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A Banach space B is said to have the approximation property (a.p. for short) if 

every compact operator from a Banaeh space into g can be approximated in the norm 

topology for operators by  finite rank operators. The classical approximation problem is 

the question whether all Banach spaces have the a.p. In  this paper we will give a negative 

answer to this question by  constructing a Banach  space which does not have the a.p. 

A Banach space is said to have the bounded approximation property (b.a.p. for short) if 

there is a net (Sn) of finite rank operators on B such tha t  S , ~ I  in strong operator 

topology and such tha t  there is a uniform bound on the norms of the S~:s. I t  was proved by  

Grothendieek tha t  the b.a.p, implies the a.p. and tha t  for reflexive Banaeh spaces the 

b.a.p, is equivalent to the a.p. (see [1] p. 181 Cor. 2). So what  we actually do in this paper  

is to construct a separable reflexive Banach space which fails to have a property somewhat 

weaker than the b .a .p . - - the  exact s tatement  is given by  Theorem 1. Since a Banaeh space 

with a Schauder basis has the b .a .p . - - for  such a space the Sn:s can be chosen to be 

projections--our example also gives a negative solution of the classical basis problem. 

The approach we have used in this paper  to put  finite-dimensional spaces together 

in a combinatorial way- - i s  similar to tha t  of Enflo [2] but  in the present paper the con- 

structions are made in higher dimensions. Since we will work with symmetry  properties 

of high-dimensional spaces several considerations which were necessary in [2] can be left 

out in the present paper. 

There are several ways of continuing the work on the same lines as in this paper, i t  

has already been shown tha t  Theorem 1 can be improved in several directions. We will 

discuss some of these extensions at  the end of this paper. There are quite a few equivalent 

formulations of the approximation problem known and also m a n y  consequences of any 

solution of it. For most of these results the reader is referred to [1] and to papers by  

W. B. Johnson, H. P. Rosenthal and M. Zippin ([3] and [4]). 

I f  T is an operator on a Banaeh space B and (M) is a subspace of B, put  HTH(M)= 
sup=o< > II T lllllxll. We have 
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THEORV.M 1. There exists a separable reflexive Banach space B with a sequence (Mn) 

o] finite-dimensional subspaces, dim (Mn)--> c~ when n ~  oo, and a constant C such that ]or 

every T o/ /inite rank I]T - II[(M,) >~ 1 - CI[ T o/log dim (Mn). In  particular B does not have 

the a.p. and B does not have a Schauder basis. 

In  our proof of Theorem 1 we will use symmetry  properties of some high-dimensional 

spaces and so we will need a concept closely related to tha t  of the trace of an operator. 

Lemma 1 and Lemma 2 give a preparation for this. I n  Lemma 3 we will give a sufficient 

condition on a Banaeh space to satisfy the conclusion of Theorem 1 by  using this concept. 

In  Lemma 4 and Lemma 5 we give the finite-dimensional results which will be needed. 

However, to construct an infite-dimensional space satisfying the conditions of Lemma 3 

from the spaces appearing in Lemma 5 involves some complications which mainly 

depend on the fact tha t  the spaces (W =-1) and (W ~+1) defined below have the same dimen- 

sion. We use combinatorial arguments to overcome that  difficulty. In  the last par t  of the 

paper  we define our Bausch space and prove tha t  it satisfies the conditions of Lemma 3. 

Let  B be a Bausch space generated by  a sequence of vectors {ej}~ which is linearly 

independent (for finite sums). We shall say tha t  an operator T on B is a finite expansion 

operator on B if for every k T % = ~  a~e~ where the sum is finite. 

LwMMA 1. Let B be a Banach space generated by a sequence o/vectors {ej}~ which is 

linearly independent (/or finite sums). I] T is a continuous/inite rank operator on B, then, 

/or every ~ > 0  there is a ]inite rank ]inite expansion operator T x on B such that II T - T l l  I <e. 

