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1. Introduction

The fundamental problem in investigating the unitary representation theory of a
separable locally compact group @ is to determine its space G~ of (equivalence classes of)
irreducible representations. It is known that when @ is not type I, G*, with the Mackey
Borel structure, is not standard, or even countably separated. This is generally interpreted
to mean that the irreducible representations of such a group are not classifiable, and so
the problem becomes to find a substitute for @, simple enough to afford some hope that
it can be described completely, yet complicated enough to reflect a significant part of the
representation theory of . Two promising candidates have been proposed, both defined
using the group C*-algebra C*(G@) (which has the same representation theory as @): the
space Prim G of primitive ideals of C*(G), which was shown by Effros [19] to be a standard
Borel space in the Borel structure generated by the hull-kernel topology; and the space
Gy of quasi-equivalence classes of normal representations (traceable factor representa-
tions) of C*(@), shown by Halpern [35] to be standard in the Mackey Borel structure.
(The results of [19] and [35] are actually valid for arbitrary separable C*-algebras, not just
those arising from groups.)

In the case that @ is type I, both of these spaces may be naturally identified with
G*. Striking evidence that they are natural objects of study may be found in the beautiful
result [49] of Pukanszky, that for connected @ they are “the same” in the sense that the
map which associates to any element of @, the kernel of its members is a bijection of
Ghor Onto Prim C*(@). (It is easily shown that this bijection is in fact a Borel isomorphism.)

(*) Supported in part by an NSF Graduate Fellowship and by a Grant-in-Aid from the Graduate
Division of the University of California, Berkeley. This paper formed a portion of the author’s doc-
tordl thesis, submitted to the Univ. of Calif. in September, 1976.
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This paper grew out of an attempt to extend Pukanszky’s result to a wider class of
groups, and more generally, to develop the basic theory of Prim G and G, for arbitrary
groups. In pursuing these investigations it became apparent that it is convenient to work
in the more general context of what we call “twisted covariant systems”. Such a system
consists of a triple (G, 4, J), in which @ is a locally compact group, 4 a C*-algebra on which
@ acts continuously by automorphisms, and J a homomorphism of a closed normal sub-
group N, of G into the unitary group of the multiplier algebra M(4) of A4, such that J
satisfies cerfain conditions with respect to the G-action on A. (See Section 1 for a precise
definition.) To each such system can be associated a C*-algebra C*(@, 4, J) (the “twisted
covariance algebra” of the system) whose representation theory coincides with the “co-
variant” representation theory of (G, 4, J). The usefulness of twisted covariance algebras
in the study of group C*-algebras stems from the following facts: given a closed normal
subgroup K of a locally compact group @, there is a natural twisted covariant system
(@, O*(K), J%) whose C*-algebra is isomorphic to C*(®). Using this system it is frequently
possible (and useful) to break up C*(@) into more manageable pieces, which are no longer
group C*-algebras, but which are twisted covariance algebras. Finally, the C*-algebras
associated to the projective representation theory of G can be naturally described as
twisted covariance algebras (and in so doing, one avoids entirely the necessity of dealing
with cocycles).

With the above facts and the further special case of covariance algebras as motiva-
tion, we have attempted in this paper to describe some of the basic local structure theory
(with emphasis on the primitive ideal and trace structure) of twisted covariance algebras.
This necessitated the development of a theory of induced representations of such algebras
which generalizes that of Rieffel [51], [562] in the group case. This theory, involving Rieffel’s
concept of (strong) Morita equivalence, is much better suited to investigating the local
structure of the O*-algebras of non-type I groups than is the classical Mackey theory,
especially now that Morita equivalence is beginning to be better understood ([30], [59]).

The outline of the paper is as follows (we let (&, 4, J) denote a fixed twisted covariant
system): Section 1 contains the definition and some basic properties of twisted covariance
algebras. (These algebras, under the name ‘‘produits croisés restreints”, have also been
studied in [12]; they can be regarded as special cases of the enveloping C*-algebras of cross-
sectional algebras of Banach *salgebraic bundles [24], and are related to the generalized
It algebras of [40], [41], [42]. There is little overlap in this paper with the methods or
results of any of-those references. Many of our results can be proved in the more general
context of [24], but with greater technical complications.)

In Section 2 we develop a - theory of induced representations of twisted covariance
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algebras, including an imprimitivity theorem. The essential techniques are those of [51],
with some modifications and simplifications.

Section 3 contains results on continuity of the induction and restriction processes;
generalizing results first obtained by Fell {22] for the case of separable locally compact
groups. Our methods are quite different from Fell’s, and rely on the special form of the
imprimitivity theorem obtained in Section 2. Section 3 also contains a number of miscel-
laneous results, concerning among other things the implications for the inducing process
of amenability of the groups involved.

In Section 4 we develop a “Mackey machine” for twisted covariance algebras which
emphasizes structure theory. The first part, involving the reduction to stability groups
(for the action of G' on Prim 4), generalizes Rieffel’s theory in [52]; we have, however,
substantially simplified his proof. The second part, involving the case of a G-stable primitive
ideal P of 4, is new in the form we give it, and states roughly that (at least in nice situa-
tions) the part of O*(@, 4, J) which “lives over” P decomposes as a tensor product of
simpler algebras.

Section 5 contains our results on Prim C*(@, 4, ). These center around a generalized
form of a conjecture of Effros and Hahn, which roughly speaking states that every primi-
tive ideal of C*(@, 4, J) should be “induced” from the algebra of a stability subgroup.
Our results contain as special cases results of Gootman [27] and Zeller-Meier [57] concerning
this conjecture. The methods used appear to be new, and simpler than those used in earlier
attacks on the conjecture.

Section 6 concerns traces on C*(@, 4, 7). We begin with a result on inducing traces
from 4 to C*(@, 4, J), which generalizes a theorem essentially obtained by Pukanszky
in [49, Section 2] for the group case. (A somewhat weaker result than ours was proved by
Dang Ngoc in [12].) We then formulate an analogue of the Effros-Hahn conjecture for
traces, and prove it in the special cases of “discrete’” and “regular” systems. The result in
the discrete case is obtained by filling in a slight gap in work of Zeller-Meier [57], but the
result in the regular case (which corresponds to the case of a regularly embedded normal
subgroup) appears to be new, and depends on a result concerning normal representations
of Morita equivalent algebras.

In the seventh and final section we consider “abelian systems”, i.e. those for which
G[N; (but not necessarily A4) is abelian. We show first that the imprimitivity theorem for
such systems may be regarded as a generalization of a weak form of the Takai Duality
Theorem [54]. Using this, and the second part of the Mackey machine of Section 4, we are
able to give new and considerably simplified proofs of results of Kleppner [38] and Baggett

and Kleppner [3] concerning projective representations of abelian groups; we also answer
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a question raised in [38). Our final theorem, which may be regarded as the culmination of
the paper, concerns the trace and primitive ideal structure of systems which arise as
“restrictions” of regular systems. This theorem has as a corollary the result that if G and H
are separable locally compact groups, and = a continuous injective homomorphism of
H into G whose image contains a type I regularly embedded normal subgroup K of &
such that Q/K is abelian, then every point of Prim H is locally closed and the natural
map of H,,, into Prim H is a bijection. When combined with results of Pukanszky and
Dixmier on algebraic groups this leads to a considerably simplified proof of the theorem
of Pukanszky mentioned earlier, as well as of the result of Moore and Rosenberg [46]
that points in the primitive ideal spaces of connected groups are always locally closed.
In the proof of our theorem we have been greatly influenced by Pukanszky’s arguments
in [49].

Our methods throughout the paper are heavily algebraic in nature. We require
practically no knowledge of group representations, developing all the necessary tools from
scratch, but on the other hand we assume familiarity with the basic theory of C*-algebras
as contained in the first five chapters of {15]. Some acquaintance with Rieffel’s theory
of imprimitivity bimodules and strong Morita equivalence of C*-algebras, as contained
in [51, Sections 2 and 4-6], and [52, Section 3], would also be helpful.

We use R, C, and T to denote the reals, complexes, and unit circle in C, respectively.
Ends of proofs are denoted by ““//[”.

I would like to thank Professor Rieffel, who was my graduate adviser, for a careful
reading of the manuseript which eliminated a number of obscurities, and for several help-

ful suggestions.

1. Twisted covariance algebras

‘We recall some basic facts {cf. [18], [55], [8]) about covariance algebras. A covariant
system (G, A) consists of a locally compact group &, a C*-algebra A, and a (left) action
(s, @)—>%a of @ by *.automorphisms of 4, which is strongly continuous in the sense (usual
for representations of topological groups on Banach spaces) that for every a in A the map
s+>%a of G into 4 is continuous. A (covariant) representation L of (G, A) on a Banach space
B =B, consists of a uniformly bounded strongly continuous representation ¥, of f together
with & norm decreasing non-degenerate representation M of A such that Vi (s) M (a)V (s71)=
M,(%a) (s and r are to denote arbitrary elements of @, a and b elements of A4 throughout
the paper; we will frequently omit quantifiers involving these letters to avoid tedious
repetition). By non-degeneracy of M, we mean that M;(4)B (the closed linear span of
{M.(a)§: a€A,E€B}) is equal to B; all algebra representations are assumed nondegener-
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ate, unless otherwise stated. When B is a Hilbert space we further require that ¥V, be
unitary and M, be *-preserving.

To each covariant system we associate the Banach *.algebra LY@, A) of all Bochner
integrable 4-valued measureable functions on @ with respect to a fixed symmetric Haar
measure ds (that is, ds= A (s)-3dA(s), where dA is a left Haar measure on G, and A = A,

is the modular function of @), with multiplication and involution defined by

(f*x9)(r)= ff(S)s(g(S_lr))dl(S); ) ="(fr")*).

(Usunally LY(G, A) is taken with respect to dA, necessitating the introduction of A into the
formula for the involution; the algebra defined above is isometrically *-isomorphic to the
latter one via the map fr A~%f. The modified definition above results in some notational
simplifications, which is our reason for introducing it.)

To each covariant representation L of (G, 4) there corresponds a representation (also
denoted by L) of LY(@, 4), called the “integrated form” representation and defined by the

formula

L() = f M(f(s)) Vols) Eds

for each £ in B and f in LY@, 4). In particular, the representation of L(G, 4) on itself by

left multiplication is the integrated form of the covariant representation given by

(V)Y () = A{s)*(f(s7r))
and

(M(a)f)(r) = af(r).

These actions of G and 4 are easily seen to extend to actions on the enveloping C*-algebra
C*(@, A) of LG, A), and so induce homomorphisms R; and R, of G and A into the multi-
plier algebra [1] T(C*G, 4)); we will occasionally identify elements of G and A with their
images in MM(C*(G, 4)), thus writing sa for Rq(s) B,(a), ete. (The usefulness of multiplier
algebras in the theory of covariance algebras was first pointed out in [8], to which we refer
the reader for further details.) If H is a closed subgroup of @ and we set RH=RG| 1, then
By and R, define a covariant representation of (H, 4) on C*(G, A4), the integrated form of
which gives a *-homomorphism of L'(H, A) into TN(C*(@, 4)); since the latter is a C*-
algebra this homomorphism “factors through C*(H, 4). Similarly the integrated form of
By gives a *-homomorphism (also denoted Rj) of C*(H) into JN(C*(G, A)). We note the
useful fact that the set {fa(=R(f)Rs(a))|f€CH&), a€A} of products in TM(C*G, 4))
is contained in C*(@, 4), and generates it as a C*-algebra—this follows from the easily
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proved fact that elements of LY@, A) of the form s+ f(s)a, where fELY({, ds) and a €A,
have dense span in C¥(@, 4).

Any non-degenerate *-representation of LY@, 4) extends uniquely to C*(@, 4), and
hence to M(C*(@, 4)), and so defines (by composition with R, and R,) a covariant *-re-
presentation of (G, 4); viewed as a map from *-representations of L(@, 4) to covariant
*.representations this process is inverse to the “integrated form” construction.

C*(@, A) is often referred to as the covariance algebra, or crossed product algebra of
the system (G, 4). We will at times use the same letter to denote a covariant *-representa-
tion of (G, A) and the uniquely associated *-representation of C*(G, 4). In particular (i.e.
the special case 4 =C) the same letter will be used for representations of ¢ and C*(G).
Similarly we sometimes use the same letter for a *-representation of a C*-algebra and the
canonical extension (ef. {37]) to its multiplier algebra.

We now introduce a refinement of the concept of covariant system. A twisted covariant
system (G, A, J) consists of a covariant system (&, 4) together with a continuous homo-
morphism T (called the #wisting map of the system) of a closed normal subgroup N, of G
into the group of unitaries of M(A4), equipped with the strict topology [7], such that
T(n)aT(n™1) =na and J(sns~1) =*F(n) (we extend here the automorphism defined by s to all
of M(A)) for all n€EN, a€A, and s€G. The twisted covariance algebra (or twisted crossed
product algebra) C*(G, A, T)is defined to be the quotient of C*(G, 4) by the unique minimal
(closed two-sided) ideal I, of C*(@, 4) having the property that for any *-representation
L of C*(@, A) with ker L> I, the following holds:

Vin) =M (T(n)) forall n€EN,. (1)

To see that I, is well defined, observe that a *-representation L “preserves J”, in the
sense that (1) holds, iff the kernel of its extension to TM(C*(Q, 4)) contains the ideal I of
M(C*(@, A)) generated by {na —J(n)a|n€EN,a €A} and that by nondegeneracy of L this
holds iff ker L contains the ideal C*{@, A)- I=0%G, A)n 1 of C*@, A). Thus we may
define I,=C*@G, A)n L.

*- Representations of (G, A, J) are defined to be those covariant *.representations of
(G, A) which preserve J. They are thus in natural 1-1 correspondence with *-representa-
tions of C*(&, 4, J).

Throughout the remainder of the paper (@, 4, J) will denote a fixed twisted covariant
system.

Whenever 7 is a continuous homomorphism of a locally compact group H into @ we
can form an associated twisted covariant system (H, 4, Jy) (the “pull-back” of (G, 4, T)
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along ) by defining ‘=" for all ¢ in H and a in 4 and Jy=Tox| -1y, (so that Ny, =
7 Y(Ny)). Note that when H is a closed subgroup of ¢ containing N; and 7 is the inclusion
map, Jyis just J.

In [12] Dang Ngoc discusses twisted covariance algebras under the name “produits
croisés restreints”. He gives a somewhat different construction of them which we now show
is equivalent to ours. Let C,(@, 4, J) denote the set of continuous A-valued functions f

on @, having supports whose images in G/N; are relatively compact, and such that
f(ns) =f(s)F(n)t for all nEN,, s€Q.

Fix left Haar measures on N =N, and G/N, normalized so that

J‘ f(s)dl(s)=f f f(sn)dA(n)dA(S) for all f€EC(Q), (here § =sN),
¢ ainJw

and let dn, ds be the associated symmetric measures A 7' %(n)dA(n), A g2(s)dA(5). We give
C[G, 4, J) the structure of a normed *-algebra by

f*g(s)= ~me(r) Tg(r~s) dA(F); f*(s)="f(s1)*
)= L/Nllf(r)lldr'.

Let Ag y(s)=d(*"n)/dn (so that Ag(s)= A gnl$) Ag n(s)), Where “'n=s"ns.

There is a norm-decreasing *-homomorphism 7 of O (G, 4) (the sub-algebra of L1(Q, 4)
consisting of continuous functions of compact support) into C (@, 4, T), defined by 7(f) (s) =
[ f(sn) T(*n)dn. The proof of [50, 10.9] (with slight modifications) shows that there is an
isometric cross section for 7. It follows that = extends to a *-homomorphism (also denoted
7) of L@, A) onto the completion LY@, 4, J) of C(@G, 4, TJ), and that LY(G, A, T) carries
the quotient norm from LY@, 4). In particular LY@Q, 4, J) has a bounded approximate
identity, and so it has an enveloping (*-algebra B which is a quotient algebra of C*(G, 4).
Dang Ngoc defines the produit croisé restreint of (@, 4, F) to be this enveloping algebra B.

Observe that there are left actions of @ and 4 on 0(G, 4, ) given by

(rf)(s) = AN Fr2s); (af) (s) = af(s),

the integrated form of which gives the natural left action of O (@, 4) on C(@, 4, TJ) arising
from the homomorphism 7. For n€ N, we check that (nf) (s) = T(n)f(s). It follows easily
that for any *.representation L’ of B, L’ oz preserves J. On the other hand given a covariant
*-representation L of (@, A) which preserves T, we easily check that
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L E= L/NML(ﬂs)) Vo) Eds.

defines a norm decreasing *-representation L’ of Cy(@, A, J) satisfying L(g)=(L'om)(g)
for all g€C(@G, A). It follows that a *-representation of (G, A) preserves J iff its integrated
form factors through n, showing that B is naturally isomorphic to C*(@, 4, J) and thus
that our definition agrees with Dang Ngoc’s.

Among the most interesting twisted covariant systems are those arising from group
extensions. We treat these systems as special cases of “iterated twisted covariant systems”.
(The latter are also discussed in Section 2 of [12], where a different proof of the proposition
below is given.)

Let K be a closed normal subgroup of @ containing N,. We may define an action of
G by *-automorphisms of C (K, 4, J) by

CH®) = Dgw, xin(8)*(f(s78s)).

