1) and (2.4).

In the regularity proof below we shall need a bound for the second member of (1.2).
For our purposes it is sufficient to note that for reasons of compactness, there exists, to
every @€ M and M €R* such that M <i(Q), & constant ¢=c(§, M) with the property that

ST EEY ™ <cl6f for CERY, [u|< M, (2.5)

if the I}, are calculated with respect to normal coordinates around @, and where i(§) de-
notes the cut locus distance of Q.

It is possible to estimate the constant ¢ in terms of the tensor R™, introduced by
Kern,

RYX,Y,Z, W)=(DyR\(Y,Z, W)—(D,R\(W, X, Y)

where Dy R and D; R denote covariant derivatives of the Riemann curvature tensor R
of M, and X, Y, Z, and W are vector fields on M. These estimates are, however, rather
complicated to state and to prove wherefore we refer to [14] for statements and proofs.

As was mentioned in the introduction, the condition that the ball X(P) be within
normal range of each of its points can be thought of as a convexity condition. In fact,
Xy (P) is convex provided that it is within normal range of its points and satisfies M <
7/(2Vx) [18, 4]. Also, if X is a compact set in M which does not meet its cut locus, then
there exists a meighborhood U of X with the same property [12, 3.5]. Hence, if X,(P)
is within normal range of its points then the same holds for K. (P) with £ > 0 sufficiently
small.

It is also known that X (P) lies within normal range of all of its points if one of the

following four conditions is satisfied. Here K denotes the sectional curvature.

(1) M is simply connected, and K <0 ([5], p. 201).
(ii) M is connected and orientable, N is even, 0 <K <%, and M <7‘L’/(2V9_¢) ([5], pp-
227-228, and [13], pp. 3-4).
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(iii) M is compact, connected, and non-orientable, N is even, 0 <K<, and M <
7/(4Vx) ([5], pp. 229-230).
(iv) M is simply connected, 0 <x/4 <K <, and M<n/(21/;¢) ([5]), p. 254).

Finally we note that in local coordinates the energy density of a mapping U€C! is

given by
e(U) = 1 gulu)y*# Dyu' D gul". (2.6)

3. Existence of weakly harmonic mappings

The Sobolev space Hi(Q), R¥) is constituted by measurable mappings u: X —~R" with
the property that woy 1€ H} (W, R") for every coordinate map y of X with range W<
R? ={x€R" x,>0}. The Hilbert space structure on H3(Q, R) is defined by a scalar

product with associated norm
loli= [ Jupar+ | esarr
Q o

where the invariant ey is defined in local coordinates by
en(u) = 4y*# Do(u'oy =) Dy(uloy™).

The subspace H3(Q, R") is the closure of CP°(Q, RY). Tt is easy to check that all properties
of Sobolev spaces of a local nature are retained. For example, every element of H3(Q, R¥)
has a trace on ¥ in L(Z, R¥) such that if two elements have the same trace then their
difference belongs to H(€, RY).

Since the composition of an H} function with a C' mapping is another Hj function,
we can define HY(Q, ™) unambiguously if we require that an element U € H3(Q, ) have
its image within normal range of some point Q€ M, and that its representation in nor-
mal coordinates around @ belong to H3(Q, RY). The same applies to HYQ, ‘M) and
Hi;nLe(Q, M).

To simplify the notational apparatus we introduce the following

Conventions. An equality sign between two Hj mappings means that equality might
hold only R™ almost everywhere, while the abbreviation sup |«| should be interpreted as
ess sup |u| with respect to R", ete. Moreover, if the choice of local coordinate system in
X is immaterial for the purpose at hand, we shall not distinguish between a point « and
its coordinate representation (x,, ..., z,), between a subset S< X and y(S)< R, or between
u|s and woy-1, if € Hj and S< y~}(W). This abuse of notation will not cause any confusion.

In order to circumvent the lack of (global) linear structure in H3(Q, M) we introduce,
for any Q€M and any M’ <i{Q), the set
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we = Bur(Q) = {U €H(Q, M); supq dist (U(z), @) < M'}.