Proot. Put  IITII = K .  Assume tha t /1 , /2  ... .  , / r  is a basis for the range of T. Approxi- 

mate  h, ls .. . . .  f, by  independent vectors 1~,/~ ... . .  [" all of finite expansion in {ej}~ such 

tha t  for real numbers bl, b~ ..... b~ we have 

11~ :;b- ~b,l,l[ < d[1~=ib, f,[i/K" 
Now if Tx = ~  bJj then put  Tlx  = ~  bjf;. This gives 

IITx- Tlxll = 115 b j f j -  5 bj/;ll -< IlYbjfr < Ilxll. 

This proves the lemma. 

Let  B be a Bausch space generated by  {ej}T which is linearly independent (for finite 

sums) and let T be a finite expansion operator on B. Let  M be a finite subset of the e~:s. 

We will put  

Tr(M, T) = ~. an and ~r(M, T) = ~ 
eieM [-L~l e4eM 
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where I MI  is the cardinali ty of M.  Let  {ej}~ r be a sequence of non-zero vectors which 

generate a Banach  space. We shall say tha t  {ej}~ r has proper ty  A if for each finite sum 

Y~I.~ a~e~ we have llX~.~a~e~ll>~lla~e~ll for all k, l<~k<r. I f  M is a set of vectors in a 

]3anach space B we will denote by  (M) the closed subspace of B generated by  M. 

L~MMA 2. Let B be a Banach space generated by {e~}~ which has property A.  Let 

T be a/inite expansion operator on B and let M be a finite subset o/{ej}~. Then [Tr(M, T)[ <~ 

UTll, ,. 

Proo/. If  % ~ M  we have la~l = Ila~%ll/lle~ll ~< IIX, a,~e,ll/lle~ll < II TI],M, from which the 

lemma immediate ly  follows. 

We now prove a lemma which suggests how the counterexample is constructed. 

Lv~M~A 3. Assume that B is a Banach space generated by {ej}~ which has property A.  

Assume that there is a sequence M m o] mutually disjoint ]inite subsets o/{ej}~ and constants 

a > 1 and K > 0 such that 

(i) dim (Mm+l) > (dim (M~)) ~ m = 1, 2, ... 

(if) ]Tr(M,~+a, T ) - T r ( M m ,  T)] <K]]T]] ( log  dim (Mm)) -~ r e = l ,  2 . . . .  

/or every finite expansion operator on B. 

Then there is a constant C s. t. /or every finite rank operator T on B 

II x -  T I1 ,Mm, 1 - a II Tll (log dim (Mm)) -1 

Proo]. B y  L e m m a  1 it  is enough to  prove the conclusion for finite rank  finite 

expansion operators on B. Since T has finite rank  we have Tr(Mk, T)-+O when k - ~ .  

L e m m a  2 and the assumptions of Lemma 3 then give 

IIx- ~ I~'r(M~, X -  T) I >1 1 - X I~r(M~+~, T) -~r(M~, TI 
kffim 

~> 1 - xIIr l l  ~ ~ Clog dim (Mk)) -1 ~> 1 -- C IITII log dim (Mm)) -1 
k ~ m  

C = K/C1 - a-l). 

with 

We will now s tudy  some properties of the  Walsh functions.  Le t  Z~ be the group with 

the elements 0, 1 and consider the  group H = Z ~ .  Then  [ H [ = 2 ~n and we denote its elements 

a=(a  1, a 2 ..... a2n ) where a j = 0  or 1. We define 2n Rademacher  functions R~,l<~]<~2n, 

on H in the following way: R j ( a ) = ( - 1 ) %  We let W m denote the  set of Walsh functions 

which are products  of m different R f  s and let w m denote an element in Wm. P u t  
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WmEwm 

and pu t  ]a j  [ = ~ a,  = the number  of coordinates ~= 0 for a e Z~n. 

L~MA 4. (a) F~(0) =lIFA~ : (~) 

(b) Fro(a)=(1-mn-1)]]Fm]]~ if ]a[ =1.  