This action is isometric and strongly continuous with respect to the L' norm, and so by
the universality property of the enveloping C*-algebra it extends uniquely to a (strongly
continuous) action on C*(K, 4, J). Observe that the natural left actions defined earlier of
G and A on O,(G, 4, J) give rise to a covariant pair (RE, RY) of homomorphisms of G and
A into M(CHG, A, T)), which preserves T in the sense that, if R7 denotes the natural
extension of RJ to a homomorphism of 7M(4) into M(C*(G, 4, T)), we have R%(n)=
BY(F(n)) for all n€N,. (BS exists because 4 acts non-degenerately on C*(@, 4, J).)
Similarly, we have homomorphisms R} and R x of K and 4 into TN(C*(K, 4, J)). Then
it is easily verified that J%= R% is a twisting map for the system (C, XX, 4, J)), so we
can form the “iterated twisted covariance algebra” B =0%@, C*K, 4, T), T*). We
proceed now to show that this algebra is naturally isomorphic to C*(@, 4, J):

Let R! and R? denote the natural homomorphisms of G and 0*(K, 4, J)into M(B*P),
and R? the extension of R?to M(C*(K, A, J). Let R3= K20 RY, . Then (R, R3) is easily
seen to be covariant and J-preserving, and thus, via the integrated form construction,
defines a *-homomorphism R of C*(@, 4, J) into M(B*). Now CX@G, 4, T) is generated
by RI(C*@)Ri(4) (this fact, observed previously for covariance algebras, holds for

twisted covariance algebras since they are quotients of covariance algebras), and B“%

by RYCH@)((R?o RE(C*(K)))(R%A))); but since R,o0R%=R!|g, and since R!|g(C*(K))
acts as multipliers on RY{C*(Q)) (via the action of C*(K) by multipliers of C*(@)), we have

R(O"@, A, T)) = R{(C*(®)) R¥A) = B&P,
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On the other hand, we have a natural map R? of CXK, 4, ) into M(C*(@, 4, T)), and it
is easily verified that the pair (RZ, R%) defines a covariant homomorphism of (&, C*(K, 4,
T), IF) into M(C*(@, 4, T)); let R’ be its integrated form, B’ the extension to (B X).
Then R’oR'=RYZ, and R'oR®=R%. Tt follows easily that B’o R is the identity map on
C*(@, A, J), so that (since R has image B&X);

ProPosITION 1. With the above nolation, R is an isomorphism of C¥(@&, 4, T) onto
the iterated algebra B®F =0%@Q, C*(K, 4, T), T®). i

Applying this to the case A =C with T trivial, we get

CoROLLARY. For each closed normal subgroup K of G there is a natural twisted covariant
system (C, C*(K), TX), (with Nox=K) such that C*(@, C*(K), I*) is isomorphic to C*(Q). ]|/

2. Induced representations

We proceed now to develop a theory of induced representations for twisted covariance
algebras which imitates and extends that of Rieffel [51] for the group case. As in [51] we
find it convenient to work with ‘pre-C*-algebras”, in particular the dense subalgebra
C(@, A) of C*@G, A). In addition to its norm topology this algebra carries the “inductive
limit topology”: a net (f,) in C,(G, 4) converges to f in this topology iff it tends to f uni-
formly (for the norm on 4), and for some «, and compact K< @ all the f, with o>, are
supported in K. One sees easily that the restriction of the norm topology of L({, 4) to
C(G, A) is weaker than the inductive limit topology, so that in particular the restriction
of any *.representation of LY@, A4) to O (G, A) is continuous for the inductive limit topology.

Let H be a closed subgroup of @, and define the “imprimitivity algebra” E = Ef to
be the covariance algebra of the system (@, AQC (G/H)) (C(G/H) denotes the algebra of
continuous complex-valued functions on G/H vanishing at infinity, and ® the minimal,
or spatial, tensor product—see [53, p. 59]) where A ® C(G/H) is given the diagonal action
of @, defined on elementary tensors by *(a ®f) =°a @°f; here °*f is defined by *f(C)=f(s10)
for f€C(Q/H), C€G/H. Using the canonical isomorphism of 4 @ C(G/H) with C(G/H, A)
[63, pp. 59-60] we may alternatively define this action of @ via *y(C) =*(y(s~20}) for all ¢
in C(G/H, 4).

As in [51], we will construct an ‘“‘imprimitivity bimodule” X between E and B=
C*(H, A), which will then be used to define induced representations of C*(G, 4).

To begin with we work with the subalgebras E,=C. (G, C,(G/H, A)) of E and B,=
C,(H, A) of B; we regard elements of E, as continuous 4-valued functions on @ x G which

are constant, in the second variable, on cosets of H. Then X,=C (@&, 4) can be made into
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an E,— B, bimodule as follows: Let the algebra C(G/H, 4) of bounded continuous functions

on @ which are constant on H-cosets act to the left of X, by multiplication:
(yo) (r) =yp(r)z(r) (p€C(G/H, 4))
and let @ act to the left on X by
(s2) (r) = A% (s) (@(s7™r))

Here as in the rest of the paper , y, and z denote elements of X, (or of its completion X,

once that is defined). Then E, acts on X, via the integrated form representation

(fx)(r)= faf(s, r)*(x(s7 ) dAs)  (fEE,).

B, acts to the right by
(wg) (r) = Lx(ft_l)"_lg(t) do(t) (9€By),

the integrated form (with respect to right Haar measure ¢ on H) of the right 4-action

defined by
(za)(r) = z(r)('a)

and the right H-action defined by x#(r) =z(rt-1) Az"*(¢) (¢ will denote elements of H). It is
easily verified by use of the Fubini theorem that these formulae define commuting actions

of E, and B,. Next we introduce E, and B,-valued inner products on X, as follows:
&, Yu,(s, 1) = f w(rt™") S(w(s™ e 7)) do(t)
H
<&, Yo at)= Ls(w(s"l)*)“(y(S‘lt))dl(S)-

It may readily be verified that {(z, )z, is constant under right translation of the second
variable by elements of H, and that the resulting function on G x G/H is continuous of
compact support. Similarly <z, y>, is verified to lie in B,. The following formulae follow
from routine computations:
<@, Y928, = <&, Y58 <%, Y5 = K, Yror
<, 903 =<2, Y50 <2 Yg05, = <29, Y50

for all g€ B, and f€E E,; and

<=, :’/>z'., = <y’ %) g <x: ?/>§o =Y, 5, 2y, 2)p, = {&, Yg,2-
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To complete the proof that X, with the above inner products is an Ey— B, impri-
nitivity bimodule, we need the following lemma. Recall that an approximate identity for
an action of a topological algebra A4 on a topological module M is a net (f,) in 4 such that

for each m in M, (f,m) converges to m.

LeMMA 2. (i) There exists a net (f,) in E, which is an approximate identity with respect
to the inductive limst topologies for the left and right actions of E, on itself and the left action
on X, and which has the property that each f, is a finite sum of elements of the form {x, x>g,.

(ii) There exists (gg) tn By with similar properties.

Proof. (i) Let (a;);es be an approximate identity for 4 consisting of positive elements
of norm <1. To each quadruple x=(U, K, j, &), where U is a neighborhood of the identity
in G, K is a compact subset of G/H , 1€, and ¢ >0, we associate an f, € B, as follows:

Let C be a compact subset of G whose projection into G/H contains K. As in the proof
of [51, 7.11] we choose a ‘‘truncated Bruhat approximate cross section” A in C (@) such that
Ja kst ) dp(t) =1 for all s in C. Let D be the support of k. Choose V to be a symmetric neigh-
borhood of the identity of & such that V2< U and ||%aj"* —a}'®|| <& for all s in V2. Multiplying
h pointwise by the elements of a suitable partition of unity, we obtain non-zero functions
hy, 1=1, ..., n each having support in Vs,- for some s;€G, and such that > 71 [ h(st~1) dp(t)

—1 for all s in C. Now let y;, =1/ [¢hy(s~1)dA(s), and define z; in X, by x,(r) = (ky(r)a}"®) 1"
for each i=1,..,n. Then {w;, z)g, (87 7) = [ x;(rt=) (@i(s7rt) ) do(t) =y; [u hy(ri-1)aj’® -
hy(s~rt)%a;’ 2d@(t) In particular

@, T, (8, 1) =0 for s¢ V2, (2)

and for all » in C and all s we have

Z J (it a,do(t)= Z hi(rt‘l)J‘ yihy(s 1t ) a;dA(s) dp(t),
H G

so0 that

f f hy(rt™") (a;"° ”2—a;)}’ihi(s“rt_l)dl(S)dg(t)”
=1

En: f <xi7 xi>Eu(8: T) d}.(s)—d
i=l J@

<§ f j hy(rt ™) ey, hy(s vt 1) dA(s) do(t)
ﬁf (™) do(t) =e.

The inequality follows by using (2) and the fact that ||a,|| <1. Define f,=>11<{x;, >z,
and direct the set of «’s by (U, K, {, e)<(U", K', §, Y if U'c U, K'2K, j' >4, and & <s.
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Given f€ B, and ¢>0, put D=2p, (supp f) and K =p, (supp f) where p; and p, denote
the projections of G x G/H onto its first and second factors respectively. A routine compact-
ness argument shows that we may choose § in J and a neighborhood U of the identity of
G such that |la;f(s,, ) —f(s0, 7)|| <& and ||*f(s~2s,,571r) —f(sp, r)|| <& for all sy, r in @ and s
in U. A straightforward computation using the facts proved above shows that, with

=(U, K, j, &), f,xf has support contained in UD x UK. Using

f [|7ls, )l dAis)< 2, J hi("‘l)?’if hy(s™rt™") dA(s) do(t) =
¢ i=1Jm ¢
and the facts above, we see that, for all s, and r,
”ia*f(so’ r)_f(sm 7‘)“
= “ J‘ fac(s’ 7‘) Sf(s—lso, S—lr) dj’(s) - f('so, 7')
Q

< f ks, 7)) 176500 57 7)— s )] ) + ” f 1)) o )= )

)+ lla fsor )= fso )]

f fu(s, r)dA(s)—
<2+ ¢|[f(sy )|,

which shows that the f, are a left approximate identity; continuity of the *-operation for
the inductive limit topology then implies that they are a right approximate identity. A
similar computation shows that they are an approximate identity for the action on X,
(ii) has a similar, but easier proof; we may in fact take the g, to be of the form (x, 2> 5,
with the x having supports that shrink to the identity. /!

From this lemma it follows that the span of the range of <, >z, contains an approxi-
mate identity for the inductive limit topology, hence since it is an ideal in F, it is dense in
this topology and so a fortiori in the C* topology. Similarly the range of {, >z, has dense
span in B,

To verify positivity of the inner product, consider any x € X,,. From the lemma we can
find x, tending to x in the inductive limit topology, such that each z, is of the form f,z =
i1z, )5, %. Then

@, %), = Z @, {%;,%)E, %) 5, = Z {x, 2Ky, T BB, = Z {x, ) L2, xi>Bo

is a positive element of B,. It is readily verified that (z, z,>5, tends to {(z, z)>p in the
inductive limit, and so in the C*-topology; thus <z, Z>p, is positive. A similar argument
shows that (z, >z, is positive.
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To complete the proof that X, is an E,— B, imprimitivity bimodule we need only verify
the norm conditions [51, p. 235]: (ex, ex)p, < ||e||2{z, 25, and {xb, xb)z, <|b[|2<x, )5,
for each e€ By, b€ By To do this, first observe that the previously defined left action of
C(G/H, A) on X, (by multiplication) satisfies the norm condition; this we see from the
computation

i<, € 5, — <y, ey s, = (|l —y*p) @, 25, = Yo, P2y, =0 3)

wherey, denotes the element ([|y||% —y*y)"* of C(G/H, T(A)) and || || ,the norm on C(G/H, 4).
Given any f (regarded now as a function on @) in E, and z in X, the function s> f(s)(sz)
is continuous for the inductive limit topology, and so a fortiori for the topology on X,
defined by the inner product p(<, »5) where p is any state on B, Denoting by || |,
the norm from that inner product, we compute easily using the above formula (3) that
165) 3 < ) 2 e, andt o ffall, = 1 i) sz, < ]

Since this is true for all states p of B,, it follows that f acts as a bounded operator (see
[51, Def. 2.3]) on the pre-B-Hilbert space X,, and that the homomorphism so obtained
of E, into the pre-C*.algebra £(X,) of such operators (see [51, pp. 194-199]) is norm
decreasing for the L' norm on E, By the universality property of the enveloping C*.
algebra of LNG, C,(G/H, A)) we see that this homomorphism is also norm-decreasing for
the C* norm; from this the norm condition

<fws fx>Bn < “f“go<x’ x>Bn

follows immediately. The argument for the other norm condition is similar (but easier).
We have completed the proof of the following “imprimitivity theorem”:

ProrositioN 3. X, ¢s an E,— B, imprimitivity bimodule. 1/

CorOLLARY (of the proof). Any *-representation of C(G, A) which is conttnuous for

the inductive limit topology is continuous for the C* norm topology.

Proof. Take H=G@; then E,=C,(G, A)=B,. In the proof above we can replace the
C* norms on E; and B, by any stronger norms which induce topologies weaker than the
inductive limit topologies, and still get an imprimitivity bimodule, Taking any such norm
on E,, but the original C*-norm on B, we deduce that the homomorphism of E; into £(X,)
is still an isometry for the new norm (since this always holds for an imprimitivity bimodule);
that is, the new norm coincides with the usual one. It follows that given any *.representa-

tion of E, continuous for the inductive limit topology, the sup of the C* semi-norm on E,
14 — 772908 Acta mathematica 140. Imprimé le 9 Juin 1978
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induced by this representation and the usual C* norm coincides with the latter; i.e. the

representation is continuous for the usual C* norm. i

We now apply the argument following [52, Prop. 3.1] to see that X, may be completed
in the semi-norm ||z|| =||<z, 2>3,||'”* (after factoring out the elements of norm 0) to obtain
an E — Bimprimitivity bimodule X. It is easy to show that the actions of &, H, 4, C(G[H, A)
etc. on X, which were considered above extend to continuous actions on X. Given a
(closed 2-sided) ideal J of B, we denote by X, the closed B — B sub-module X.J of X, and
by JZ the ideal of E which correspond to it (see [52, Thm. 3.2]). Then the quotient X’ =
XX, carries the natural structure of an E/J*—B[J imprimitivity bimodule. We will
frequently identify elements of X, with their images in X’ when no confusion is likely to
result.

Given a *-representation L of B we may induce it up to a *.representation of  via the
tensor product construction described in [561, Thm. 5.1]; this then extends to a *-representa-
tion of the multiplier algebra (), and since we have a natural homomorphism of C*(@, 4)
into M(E) (the “integrated form” of the homomorphisms of G and 4 into T(E)), we get
a *-representation Ind L=Ind§ (L) of C*(@, 4). It is easy to see that the restriction of
this representation to O (@, 4) is the same as that obtained from the natural left action of
C.(G, 4) on X,®@N,; defined by fx®E&)=fx®& (for f in Cy(@G, A)), where the action of
C(@G, A) on X, is taken to be the integrated form of the left action of G on X, given earlier
and left multiplication by 4.

To extend our theory of induced representations to twisted covariance algebras we
need to know that the induction process described above “preserves twisting”. This will
follow from the next lemma, which is adapted from Lemma 2.4 of [52]. We assume for the
rest of the paper that H is a closed subgroup of G containing Ny, and continue to denote
by E = Ef; the imprimitivity algebra constructed earlier.

LemMmA 4. Let tENg, and a, o’ € A. If x€ X, is of the form x(s) =w(s)b, for some w EC(QG)
and bEA, then

(i) x(te —a') €(the closed linear span in X of {b("t"a—"a’) X |r €supp z}).

(i) (fa —a')x Ethe closed linear span of

{X("t'a—"a’)"b|r* Esupp x}

(Here "t =rtr-! and (fa —a’) is regarded as an operator on the left and right of X by means
of the H- and A4-actions considered earlier.) Similar statements hold for an arbitrary z in

X, if “supp 2” is replaced by “G” in the above formulae and b ranges over all of 4.
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Proof. Assume first that x is of the form yb, and choose £>0. Then if y is any element
of X,, we compute (letting % denote convolution in the algebra C,(@, 4), and using the
fact that Ag(t)= Ay, (¢) = Ax(t))

zx(ta—a')y =z(ta—a’) xy.
Multiplying « pointwise by the elements of a suitable partition of unity of G, we may write
it as a finite sum of elements of the form x;, x,(s) =v;(s)b, where each g, has support con-

tained in an open subset U; of G with the property that ||"c—"¢|| <e for all r,, r,€ U}, and
¢ denotes ta —a’, regarded as an operator acting to the left on the Banach space X. Then

(% (ta—a')y) (r)= fwi(s) b*((ta—a')y(s 7)) dA(s)
= J‘b(st Sa—*a’)p,(s) y(s r) dA(s)

=2z,(r)+ Jb(st Sa—Sa’ — St 5ig — Sa ) py(s) y (s~ r) dA(s)
where
2(r) =b(* “a —*a’) f?/)i(s) *y(s™ ) dA(s).
Thus

(@(ta—a)xy)(r)= 21 ((ta —a’) % y) (r)

= > z,(r)+ f 2 b(*tta—a’ — S,%a —%a’)p,(s) Sy(s~ r) dA(s)
=1

i=1

The norm of the second term is <

[l el aa

sup ||b(t%a—2a’ — it — %g’)
1<ign, se U

<loll-e- [lwelllsts @i,

Since ¢ is arbitrary and the z; are in the closed span of
{b("t"a—"a') X |r Esupp 2},

80 is z{ta —a') %y. Now if we choose (y,) to be a right approximate identity for C,(@Q, 4)
for the inductive limit topology, then x(fa —a') %y, tends to x(tz —a') in norm, so that
x(ta —a') also lies in the indicated subspace.

The argument for (ii) is similar. Since finite linear combinations of elements x of this

form are dense in X these results extend immediately to arbitrary x in X. !
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The following corollary permits us to define induced representations of twisted co-

variant systems.

CoROLLARY 5. Let I be a closed ideal of C*(H, A). Then

(i) The natural covariant representation of (G, A) on the left of X' preserves T iff I> 1.

(ii) If L is a *-representation of C*(H, A), then Ind§ L preserves F iff L does.

(iii) E/(I5)F, the imprimitivity algebra for the B|I;-rigged space X7 =X, is naturally
isomorphic to ONG, C(GIH)®A, T*), where Ny =Ny and T n)(fRa)=f{® T(n)a for all
fEC(G/H), n€Ny, and a€A.

Proof. (i) Let n€N, and a €A, and put a’'=J(n)a. If 12 I, then, since ‘a’ = J(*r)‘a,
we have X(*n’a —°a’)= X; for all s in @; by the lemma this implies that (ﬁa—a’)X <X,
so that the covariant representation of (@, 4) on X’ preserves J. The other implication is
proved similarly.

(ii) follows from (i), since whether or not a *-representation preserves J depends only
on its kernel in the covariance algebra. (Note that the kernel of Indf L consists of those
elements f of O*(@, 4) such that fX< X,..;).

(iii) follows from (i) also, together with the observation that, since EX is dense in X,
the kernel of the action of C*(G, 4) on X7 consists of those € C*(@, 4) for which (fe)X = X,
for all e<E (recall C*(G, 4) acts as multipliers on E). /1

The above corollary allows us to induce *.representations of C*(H, 4, J) up to
*.representations of C*(@, 4, J) by means of the bimodule X”. We note that X7 may be
viewed (as a O*(H, A, J)-rigged space) to be the (Hausdorff) completion of X, with respect
to the Oy =C (H, 4, J)-valued inner product mg({", + >g,), where By=C,(H, A) and 7r;;is the
canonical homomorphism of B, onto C,. However it is easily checked that 5ty ({x, y>g,) (£) =
(7re(x)* *nc(y)) (), so that we may define X7 to be the completion of X7=C(@, 4, T)
with respect to the inner product defined by <z, y>¢,(f) = (z* % ¥)(f). The natural left action
of C(G, 4, J) on X7 then restricts on X} to ordinary convolution. This description of
the induced bimodule will be convenient later. It can be used, as in the proof of [51, 5.12]
to relate our definition of induced representations to the more ““classical” ones, such as are
given in [55] and [12].