Via a normal chart with center Q we can identify B,(Q) with the convex, weakly sequenti-
ally closed subset of Hy(Q, R") defined by {u€ H; n L2(Q, R"), supq |u| <M'}. The energy
functional E can then be extended to By, using the formulas (1.1) and (2.6).

If Q is isomorphically imbeddable in R™ it is well known that E is lower semicontinuous
on By, i.e. if {u,}¥€ B, converges weaky to w in H3(Q, R¥) then lim inf,, E(w,) > E(u).
It is easy to see, however, that the proof of this fact, see e.g. Theorem 1.8.2 in [17], can be

carried over to the general case.

LEmMma 2. Assume that the ball X, (Q) lies within normal range of its center, and that
M <z/@2Vx)

where x>0 is an wpper bound for the sectional curvature of M. Then to every ¢ € By, (Q) there

18 a solution of the variational problem
E(u) ~min, w€ By N {u —p€HYQ, RY)}.

Proof. The clement ¢ itself being admissible, the clearly non-negative infimum & of
the variational problem is finite. Moreover, from (2.3) and from the fact that the metric

tensor (y*#} is positive definite we deduce that for some constant ¢,>0

Q2

E(u)>cof eylu)dR", u€EB,,.

This implies that
[} < const[(M')2 + E(u)]

whence we see that a minimizing sequence is bounded in H3(2, RY), and we may assumc
that it is weakly convergent to some 4 € B,,. By the lower semicontinuity of E we must
have E(u) =€, and hence u is the desired minimizing element.

A straight-forward computation shows that the first variation of the functional E,
at u € By (@) in the direction of y, defined by

8B (u, y) =lim e {Blu + ey) ~ Bw)},

exists for all weﬁé N Le(Q, RY) such that « +cy € By (@) for all small enough nonnegative

&, and is given by

OE(u,p) = fg de(u, ) dR™
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Here the invariant variational derivative de(u, ) is given, in local coordinates, by
de(u, p) = gik(“)?“ﬂpauiDﬂwk +4D, gtk(")V“ﬂDau‘Dﬂukwl-

Taking the identities
Digy =T+ Tuis Th=9"Tim (3.1)

into account, we can formulate this as

LemMma 3. The minimizing function u of Lemma 2 satisfies
0B (u, )= f de(u, y)dR" >0
Q

for all w€HL 0 Lo(Q), RY) such that u+eyp € By (Q) for some >0, where
Se(u, p) = {gs(w)y*f Dy D gy* + 11y () y*s D, ul D guyp'}
= 9ulw)y*# Dy W' [ D gy* + Ty D puly']. 3.2)

Levma 4. Suppose that the function @ of Lemma 2 satisfies @€ By for some M <M'.

Then the solution w of the variational problem is also contained in B,,, and satisfies
0E(u,y) =0 for all € HLnL®(Q, RY).

Proof. If >0 belongs to CP(2, R) we see that |u—eun|=|1—enllu| <M’ for ¢1>
supq 7, and since « —euy —(pEﬁé we may use y = —un as a test function in Lemma 3, and

thus
OE(u, un) <0. (3.3)

Now using the inequality (2.1) and the Gauss lemma, g,{u)u*=u', we see that from
(3.2) follows

de(u, un) = gp(w)uwy>f Do u'D gn +11y*#[gy(u) Dy u' D pu* +u' T 1y (u) D, u' D pur]

> 3y*0D,|w|2Dgn +a(M')ngy(w)y*# D, u' D gu¥ > yy*AD,|u|2 Dy

In view of (3.3) the function |u[2€H; N L*(€), R) is a weak subsolution of the Laplace—
Beltrami operator on €, and it follows from an obvious extension of Stampacchia’s maxi-
mum principle ([11], Lemma 2.1) that

supq |u|? < supsq |u|? = supyq |@|% < M2

The first part of the lemma thus being proved, the second part follows from Lemma 3
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upon realizing that if supg |#| <M then u+ey€ By, for every p € H; N Lo(Q, RY) and for
all small enough &.