(e) I~-l(all =lFn+~(all-<~-lllF~-~ll~=~ ~11~§ ~ /0< I~l <en, 
(d) Fro(a) = ( - 1 ) z F ~ ( b )  it [a I +lb] = 2 n  

Proo]. (a) is obvious since all w~ take the value 1 in 0 and the number  of wm:s is (2mn). 

Obviously Fm(a) depends only on n, m and ]a[ and so in the proof of (b) we can assume 

a = ( 1 , 0  . . . . .  0). We get F m ( a ) = ( 2 ~ l ) _ [ 2 n - l ~ = ( 2 m n  ) \ m - 1] (1 - m/n). We can also assume 

a and b complementary  in the proof of (d), which then  follows immediate ly  from the 

formula Rj(a) = - Rj(b) for all ]. For  the proof of (e) we observe t ha t  for a complex number  

z we have 
2n 

zmF,~(a) = (1 + zR1(a))... (1 + zRen(a)) = (1 + ( - 1)alz) ... (1 - t -  ( - -  1)a~z) 
m~0 

For  ]a] =r this equals (1 - z ) '  (1 + z)2~-L This gives 

Fm (a) = (2~i)-~f(1 - z) ~ (1 + z)2n-~dz/z 'n+l 

_ d0,1~l:~. 

This gives 

]F=_l(a)[= ]F~+x(a)] <, (2z)-122~ f;~ ] (sin ~)" (cos ~)~=-rl dO 

n 0 r 

The last integral takes the same value for r = 2  and r = 2 n - 2  and then  it  equals ] F~(e)]. 
If  2 < r < 2n - 2 the  integrand i s  a geometrical  mean-value between (sin 0/2) 2 (cos 0/2) ~n-2 

and (sin 0/2) 2n-2 (cos 0/2) 2 and so in this ease the integral is not  bigger than  I ~(a)  l, I~ I =2.  

Andf~ - 2~2n-2~ + (2:--:)] = ( 2 : ) I n . l ]  /(2n-l)<n-~HFn-IH~176 
~-~lIF~§ This oompletes the proof of the lemma. 

We now consider the Banaeh space of real-valued functions on H with sup-norm. 

If p is a permutation of the 2n copies of Z~ in H then we have Rj(p(a))--R~-~j(a) with 

obvious notations. Thus p defines an isometry U~ of (W m) onto itself by the formula 
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(U~w'~)(a)=w~(p(a)). Let  t: a ~ a + b  be a translation in H. Then we have R~(t(a))= 

( - 1 ) ~ R j  (a). Thus $ defines an isomctry U~ of (W ~) onto itself by  the formula (U~w m) (a) = 

wm(t(a)), Let  G be the group of isometries of (Wn-~U W ~+~) generated by  the U~:s and 

U~:s. Since the Walsh functions are pairwise orthogon~l regarded as vectors in 

l~(H), W ~-~ U W n+~ is a basis for (W ~-~ U W~+~). We will consider tha t  basis in the following 

lemma. 

LEmv~A 5. Let T be a linear trans]ormation in (W n-1 U W~+I). There is a U E G such 

tha~ wi~h 1 = Fn-1/I1 II - F~+I/1] F n + l  II 

i~r(w n-,, T )  - ~ r ( W  n+' , T) I < 2~-'11TUllllll ul l l .  

Proo[. Put ~ =  [Gl-~ ~v~ U - ' T U .  Since each U permutes the elements of W n-'  and 
the elements of W n+l and changes signs of some of them we get 

~r(W n-l, T) = Tr (W n-l, T) and ~r(W n+l, T) = Tr (W n+l, T). (1) 

By the definition of T, 

for each xe(W~-lU W ~+1) there is a V such tha t  HTVxH >~ ll~xl]. (2) 