We will use E” to denote the imprimitivity algebra C*(@, O (G/H)®A, T*) in the
following. X7 will always denote the bimodule for inducing from (H, 4, T) to (G, 4, J);
when it is necessary to emphasize the groups involved, we write 4(X”)z. The following
“Imprimitivity theorem” now follows easily from Rieffel’s imprimitivity theorem for
C*.algebras [51, 6.29]:
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THEOREM 6. Let L be a *-representation of (G, A, J). Then L is induced from (H, A, T)
iff there exists a *-representation M of C(G/H) on H; whose image commutes with M;(A),
and such that (with (M, M) denoting the resulting *-representation of C(G/H)®A) the pair
(Vi (M, My)) defines a covariant representation of (G, Co(G/H)® A4, T*). 1

ProPosiTION 7. Let K be o closed normal subgroup of @, and suppose H2 K. Then
(with the notation of Proposition 1) X7 is naturally isomorphic to the bimodule Y7% for
inducing representations of B*E =C*H, A, T) up to B¢© =0X@, A, T). (Thus the latter

two isomorphisms “‘respect the inducing process”.)

Proof. The homomorphism R of Proposition 1, when restricted to C,(@, 4, J)=X3
is easily seen to implement the desired isomorphism. /1]

ProrosirioN 8. (“Induction in Stages.”) Let H2 K be closed subgroups of G con-
taining Ny, and L a *-representation of (K, A, J). Then Ind§ (IndZ L) is unitarily equivalent
to Ind$ L.

Proof. Let (Xl a(Xo)r, o(Xo)x denote the bimodules for the respective inducing

processes, and define a bilinear map
(Xo)u X alXo)x = a(Xo)x

by (#, y)>zy, where on the right hand side of the arrow we regard ¥ as an element of
C.(H, A) acting on o(X,)g. It is easily verified that this map is By=C,(H, 4) balanced and

thus defines a linear map 7' of
G(XO)H ®Bo H(XO)K

into o(X,)g which preserves the left-C (G, A) and right-C (K, A) actions. It also preserves
Cy=0 (K, A)-valued inner products when we define { , >¢, on the tensor product by {z, ®¥;,
Za @Yo 0o =<{Xs, T1)p, Y1 Y2)0or ¥rom Lemma 2 we may deduce that the range of 7 is
dense in the inductive limit topology, and hence in the norm topology. Thus the comple-
tions of the tensor product bimodule and of ;(X;)z are isomorphic. The proposition now
follows from [51, Thm. 5.9]. 1]

3. Induced ideals

We turn now to some results on continuity properties of the induction and restriction
processes which generalize those of Fell [22] for the group case. It will be convenient for

this purpose to view these processes as giving maps between spaces of ideals (rather than
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of representations, as in [22]) of the C*-algebras involved. We give the space J(D) of
(closed 2-sided) ideals of a C*-algebra D the topology having as a sub-base for its open
sets the family {Q,};cyw), Where

Q;={J€ID)|J21}.

This topology restricts on the space Prim D of primitive ideals to the usual (Jacobson)
hull-kernel topology. It is essentially the same as Fell’s “inner hull-kernel topology”
[22], which may be defined as the topology induced on the set of unitary equivalence
classes of *.representations of D (on some “large” Hilbert space) via the map Li>ker L
of this set into J(D).

Note that the canonical bijection of ideal spaces JD)x J(F) induced by an F—D
imprimitivity bimodule (cf. [52, Section 3]) is a homeomorphism, since it is a lattice iso-
morphism. We write I” for the ideal of F corresponding to I € J(D).

We also remark that the action of G on J(A4) defined by

I ={alacl}

is jointly continuous—this follows from trivial modifications of Glimm’s proof [26, Lemma
1.3] that the action on Prim A4 is jointly continuous.

In the following H will continue to denote a closed subgroup of G containing N,.
For L a *-representation of C*@, 4, J), Res§ L (the “‘restriction” of L to C*H, 4, T))
denotes the *-representation of C*(H, 4, J) defined by the covariant representation
(Vila, My) of (H, A). The continuity properties we require are given by the following result:

ProrosiTioN 9. (i) Let D, F be C*-algebras, and P a *-homomorphism of F into a
C*-algebra D' containing D as an ideal. Then

P.: J(F)— I(D)
J+>the ideal generated by {P,d|f€J, d€ D}
preserves arbitrary unions (the “union” of a collection of ideals being the ideal they generate),

and
P*: J(D)—>J(F), Iv~{f€F|P,- D I}

is continuous and preserves arbitrary intersections. -Furthermore P, and P* are order pre-
serving, and form a “Galois correspondence” in the sense that the following relations hold:

P*P,P*~P*; P, P*P, =P,
P*P,(J)2 J, P,PHI)= I for all I€J(D), JEJ(F).
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(ii) Let F=C*H, A, TJ), D=C*G, A, T), and let P be the canonical homomorphism of
F into D'=(CH@G, A, T)). Define

Res =P*: J(C¥(G, 4, T))—~> J(C*H, A, T)), and
Exf =P,: J(CXH, 4, T))—~>I(C*&, 4, T)).

(Bx§ I will be called the “extension” of I.) Then Res§ (ker L) =ker Res§ L for any *-re-
presentation L of CX@, 4, T).

(iii) Let F=0%G, A, T), D=the imprimitivity algebra E’ of X7, and let P be the
canonical homomorphism of F into D' = L(X7). Define

Indg: J(CHH, A, T)— JCHG, 4, T)), I—>P*(I¥)
and
Subf: J(CHG, 4, T))— JC*H, A, T)), J—>(the unique
I€J(CHH, A, T)) such that IF = P,(J)).

Then Ind;; (ker L) =ker (Ind§ L) for each *-representation L of C*(H, A, ).

Proof. (i) The fact that P*(I)< F (ie. P*(I)€ J(F)) when I< D is a consequence
of the fact that I D'. Given JE€ J(F), we have (P*)1(Q)) ={K€J(D)|P*K)$J}=
{K€J(D)|P(J)-DE K} =Qy, where J' is the ideal of D generated by P(J)- D; this proves
continuity of P*. The other statements of part (i) are easy.

(ii) is an easy consequence of the nondegeneracy of L, while (iii) follows from the facts
that the representation of B’ induced from L has kernel (ker L)®s [52, Prop. 3.7] and
is nondegenerate. I

In the case that H =N, we can obtain more precise results on the induction, restric-
tion, and extension processes. First we observe that the map fr—f(e) gives an isometric
*.isomorphism of C(Ny, 4, J) onto A. Hence C (N, 4, J)=I¥N,, A, T)=C*(Ngy, 4, T)
and so we can identify C*(Ny, 4, T) with 4. We will use this identification to view Ind,‘?,g,
Resﬁg, and Exﬁy as giving maps between J(4) and J(C*G, A, T)).

Recall (from the discussion preceding Proposition 1) that when K is a closed normal
subgroup of G containing Ny, there is a natural action of @ on C*(K, 4, ). This action
induces an action on the collection of *-representations of CX(X, 4, J) via (°L)(b) =L(*"b),
for all bECH(K, 4, TJ) and any *.representation L of CX(K, 4, ).
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Lemma 10. Let K 2 K, be closed normal subgroups of G containing Ny, and let s€G.
(i) For any *-representation L of C*(K,, A, T), IndE: (*L) is unitarily equivalent to
*(Indf; (L)).

(ii) For any I CXK,, 4, T), IndE: (1) =*(IndE: (I)).

Proof. (i) We write ¥ for H,, and i, for the same Hilbert space when regarded as a
By=0,K,, A) module via °L. The underlying Hilbert space of Ind: L may be defined as
the completion of X ,@cH (where X,=z (Xy)z,) endowed with the pre-inner product
{2y R&;, X, @&, =&y, 2,05, &y, E2>u. (This is equivalent to Rieffel’s definition [52, p. 222],
which uses X,®p, H instead of X,@cH, because elements in X,® N of the form zb @& —
x®b& (for b€ By) have length 0.) Then if we define *z(t) = A ¢ g,(s)*(x(s~Us)) for z in X,
it may readily be checked that U: X,®@ H—=>X,® H,, 2@&—>"2®E; (& denotes the vector
& when viewed as an element of {;) preserves pre-inner products, and that it intertwines
the action of C (K, 4) on X,®¢ defined by

flz®8) = (THe®E
with that on X,® H, given by

It follows that U extends to a unitary intertwining operator for *(Inds: L) and Indj: °L.

(i) is immediate from (i) in virtue of the relation ker *L =°(ker L). 1]

Definition. The G-hull I of 1< A4 is the G-invariant ideal generated by I. The Q-kernel
el = Nsee®l of I is the largest G-invariant ideal contained in I. 1]

ProrosiTION 11. Let Res=Res1‘f,g, and stmilarly for Ex, Ind and Sub.

(i) Res I and Sub I are G-invariant ideals of A, and Ex (Res I)= I<Ind (Sub I), for
all IxC*G, A, TJ). The smallest ideal of C*(G, A, TJ) having the same restriction as I is
Ex (Res I).

(i) Ind I=Ind (;I), Ex I=Ex %I, Res Ex I =1 and ResInd I=.;I, for all I A.
When restricted to the set © J(A) of G-invariant ideals of A, Ind and Ex are 1 —1, and Ind s

a homeomorphism onto its image; furthermore Ex I<Ind I for all I€%J(A4).

Proof. (i) That Res I is G-invariant follows from the easily proved fact that the restric-
tion map is G-equivariant and the fact that I is G-invariant (since it is also an ideal in
M(CX(@G, 4, T))). By Proposition 9 (i) and (iii), Sub I is the minimal ideal J of 4 such that
Ind J2I; by Lemma 10, if Ind J2 I, so does Ind *J for any s in @, so Sub I must be
G-invariant. The remaining statements of (i) follow immediately from Proposition 9.
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(ii) Lemma 4 implies that when I is a G-invariant ideal of 4 we have IX =X (where
X =¢(X)y,); since Res Ind I is G-invariant and is the largest I'( A such that I'X< X1,
and since XI'==X7I if I'41 (we use [562, Thm. 3.2]), we must have I=ResInd I. In
particular the restriction of Ind to ¢ J(4) is a. homeomorphism onto its image, since Res
and Ind are both continuous. The facts that Res and Ind are intersection preserving and
that Ind 7 =Ind 7 then imply that Res Ind I =,I for all 1€ J(4).

Now again assume I€9J(A), and let J=1Ind I. Then by Proposition 9 and the pre-
ceding, Res Ex I =Res Ex Res J =Res J=1. Since Res and Ex are order preserving and
Res Ex I I for arbitrary 1€ J(4), we see that in general Res Ex I=%I, and so also
Ex I =Ex ¢I. Finally, to prove that Ex I<Ind I when I€%J(4) we apply the relation
Ex Res J=J (for JE€ J(O*@G, 4, T)) to J =Ind L. /1

For any 1< A there are natural homomorphisms of (4) into M(I) and W(A/I).
It follows easily that when I is G-invariant there are natural twisting maps J; and J’
for the systems (@, I) and (G, A/I) respectively. The following result relates the corre-
sponding twisted covariance algebras to C%@, 4, J).

ProrosiTioN 12. Let I be a G-invariant ideal of A.

(1) The inclusion map of C(Q, I, T;) into C,(Q, A, T) extends to a *-isomorphism a;=0; o
of CX(Q, I, T,) onto Exff,g I

(ii) The map o of C(Q, A, T) into C(G, A]I, T*) defined by «(f)(r)=f(r)+1 extends
to a *-homomorphism o' =a™¢ of C*(G, A, T) onio C*(G, A|I, T’y with kernel Ex§_ I.

(iii) These homomorphisms respect the inducing process in the following sense:

The bimodule Y7 for the (H, I, T;)— (G, I, T;) inducing process is isomorphic, as a
right C*(H, I, J,)-rigged (see [51, Def. 2.8}, left C*(@Q, I, T;) module, to (X7);, where J =
Ex{ I is identified with C*(H, I, J;) via i, and ExF_ is identified with CX(G, 1, T;) via
o5 &

Similarly, the bimodule Z° for the (H, AJI, T)—(G, A/I, T') inducing process is

1somorphic to (X7Y.

Proof. Since CX(@, A, J) is generated as a C*-algebra by AC(G) (where we identify
A and C(@) with their images in T(C*(G, 4, T))), Exﬁy I is generated as an ideal of
K@, A, ) by TA0(G)=1IC,(G). However products of elements in IC(G) by elements of
A or O (@) give elements in the C*-algebra generated by IC(@), so Exff,g I is in fact
generated as a C*-algebra by IC,(G). Trivial modifications of the proof of [29, Lemma 1]

(which is the special case where A4 is abelian and 7 is trivial) now yield (i) and (ii).
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(iii) It is readily verified that the inclusion map of Y3=0C,(@, I, ;) into X3 preserves
the bimodule structure and C.(H, I, J,)-valued inner product, and so extends uniquely
to an isometric embedding of Y7 into X7. The image of ¥” contains (X7)I, and hence
also X3(C,(H, A, J)I), as a dense subspace: but the closure of the latter space is just
X7 =(X7),.

(X7’ may be defined as the Hausdorff completion of X with respect to the norm
defined by the C*(H, A[I, J)-valued inner product defined by <x,y>=o"*({(x, y>5)
(where B=C*H, A, J)). Arguments similar to those above now show that the map «f%:
X3—Z7 extends to the required isomorphism of (X7)’ with Z°. i

The above proposition is typically used to “break up” twisted covariance algebras
into more manageable pieces; this technique will be of great use in the following sec-
tions.

In the remainder of this section we discuss a situation in which the inducing process
is better behaved than in general.

Let u be a quasi-invariant measure for the action of G on G/H, and let V be the
*.representation of C*(G) on L2(Q/H, u) associated to the “quasi-regular’ representation of
G (the latter is defined as left translation of functions, modified by Radon-Nikodym
derivatives so as to give a unitary representation). The coset space G/H is said to be amen-
able if the kernel of the trivial (one-dimensional) representation of C*(@) contains the kernel
of V. A number of equivalent conditions, involving the existence of G-invariant means
for various spaces of functions on G/H, are given in [21] and [32]; when H is normal, the
condition reduces to amenability in the usual sense (of [31]) for the group G/H.

Our interest in the concept arises from the following proposition, the first part of
which generalizes [54, Prop. 2.2] and [12, Thm. VIII-2]. The method of proof used in those
references is quite different from the one used here, which goes back to an idea of Fell [22].

ProrositionN 13. Assume G/H is amenable.

(i) Indf (0)=(0). (In other words, the camonical homomorphism of C¥G, A, T) into
M(CHG, C(G/H, A)), T*) is faithful.)
(ii) Let also H = N,: then for any G-invariant ideal I of A, Ind§ I =Ex§ I.

Proof. (i) Let L, be any faithful *-representation of C*(@, 4, F). We define a representa-
tion L, of (G, A ® C(G/H)) on the Hilbert space tensor product H,, ® L%G/H, u) by taking
V.. to be the (inner) tensor product of V,, with the quasi-regular representation V, and
M, to be the spatial tensor product representation M, ® M of A®C(G/H) (where M
denotes the representation of C(G/H) by multiplication of functions on L¥G/H, u)). It
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is easily checked that L, preserves J and so defines a representation of C¥(G, 4 ®C,(G/H),
T

To prove (i), it suffices to show that the restriction, L, to O*(@, A, J) of the extension
of L, to M(CH@, ARC(G/H), T*) is faithful. Let D=L,(C*@, 4, T))® V(C*G)); then
M(D) may be identified with an algebra of operators on H;, ® L%(G/H, u). Noting that
Vy=V.,®V, and that M, is given by ar>M, (a) @1, we see that V. (G} and M (4) lie in
Li(M(CXG, A, 7)) ®V(M(CH))) and hence also in the (generally larger) algebra JH(D).
Thus also L(C*G, 4, T)< M(D), the corresponding action of C*(@, 4, J) on D being the
integrated form of the G and A4 actions. We may thus regard L as a homomorphism of
C*(G, A, T) into M(D).

Let ¥, denote the direct sum of V with the trivial representation on a one-dimensional
space H;. By our hypothesis that G/H is amenable, V, factors through V{(C*(6)), and so
can be regarded as a representation of V(C*(@)). Then the representation of C*@, 4, J)
obtained by composing L with the extension to (D) of I®V, (I denotes the identity
representations of L (C*(G, 4, J))) contains as a subrepresentation (on the subspace
N, ®H,) a representation equivalent to L,. As L, is faithful by assumption, so is L, and
(i) is proved.

(ii) Let 7€9J(4). By (i), applied to the system (G, A/I, F), the (0)-ideal of A/I
induces to the (0)-ideal of C*(@, 4/I, J'); from Proposition 13 (ii) and (iii) it now follows
easily that Indf I=ker «"°=Ex§, I. i

We conclude this section by applying the preceding result to show that nuclearity
(in the sense of [39]) of twisted covariance algebras is preserved under “amenable exten-
sions” of the groups. The perception that amenability is related to nuclearity appears to
have originated with Guichardet, and in fact the germ of the following proof can be seen

in his observation that the C*-algebras of amenable groups are nuclear (see [34]).

ProrosiTioN 14. Suppose G/H is amenable and C*(H, A, T) is nuclear. Then C*G,
A, T) is nuclear.

Proof. Let B be an arbitrary C*-algebra; we must show that the maximal tensor
product (see [39]) C*(@G, A, T)Rpax B is the same as O, 4, T)@B. We construct a
system (G, 4 @uax B, J') by letting G act on 4 ®p,,, B via the inner tensor product of the
action on 4 with the trivial action on B, and defining J’'=J®1 (with NQ:N,). Then
*.representations L of (G, A®pe B, J') correspond to triples (V, M,, My) such that
L’=(V,M,)is arepresentation of (G, 4, T),and M is arepresentation of B whoseimage com-
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mutes with V(@) and M ,(4) (and hence with L'(C*(@, 4, T))). As L(C*G, A Quax B, T')))
is generated by V(C*(@))- M (4) Myx(B) and so by L'(C*@, 4, T))) M 5(B), it follows easily
that C*(Q, A ®pax B, T’) is naturally isomorphic to C*(@, 4, T) Qpax B.

Similarly C*(H, 4 ®pax B, T’) is isomorphic to C*(H, 4, T) ®may B. Choose faithful
representations L, of C*(H, 4, J), and M, of B; our assumption that C*(H, 4, J)is nuclear
then implies that L, =L, ® M, is a faithful representation of C*(H, 4, T)Q@p.x B. We regard
L, as a faithful representation of C*(H, A ®pnex B, '), and form L=1Ind§ L, An inspec-
tion of Y3, the bimodule for the (H, A ®p. B, T') — (G, A ®uax B, T’) induction process,
shows that it contains a dense subspace of the form X3 ®c B (where X§ is the bimodule
for the (H, 4, J)— (G, 4, TJ) induction process); it is then easy to see that the representa-
tion L (which has as underlying space the completion of Y§® ;) decomposes (when
regarded as a representation of C*(@, 4, J)®pmax B) as the spatial tensor product Indg L, ®
M,. By Proposition 13 (i), L and Ind§ L, are both faithful, so C*(@, 4, T) @y B coincides
with C*(G, 4, T)® B as desired.