If U is a harmonic mapping with range in a ball JX,,(Q) with M <i(@Q) then we can use
the equations (1.2) and Stokes’ formula to see that the representation « of U satisfies

f dé(u, ) dB"=0 for all p€HL 0 L2(Q, RY) (3.4)
Q

where
0é(u, ) =y*#D,u' D yo' — T} (u)y*# D u' D yulgl.
It is therefore natural to make the following.

Definition. A mapping U € Hy(Q, M) is weakly harmonic if, for some point Q € M, U(Q)
lies within normal range of ¢, and if its representation % in normal coordinates around @
satisfies (3.4).

A simple computation, involving the formulas (3.1), shows that dé(u, @) =de(x, v),
if ¢’ =g,9". Thus a mapping is weakly harmonic if and only if it is a critical point of the
energy functional . From this fact it is also obvious that the definition of weakly har-
monic mapping is coordinate invariant, i.e. if U(Q) lies within normal range of some other
point @' € M then its representation «’ in normal coordinates around @’ satisfies, mutatis
mutandis, the relation (3.4).

We can formulate the results of this section in

THEOREM 2. Assume that the image of © € HL(C), M) is contained in a ball K,,(Q) for

whick -
M < min {n](2Vx), i(Q)},

x>0 being an upper bound for the sectional curvature in MN. Then there is a weakly harmonic
mapping U E€HY(Q, M) with U(Q)< Ky, (Q) such that the traces of U and ® on 3 coincide.

Remark. It is easily seen that it is sufficient to assume % to be a bound for the sectional

curvature in J{,,(@). The same remark applies to Theorems 1, 3, and 4.

Proof. We need only apply Lemmata 2-4 with an M’ satistying M <M’ <min {z/(2} %),
#(@)} and take into account the remark above about extremals of E and weakly harmonic

mappings.

4. Regularity of weakly harmonic mappings

THEOREM 3. Let X,,(Q) be a ball of M which is within normal range of all of its points,

and for which
M <x/2Vx)
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where x>0 i3 an upper bound for the sectional curvature of M. Then a weakly harmonic
mapping U with U(Q)< K,,(Q) ts harmonic.

Remark. By well-known results from the theory of linear elliptic partial differential
equations one immediately concludes that if X and 71 are of class C* with y4>2 then a
harmonic mapping U belongs to C*(Q, M), if 4 is not an integer, and else to C*5(Q, M)
for all £>0.

Proof. We start by observing that it is sufficient to prove that U is continuous in Q.
In fact, it then follows from (2.5) and the results of [117], [15], or [18], that U is Hélder
continuous in (), and by methods which by now have become standard (see e.g. [15] and
[17]) one raises the regularity of U as far as the coefficients of the system will allow.

To prove continuity at an arbitrary point x, of Q we for once introduce normal co-
ordinates in a suitably small neighborhood Q¥ with smooth boundary, such that z,
has coordinates (0,0,...,0). In Q* we consider the Green function G of the operator
L= —Da(l/j_/y“ﬂDﬂ). It is well known, cf. e.g. [20] and [21], that, for n >3, @ satisfies

0< Gz, y) <K,|x—y|>" =z, yeQ*, (4.1)
Gz, y) = Ky|lx—y|*", if |z|, [y] <o and B,(0)<Q*, (4.2)
|V.G(z,y)| <Kg|lz—y|'-", =z,y€Q~ (4.3)

Here K, and K, >0 depend on n and on the ellipticity constants of L. K, will of course
depend on Q* as well as on the coefficients Vyy=2.

We shall also have occasion to use a slightly mollified Green function G°(x, %) defined
by

@°(x,y)= Jf Glz,2)dz, Bufy)={lz—y| <o} O,

Baw)
where we have used the notation § svdr=[mes S} fsvdz. G° obviously belongs to
H}n Lo(Q*, R) and satisfies
Gz, y) <2"2K,|x—y|> ", ifo<}|z—y|, (4.4)

and

f Vy y#D,tDsG°(.,y)dx = Jf tdx for (EHLNO R). (4.5)

Bo(¥)