For each U we have U-1TU = T. Since for each pair of Walsh functions wl, w e e W n-1U W n+l 

there is a U~ such tha t  U t w l = w  1 and Utw~= -w~  this implies tha t  T w = l ~ w  for each 

we Wn-IU W n+l. Together with (1) it  also implies tha t  lc~=Tr(W ~-1, T) if w e  W ~-1 and 

k~= ~r (W ~+1, T) if we  W ~+1. This is since for each pair w~ -1, w~ -1 or w~ +1, w~ +1 there is 

a U~ which maps the first component onto the second. Thus by  (a) of Lemma 4 

II ~111/> I(~1) (0) I = I~r (W ~-~, T ) - ~ r ( w ~ +  ~, T) I 
By (a), (c) and (d) of Lemma 4 II111 = l lU l l l  <2/~. By (~) we now choose U such that 
II TU/[I/> II TIll and tha t  completes the proof of the lemma. 

The spaces (Wn -1) and (W n+x) play in Lemma 5 a role similar to tha t  of (M~) and 

( 2 ~ ) w e s e e t h a t t h e  (M~+I) in Lemma 3. Since n is of the same order of magnitude as log n - 1 

condition (if) is satisfied. However, since ( W n- ~ ) and (Wn + ~ ) h~ve the same dimension there 

is in Lemm~ 5 nothing similar to the condition (i) of Lemma 3. We will use combinatorial 

arguments to overcome this difficulty. 

We now turn to the construction of B. With two increasing sequences k~ and n~ of 

positive integers which will be chosen later we put  K ~  = Z~ ~ and introduce the disjoint 

union K,~=K,~ U K,~ U ... U K~,~. In  the space C(K~) of real-valued functions on K~ we 

introduce sup-norm and we let B~ be the Hflbert sum of the spaces C(Km) tha t  is the se tof  all 
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/=([1,  [2 .. . . .  [m ..... ) wi th /~eC(Km)  and ll/ll = ll/ ll  < i t  is well-known tha t  a Hilbert  

sum of finite-dimensional spaces is reflexive and since our B will be a closed subspace of 

B 1 it will be a separable reflexive space. We will use L e m m a  5 for different n:s and so we 

change our nota t ion W m to  W~'. P u t  

tm=dim(W]_~)=dim(Wn=+l ) = (2rim 
\nm- 1/" 

We will choose out  of C(K,n)| a subspace (M~) of dimension /c~tm. I t  will be 

defined by  a set of basis elements M m with/cmt m elements with the following properties: 

1% The component  of eEMm in C(Kmj) equals 0 for all j bu t  one where it is an  element 

of W~: +1 

2 ~ The component  of e EMm in C(K~+I,j) is either 0 or an element of w~,,+~-I and  for each 
�9 r P"m + 1 

j every element of W ~+~-1 appears for some e. nm+l 

3 ~ Different elements of M m never have the same component  ~=0 in C(Kmj) or in 

C(Km+I, j) 

1 ~ 3 ~ and l Mm[ =k,nt m give tha t  there is a one to one correspondence between M m 
and W ~+1 x (1, 2, kin}. We denote by  Mmj the set with tm elements of Mm which n m " * ~  

have a component  ~=0 in C(Kms) and b y  Nmj the set of tm+x elements of M m which 

have a component  4 0 in C(Km+I, j). The sets Mmj are pairwise disjoint. Conversely if we 

have  km disjoint sets Mm] each with t m elements and  kin+ 1 subsets Nm of U ~ Mmj each 

with tm+x elements, then we get  M m with the  properties 1~ ~ in an  obvious way. We 

will pu t  more conditions on Mm later on and finally prove tha t  t hey  can all be satisfied. 

B will be the subspace of B 1 generated by  M = U Mm. We first prove t h a t  M has 

proper ty  A. To do this it is obviously enough to  prove t h a t  we always have 

max~ I(Zaje~)(p)[ ~> max~[(a,~%)(p)l when p runs over one Kin,. We know t h a t  in each 

K ~  % EM takes the  value 0 or takes values like a Waish funct ion wk. I n  the first case the 

inequal i ty  tr ivial ly holds and in the second case it  holds because of the following reason: 

Since the Walsh functions are pairwise orthogonal  regarded as vectors in [ 2 the /2-norm 

of the  sum of w k and a linear combinat ion of other  Walsh functions will no t  be smaller t h a n  

the  /2-norm of wk. Since wk just  takes the  values 1 and - 1  this would be impossible if the  

sup-norm of such a sum were < 1. Thus M has proper ty  A. I t  thus  remains to consider 

(i) and  (if) of L e m m a  3. 