When H is normal we can give a different proof, using the recent characterization
[10] of nuclear algebras as those C*-algebras for which the commutant of every *-representa-
tion is an injective von Neumann algebra. Namely, given any *-representation L of
(@, A, T), its commutant L(C*(G, A, T))’ may be identified with the fixed point subalgebra
of (Res§ LY, for the natural action of G on (Res$ L)’ induced by conjugation by unitaries
in ¥V (G). Since V,(H) commutes with (Res§ L)’ this action drops to an action of G/H,
and as G/H is amenable and (Res§ L)’ is injective (by our assumption that C*(H, 4, J)
is nueclear), this fixed point algebra is injective (see [11, Section 6]). (This argument ap-
parently does not generalize to non-normal H, and since in any case [10] depends on the

very deep results of [11] our earlier direct proof seems preferable.) /!

4. The “Mackey machine”

In this section we develop a version of Mackey’s [44] normal subgroup analysis (also
called the “orbit method”) for twisted covariance algebras. The first theorem below
generalizes to our context a result of Rieffel [52] which gives a more precise formulation,
involving Morita equivalence, of one part of the orbit method. (Actually, our result is
more general than Rieffel’s even in the group case, in that it incorporates an idea due to
Moore [2, Chapter 2] for extending the Mackey analysis.) In proving it we make use of a
well-known result of Dixmier [13] which states that there is a natural action 7' of C(Prim A4)
on A, uniquely determined by the condition T,a —f(J)a€J for all a€A, f€C (Prim A4),
J €Prim A, and that this action identifies ¢ (Prim A) with the center of 71(4).
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LremyMa 15. Let W be a locally compact Hausdorff space, D a C*-algebra, and P,, P,
two *-homomorphisms of Co(W) into D whose images commute. Assume (i) the image of P,
does not annihilate any non-zero element of D, for 1=1, 2; and (ii) for any two distinct points
wy, We €W there exist fy, [, €C (W) such that f;(w,) 40 for i =1, 2, and P,(f,)Py(fs) =0. Then
P, =P,

Proof. Since the images of P, and P, commute we may assume that D is commutative,
so let D=C(W,) for W, a locally compact Hausdorff space. The hypothesis (i) implies
that the “dual” maps P;': W,—>W are well-defined. If P, &P, then P} < P5, so that we may
choose w€ W, such that w, =P} (w) is distinct from w,=P5(w); choosing f,, f, as in (ii),
we have

0 = (P1(f1) Palfa)) (w) = f(PT(w)) fo(P5 (w)) +0,

a contradiction. Thus P, =P,. i

The following lemma (which generalizes [51, Example 2.14]) is perhaps of some in-
dependent interest.

LemmMa 16. Let B and B be C*-algebras, Y an E — B imprimitivity bimodule. Then the
natural injection of E into L(Y) extends to an isomorphism of M(E) onto L(Y).

Proof. Regard E as a right E-rigged space via the inner product {e;, €;>z =6} e,. The
calculation of [51, Example 2.14] shows that the left action of IN(E) on E is by bounded
operators with respect to this inner product. It follows ([51, Thm. 5.9]) that M(E) acts
naturally by bounded operators (with respect to the B-valued inner product) on the comple-
tion Y of the tensor product bimodule £ ®z Y. But one easily verifies that the map e®y+—
ey extends to an isomorphism (as B-rigged spaces) of Y onto Y, thus giving a *-homo-
morphism « of (E) into L(Y); « extends the natural injection of E into L£(Y), so (as no
nonzero element of M(E) annihilates E) it is faithful. Now since £ is an ideal of £(Y) with

trivial annihilator, « has an inverse, so it is surjective. /1

TeEoREM 17. Let 7v: Prim A—G/H be a continuous G-equivariant map. Let I be the
H-invariant ideal ker (n~'({eH})) of A, and J =Ex§g I. Then the natural homomorphism of
O%G, A, T) into L((X°Y) is an isomorphism onto the imprimitivity algebra of (X°Y. In
particular C*(@, 4, T) is Morita equivalent to C*(H, A, J)/J, and so (by Proposition 12 (ii))
to C¥H, A/I, T".

Proof. Let D, denote the imprimitivity algebra for (X”)’; thus D, is isomorphic to
E7|J® (in the notation of Section 2). By Lemma 16 we may identify D =T(D,) with
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L((X?)). The natural left actions of C(G/H) and A4 on (X7) give *-homomorphisms P*
and @, respectively, of those algebras into D. Since the action of 4 on D, induced by @ is
non-degenerate, Q extends to a homomorphism § of 7(4) into D; composing 0 with *
(the homomorphism of C(G/H) into M(A) induced by z) we get another homomorphism
P2 of C(G/H) into D.

We wish to show that P1=P2, As the images of P! and ¢ commute, so do the images
of P! and P2. Furthermore the condition (i) of Lemma 15 follows easily from non-degeneracy
of the C(G/H) and A actions on (X7)’, so we need only check condition (ii).

Tt is sufficient to show that for any f,, f,€C(G/H) of disjoint support, P},P7,=0,
or equivalently (by non-degeneracy of the A action) that P} P%2Q(A)=0. Thus let a€A
be arbitrary, and let d =T, a, so that P%Q(a)=Q(d). Regard f, and f, as functions on
¢ which are constant on H-cosets; the condition that they have disjoint support then
implies that d€°I, and hence that *"d€I, for all s€supp f;. Let x€X, be of the form
x(s) =1p(s)b, for some Y EC(GF) and b€ 4. By Lemma. 4, d(f, ) is in the closed span of {X *d °b:
s~1€supp f,}, and hence in XI. Thus if Z denotes the canonical image of « in (X7 )y, we
have d(f,#)€(X°)I=((X?YC*H, 4, J))I<(X?YJ=0. Since elements of the form &

have dense span in (X7)’,
P’ Q(a) PL(X7Y = Q(d) P1,(X7) = (0),

as was to be proved. Thus P=P2,

Now D, is generated by C*(@)AC(G/H) (where we identify elements of C*(&), ete.,
with the corresponding operators on (X”)’), and so (since, by equality of Pt and P2, Co(G/H)
“multiplies” 4) by C*(G) 4. Thus the natural homomorphism of C*(@&, 4, J) into LHXTY)
has image equal to the imprimitivity algebra, and it remains only to show that this homo-
morphism is faithful.

To do this, we begin by observing that there is a natural homomorphism R’ of
C (G, HY®A into T(C*(G, 4, T)), defined by EB'(f ®a) = R4(Txxsa). It is then easily verified
that the pair (Rg, R’) is covariant and J~ preserving, and that its integrated form gives a
* homomorphism R of E”=0%@, O(G/H®A), T*) onto C*G, 4, J). Let J' denote the
kernel of B; then J’=(J,)%9 for a unique ideal J, of C*(H, 4, J), and the natural homo-
morphism R, of E° onto the imprimitivity algebra E, of (X”)"* has kernel J'. One easily
verifies that B, =@Q,o R, where @, denotes the natural homomorphism of C*(@, 4, J) into
L((X?)"). This implies that @, is faithful, since otherwise (as R is surjective) B, would
have kernel larger than J’. It follows that for any J,<.J, the natural homomorphism ¢,
of 0@, 4, J) into L((X%)™) is faithful, since @, is the composition of @, with the natural
homomorphism of £((X7)™) into £((X")").
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Thus it suffices to show J < J;. This is equivalent to (X7)”*JJ =0, and hence to (X7)" I =
0. Thus assume (X”)"" I +0, and choose d € I and z € (X7)" such that ||[zd]| =4 and ||z] =1.
There exists an open symmetric neighborhood U of the identity of @ such that ||°d —d|| <1
for all s€U. Since *d €°1, the norm of the image of d in 4/°I is <1 for s€U. Now choose
f€C(G/H) of norm 1 such that f is identically 1 outside e(U) (where e denotes the projec-
tion of @ onto G/H) and which vanishes on a neighborhood V of eH.

Identify C(G/H) with its image in M(4) under n* and let d'=T,d. I claim that
¢’ —d|| <2: By [15, 2.7.1] it is enough to verify that for any P€Prim 4, ||Bx(d’—d)]| <2,
where 8, denotes the projection of A4 onto A/P. For P in the complement of w—(e(U)) we
have d' —d€P (by definition of T'), so ||Bs(d’ —d)|| =0. Thus we may assume P €x-1(e(U));
choose s€ U such that w(P)=e(s). By equivariance of n, #(*"P)=eH, so P 2°I. Thus

165@" — D)l < [1Bisp(@ )| < | T 1Beepll + [|Bespll < 2.

The claim follows, and we deduce that ||zd’|| >2.

Now d’ is in ker (w~'(V)); thus if W is a symmetric neighborhood of the identity of G
such that e(W3)< V, we must have *(d)€N,cw"I for all s€ W. Using Lemma 2 (ii) (or
rather the more precise form thereof stated in the proof) we may find y € X, of the form
y(s)=y(s)b (for some p€C(G), bEA), such that |z(y, y>z—=| <1/||d’| (where B,=
CO(H, A)) and such that supp y= W. Choose g€C(G/H) vanishing outside e(W?) and
identically one on e(W). Then (working now in X,, and using Lemma 4) we have

yd' =gyd €glA°d' X :s€e W] < [g( QV HX]
rews

where the square brackets denote closed linear span. We observe next that because the
natural homomorphism R; of E7 into £(X”)") factors through R, the natural homo-
morphism of C(G/H) into C((X")") arising from the left action (by multiplication) of
Cw(G/H) on (X”)* coincides with the homomorphism obtained by viewing O (G/H) as a
subalgebra of M(4). Thus the image of [g(MN,ew:") X] in (XY is [Ty(Nrews" 1) (X7)"],
which is 0 since g vanishes outside e(W?2).

Let g, denote the image of y in (X7)*; the above showsy,d’ =0. Let B, =C*(H, 4, J)/J,.
Then {y;, )5, is just the image of <y,yds in By, so 2y, ¥ 0s =2y, ¥>z. Thus
12 |lelyy, Y0 pd' —ad'|| =||<2, yOp, @ —ad’|| =||xd’||, a contradiction. Hence we must
have J,2J, as was to be shown. 11

The hypotheses on (@, 4, J) in the preceding theorem are apparently quite special,
but in practice it is frequently possible, by means of Proposition 12, to break up twisted
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covariance algebras into pieces to which the theorem applies. (More precise comments on
this process appear in the following section.)

Note that when the map 7 of the theorem is a homeomorphism, the ideal I is maximal,
so that A/I is in particular primitive. Thus in this case the theorem ‘‘reduces” (modulo
Morita equivalence) the study of C*(@, A, J) to the study of a system in which the algebra
acted upon is primitive. The second half of the “Mackey machine”, to which we now turn,
concerns such systems.

Let U= U(M(A)) denote the unitary group of TM(4), equipped with the strict topo-
logy, and P U the quotient group of U by its center. With the quotient topology PU
is a topological group. The process of associating to any » € Y the corresponding ‘‘gener-
alized inner” automorphism er>uau* of A induces a continuous injection of PU into
Aut 4 (endowed with the topology of pointwise norm convergence on A4.) The system
(&, A, T) is said to be generalized inner if the action of G on A4 is induced by a continuous
homomorphism of & into P U; this is stronger than requiring merely that each element of
G act via a generalized inner automorphism, since in general the topology on P U is stronger
than that on Aut 4.

Let (G, 4, J) be a generalized inner system, and « the corresponding homomorphism
of G into P U. Assume also that 4 is primitive; then the center of 7M(4) consists of scalar
multiples of the identity, so that the natural homomorphism f# of U onto P U has kernel
isomorphic to T. Let G” denote the fiber product of U and G with respect to the homo-
morphisms « and f; thus

Q" = {(s, u) EGx U: afs) = p(u)},

with the relative product topology and group structure. There is a natural short exact
sequence of topological groups

”

1) |\ S (1)

defined by yr(t)=(1¢g, t1mw) and «”(s, ) =s. In particular G” is locally compact. The map
yx: n=>(n, J(n)) is a continuous isomorphism of N =N; onto a closed normal subgroup of
G’. The subgroups y1(T) and yy(N) intersect in the identity element of G, so N” =p1(T)
yx(N) may be naturally identified with T x N; we let Py and Py denote the corresponding
projections of N” onto its factors.

We now describe two twisted covariant systems associated with G”. First, J,: n”"+>
Py{n")~ (the bar denotes complex conjugate) defines a twisting map of N” into T, giving rise
to a system (G”, C, J;). Observe that ker RZ22yy(V); thus if we define @ =G"/yy(N), and

T N’[yy(N)—>T, n"yy{N)—>Py(n")-, there is a natural covariant homomorphism of
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(&, C, ') into M(CHG", C, T,)), and it is easy to see (using the fact that C*(@", C, T;)=
&(OX(G")) BE(C)=RE(C*G"))) that the integrated form of this homomorphism gives an

isomorphism of O¥@’, C, J') onto C*G”, C, J;). We refer to (&, C, J') as the Mackey
system for (G, A, J). Note that G| Ny =G| N"=G|N;.

We obtain another system, (G”, 4, J,), by letting G” act on A4 via the composition of
o” with the given homorﬁorphjsm of @ into Aut 4, and taking J,=ToPy. An argument
similar to that in the preceding paragraph shows that C*(@”, 4, J,) is naturally isomorphic
to 0@, 4, J).

We now proceed to construct an isomorphism between 4 ®u,.,C*G”,C, J;) and
CX@", A, T,). First define a map R’ of G” into M(C*(G”, A, T,)), continuous with respect
to the strict topology on the latter, by

R'(s, u) = RP(w) R%(s, w).

Using the fact that « and s induce the same automorphism of 4 we easily verify that the
image of R’ commutes with B%(TM(4)). Thus

R’ (848, uyus) = RP(uz") RE(uy) R% (s, u,) REH(s,, u.)

= R (ui") R%(sy, uy) R (uz") RE% (s, ug) = R'(sy, uy) B'(sy, uy),

so R’ is a homomorphism.

Another simple calculation shows that (R’, §), where 8 denotes the canonical homo-
morphism of € onto scalar multiples of the identity of TN(C*(G”, C, T,)), is a J;-preserving
covariant homomorphism; its integrated form R” thus defines a *-homomorphism of
CxG", C, T,) into M(CHG", A, T,)). As the image of R” commutes with R7*(4) we see that
(R%, R") defines a homomorphism R of 4 ®,,,,C*G", C, J,) into M(C*G", 4, Ty)).

‘We wish to show that the image [R}*(4) R"(C*(Q", C, T,))] of R is precisely CX(G", A, T,).
Since R"(C*(@”, €, T,))=R'(C*G")), it is enough to show that RP(A4)R’'(LYG")) spans
a dense subspace of C*(G”", 4, 7). Thus choose €4, fEC(G"). Given £>0, we may par-
tition supp f into finitely many Borel sets (B;).1, with representatives (s, u;)i-1, such
that for all (s, ») € B, we have

oz () " = RSty < elm sup fis")

where n denotes the d(s, #)-measure of supp f. Let f, denote the (pointwise) product of f
with the characteristic function of B;; then f,€LYG"). Define T to be the element

RHa) R'(f)— 2 Bi(aui") BBA(f)

fwl
15— 772908 Acta mathematica 140. Imprimé le 9 Juin 1978
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of M(CHG", A, T)). A straightforward calculation shows that for any geC*(G”, 4, T,)
of norm <1, ||Tg|| <e. Thus T itself is of norm <g, so that, as ¢ was arbitrary,

B2 (A) R'(C@)) < [RE(4) BB(CH@)] < CHG", 4, Ty).

Similar reasoning shows that for any a€4, h€C,(Q"), the element R (a)R%:(k) can be
approximated arbitrarily closely by elements in the span of R*(4) R'(L1(G”)). It follows
that R has image equal to C*Q”", 4, TF,).

To see that R is injective, we define homomorphisms R, and R, of 4 and @, respect-
ively, into TN(A) @umax M(C*(G”, C, T1)) S M(A @pax CHG', C, T))), by Bi(a) =a®1, Ry(s,u) =
u®@R%(s, u). Then (R, R,) is covariant and J,-preserving, hence its integrated form
gives a *-homomorphism R; of C*G”, 4, J,) into €= M4 ®p.xC*G", C, T,)). Let R,
denote the canonical extension of Ry to M(C*G", 4, T,)). We identify IM(C*G", C, T,))
with the subalgebra 1@ M(C*G”, C, T,)) of C; then it is easily verified that Ryo R’ equals
R7, hence its integrated form Rjo R” is the canonical embedding of C*(G”, €, ;) into C.
Furthermore Ryo R is the canonical embedding of 4 into C. It follows that R, is a right
inverse to R. Thus R is injective, and so an isomorphism onto C*(@", 4, T,).

In virtue of the isomorphisms indicated earlier of C*(G”, 4, F,) with O%@&, A, J) and
cX@”, C, J,) with CX&', C, J’), we have proved

THEOREM 18. Let (G, A, J) be generalized inner, with A primitive, and let (G, C, T)
be the associated Mackey system. Then there ts a natural isomorphism of A @ e CHG', C, T)
onto C*(G, 4, TJ). /1

Systems (@', C, T’) (such as the Mackey systems) for which T’ is an isomorphism of
Ny onto T are said to be reduced. (Note that for such a system Ny 1s always central in @)
We will take wp the study of reduced systems such that @ |Ny. is abelian in section 7.

Remark. Systems (¢, 4, J) for which 4 is isomorphie to the algebra X(H) of compact
operators on a Hilbert space H are always generalized inner, This essentially well-known
result follows from two observations:

1. M(K(), with the strict topology, is naturally isomorphic to £(H) with the strong
topology (cf. [1]), so P U(K(H)) is isomorphic to the projective unitary group PD(H)
with the strong topology;

2. Every automorphism of J(}) is induced by a unitary of }, and the topology of
pointwise norm convergence on Aut J(H) coincides with the strong topology on PD(H)
(this follows from the argument of [562, Lemma 8.4]).

I originally proved Theorem 18 in the special case A = X(H), using arguments sug-
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gested by the proof of {17, Prop. 6]. The proof of Theorem 18 which is given above is
based in part on a suggestion by Marc Rieffel for simplifying the original proof. We note
that [17, Prop. 6] follows easily from Theorem 18, since Prim (X(H)®C* &, C, T)) is
naturally homeomorphic to Prim CX&’, C, J7). /!