For the sake of brevity we use the notation

q(v) = y*8(D,v' D pv' —v'(v) Dy v' D go) (4.6)
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for any representation v of the given mapping U with respect to normal coordinates with
center in K, (Q). We have |v]| <2M <n/Vx, whence by (2.2)

q(v) > 2a,(|v|)e(w). 4.7)

We fix a normal coordinate system around the center @ of the ball X,,(Q) and reserve the

letter u for the representation of U with respect to these coordinates. By (2.1) we get
q(u) = 2a,(M)e(u) > 0. (4.8)
Now in the defining relation (3.4) we use as a test vector ¢ =uG”(., ¥) and obtain
fﬂ_q(u) Gy Vydo=—} fm VyyD.|u'Ds 67, y) da. (4.9)
Let w€ H3(Q*, R) be the solution of the Dirichlet problem
f Vyy®D,wDsCde=0 for all CECPQ*, R) w—|ulPEHNQ* R). (4.10)
Q*

In view of (4.5) we get, after putting { =G"(., ) in (4.10) and subtracting the result from
(4.9),

zf q(u)G"(.,y)V;de=f {w—|ul*}d. (4.11)
Q*

Bo(¥)

Invoking Fatou’s lemma, (4.6), (4.8), and a theorem of Lebesgue we find

2];)_ qw) G y) Vyde <wly) - |uy)? ae. y€Q*. .12 ()

Also, on account of the maximum principle, ]w] < M? and we get from (4.8) and (4.11)

_ M?
. L e 1l yeQ*. 4.
L_e(u)G(,y)Vydx 5adD) for all y€Q (4.13)
In particular,
lim e(w)G(.,0) Vydz=0. (4.14)
R—0J B p(0)

Now introduce new normal coordinates around Q,=@Q, €KX, (@), 0<t<], 0<R<R,.
These points are defined by their having standard coordinates i, =t § r,pwdx Where
Tzn = B,4(0) \ Br(0).

(*) Having proved this inequality one can use (4.2) to see that this implies that we actually
have equality here. This is nothing but the Riesz representation for subsolutions,
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R, is chosen so that B, (0) = Q* The representation of U|. in these coordinates is

denoted by v=wv, 5.

If, in the relation (3.4) proclaiming that v is weakly harmonic, we use as test vector
@ =vQ°(., y)n, where |y| <R, 0<o<1—R, n=n,€0(Byx(0), R), =1 in By(0), and
| V7| <KR-! with K independent of R, we get

f Y D.llo[n] Dy & () Vy das - f vDnDs & ()| vV y do
+2 f q) °Cy)nVyda+2 f ¥PG°(.,y) D, v'Dgn v' Vy dac = 0. (4.15)
The first integral is equal to § Bany| ¥| %A, if By(y) < Bg(0). In the second one we write
|v(x) |2 = dist? (@4, Q) + [dist® (U(x), @) —dist? (@, Q)]
where by the triangle inequality
|dist? (U(z), @,) —dist?® (@, Q)| <4M|dist (U(x), Q) —dist (@, Q)]

<4M dist (U(z), @) < K |u(z) —i|.(1)

Hence by (4.5) we find that the second integral differs from dist? (Q,, @) by a term

which in view of the Poincare’ inequality, (4.2}, and (4.3) can be estimated by

12
KR‘nf |u(x)—a[dx<K{R*"f |u(x)-d|2dx}
Ton Ton

172 12
< K{m " f | Vu(z) |2dx} < K{ f e(u) G(., 0) Vy dx}
Tap B2

where K is independent of R for small enough R. The Cauchy-Schwarz inequality, (4.2)
and (4.4) yield that the fourth integral in (4.15), finally, can be majorized by

1/2

12 —
K{ f y*6°(.,y) D o' Dyt Vy dx} < K{ J e(u) G(., 0) Vy dx}
T2r By p®

Now we can let ¢—0 in (4.15), taking into account the estimates above, (4.4), (4.13),

and a theorem of Lebesgue to arrive at

_ - 1/2
|o(y) F < dist*(@y, @) — 2 fq(v) G(,ymVydz+ KU e(u)G(., 0) Vy dx} (4.16)

Bop

for almost every y € B,(0), o < R/2.