We first s tudy  (if) and observe tha t  if T is a finite expansion operator  on B we have 
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k m + l  

k,n+li~r(im, T ) -~r ( im+l ,  T) I = ]km+i~r(M,n, T ) -  ~ Tr(Mm+l,j, T) I 
i = 1  

k m + l  km+l  

<. [km+l~r(M~, T)- ~, Tr(~mt, T) I -{- 5 I~r(Nms, T ) -  ~r(Mm+l.s, T) I. 
i = 1  /=1 

(3) 

The last expression will be estimated in the following lemmas. We will need three more 

conditions on Mm: 

4 ~ [xv.,,n N~s[ <tm+121n~+l, i # i  

5o IN.,, n Mmil "< rain (tm+llnm+l, tmlnm) 

6 ~ I f  we put  a (e )= the  number of j:s such tha t  eENms then 

I slk~t,~- ,~(e)l#+n+~t,~+,l < l/n~+~. 
e~Mm 

L~MMA 6. I[ 6 ~ holds then/or every/inite expansion operator T on B 

km+l  

I~r(Mm, T ) -  5 Tr(Nm,, ml/km+:l < IITllln~+: 

Pro@ For e EM,n put  Te=a(e)e+ a linear combination of other elements of M. 

Then la(e)l <~ liTH by Lemma 2 and 

~m+l  

~r(M~, T) - E ~r(N~, T)I~+I= ~ (Wkmt,~- ~(e)lkm+~t~+~) a(e) 
1=1 eeM m 

which proves the lemma. 

LEMMA 7. I f  4 ~ and 5 ~ holds and T is a finite expansion operator on B then 

I~'r(N,~j, T) - Tr(Mm+x, 1, T) I < 4il Tiilnm+l. 

Pro@ Let  E be the space generated by  Nmj U Mm+l, j. Define T' :  E-+ E in the folllowing 

way: I f  T%=~ ase j then T'%=~ ayes where the last summation is extended only over 

those vectors which are in E. Obviously T and T '  have the same trace on Nms and on 

Mz+l, j. Moreover Tx(p)=T'x(p) if pEK~+I,S since all the vectors of M except those of 

NmSU Mm+l, s are 0 on K,n+l,S. The restriction to Kin+l. 1 gives a bijection 

E-+/w~:+:-~ U W~:+~ +~) 
"" n m + l  1- 

a~d we define a norm III III in ~ so that it  becomes an i s o m e r s .  Let the element Vf of 

Lemma 5, with n=nm+ 1 and T replaced by  T' ,  correspond to xEE. Then Lemma 5 gives 
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ITr(N,~j, T)-~r(M,,+l.,,  T) I <~ 2nm~+ ~ lilT' xlll/lll@. 
We have  

IIlT'~III = max IT'~(p)I= max I r ~ ( p ) l < l l T x l l .  
PEKIn+l,] P~Km+I,] 

I t  thus remains  to prove II ll <2 III xlll. (4) 

(b) of L e m m a  4 gives III  lll = maxv+K:+l,, 2/7bm+1" I f  i # ]  4 ~ gives 

Ix(p) l<Nm, nNmjl/tm+l <~2/nm+l if p eKm+l .  , 

and  so In x In equals m a x  Ix(p) [ over  all Km+r I n  Km~ we have  b y  5~ Ix(p) [ ~< I Nmj O im~l/tm+l <<. 

1/n~+i<-<lHxl[I/2. And in Kin+2., we have  Ix(P)] ~< IMm+i,iNNm+i,il/tm+l<.l/nm+i~]llxl]]/2. 
I n  all o ther  K~:s x(p)=0 and so (4) and  the  l emma  is proved.  