5. Primitive ideals and the Effros-Hahn conjecture

In this section we apply the theory of induced representations developed in the
preceding sections to the problem of determining the structure of twisted covariance
algebras. The first step in investigating the structure of any C*-algebra is to describe its
primitive ideal space; we are far from being able to do this for general twisted covariance
algebras, but at any rate Mackey’s “orbit method’ suggests a general method of attack.
The idea is to break up the problem into two parts by analysing the action of G on Prim A:
first, show that, at least in reasonably nice situations, all primitive ideals of C*@, 4, J)
are induced from primitive ideals of C*(H, 4, J), where H is the stability group G, of
some P €Prim A; second, determine the primitive ideals of O*(H, 4, F). We proceed now
to give a more precise formulation of a conjecture (first raised by Effros and Hahn [20, 7.4]
in the special case in which A is abelian and J is trivial) concerning how the first step

in this process should work.

Definitions. The G-quasi-orbit Qp=0QF of PE€Prim A4 is the set of all primitive ideals
of A whose G-kernels are the same as that of P—or equivalently, whose G-orbit closures
in Prim 4 coincide with that of P. The common G-kernel of the elements in a quasi-orbit
Q is denoted by ker @ and is called the G-primitive ideal corresponding to Q. A primitive
ideal J of C*(@, 4, T) is said to Live on the quasi-orbit Q if Res§s J =ker Q; if it exists, this
Q is denoted by Q¢(J). One says that (G, 4, T) is quasi-regular if every primitive ideal of
C¥(G, 4, TJ)lives on a quasi-orbit. /!

We endow the collection Q of all G-quasi-orbits in Prim 4 with the quotient topology
arising from the surjection z,: Pr>@p of Prim 4 onto Q. The following lemma shows that
this topology coincides with the hull-kernel topology on the set of G-primitive ideals

when we identify quasi-orbits with their corresponding G-kernels.

LEMMA. 7ty 1s open, and the map Qr>ker (Q) is @ homeomorphism onto its image in
¢J(4).

Proof. We show that PP is a continuous open map of Prim 4 onto its image in
§J(A4); from this both parts of the lemma follow immediately (since the image of Prim 4
in ¢J(4) will have the quotient topology).
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Continuity follows from continuity of Res and Ind and the fact that (P = Resﬁg Indg P
(Proposition 11); it can also be proved directly. To verify openness choose a basic open set
O=Q;NPrim 4 of Prim 4, and let J=¢I. For any P€Prim 4, if P€Q then 4P does not
contain J, so P € Q;. On the other hand if ;P € Q;, then there must exist s in @ for which
sP$ I, as otherwise we would have gP =N ¢°P2¢I. Since 4(°P) =P it follows that the
image of O in ¢J is equal to the intersection of Q; with the image of Prim 4. Hence P+ P
is open. /1

We proceed now to prove some (essentially known) sufficient conditions on Q for
(G, 4, T) to be quasi-regular. A topological space is fotally Baire if each locally closed sub-
set of it is Baire (with the relative topology). By [15, 3.4.13, 3.2.1, and 3.2.2], Prim 4 is
totally Baire; since the image of a totally Baire space under an open continuous map is
totally Baire, the preceding lemma implies that Q is totally Baire. A topological space is
irreducible if it is not the union of two proper closed subsets, or equivalently if every non-
empty open seb is dense. An almost Hausdorf} space is one in which every closed subset

contains a dense relatively open Hausdorff subset.

LemwmA. Let T be a totally Baire space which is either second countable or almost Haus-
dorff; then a non-empty closed subset F of T is irreducible if and only if it is the closure of a

single point.

Proof. The subset F satisfies the same hypotheses as T, so we may assume that T
is irreducible and non-empty. Then any non-empty open subset is dense, so if 7" has a
countable base for its topology it must have, by the Baire property, a point which is
contained in every non-empty open subset and is thus dense. If on the other hand 7T is
almost Hausdorff, then a dense open Hausdorff subset must consist of a single point,
since otherwise it would contain two disjoint non-empty open subsets.

For the “if”’ direction, observe that any topological space containing a dense point is
irreducible. /1

CoroLLARY 19. If Q is second countable or almost Hausdorff then (G, A, T) is quasi-
regular.

Proof. There is a natural bijection between ¢J{4) and the collection of closed subsets
of Q, which to each I€%J(A) associates the image in Q of the hull of I (in Prim 4). We
show that, for an arbitrary P €Prim C*@, A, J), the closed subset C' of Q corresponding
to Resf,g P is irreducible. ‘

Thus assume that C=0C; U C,, where C; and C, are proper closed subsets of C. Then
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the ideals I, and I, of 4 corresponding to C; and C, satisty I; N I,=1, with I the ideal
corresponding to C. Since C*(@, I1,,T,)C*Q, 1,,T,) = O*(G,1,T,), ExL,nEx [,<Ex I=
Ex Res Pc P. Since P is prime we have (relabeling I; and I, if necessary) Ex I, S P, so
I, =Res Ex I; S Res P=1, contradicting our assumption that C, is properly contained in
C. Tt follows that C is irreducible.

By the preceding lemma there exists @€ Q with closure equal to C; the ideal corre-
sponding to C is then just ker . Thus P lives on the quasi-orbit Q. /1

Remark. Dixmier has asked whether every prime ideal of a C*-algebra is primitive.
This is equivalent to asking whether every irreducible closed subset of the primitive ideal
space of a C*-algebra is a point closure. One may ask more generally whether quasi-orbit
spaces always have this property—if so, every (@, 4, J) is quasi-regular. I know of no
counterexamples. There are totally Baire spaces which do not have the property: for
example, any uncountable set with the topology consisting of complements of finite sub-
sets, together with the empty set; this space is irreducible but has no dense point. /!

We now introduce some stronger regularity properties which Prim (@, 4, J) (=
Prim C%(¢, 4, J)) may satisfy. Recall that by [5, Lemma 1], the stabilizer, G5, in @ of

any P €Prim A is closed; since N, acts by unitaries of (4), G» always contains N,.

Definitions. A quasi-orbit Q is EH-regular if, for every J €Prim (G, 4, J) which lives
on @, there exists P€Q and I€Prim (Gp, 4, J) such that Resi? I=P and Indg, I=J.
@ is regular if it is locally closed, and if there exists P €Q such that the map sGp—>°P is a
homeomorphism of G/Qp onto Q. The system (G, 4, T) is EH-regular (vesp. regular) if it is
quasi-regular, and each quasi-orbit is EH-regular (resp. regular). /1

The generalized Effros—Hahn conjecture is then that every system (G, 4, ) for which
G[N; is amenable is KH-regular. In some situations (one of which is given below) EH-
regularity holds even when G/N, is not amenable, but it is unlikely that the conjecture
would hold in general if this hypothesis were dropped. The remainder of this section is
devoted to showing that certain systems are EH-regular.

In the proof of the following proposition we make use of the well-known fact (cf. [15,
2.11.5]) that for any ideals I, J of a O*-algebra D with 12 J, Prim (I/J) is naturally homeo-
morphie to the locally closed subset § of Prim D consisting of primitive ideals which contain
J but not I; the map S—Prim I}/J is given by PP N I|J, while its inverse associates to
P'|J €Prim (I/J) the unique ideal of D maximal with respect to the property that its
intersection with 7 be P’.
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ProrosiTion 20. 4 regular quasi-orbit is EH-regular.

Proof. Let @ be a regular quasi-orbit, J a primitive ideal of (@, 4, J) which lives on
@, and P€Q. As Q is locally closed and G-invariant there are G-invariant ideals I; and I,
of A with hulls in Prim 4 equal to @-\ @ and -, respectively. Then I,=ker @ =Resf, J.
Let J; =Ex§g 1,, i=1, 2. By Proposition 11, J2J, but J £ J,, so in particular (J N J,)/J;
is a primitive ideal of J,/J,. By Proposition 12, J,/J, is naturally isomorphic to C*(G, I,/1,,
(J1,)™). Let P’ denote the primitive ideal (P N I,)/I, of I,/I,. Our hypothesis of regularity
implies that sGp+>*P’ is homeomorphism of G/G, onto Prim I,/I,2@), so (taking = to be
its inverse) we may apply Theorem 17 to deduce that the inducing bimodule gives a Morita
equivalence of C*(@, I,/I,, (Tp,)*) with C*(Gp, I/(P N I,), (T,)"™"). The latter algebra
is (again, by Proposition 12) isomorphic to the subquotient J1/J; of C*(G», 4, J), where
Ji=Exf I, and J;=Ex§ (PN L,). In virtue of the Morita equivalence there is by [52,
3.8] a unique primitive ideal Jo/J3 of J1/J; which induces up to (J NJ,)/J,. Let L, be an
irreducible *-representation of J;/J; with kernel Jo/J3; then L, extends canonically to an
irreducible representation of C*(Gp, 4, J)/J;, which in turn lifts to an irreducible represen-
tation L of C*(Gp, 4, J). It is then easy to see, using [52, 3.6 and 3.7], that the kernel of
Indgp L is the unique primitive ideal of C*(@, 4, J) whose intersection with J; is J N Jy;
that is, ker Indg, L=J. On the other hand Resy? L, has kernel (PN I1,)/(PN 1) (since
I /PN 1) is simple), so Resi? L, as the canonical extension of Res L, to 4, has kernel
equal to the unique ideal of 4 maximal with respect to the property that its intersection
with I, be PN I,; ie. ker Resﬁ;L:P. Thus, taking J'=ker L, we have Indgp J =J,
Resit J' =P, which proves EH-regularity. i

Lemma 21. Let H be open in G. Then the natural isomorphism iy of C,(H, A, T) onto
the subalgebra of C (G, A, T) consisting of functions which vanish off H extends to an iso-
morphism of C*(H, A, J) onto & C*-subalgebra of C*(Q, A, T).

Proof. Let Y, denote the subspace of X3 consisting of functions which vanish off H;
then Y, is a submodule for the right and left actions of C,(H, 4, J) on X}, and it is easily
verified that Y is isomorphic (as a right C,(H, A, J)-rigged space) to the bimodule for
inducing representations of C,(H, 4, J) up to itself. From the proof of the corollary to
Proposition 3 it follows that the norm induced on C(H, 4, J) from its left action on ¥,
is just the ordinary C*-norm, so the same is true of the action on X3; thus the natural
homomorphism of C(H, 4, J) into £(X7) is an isometry. Since this homomorphism ““fac-
tors through” 4y, and since 4y, being norm decreasing for the L! norms, is also norm de-
creasing for the C*-norms (by universality), we see that iy is itself an isometry. Thus it
extends to an embedding of C*(H, 4, J) into C*(G, A, J), as claimed. /1!
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We will use this lemma to identify C*(H, 4, J) with a subalgebra of C*G, 4, J),
when H is open. In particular when N, is open we identify A =C*(N,, 4, J) with a sub-
algebra of CX(@, 4, 7).

Lremma 22. Suppose G[Ny is compact, and let PE€Prim 4.
(i) sGp—>°P 1is a homeomorphism of G|Gp onto Q=Q(P).
(ii) If {P} is locally closed in Prim A, then @ is regular.

Proof. (i) That sGp+>°P is a homeomorphism of G/G» onto the orbit {P} of P follows
from [24, Lemma 17.2], so we need to show only that {P} =@. Observe first that 5({P}~) =
Usee®({P}7) is closed in Prim A—this is a consequence of the fact that for any topological
transformation group, the union of the translates of a given closed subset of the space by
the elements of a given compact subset of the group is always closed. It follows that the
closure of ¢{P} is precisely %({P}~). Suppose there exists P’'€Q not lying in the orbit of
P; then P’ €*{P}~={*P}~ for some s€G. As Prim 4 is T, {P'}~ is a subset of {*P}~ not
containing *P. Since “{P}, being homeomorphic to G/Gp, is T, *{P}~N{P}={°P}, s0
{P’'}~, and hence also “{P’}~ does not intersect *{P}. It follows that P and P’ have distinct
orbit closures and so lie in distinct quasi-orbits. Thus @ =%{P}, as was to be shown.

To prove (i) we observe that if {P}~\ {P} is closed in {P}~, then S({P})\¥{P}=
({P}-\{P}) is closed in ¢{P}-, i.e. ¢{P} is locally closed. /1

We say (@, 4, T) is separable if both G and A are; this implies that C*(@, 4) and
hence also C*(@, 4, J) are separable C*-algebras. Note that separable systems are always
quasi-regular, by Corollary 19.

ProPOSITION 23. Suppose (G, A, TJ) is separable, and let Q be a quasi-orbit all points
of which have the same stabilizer K. (K 1is then equal to its conjugates in @, hence normal.)
Suppose that G/K is amenable, and that either

(i) G/K has a compact open subgroup, and every point of Prim (K, 4, T) which lives on
(@ K-quasi-orbit contained in) @ is locally closed; or (i) G/K is discrete.
Then @ ts EH-regular.

Proof. Let J be a primitive ideal of (G, 4, T) living on Q. Since the iterated system
(G, CX(K, A, T), T¥) is separable, J also lives on a G-quasi-orbit @’ in Prim CXK, 4, 7).
I claim that it suffices to show that @’ is EH-regular: Let J’€Q’, so that Res§ J = N;ecJ'.
By quasi-regularity of (K, 4, J) we may choose PE€Prim 4 such that ;. x'P =Resk . g
Then Nec’P=MN; Gs(Resﬁg J) =Res§7 (Nseed’) =Resf\’,g J. (We are using the facts that
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Resﬁs7 is intersection preserving (Proposition 9) and G-equivariant.) Thus P€@Q, so K sta-
bilizes P, and P=Res,}'§€r J'. As SP=Res§:7 sJ’, the stabilizer in G of J' is precisely K. Since
J’ is an arbitrary element of @ we see (using the fact that all elements of a quasi-orbit
induce to the same ideal of C*(G, A, ), by Proposition 11) that EH-regularity of @’ will
imply Ind§ J' =J, yielding EH-regularity of Q.

Thus, passing to the iterated system (G, C*K, 4, J), J), we may replace 4 by
CHEK, 4, TJ) and @ by @’. Let H be an open subgroup of @, containing K, and such that H/K
is compact (when K is itself open, we take H =K). Let L, be an irreducible *-representa-
tion of C*@, 4, J) with kernel J. By [19], we may decompose Res§ L, as a direct integral
{LPdu(P) of homogeneous representations over Prim (H, 4, J), with ker If =P for all
PePrim (H, 4, J). Let O={P€Prim (H, 4, U)]PQ Resg; J}; the complement of O then
has y-measure 0. Assume that no point of O lives on @, or in other words that for all PEQ
the G-kernel of Resf P properly contains ker . Then since Q is second countable, we can
find a sequence {I,}7, of G-invariant ideals, each properly containing ker @, and such that
for each P€ 0, Resg P= I, for some i. We may thus find an n such that {P€ O|Resf P2 I,,}
(which is closed in Prim (H, 4, J), by continuity of Resf) has positive u-measure. But
then the subspace of ¥, annihilated by (Resg L,)(I,) is non-zero; since this subspace is
G- and A-invariant, it must be all of ¥, by irreducibility of L,. Thus ker (Res§ L,)2 I, 2
ker @, contradicting the fact that J lives on Q. Therefore we may choose J’ €Prim (H, A, J)
containing Res§ J =J N C*(H, 4, J) and living on Q.

Now let L, be an irreducible *-representation of C*(H, A, J) with kernel J'. Applying
[15, 2.10.2] to the subalgebra C*(H, 4, J){(J NC*(H, 4, T)) of CXG, A, J)}J, we may
find an irreducible *-representation L of C*(@, A, J) on a Hilbert space H containing
H,=N,,, such that ker L>J and Res§ L contains L, as a subrepresentation. Covariance
of (V, M;) implies that V(s)H, is 4A-invariant for each s€G, and that the corresponding
subrepresentation of M, is unitarily equivalent to %M ,.

I claim that for s, 8,€@, **M,, and **M,, are disjoint representations unless s; and s,
are in the same element of G/H: When H = K, this is clear, since then M}, =L, is irreducible,
and K is the stabilizer in @ of J' =ker L,. When H properly contains K, then by our hypo-
theses and Lemma 22, J' lives on a locally closed H-orbit @, contained in . Let 1=
ker (Q \@,). Then I is an H-invariant ideal of 4, so the subspace of 3}, annihilated by M, (1)
is O%H, A, J)-invariant and is thus either (0) or all of ,; but if it were H,, then ker M,
would contain I, contradicting the fact that ker M,, =Resf J' =ker @,. It follows that the
Glimm projection valued measure [26] on Prim 4 associated to M, is concentrated on Q.
But then the measure associated to *M;, is concentrated on %@y, for ¢=1, 2, which (since
@ is an H orbit, and X is the stabilizer of points in @) are disjoint Borel subsets of Prim 4
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unless s, and s, lie in the same H-coset. The claim follows, and so V(s,) }, is orthogonal to
Vi(s2) Hs when s; H +s,H.

Therefore, as L is irreducible, ¥ decomposes as a Hilbert space direct sum
D ueerr Vi(s,) Hs, where s, €o for each «EG/H. We can thus define a *-representation M’
of C,(G/H, A) on H by letting M'(f)é =M, (f(«x))& for EEV (s,)H, and fEC(G/H, A).
One checks easily that (V,, M’) defines a *-representation of the imprimitivity algebra
CX(@, C(G/H, 4), T*), hence L is induced from some representation of C*(H, 4, J). Now
from the observation made in the proof of Lemma 21, that (in the notation of that proof)
the submodule Y, is just the module for the C,(H, 4, J)—-C(H, 4, J) induction process,
we see that for any representation L’ of C*(H, A, J) the restriction of Ind§ L’ to the range
space of the characteristic function ., (regarded as an element of C(G/H)) is equivalent
to L’. Thus in particular our representation L is induced from L,, so Indg J' =ker L2 J.
But by Lemma 22 and Proposition 20, @, is EH-regular, so J’ =Ind} P for some P €Q,< Q.

Thus Indf P=J. On the other hand from Propositions 11 and 13 we have Ind§ P =
Indg§ (oP)=Ex§ P=Exf Resf J=J. So Ind§P=J, and it follows that @ is EH-
regular. /1

Remarks. Gootman, extending earlier work of Effros and Hahn, has obtained in [27,
Cor., p. 102] and [28] the above result under quite restrictive additional hypotheses; namely,
that 4 is commutative, T is trivial, K is central in G, and the connected component of &
is compact and abelian. (He has also however obtained in [27] another positive result on
the Effros-Hahn conjecture not subsumed by our proposition.) These hypotheses imply
in particular that points in Prim (K, 4, J) which live on @ are in fact kernels of one-
dimensional representations, and so are actually closed. The methods of [27] are quite
different (and more complicated) than ours, and do not appear to extend to the more
general situation of twisted covariance algebras.

It should be noted that when 4 has Hausdorff primitive ideal space the hypothesis
that all points in ¢ have the same stabilizer is equivalent to the weaker hypothesis that
their stabilizers all be normal; this follows easily from the fact that the set of points sta-
bilized by a normal subgroup of @ is closed and G-invariant (provided Prim A is Hausdorff).
Thus in particular when G/N; and 4 are abelian this hypothesis is automatic.