(1) In fact, by (2.3) we have dist (U(z), Ql)Sbm(M)Iu(x)—dl if @ is & non-positive lower bound
for the sectional curvature of T in J(Q).
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The first integral on the right hand side is divided into two parts in both of which we
use (4.7):

f (qu<.,y>nV§dw+f 4G9 Vyda
By,

Bap\ Bag®

> 2a,(sup |v}) f e(w)G(..y)nVy dz+ 2a.(2M) e(w)G(.,y) 1 Vy do
B2 Bao By g\ By,
For all x€B,;\B,, and y€B,(0), o<R/2, we have |z|<|z—y|+|y|<|z—y|+0<
2|z —~y|, and by (4.1) and (4.2) it follows that

f ew)G(,y)nVydz< K e()G(.,0)nVy da < Kf e(u)G(.,0) Vy da.
By g\ By Bog

Bar\ Bzp
By (4.14) this integral tends to zero as B0, and it can be absorbed into the last term of
(4.16) whence we get

Joy) [ < dist*(Qu, @) — 2ax(sup| o) f ()G (., y)n Vy de
2

By, By,

+K{ f e(u)G(.,O)V);dx}m, yEB,(0) (4.17)
Bap

where K is independent of R (at least for small R), ¢, y, and p.

Our first aim now is to prove that for all £ <1 and all small enough R, we have |v(y)|2=
[vn r(y)|2 <M}, for an arbitrary M,>M such that a,(M,)>0. To this end introduce
k:[0, 1] R+ by

h(t) = lim sup lim sup |v, p(y)|,
R0 o0 B,

Since ¢+ | v, g(y)| =dist (U(y), @, ) for almost every y and every R is a Lipschitz function
with constant dist (@, Q) <M it is immediate that A is Lipschitz continuous. Obviously
h(0) <M < M,. Hence, if h(t) were greater than M, for some ¢ <1 there would be a ¢, such
that A(ty) =M. Choosing & >0 so that a, (M, +¢&) >0 we find that supg,, | v, r| <M, +e for
all small enough R and all ¢ <g,, for some g, =p(R)>0. Then we get from (4.17) for such R

12

lim sup |v]? < dist¥(Qy z> Quo. ) + K{ f e(w)G(.,0) Vy d:v}. (4.18)
Bp

o0 BQ

Noting that @,,  lies on the geodesic ray from @ to @, » we see that dist?® (@, », @, z) <M?

and thus, in view of (4.14), we reach the desired contradiction:

R2(ty) = lim sup lim sup |v|* < M* < M3
R0 o0 B
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Having thus proved that (1) <M, we may return to (4.17) and there take £ =1. This leads
to (4.18) with =1, which implies that U is continuous at z, since for all small enough R
it follows that

lim sup dist(U(y), U(2))

o0 y,zeBQ
<lim {sup dist(U(y), @y, ) + sup dist(U(2), @, z)}
>0 yeBg zeBQ

_ 1/4
<2limsup|v1_ﬂ(x)|<K{ f e(u)G(.,O)l/ydx} ,
B
e

>0 Bsr
where the last term can be made arbitrarily small.
The theorem is proved.

5. Boundary regularity

We shall now state and prove a result on the boundary behavior of harmonic maps.

It is obvious that Theorem 1 is a corollary of Theorems 2, 3, and 4. One also sees that,
in fact, the regularity assumption on the boundary value mapping ® in Theorem 1 can be
weakened to ® € H3(Q, M) n CYX, M).

TuEOREM 4. Let UECQ, M) N H} be a harmonic mapping with range in a ball K,(Q)

which is within normal range of its points, and for which
M <n/(2Vx)

where x>0 is an upper bound for the sectional curvature of M. If the trace of U on X is con-
tinuous, Holder continuous, or has Hdlder continuous first derivatives, then the same holds
for U in X.

Remark. If X and T are of class C¥, with y>2, and if the trace of U on X is of class
", 0<a<l, with v+ a <, then U is of clags C** on X. This follows from Theorem 4 and

the linear theory.