Finally, we note that by making use of Fell’s Mackey machine for Banach *-algebraic
bundles [24] it is possible to prove Proposition 23 under the hypothesis (i), without assum-
ing that points in Prim (K, A, J) which live on @ be locally closed. We plan to discuss this
and other partial results on the Effros~Hahn conjecture in a future paper. /1]

We say (G, A, T) is essentially free if the stabilizer of each point in Prim 4 is N,.
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TuroREM 24. Let (G, A, T) be essentially free and separable. If also either

(i) (@, A4, T) is regular; or

(i) G/Ny is amenable and has a compact open subgroup, and poinis in Prim A are locally
closed; or

(iii) G/Ny is discrete and amenable, then Qr—>Ind§g (ker Q) s @ homeomorphism of Q
onto Prim (G, 4, J), and [ l—>Ind,‘f,7 I ¢s o homeomorphism of J(A4) onto J(C*G, 4, T))

(with inverse Resf ).

Proof. By Propositions 20 and 23 and Corollary 19, (G, 4, 7) is EH-regular (under
any of the hypotheses (i), (ii), (iii)). Thus Ind,‘ig (J(4)) contains Prim (G, 4, T), hence
(since, by Proposition 9, Ind is intersection preserving, and all ideals are intersections of
primitive ones) all of J(C*(@G, 4, TJ)). From Propositions 9 and 11 we thus see that Indf,g
is a homeomorphism of “J(4) onto J(C*(G, 4, J)), with inverse Resf .

We now show that Indff,:7 (ker @) is primitive, for every @€ Q. Observe first that for
I, ..., I,€9J(A) properly containing ker @, the intersection I, N ... N I,, properly contains
ker Q: otherwise, given P€Q we must have I,= P for some j (since P is prime), hence
L= oP=kerQ, a contradiction. Thus ker @ is “irreducible’” in ¢J(4), hence as Indgg
preserves intersections, Ind,(f,g (ker @) is irreducible in J(C*(@, 4, T)), and so by [15, 3.9.1]
is primitive, as claimed. On the other hand by EH-regularity all primitive ideals of C*(G,
A, J) are of the form Indff,g (ker @) for some Q. Thus the restriction of Indﬁg to the set of

kernels of quasi-orbits is a homeomorphism onto Prim (@, 4, J). i

The above result, under the hypothesis that G be discrete, was essentially proved by
Zeller—Meier [57, 5.15], using different methods. We remark that with somewhat more work

one can prove Theorem 24 with the hypothesis of separability weakened to quasi-regularity.

6. Traces

In this section we investigate (semi-finite, lower semi-continuous) traces on twisted
covariance algebras. The reader may consult [15, Chap. 6] for the basic properties of traces
used in the following.

For any trace » on a C*-algebra D, we let m, denote the “ideal of definition” of », #
the canonical extension of » to a positive linear functional on m,, and L, the traced
*.representation of D associated to ». We will make frequent use of the fact that, for any
c€m,, the functional d—>#(cd) is continuous on D. (This is most easily proved as follows:

We can assume ¢ is positive, since any element of m, is a linear combination of positive
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elements of m,. Then #(c-)=#(ct-c?), which, as a positive functional on D, must be con-
tinuous.)

Part (i) of the following result was proved, using quite different methods, by Dang-
Ngoc [12, Section 6] under the additional hypothesis that (@, 4, J) be separable.

ProrositioN 25. (i) Let v be a trace on A such that v(°a)= Ag,lNg(sNg)v(a) for all
a €A+ (where A+ denotes the set of positive elements of A). Then there is a canonical trace
Indv=Indgs v on ONG, 4, J), with Ind »(f*xf)=v((f* % 1) (e)) for suitable f€EC(G, 4, T),
and such that Lynq, =Ind§, L,.

(ii) Let v, and v, be traces on A satisfying the condition of (i). Then Ind v, =Ind v, iff

Proof. (i) Assume first that v is ““densely defined”, in the sense that m, is dense in A.
Then m, contains the Pedersen ideal [47] %(A4) of A. Let C denote the linear span in C (G,
A, ) of

C'={feC(@, A, T)|3a,b€Ex(A) such that af =f = fb}.

{Here af and fb denote products in the multiplier algebra of C*@G, A4, J), of which we
regard C (G, A, J) as a subalgebra.) It is easy to see that C is a *-subalgebra of C (&, 4, J).
Furthermore C is dense in C (@G, 4, J), in the inductive limit topology: Given a €A+ and
£>0, we may choose vy, y;, €0(0, co]) with values in the non negative reals, such that ¢
vanishes on [0, &], v, vanishes on [0, £/2], y,p =1, and |jp(a) —al| <e; then y,(a) Ex(4) and
pi(a)y(a) =y(a) =yp(a)y,(a). Choosing a from among the elements of an approximate identity
for A, and taking e arbitrarily small, we may approximate any f€C(G, A, T) as closely
as desired by elements of the form y{a)fy(a), which then clearly lie in C.

Let X§=4(X{)y,- Via the canonical identification of A with Cy(Ny, 4, J), the
C(Ngs, A, T)-valued inner product on X3 becomes an A-valued inner product, given by
{x, yya={(x* %xy)(e). We regard C as a subspace of X7; then for z, y€C" we have, for some
bEx(A), (&, yra=Lx, ybd>g=<x, YabEx(A), so {C,Cys=x(A). We may thus define a
sesquilinear form § on C by f(z, ¥) =7({y, )4).

We wish to show that # extends to a maximal bitrace on C*(G, 4, J) by verifying that
it satisfies the properties (i)~(v) of {15, 17.2.1]. Properties (i), (iii), and (iv) are immediate
consequences of the properties of an imprimitivity bimodule. To verify (ii), let z, y€(’,
and let a, b€x(A4) be such that yb =y and ax =x. Then (with # denoting rNy)

Ble, y) = #(b* L/Ny y*(r)"z(r~") dA(F))

= f Ply*(r) 2(r~1))dA(*) (we use the fact that #(b*.)
IV
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is continuous to bring it inside the integral)

- [ ey ae)
= [, Ashtaat )y )

=7 (af 0 ) Ty*(r ) dﬂ(r‘)) = fly*, =),
GINgy

from which (ii) follows. To verify (v) it is enough to show that for each x€(", there is a
net y, in € such that f{z —zy,, 2 —=zy,) —=>0. Choose b €x(A) such that xb ==z, and let y, =
by.b, where (y,) is an approximate identity for the inductive limit topology on C(@, 4, J).
Then {(z—ay,, x—xy,>4 tends to 0 in 4 (in the norm topology). But {x—a¥y,, € —xY,>a=
b*(x —zy,, x—xy.>4b. Since the functional #(b*-b) is continuous on 4, we see that f(x —zy,,
& —xy,) =F(b*x—ay,, * —2y,>4b) tends to 0, as desired.

By [15, 17.2.1] there is a unique maximal bitrace on C*@, 4, J) extending f; let
Ind v denote the trace on C*(G, A, J) corresponding to it. We must show that Indﬁg L,=
Ling,. Let A’<x(A) be the linear span of

{a€4|3b,c€x(A) such that ab =a = ca}.

By (15, 6.3.6] A’ endowed with the inner product {a,, @,> =7(a,a3) is dense in the Hilbert
space H,=H;, of L, so (as C is dense in X”7) O®cA’ is dense in Hpq; . Let Cp denote
C endowed with the inner product §; then 7': C® cA'—>Cp, x @a+>1xa is easily seen to have
dense image, and to preserve inner products. Furthermore T intertwines the left C-actions
on the two spaces. Since C is dense in C*@, 4, J), and since by [15, 6.3.6] C; is dense in
Hima», it Tollows that T extends to a unitary intertwining operator for Ly,q, and Indfffg L,.

When v is not densely defined, observe that in any case m, is G-invariant. We thus
may apply the preceding to the system (@, J, J;), where J =(m,)~ has trace v;,=v|+, to
get a trace Indv; on C*@, J, :7,);Ex§§g J. Then Ind v, extends canonically to a trace
Indv on O%G, 4, J) such that Lug,, =(Lma,) |C*(G, J, T’); by [62, 3.6] and the fact that
L, is the canonical extension to 4 of L,,], the canonical extension of Ind§7 L, to C*G, A, T)
is equivalent to Indff,g L,, so that Indf\;fsr L, is equivalent to L4, as desired.

(ii) Let v, and », be distinct traces on 4, satisfying the condition in (i). We must show
Ind v, +Ind v,. Suppose first that both v, and v, are densely defined. Then it is easy to
show, using the properties of imprimitivity bimodules, that (in the notation of (i)) {(C, C)4
is a dense *-subalgebra of 4, which by [15, 6.5.3] implies that the restrictions of #, and 7,
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to {C, C> 4 must still be distinet. It follows that the bitraces on ¢ constructed from v, and
v, are distinet, so Ind v, and Ind v, are.

Now drop the assumption that »;, and v, are densely defined. The above argument
shows more generally that if the restrictions of », and v, to J =(m,,)~ 0 (m,,)~ are distinct,
then Ind,, and Ind,, differ on Ex§ J. Thus we may assume ¥ |;=%,|, Since »; and v,
are distinct, at least one of them—say »,—is not the canonical extension to 4 of »;|;. This
implies that L, (J)H is a proper subspace of ¥, where H denotes the underlying Hil-
bert space of L,. But since L, (m,,) acts non-degenerately on 3, we have L, (m;;) H =
L, (m; )L, (m Y {< L, (J)H. Tt follows that there is a non-zero subrepresentation of L,
which kills m;,. This subrepresentation induces to a non-zero subrepresentation of Indﬁg L,
which kills Exl‘f,7 (m,), but then since Ex§ » (my,) acts non-degenerately on the space of
Ind»,, and hence of Indy L,, we see that Ind§ L, +Indf L,, implying Ind», +
Ind »,. /!

The following special case (of (i)) was essentially proved by Pukanszky in [49, Section
2]. (Cf. the remarks in [58, 2.6].)

COoROLLARY. Let N be a closed normal subgroup of G such that G|N is unimodular, and
v a G-invariant trace on C*(N). Then there is a canonical trace Ind v on C*(@), with the pro-

perty that Ly.q, is unitarily equivalent to Ind§ L,. /1]

In order to classify the the traces on twisted covariance algebras one would like to
have a “Mackey machine” for relating traces on C*@, 4, J) to those on C*(H, 4, J),
where H is a stability subgroup for the action of G on Prim 4. In particular, it would be
interesting to know whether the following analogue of the Effros-Hahn conjecture (in
the case of essentially free action) holds:

Congjecture. Suppose that (G, 4, J) is essentially free, and that G/N, is amenable.
Then every trace u on C*(@, 4, ) is induced from A, in the sense that there is a trace »
on A such that ¥(*a) = A gv(sNy)v(a) for all a€ A+ and s in G, and y=Ind ». /]

Extending ideas of Guichardet [33], Zeller~Meier showed [57, Section 9] that this
conjecture holds for the case G/N; discrete, provided one restricts attention to those u
satisfying a certain technical condition (namely, that the image in L,(C*@, 4, J)) of
those elements in C (G, 4, J) of finite trace be dense in the weak closure of L,(C*(@, 4, TJ))).
In the result below we show that it is unnecessary to assume this technical condition.

ProrosiTioN 26. Suppose (G, A, J) is essentially free and separable, and that G/Ny
is discrefe. Let u be a trace on C*(@, A, T). If either
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(i) p ts densely defined; or
(ii) G/Ny is amenable,

then p is induced from A. In particular, when G/Ng is amenable there is a 1 —1 correspondence
(given by Ind) between G-invariant traces on A and traces on C*(G, 4, T).

Proof. Assume first that u is densely defined. It is easy to see from Pedersen’s construc-
tion in [47] that the Pedersen ideal of a C*-algebra contains the Pedersen ideal of any C*-
subalgebra; applied to the C*-subalgebra 4 of C*(G, 4, J), this shows that the restriction
of p to At.is a densely defined trace » on A. We proceed to show, using arguments of [33]
and [57], that g =Ind ».

It is sufficient to show that the maximal bitraces corresponding to u and Ind » are
the same, and thus by [15, 6.5.3] that the restrictions of these bitraces to the subalgebra C
are the same (with C defined as in the proof of the preceding proposition). Choose a family
(81)ieqin, of representatives for the Ny cosets. By discreteness of G/N; every element of
C can be written as a finite sum of elements of the form s;a;, where g, lies in the dense sub-
algebra A’ of A constructed in the proof of the preceding proposition. It is thus sufficient
to show that for elements s;a,, s;a; of this form we have

Bl(8;2;)* (8:0,)) =7 (<80, 8,0:)4)- (4)
But it is easily computed that
<850, 80404 = {zj*ai Zzi:

When s;=s; we have fi((s,a;)*(s,a,)) =fi(a; a;) =7 (a; a;) (by definition of ¥), so that in this
case (4) does hold. We must therefore show that when s,=s; we have u(a; sy ' s;a;) =0. Let
s=s;'s;. Since Prim 4 is second countable, there is a countable family (W;)7-: of Borel
subsets of Prim 4 such that for any two distinct elements P, @ of Prim A there exists k
with PEWy, Q4 W;. Define Wy=@, and, inductively for k=1, ..., W,= Wi\ (" (W) U
W.1); then ‘W, N W,=0, and since by our assumptions s does not lie in Ny, so that s
does not fix any point of Prim 4, we see that the W* form a partition of Prim 4.
Consider now the representation L, of C*(@, 4, J). The functional i “extends” to a
functional fi, on a weakly dense ideal 7, of the weak closure M of L,(C*(G, 4, J)), such
that M,2L,(m,) and f#,(L.(f))=f(f) for all {€m,, and such that for any T €M, the
functional fi,(T-) is normal on . Let M denote the Glimm projection valued measure
[26] on Prim A associated with 2 L5 then >%.; M(W,)—> I in the weak topology, so that

iy (121 M(Wy) L,u(a;‘ 3“:)) _n_'ﬁw(Lu(af sa;)) = ﬁ(af sa;).
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But
B M(W3) L(a s0.)) =i M(W ) Ly (a5 sa,) M(Wy))

— i M(W,) My () M (') Vi () (W)
= M () M, () M(W) M (W) Ly, (5))
B1,(0)  (since M(WYM(CW,) =0)=0.

1

Hence fi(a; sa;) =0, so that the two bitraces on C do coincide as claimed and Ind v =g.

If u is not densely defined but G/N; is amenable, let J =(m,)~. By Theorem 24 and
Proposition 13, J =Ex,‘f,g I for some G-invariant ideal I of A. Thus u;=u/|,+ is a densely
defined trace on C*(@, I, J,), and the preceding shows that u,=1Ind v, for some trace ;
on I. Then if v denotes the canonical extension of ¥; to 4, we see easily (since u is the
canonical extension of u; to C*(G, 4, J)) that y=Ind ».

The statement that in the case G/N, amenable there is a bijection between G-in-
variant traces on 4 and traces on C*(@, 4, J) follows from combining the above with the
preceding proposition. /!

The other case in which we can obtain positive results concerning our conjecture is
that of factor traces, or characters, on C*-algebras of regular systems.

We begin with a lemma which, though surely known, does not seem to be accessible
in the literature. A normal representation of a C*-algebra is a traceable factor representa-

tion.

LeEmma 27. Let L be o (non-zero) *-representation of @ C*-algebra D, such that the weak
closure of L{D) is a semi-finite factor N. Then L is normal iff L(D) has non-zero intersection

with the (unique) minimal norm-closed ideal of N.

Proof. L is normal iff L(D) has non-trivial intersection with the ideal M of traceable
operators of . But M, being a hereditary ideal of N, certainly contains the Pedersen ideal
% of M~ (the norm closure of M), and since % contains the Pedersen ideal of any sub-
C*-algebra of M~, L(D) will intersect x non-trivially iff it intersects M~ non-trivially.

Hence it suffices to show that 7~ is the minimal norm closed ideal of H. Observe
first that for any finite projection e in N, eMe is a finite factor, hence in particular [16,
Cor. 3, p. 257] is a simple C*-algebra. By [51, 6.7] e e is Morita equivalent to Ne}, the
norm closed ideal generated by e; so the latter ideal is also simple and hence minimal. But
there can be at most one minimal norm closed ideal in a factor, for if there were two such

the supports of their weak closures would be orthogonal central projections.
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Thus the minimal norm closed ideal is unigue and contains all finite projections. Since
every element of 1~ can be approximated in norm by finite linear combinations of finite
projections, this minimal ideal is M-, [/l

The following result is of some independent interest—see [30].

ProPOSITION 28. Let E and B be C*-algebras, ¥ an E - B imprimitivity bimodule,
L a *-representation of B. Then L is normal iff the represeniation Ind L of E induced via Y is

normal.

Proof. Suppose L is normal, and let #, and Y, denote the weak closures of L(B) and
(Ind LY(E), respectively. Because Ind gives an equivalence between the categories of
*.representations of B and E, there is a natural isomorphism between the commutants #;
and H;, arising from the action of N; on Y ®@cH, (regarded, by abuse of notation, as a
subspace of Mpq;) defined by Uy®E)=y® UE, for UE 1. Thus we may regard both
H, and Y., as modules over the W*-algebra N =M. Let ¥’ denote the collection of all
bounded linear maps from H; to Hi,e, which intertwine the H-actions. Then Y is stable
under left and right multiplication by elements of N, and H,, and is thus an H,—H,
bimodule. Furthermore there are natural },- and H,-valued inner products on Y’, defined
respectively by (T, T, =Ti Ty, (T, Todo=T,Ts. Let I, denote the norm closure of
Y, Y, t=1,2. Then I, is a norm closed ideal of #,, and it is easily verified that with
above inner products ¥’ becomes an I, — I, imprimitivity bimodule.

Now since L is normal, the ideal I of B consisting of elements whose images lie in the
minimal (norm closed) ideal of H, must properly contain ker L. Using [52, 3.3] we may
find y€Y such that <y, y>s€I\ker L. It is easily verified that the operator 7',: W, —>
Hinaz, E>y®E lies in Y, and that (T, T,>, =L({y, ¥>z). Thus (T, T,>, is a non-zero
element of the minimal norm closed ideal of I,, hence by [52, 3.2] (T, T',>, is a non-zero
element of the minimal norm-closed ideal of I,. But it is readily shown that (T, T,>,=
(Ind L) (<y, y>z), so by the lemma Ind L is normal.

Conversely, since L is unitarily equivalent to the representation induced from Ind L
via the dual bimodule ¥ (see [51, Section 6]) we see that normality of Ind L implies nor-
mality of L. 1]

ProrosiTioN 29. Let Q be a regular quasi-orbit in A, and let P€Q. There is a natural
bijection, given by Ind§,, between the (unitary equivalence classes of) normal representations of
(Ge, A, T) whose kernels live on the Qp quasi-orbit {P}, and the normal representations of
(G, A, T) whose kernels live on Q.
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Proof. As in the proof of Proposition 20, we use Proposition 12 to reduce to the case
in which @ is all of Prim A4. The result now follows from the preceding proposition together
with Theorem 17. /!

Each normal representation of 4 determines a character, or factor trace, on 4, unique
up to a scalar multiple. Thus the above result implies (at least in the presence of a separa-
bility assumption, so as to ensure that kernels of factor representations are primitive)
that when (G, 4, J) is essentially free and regular, every factor trace v on C*@, 4, T)
arises from some factor trace y on A. In general u is not (relatively) G-invariant, so v is
not induced from g in the sense of Proposition 25; however it can be shown that it is
possible to “smooth out” x4 under an appropriate averaging process so as to obtain a
relatively invariant trace u’ for which » =Ind u'. Thus our conjecture may be verified in
this case as well. We do not give the details here since the above result is more convenient
for applications, factor traces being in general easier to work with than the smoothed out

invariant ones.

7. Abelian systems

We assume throughout this section that (G, A, J) is abelian, meaning that G/N;
(but not necessarily 4) is abelian. G will denote the abelian group G/N,. Such systems
have a number of interesting properties, which we proceed now to investigate.

Observe that there is a natural action by *-automorphisms of G~ on C(@, 4, F),

given by
f)(s) = <{p, s>~ f(s) for pEG~.

(Here the bar denotes complex conjugate, and {p, s> =p(sN;).) It is easily verified that
this action is isometric and strongly continuous with respect to the Il-norm, and so by
universality extends to a (strongly continuous) action on C¥(&, 4, J).

We wish to relate the crossed product algebra C*(G~, C*(@, 4, J)) to the imprimitivity
algebra E” =C*@, C(G/N;)®4, J*). Observe first that there are natural homomor-
phisms R3-, RL, and B of G~, @, and 4, respectively, into (D), D=C*G*, C*(&, 4, T)).
(The latter two arise from composing R; and R, with the natural homomorphism of
M(CH@, A, T)) into M(D), which exists because the action (by multipliers) of C*(@, 4, T)
on O’*(@“, 0*(@, A, J)) is essential.) Similarly, there are natural homomorphisms Rf-;. , R%, and
R into M(E?), where R%. is defined by composing the homomorphism of G~ into C(G/N;) =
M(C(G/Ng)) given by pr>f,, f,(sN;)=p(s~1N,) (the integrated form of which is just
the Fourier transform isomorphism of C*(G~) onto C(G@/N,)) with the natural homo-
morphism of M(C,(G/N;))into T(E’). If we let R? denote the integrated form of (RZ, E%),

16 — 772908 Acta mathematica 140. Imprimé le 9 Juin 1978
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then it is easily seen that the pair (Ré. , R?) is a covariant homomorphism of (G*, C*(@, 4, T))
into M(E"). Let R be its integrated form. Using the facts that D is generated by
C*G*)C*@, A, J) (interpreted as a set of products in (D)), and that E” is gener-
ated by C*@G, 4, J)C0(G/Ny), we see easily that the image of R is exactly E’.

On the other hand, if we let R! denote the homomorphism of C(G/N;)®A into
M(D) obtained from the pair (RéA, Rl)—where we regard (the integrated form of) Rg- as
a homomorphism of C(G/N;) into (D) by means of the inverse Fourier transform—
then the pair (R, R')is easily seen to define a covariant homomorphism of (G, C(G/H)® A4,
J*) into P(D); furthermore one may readily verify that its integrated form inverts R.
Thus:

ProrosiTion 30. With the above notation, R is an isomorphism of C*(G*, CX@, 4, T))
onto E°. i

In conjunction with the imprimitivity theorem, this yields
CoroLLARY 31. CXG*, CXQ, A, T)) is Morita equivalent to A. /I

Remark. For the special case of trivial J (so that @=G), the covariance algebra
X (G*, 0@, 4)) is precisely the dual crossed product algebra considered by Takai in [54,
Section 3]. His duality theorem states that it is isomorphic to A ® X(L*(®)), which implies
in particular that it is Morita equivalent to 4. Thus the above Corollary 31 may be regarded
as a weak form of the duality theorem, valid for non-trivial J. In fact I have recently
obtained, in the case of separable, not necessarily abelian, (@, 4, J), a substantial generali-
zation of Takai’s theorem, which states that (for arbitrary closed H containing N;) the
algebra C*(@, C(G/HY®A4, T*) is isomorphic to C*(H, 4, TV@ K(L¥G/H)). Details and
applications, as well as an analogous result for von Neumann algebras which extends

Takesaki’s duality theorem, will appear in a subsequent paper. ]

We turn now to a consideration of reduced abelian systems (@, C, T), i.e. those for
which T is an isomorphism of N, onto T. Note that as N, is then central and @ is uni-
modular, @ is itself unimodular, so that we can drop the modular functions from all our
formulae. We begin by observing that for any r, s€@, the commutator srs—t-1 is in N;
centrality of N, implies that this commutator depends only on the cosets 7 (=rN;) and
8, and we easily verify that the resulting pairing

B(#, §) = F(srs~1r1)

is a homomorphism in.each variable when the other is held fixed. Hence there is a well-
defined continuous homomorphism h, of G into G*, given by %y(#) (s) =B(#, §). We readily
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verify that the dual map k3, regarded as a homomorphism of @ into G* via the canonical
identification of G with G~ is given by h3(¥)(s)=B(s, #) =B(#, )L, so that k()=
(hg ().

The homomorphism hy allows us to relate the action of G* on C¥(@, €, J) with the
generalized inner action of G' which arises from the homomorphism R, into the unitary
group of (C*(G, C, TJ)): For each fEC(G, €, T) and s€QG, we have (using the fact that
G acts trivially on C)

Hr) =*(H(s71rs)) = F(s~2rsr=)r) = f{r) Trs=r=1s) = ho{s72) (7) f(r) ="®f(r).

By density of C (G, C, T)in C*(d, €, T) we see that the actions of s and A;($) on C*(@G, C, T)
coincide.

The reduced abelian system (@, C, J) is said to be fotally skew if the center of @ is
exactly Ny This is equivalent to the condition that 4, be 1—1, which in turn (since
k() =(hy(#)) ) is equivalent to 1—1-ness of k3, and thus (by the Pontrjagin theory)
to the condition that k; have dense range.

The following basic fact about totally skew systems is due to Kleppner [38]. Our proof
is different, and relies on the observation that, by Corollary 31, C*(G~, CX(@, C, T)) is
Morita equivalent to €, and so is isomorphic to the algebra of compact operators on some
Hilbert space. We say that a C*-algebra has unique trace if it has a non-zero trace which is
unique to within a scalar multiple.

ProrositioN 32. Let (G, C, TJ) be totally skew. Then C*(@, C, T) is simple and has o

unique trace.

Proof. From the preceding remarks, elements in the dense subgroup k(@) of G* act
on @, C, J) as conjugation by unitaries in JH(C*G, C, T)), hence in particular they
act trivially on the ideal space J(C*(@, €, T)). But as the action of G* on J(C*(&, €, T))
is jointly continuous, and J(C*(G, C, 7)) is T\, stabilizers of points must be closed by
[5, Lemma, 1], so that G* fixes every point in JeHa, ¢, 7)), and e J(C*(G, C, T)) coin-
cides with J(C*(@Q, €, J)). If there were two distinct non-zero ideals I and J of C@, C, T),
then by Proposition 11 Ex§ I and Exf J would be distinct non-zero ideals of cx(@,
CX(@, C, J)), contradicting the fact that the algebra of compact operators on any Hilbert
space is simple. It follows that C*(@, €, J) is simple.

Uniqueness of the trace follows from an argument which is formally quite similar.
We show first (repeating the calculation of [38, Lemma 1.1]) that any trace » on C*(d,
C, J) is G*-invariant: Let p be an arbitrary element of G+, and let (p,) be a net in hy(F)
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converging to p~1. Since the p, act by unitaries in TN(C*(@, 4, T)) we have »(?«f) =v(f) for
all fEC*@G, C, J)*. By lower semi-continuity of », and the fact that *«f—>?"f, we have
»(*"f)<v(f). Applying this to f="g for an arbitrary g€C*(@, 4, T)* we get v(9) <v(*g);
but since %<'g—’g we have also ¥(°g) <»(g). Thus G* leaves v invariant.

By Proposition 25 we may induce up the canonical trace on C to get a non-zero trace
v on C*(@, €, J). Suppose there is another trace v, on C*(@, C, J), not a scalar multiple of
». As » and »; are G*-invariant by the preceding paragraph, they induce by Proposition 25
to traces on C*G*, C*(@, C, T)) which are not scalar multiples of each other; but this
contradicts the fact that the compact operators have a unique trace.

Alternatively, one may argue that since any trace y is G invariant, there is a natural
action V of G* on the underlying Hilbert space of L,. Tt is easily checked that (V, L,) is
a covariant representation of ((;", C*@, C, T)), which implies (since C’*((?", 0*(G’, C, )
is naturally isomorphic to the imprimitivity algebra for Ind, ) that L, is induced from €;
the quasi-equivalence class of L, is thus well-defined. This implies that L, is a factor
representation, since any decomposition of L, into a direct sum of disjoint subrepresenta-
tions would give non-quasiequivalent traceable representations. But two traces giving
the same factor representation (to within quasiequivalence) must be scalar multiples of
each other. (This alternative argument avoids assuming the fact that 0*(@", CcY@G, C, )

is isomorphic to the algebra of compact operators.) /]

Although we will not need the following proposition (which is the main result of [37)
we prove it here as an illustration of the usefulness of Theorem 18. The proof in [3] is quite

complicated and relies heavily on structure theoretic arguments.

ProrosiTION 33. ((3, Thm. 3.2 and 3.3].) Let (G, C, T) be totally skew. The following
are equivalent:

(i) CX(@, C, T) is a type 1 C*-algebra.

(i) C*(@, C, T) is isomorphic to JK(H), for some Hilbert space .

(iii) g is @ homeomorphism onto G*.

Proof. The equivalence of (i) and (ii) follows from the simplicity of C*(@, C, J) (Pro-
position 32) and the Glimm-—Sakai theorem [53, 4.6.4].

(ii) = (iii): It is sufficient to prove that k, is open onto its image in G*. By the remark
following Theorem: 18 the action of G* on C¥(@, C, J) ~ X () is generalized inner, and so
induces a continuous homomorphism R of G* into the projective unitary group P of
me(G, €, 9)). The map Rohy is just the map R’ of G into P arising from the (generalized
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inner) action of @ on C*(@, C, J); we show that R’ is open onto its image in P, which will
imply that &, is open onto its image in G~ as desired.

Thus let O be any neighborhood of the identity of &, 61 a symmetric open neigh-
borhood of the identity with é?g 0, and let O, O, be their inverse images in @. Let u be
the trace on C*(@, €, J) induced from the canonical trace on C. We may choose f€C,(@,
C, J) such that (supp f)?< O,, and such that u(fxf*)=1. (Note that the space ¢’ (cons-
tructed in the proof of Proposition 25) is all of C,(@, C, J).) For any s ¢0 the support of
sf xf* does not contain the identity, so pu(sf %f*)=0 (by definition of y). Therefore, regard-
ing f as an element of the underlying Hilbert space of L,, we see that s+ l(VL”(s)f, 1
vanishes off 0 and is 1 at s=e. Since the function U |(Uf, f>| is continuous on P U(H),
it follows easily that the natural homomorphism of G into DUy, is open onto its image.
As this homomorphism factors continuously through the map R’ of G into D, the latter
map is open onto its image.

(iii) = (i): If Ay is a homeomorphism, then R'oh;' (with R’ defined as above) is con-
tinuous, so that the action of G~ on O%(@, €, J) is generalized inner. Thus as C*(@, C, J)
is simple Theorem 18 applies to the system (G, C*(@, €, 7)) and we deduce that there is
a reduced system (&, C, J’) such that O*(G~, CX(Q, C, T)) =C*G, C, T)@maxC*&, C, T').
If 0%@, C, J) had a non-type I representation L, we could construct a non-type I re-
presentation of C*(@, C, T) Qumas C*G", C, J’) by taking the tensor product of L with an
irreducible representation of C*(G”, C, J'); but this would contradict the fact that C*(G*,
(@, C, J)) is isomorphic to the compact operators on some Hilbert space. /1

We conclude our discussion of reduced systems with a result on non-totally skew
systems. Except for the statement about the topology of Prim C*(G, C, J) (which answers
a question raised in [38]), this result is essentially contained in [3] and [38], but we give a

complete proof anyway.

ProrosiTioN 34. Let (G, C, J) be a reduced abelian system, and let Z denote the center
of G.

(1) There is a totally skew system (G, C, T') such that | Ny 2G|Z, and such that for
any P€Prim C¥(G, C, J), CXG, C, T)/P is isomorphic to K&, C, T').

(ii) For any P€Prim CX(G, €, J), the stabilizer in G~ of P is equal to the annihilator
Z* of Z| Ny, and the map tZ* P vs & homeomorphism of G”‘/Zl onto Prim C*(@Q, C, J).

Proof. Since Z is abelian, C*(Z, C, J) is commutative; its dual C*Z, C, I)~ =
Prim C*(Z, C, J) may be naturally identified (via the map L= V,) with the subset of Z~
consisting of those characters whose restrictions to Ny equal 7.
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We consider the iterated system (@, C*(Z, €, T), J%). By Proposition 1 its C*-algebra
ig isomorphic to C*(@, C, J). Let I €Prim C*(Z, C, J), say corresponding to the character
x of Z, and let J =Ex3 I. Since Z is central I is fixed by the action of @, so that by Proposi-
tion 12, CX(@, C*(Z, C, J), T%)|J is naturally isomorphic to B=C*@, C*(Z, C, T)/I, (T%)).
But C%(Z, C, 7)/I may be naturally identified with C in such a way that (7% becomes the
character ¥ on Z; thus B is isomorphic to C*{(@, €, x).

Let K denote the kernel of y, let @’ =G/K, and define J’' on Z/K by J'(sK)=y(s) for
all s€Z. Elements of C,(@, C, x) are constant on cosets of K, so that (with suitable choice
of Haar measure on @) there is a natural isometric *-isomorphism of €@, C, ) onto
CA&,C, T'). Hence C*(@, C, y) is naturally isomorphic to C*(G’, C, J'). As J’ is faithful,
and also surjective (since |y, =J), we see that (¢, C, J') is reduced. Let rK €G"\ (Z/K).
As r¢Z, there exists s with rer—ls—Leey; then J'(rKsK(rK) 2 (sK)t)=J(rsr1s—1) =1, so
in particular 7K does not commute with sK and thus is not central. Therefore the center of
G’ is precisely Z/K, so (G, C, ') is totally skew.

The preceding together with Proposition 32 shows that C*(@, €, J)/Ex§ I is a simple
(*-algebra, i.e. that Ex§ I is maximal, for any I €Prim C*(Z, C, J). Let P be an arbitrary
primitive ideal of C*(@, C, J). As G acts trivially on C¥(Z, C, J), the guasi-orbit space is
just Prim C*(Z, C, TJ), which is Hausdorif; by Corollary 19, P lives on a quasi-orbit, so in
particular Resj P is primitive. (One can also see this directly by using the centrality of Z.)
Since Ex§ Resj P< P (Proposition 11) we see by the above that P=Ex§ Resj P; and as
P is thus maximal, P =Ind§ Res} P by Proposition 11. By continuity of Ind and Res
the map Pr>Resj P is a homeomorphism of Prim C*(@, C, J) onto Prim C*(Z, C, J).

There is a natural action of G* on C*(Z, C, ), obtained by composing the natural
homomorphism of G* onto (Z[Ng)* with the natural action of (Z/N;)* on C*(Z, C, J).
One sees easily that Resj: Prim CX(@, C, J)—Prim C*(Z, €, J) is equivariant for the
associated actions of G on these two spaces. Now Prim C*(Z, €, J) may be identified
with the coset of (Z/N;)* in Z* consisting of those characters which restrict to J on Ny,
and it is easy to see that the action of (Z/N,)* on Prim C*(Z, C, J) just corresponds to the
action by translation on that coset. Part (ii) of the proposition now follows easily from the
above equivariance of the action.

Since the action of G* on Prim C¥(G, C, ) is in particular transitive, all primitive
quotients of C¥(@, 0, J) are isomorphic, and (i) now follows from the facts proved earlier. ///

Our final result is motivated by the beautiful theorem of Pukanszky [49] that for a
connected Lie group &, every primitive ideal of C*(@) is the kernel of a unique quasi-

equivalence class of normal representations. Roughly speaking, we prove that the same
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result holds for the C*-algebras of those abelian systems which arise as the ‘“‘restrictions”
of regular systems, from which we then deduce Pukanszky’s result (for a more general
class of locally compact groups) as a corollary. The crucial fact about such systems is that
“locally’” they can be broken up as a series of iterated systems, each of which is either
regular, or discrete (in the sense that the domain of the twisting map is open); we are
then in a position to apply the results of Sections 5 and 6. This idea (for the case G/Ny
a connected Lie group) can already be found, in considerably disguised form, in Pukanszky’s
discussion of the primitive ideals of C*(@) in [49, Section 1]. By making more systematic
use of it than he, and by using it to investigate the trace structure, as well as the primitive
ideal structure, we are able to considerably simplify, unify, and generalize his proof. (The
“Mackey machine’ results of Section 4, and Kleppner’s result on totally skew systems
{Proposition 32), also play erucial roles in our argument.)

The lemma on which this decomposition into regular and discrete systems depends is
the following:

LeEMwma 35. Let G and H be locally compact abelian groups, and 7 a continuous injective
homomorphism of H into G. Then there are closed subgroups (1z)=Ho<H,<H,..<H,=H
of H such that, with m; denoting the natural homomorphism of H;/H;_ into se(H )~ [mn(H,; 1),
either

(i) 7z; i3 @ homeomorphism, or

(i) m; is injective and H,;[H;_ s discrete, for each i =1, ..., n.

(Note that as 7, is injective in either case, Y (m(H)~)=H, for all 1.)

Proof. We argue by induction on the dimension m =m(H) of the vector part of H.
When m =0, H has a compact open subgroup which we take as H;, and the series (1)
< H, < H suffices. Hence assume m >0, and that the lemma holds for groups having vector
part of dimension less than m. Let H’ be a closed subgroup of H isomorphic to R, let
G =n(H')", and let H" =n~Y@'). Since m(H|H") <m we can construct a series of the desired
form for the natural injection of H/H" into G/G, so we may as well assume that H =H"
and that G=@G'. When n’ =74 is a homeomorphism the result is obvious, so we assume
it is not. Then G, being a “solenoid group”, is compact. Thus G* is discrete, and since
(7'}~ is injective we may choose an infinite cyclic subgroup D of G~. The dual map to
(7w'}*|p is a surjective map of H’' onto D*xT which factors through G; let H; denote its
kernel. Then z(H;)~ does not contain sr(H’) since it is contained in the kernel of the natural
surjection of G onto D*. Thus if we let H'" =x~1(n(H;)~), then m(H'") and m(H[H'") are
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both smaller than m. We now obtain the desired composition series for H by piecing
together those for H'” and H/H'" (which exist by the induction hypothesis). /!