Proof. The statement about Hlder continuity follows immediately from the results
of [11], once it is known that U is continuous on X. The Hélder continuity being proved
the rest of the theorem can be derived from the results and methods of [15].

Hence to finish the proof we need only show that U is continuous at every point of X.
To that end, let z,€Z and let Q, € N, 0 <t <1, be the points on the geodesic line from @ =g,
to @, =U(x,) such that dist (Q, @,) =¢ dist (@, @,). For each ¢t and R, R small enough, we

consider the solution w=w, , of the boundary value problem ILw=0 in Bgx,) =



14 S. HILDEBRANDT, H. KAUL AND K.-O0. WIDMAN

{x€X; dist (z, ) <R}, w— Ivlzeflz(BE(xo), R) where v =uv, is the representation of U in
the chosen normal coordinate system around @,.
Well-known results from the theory of linear elliptic partial differential equations tell
us that w is continuous on X N Bg(x,); in particular, lim, ., w(y) =w(x,) =dist® (U(x,), @,).
Repeating the argument that led to (4.11), and using (4.7), we see that

B g0} B p(z0)

fa ( ){Iv(x)lz—w(x)}dx< — 2a,( sup |v]) e(w)G°(.,y) Vy da (5.1)

if G” is the mollified Green function of Bg(z,}.

We claim that A(t) =lim sup,.,,, |v,(x)| <M, for all t€|0, 1) if M, > M is chosen so that
a,(M,)>0. In fact, if this were not so there would be a t,>0 such that A{t,) = M, since
h{t) clearly is Lipschitz continuous and A(0) <M. Hence for R small enough we have
@,(SUPs4 1 | U5 |) >0 and after discarding the right hand side and letting 0—0 in (5.1) we

find that
,”to(?/) ] z<Xwy,(y), Y€ Bp(m,),

which implies that A%(t,) <lim sup,.,, w(y) =dist?(U(x,), @,) < M2, a clear contradiction,
Thus, knowing that h(1) < M,, we may return to (5.1) and note that for R small enough
a,(supg, [v1]) >0, and for such R we find that

Ivl(.’/)l2 < wy ply)-

But w, g(y)—>dist(U(x,), @) =0 as y—>x,, and this proves our assertion, since |v,(y)| =
dist(U(y), Ulzy)).

6. An example

In this section, we shall show that the example given in [11, p. 87] can be construed
to furnish an example of a discontinuous weakly harmonic mapping U: X~ M with U(X) <
K@) and M =x/(2)/%).

For this purpose let =N >3, and choose M =8}, the N-dimensional sphere of radius
R imbedded in the natural way in R¥'!, Clearly, 71 has constant sectional curvature
» = R-2 Choose as one chart on M the stereographic projection o of M from the north
pole P=(0, 0, ..., R) onto the equator plane {#x €R¥*!, 4¥*1 =0} which in a natural way can
be identified with R¥. Set u =o(u), u =0~(u) =t(u). Then

2u!

)= ——77 1<i<
T (u) T4 xfu? for i< N

. 2
o= (1= ) #
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whence we get that
Gi(©) = 2a( |“| )0

where a(t) =2(1 +xt2)-2. Note that a'(R)= —2a(R) R-1.

Let Q be any bounded domain in R” containing the origin and having smooth boundary
2; we set X =0QUZX and provide X with the standard Euclidean metric.

Then the energy integral of any mapping U: Q- M\{P} is given by

E(U)=f0a(|u|)|Vu]2dx

if » is the representation of U in the coordinates given above.

Consider the “‘equator mapping” U,: X—> < RY*! defined by

R R R
Ujx)= (mxl, sz, R O) ERV,

"l

Since the equator is mapped into itself by o, we find that the representation u,=go U,
is given by u,(x)=«xR|x|-, which shows that U,€H}nL2(Q, M). Obviously, U,(X)<
X (P) with M =gm/2)/=. It is straight-forward to check that U, is a critical point of E, since
a'(R)= —2a(R)R, cf. [11, p. 67]. Thus U, is a weakly harmonic mapping having the
stated properties.
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