We say that a C*-algebra B is locally simply traced if for each P €Prim B there exists
P’ B, containing P, such that P’/P is simple and has a unique trace. As P is prime, the
condition that P[P be simple implies that P’ is uniquely determined, and that {P} is
locally closed in Prim B. Furthermore P’/P determines the local representation theory
of B at P, in the sense that the factor representations of B with kernel P are in natural 1 —1
correspondence with the factor representations of P’/P. In particular for a separable
locally simply traced algebra the map L+>ker L induces a bijection between the quasi-
equivalence classes of normal representations and Prim B, (The separability hypothesis is
needed to insure that the kernel of any normal representation is primitive.)

Given a system (G, 4, J) with 4 locally simply traced, and given P€Prim 4, there
is a natural action of G on the simple algebra P'/P. We say that (G, 4, J) is locally gene-
ralized inner if this action is generalized inner, and locally trace preserving if it leaves in-
variant the trace on P’/P, for all P€Prim 4. Note that locally generalized inner systems
are always locally trace preserving, and that (by the remark following Theorem 18) systems
in which 4 is type I are always locally generalized inner.

LemMa 36. Let A be locally simply traced, and let (G, A, T) be abelian and locally trace
preserving. Let PE€Prim A and suppose that sGp—°P is a homeomorphism of G|Gp onto
Prim A. Then there is a non-zero densely defined G-invariant trace on A.

Proof. As Prim A is Hausdorff, P is maximal; let z denote the canonical homomor-
phism of 4 onto A/P, and ¥ a non-zero trace on A/P. The hypothesis that (&, 4, J) is
locally trace preserving allows us to associate to each a € A+ a function f,: G/Gp—>[0, 0],
defined by

fa(8) = v(7(’a)).

Lower semi-continuity of ¥ implies that f, is lower semi-continuous, so that we can define

a map u: 4+->[0, o] by
wa= [ 1o

Fatou’s lemma together with the lower semi.continuity of v imply that u is lower semi-
continuous, and one easily checks that y satisfies the other criteria for a trace, and that it
is G-invariant.

Since 4/P is simple, v is densely defined and faithful (in the sense that no non-zero
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positive element has zero trace). For any positive element a of the Pedersen ideal »(4),
7(*a) is in #(A[P) for all s€G, so that f, is everywhere finite. Let O be an open subset of
GGy with compact closure. A simple compactness argument shows that we may find
a€x(4)*t such that f,(s)=>1 for all €. By [15, B 18, p. 356] there exists a point of con-
tinuity §, for f, in O, so that in particular we can find an open subset O, on which f, is
bounded. Let g be a continuous, non-zero, non-negative function on G/G, with support
contained in (,. Then we may regard g as a function on Prim A via the canonical identi-
fication of G/Gr with Prim 4. Applying the multiplier corresponding to g to the element a,
we obtain a positive element b of 4 with the property that f, is bounded, of compact
support, and >g. Then u(b) is finite and non-zero. Thus u is non-zero; furthermore its
ideal of definition m, is G-invariant and non-zero, and so (since G acts transitively on
Prim A4) is dense in A. Thus g is densely defined, and so has all the properties claimed in
the lemma. /1

THEOREM 37. Assume A s locally simply traced, and that (G, A, T) is separable,
regular, abelian, and locally generalized inner. Let H be a separable locally compact group,
and 7 an injective continuous homomorphism of H into G whose image contains Ny. Then
(H, 4, Ty) (the “pull-back” of (G, A, T) along =) is EH-regular, and C*(H, A, Ty) is locally
simply traced.

Proof. Let G' =@ x (H|m~Y(N,)) act on 4 by ©Pg=2a, and define n': H—>G by 7'(f) =
(7(8), tw—2(V5)). The image of 7’ is easily seen to be closed, so by the open mapping theorem
7’ i8 a homeomorphism onto its image. Furthermore (¢, 4, J) (we identify N, with Ny x
{1}) satisfies the same hypotheses as (@, 4, J), and the pull-back of (&, 4, T) along =’
is equal to (H, 4, Jy). Thus, replacing G by & and H by #'(H), we may assume that H is
actually a closed subgroup of G containing Nj.

Let PePrim C¥*H, A, J). As A is separable, Resfég P lives on an H-quasi-orbit, which
in turn is contained in a unique G-quasi-orbit Q. Since (G, 4, J) is regular @ is locally
closed and is the G-orbit of some I €Prim A. Let I, =ker (@-), and I, =ker (¢—\ Q). Then
I, and I, are G-invariant. If we let J, =EX§g I, i=1, 2, then by Proposition 11, P2 J, but
P J,; thus P is contained in the locally closed subset (Hull J,\ Hull J,) of Prim C*(H,
A, J). In particular {P} is locally closed in Prim C*(H, 4, J) if and only if the correspond-
ing primitive ideal (P NJy)/J; of Jy/J, is locally closed in Prim J,/J;. Furthermore the
normal representations of C*(H, 4, J) with kernel P are in 11 correspondence with the
normal representations of J,/J, with kernel (P nJ,)/J,. Since, by Proposition 12, J,/J; ~
C*(H, 1,/1,, (F,)"), without loss of generality we may replace 4 by I,/I;, and thus
assume that @ acts transitively on Prim A. Then as G/N; is abelian all points in
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Prim A have the same stabilizer K in G; let K=K;N H denote the common stabilizer
in H.

We consider the system (K, 4, J), and show that its C*-algebra is locally sim-
ply traced: The K-quasi-orbits in Prim A consist of single points. Thus for any P€
Prim C*K, 4, J), Resﬁ7 Pis a primitive ideal I, of 4. As Prim A is Hausdorff, I is maximal
and so A,=A/Ip is simple, and hence (as 4 is locally simply traced) has a unique trace.
Since, by Proposition 11, P2 Exgg Ip, it is sufficient to show that the quotient algebra
C*K, A, 7)/Ex§7 I,, which we may identify with C*(X, Ap, J°7) by means of Proposi-
tion 12, is locally simply traced. By Theorem 18 there is a reduced abelian system (K’, C, ")
such that C*(K, Ap, TP) 2 A p®umax CHK’, C, J’). Since C*(K’, C, J’) is nuclear by Proposi-
tion 14, and since 45 is simple, with unique trace, results of Blackadar [4, Thm 3.3 and 3.8]
imply that Prim (K, Ap, JP) is naturally homeomorphic to Prim (K’, ¢, J’) and that
factor traces of O*(K, Ap, J'P) with a given primitive ideal JJ as kernel (of the correspond-
ing normal representation) are in 1 —1 correspondence with factor traces of C*(X’, C, J')
having the primitive ideal corresponding to J as kernel. (When 4 is type I, so that 4,
is isomorphic to the algebra of compact operators on some Hilbert space, it is easy to prove
these facts directly without invoking [4]). Thus as C*(K’, C, J') is locally simply traced by
Propositions 34 and 32, the same is true of C*(K, 45, J°7) and hence (as remarked earlier)
of C*K, A, TJ).

Let I be a primitive ideal of A. The argument of the preceding paragraph shows that
there is a reduced system (K’, €, ') and a natural homomorphism g, of C*( K, 4, J) onto
B=A|I ®p,;C*(K', C, J'), with kernel Exﬁg 1. If we give B the action of (K/N;)* arising
from the natural action of (K/N,)*=2(K’/Ns)" on the right hand factor, then it is straight-
forward to show that f; is equivariant for the (K/N,)* actions. Thus the homeomorphism
induced by f; of Prim B onto the hull of Exﬁi I is (K/Ns)*-equivariant. But by the
preceding paragraph, Prim B is naturally homeomorphic to Prim (K’, C, J’), and it then
follows easily from Proposition 34 that the (K/N,)" action on Prim B is transitive. On
the other hand, using Proposition 11 and the fact that I is maximal we see that the hull
of Exf consists precisely of the primitive ideals of (K, 4, J) which restrict to I. Now it
is readily computed that the natural action of @ on C*( K, 4, J) commutes with that of
(K/Nj)*, so G permutes the (K/N;)* orbits on Prim C* K, A, J); the fact that G acts
transitively on Prim 4, together with G-equivariance of Res,”&gr and the fact observed in
the preceding paragraph that every P€Prim (K, 4, J) restricts to some maximal ideal of
A, now imply that G"=G x (K/N,)~ acts transitively on Prim (K, 4, J). This idea of
throwing in the action of (K/N;)* to produce a transitive action is due to Pukanszky; it
is of great importance for the following.
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Let B=0%K, 4, J), and let K" denote the common stabilizer in G” of points in
Prim B. Fixing I €Prim B, we see from the above, together with standard Baire category
arguments (using separability of G”) that we may identify G”/K” with Prim B via the map
s"K"+>"1. Regarding now H as a subgroup of G” by identifying it with H x {1}, we see
easily from the H-equivariance of Resy, that H N K"=K. In particular the system (H,
B, J%) is essentially free. Let x denote the natural injection of H/K into G”/K", and choose
a series Hy=K< H,< ... € H,=H of closed subgroups of H such that the H,/K have the
properties of Lemma 35 with respect to 7.

By Proposition 1, C*(H, B, J%) is naturally isomorphic to C*(H, 4, J). We prove, by
induction on #, that there is a unique factor trace at each primitive ideal of C*(H, B, J¥),
and that IndZ gives a surjective map of Prim B onto Prim (H, B, J%). The latter fact
implies EH-regularity of (H, 4, J); by Propositions 9 and 11 it also implies that
Prim (H, B, J%) is homeomorphic to the space Qg of H-quasi-orbits of B. Since it is easily seen
that, via the above homeomorphism of Prim B with G”"/K", Qy is identified with the coset
space G""[(HK")~, this will show in particular that every primitive ideal of (#, B, J¥) is
maximal, implying that C*(H, B, J*) is locally simply traced and completing the proof of
the theorem.

The case n=0 (i.e. H =K) was proved above, so we assume »>0 and that the result
holds for series of length <n. Let C=0*H,_,, B, J%). By the induction hypothesis, C
is locally simply traced and Prim C is homeomorphie, via the map (by restriction) taking
each primitive ideal to its H,_,-quasi-orbit in B, to G"/(H,_,K")~. Furthermore H-
equivariance of Resg"~! implies that the action of H on Prim C corresponds to left transla-
tion by (the image of) H in G"[(H,_, K")~. By our choice of the H,, (H, ;K"y"NH=H,_,,
o that the stabilizer in H of any point in Prim C is just H,_,. Thus the iterated system
(H, C, J"»-1) (whose (C*-algebra is isomorphic to that of (H, 4, J), by Proposition 1) is
esgentially free; furthermore it is either regular, or discrete (in the sense that H/H,_; is
discrete), according to the two possibilities of Lemma 35. In either case we easily deduce
from Theorem 24 that Ind}, , takes Prim C onto Prim (H, B, J%), and thus by “Induction
in Stages” that Ind¥ takes Prim B onto Prim (H, B, JF).

It remains only to prove that there is a unique factor trace at each primitive ideal of
CXH, C, J*-1). In the case that (H, 0, J%-1) is regular, this follows from Proposition 29
and the induction hypothesis, so we may assume that H[H, , is discrete. By Lemma 36
there is a G-invariant trace on 4, so we may construct the induced trace ¥ on C~C*(H,,_,,
4, J). Since H,_, is a normal subgroup of @ whose action on B is the restriction of that of
G”, there is a natural action of @” on €'~ C*(H,_,, B, J¥), and it can be readily verified
that this action preserves the bitrace corresponding to v (which was constructed in the
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proof of Proposition 25)—this is most easily done by checking the @& and (K/N,)" actions
separately. It follows that v is G”-invariant.

Now let 71 denote the space of quasi-equivalence classes of normal representations of
C. Since by [35] and [19] H and Prim C are both standard Borel spaces, and the natural
map H—Prim C taking any normal representation to its kernel is Borel, the fact that C
is locally simply traced implies that ¥ and Prim C are isomorphic as Borel spaces. Thus
by [15, 8.8.2] there exist a measure x4 on Prim C, and traces ¥, lifted from the simple
quotients C/J for each J €Prim C, such that

v(0)= L 1 CvJ(c) du(J)

for all c€C+. Since K” stabilizes each point in Prim C, the uniqueness part of [15, 8.8.2]
is easily seen to imply that, for any t€K”, », is ¢-invariant for almost all J, and hence for
at least one J; but transitivity of the G” action on Prim ¢ (which follows from G” equi-
variance of Resf"~!) then implies that all »; are t-invariant. Now since any trace on C
decomposes as a direct integral of scalar multiples of the »; (because C is locally simply
traced), it must be K” invariant. Thus any H-invariant trace »’ is also HK"-invariant, but
since the stabilizer of any trace is elosed (cf. the argument of Kleppner that was given in
the proof of Proposition 32) it follows that »' is also (HK")~ invariant. Thus if » lives on
an H-quasi-orbit—which is just an (HK")~ orbit—the measure g’ of its direct integral
decomposition must be (HK”)~ quasi-invariant, and so we may assume that it is Haar
measure on (HK")~/(H,_,K")=; but then the corresponding v; are all translates of each
other (ie. v;,=v} for all t€(HK")~). It follows easily that the H-invariant traces on C
living on H-quasi-orbits are unique (up to a scalar), hence as by Proposition 26 every
factor trace of O*(H, C, J%*1) is induced from such a trace, they too are unique, provided
they exist. However we can mimic the argument used above in constructing » to produce a
@’ -invariant trace on C*(H, A, J)=C*(H, O, T™1), and then by direct integral theory
there exists a factor trace at some primitive ideal of C*(H, C, J%~1). Factor traces at all

primitive ideals are then obtained by translation, under the transitive G” action on
Prim(H, C, J%-1). 1!

CoroLLARY 38. Let G and H be separable locally compact groups, mw: H—>G a continuous
injective homomorphism. Suppose w(H) contains a type I regularly embedded normal subgroup
K of G such that G[K is abelian. Then C*(H) is locally simply traced.

Proof. This follows easily from the above theorem, once we use the corollary to Pro-
position 1 to construct systems (G, C*K), J%), (H, C*(K), T*) whose C*-algebras are iso-
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morphic to those of G and H. (Note that since C*(K) is type I the system (G, C*(K), T¥)

is automatically locally generalized inner.) 1]

CorOLLARY 39. ([49, Thm. 1]; [46, Cor. 3].) Let H be a connected locally compact
group. Then C*(H) s locally simply traced.

Proof. A result of Moore [45, Prop. 2.2], combined with the fact that if A’ is a quotient
group of H, then C*(H’) is a quotient algebra of C*(H), allow us to reduce to the case that
H is a simply connected Lie group. We now repeat an argument of Pukanszky [49, pp.
84-86]: Represent the Lie algebra h of H faithfully on a finite dimensional vector space,
let g be its algebraic hull on that space, and let k=[g, g]. By {9, Thm. 15, p. 177 and Thm.
13, p. 1'73] k is algebraic and contained in h. Furthermore, if G denotes the simply connected
Lie group corresponding to g, then the subgroups H’=exph and K =exp k corresponding
to h and k are closed and simply connected, so in particular H’ is isomorphic to H. By
[48, Thm., p. 379] K is regularly embedded in @, and by [14, Prop. 2.1, p. 425] it is type I,
so Corollary 38 applies. /1]

We conclude with several remarks concerning topics related to the above, which will
be pursued in subsequent papers.

1. Theorem 37 can be generalized considerably. In particular one  can replace the
hypothesis that Q/N; is abelian with the hypothesis that it is amenable, provided that
one assumes that stabilizers of points in Prim A are abelian (mod Ny) and normal in @,
and that H is closed and normal in Q. It appears that yet more general results, with weak-
ened hypotheses on the stabilizers, should hold.

2. Tt would be of great interest to classify the simple subquotients (i.e. the simple
algebras of the form P'/P, where P is a primitive ideal and P’ the minimal ideal properly
containing it) of the algebras C*(H, A, J) arising from systems which satisfy the hypotheses
of Theorem 37, and for which in addition 4 is type 1. By the theorem, these simple algebras
always carry a unique trace. Furthermore it is easy to see from the proof of Theorem 37
that they can be described as the C*-algebras of essentially free systems (H', 4’, J’) for
which Prim 4’ is homeomorphic to some locally compact abelian group @', and such that
H'|N,. can be regarded as a dense subgroup of & in such a way that the action of II'/Ny.
on Prim A’ corresponds to the action by translation on G'. The “canonical examples” of
such algebras are covariance algebras C*(H, C(®)), where H and G are locally compact
abelian groups, and the action of H on C (&) comes from an injective homomorphism of
H onto a dense subgroup of G. There are several interesting examples of these algebras:
In [56] Takesaki shows that when H is taken to be a direct sum of a sequence of cyclic
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groups, and G the corresponding direct product, one obtains Glimm’s UHF algebras. 1
have been able to show that the simple uniquely traced algebras constructed in [6] are
also of the form C*(H, C (&), where in this case one takes G=T, and H a dense torsion
subgroup of T (with the discrete topology). (The classification of these algebras given in
[6] then turns out to correspond to the classification of the dense torsion subgroups of the
circle.)

I have also been able to show that any simple subquotient of the C*-algebra of a con-
nected group is either finite dimensional (in which case of course the primitive ideal is
maximal), or else stable in the sense that it is isomorphic to its tensor product with the
algebra of compact operators on a separable infinite dimensional Hilbert space. (This
“explains” the fact that connected groups never have II, factor representations, since
stable algebras never do.) In view of [59], this shows that the problem of classifying these
algebras reduces to the problem of classifying their Morita equivalence classes.

3. In the course of proving Theorem 37 we essentially obtained a description of
Prim (H, 4, J), which in the special case of the system associated to a simply connected Lie
group turns out to be somewhat simpler and more natural than that obtained by Pukanszky
in {49, Section 1]. (It is fairly easy, using Proposition 34, to reconcile these two descrip-
tions.)

4. By refining the arguments of Proposition 25, it is possible to obtain a character
formula for the systems of Theorem 37 which generalizes that obtained by Pukanszky in
[49, Thm. 2].

5. The deduction of Corollary 39 from Corollary 38 given above suggests that it should
be possible, using recent results on algebraic p-adic groups, to derive an analogue of Corol-
lary 39 for the C*-algebras of (not necessarily algebraic) p-adic groups. I have been able
to do this, but using a definition of p-adic groups which is probably unnecessarily restrictive.
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