We can now finally prove  Theorem 1. Choose constants  a > 1 and 7 > 1 such t h a t  

1 <a< 7 and a < ( 2 + y ) / ( l  +y). (5) 

P u t  nm=[am], km=[t~] .  Stirl ing's formula  gives tm.~22n',/~V~m--that means  t h a t  the  

quot ient  be tween the  numbers  -+ 1. We will show t h a t  Mm can be chosen so t h a t  1~ ~ is 

satisfied which is a pure ly  combinator ia l  problem. I f  we accept  it  for a m o m e n t  we get  

log d im (Mz) = l o g  (kmtm)~ (~ + 1) (log 4)a m and so (i) of L e m m a  3 is satisfied. (3), Lamina  6 

and  L e m m a  7 give t h a t  if T is a finite expansion opera tor  on B then  ITr(Mm+l, T ) -  

~r(im, T) I <~ 511T]l/nz+l ~<KI[ TH/log dim ( i ~ ) .  Thus  (ii) of L e m m a  3 is satisfied and  

Theorem 1 follows. 

I n  the  construct ion of M m we first  observe t ha t  tm+l/k m = O(t a-r) is ve ry  small. Wi th  

L= [km/tz+l] we thus  get  O<km-Lt~+l<t~+ 1 =O(k,~tm-v). We will choose all Nmj : s=Nj : s  

as subsets  of {1 . . . . .  Ltm+l} x Z t :  where Zt :  denotes  the  group of integers rood tm under  

addition. We identify Ztm by  W~: +1 and  so eachNjwi l l  be asubse t  ofMm = {1 . . . . .  k:} x Wnn~ +1. 

Mmj will be the  set {j} x W~;  +1. To choose the  /Vj:s we enumera te  the  elements  in the  

order 
(1, 0), (2, 0), ..., (Ltm+~, 0), (1, 1), (2, 1) .... 

The general  formula  is 

(j, ]~+k) where j = l  . . . . .  Ltm+,, k = 0 ,  1, ..., t i n - l ,  t z - 1 ,  ~ = 0 ,  1, 2 . . . .  

and the  order is lexieographical  f irst  b y  increasing ~ then  increasing k and  finally increasing ?'. 

We  choose the  sets N~, N~ . . . .  each with  tm+l elements  successively among  these. Since each 

gives Lt,, N / s  and  we need k,n+l N / s  we will use all e lements  wi th  0 ~<~ < v  bu t  no wi th  

> v if v = [km+l/Ltz]. We have  ] ~(e) - k,n+l/Lt,~ [ ~< 1 if e e Mml U ... U Mm.z.t~ + 1 since every  

such e appears  once or each ~. And  we have  e ( e ) = 0  for other  e:s in Mz.  I n  the  first  case 

we get  
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o ~.ol l/Ir ~(e)/Icm+~tm+ll < k,~trn(l/k,.+lt, n+l) (Ikm+ltm+l/lcmtm- k~+~lLt~l 

< krn~m ( l /k rn+l  ~m+l -~- l L -  k,~/t~+, I/Lkm*m) 

< (L -1 + kmtm/km+lt~+l). 

This is much smaller than  lint,+1 for large m. The relative number  of e:s with a (e )=0  

is O(t~ -v) which is also much smaller than  1/nm+l. Thus 6 ~ is proved. 5 ~ obviously holds 

with 1 on the right hand side. I t  remains to verify 4 ~ 

Suppose tha t  two different N~:s have a common point (j, JQ1 + kl) = (J, ~2 § ks) where 

Ol, kl ~=~2, ]c2- Then Q1 :~z.  All other elements in the intersection of these N f s  can be writ ten 

(g, g01§ ZOz+k~) where I g - J l  <t~+~. I f  I z - J l  =/~ then 0<ju<tm+ 1 and (/~,/~01)-- 

(~,~e~) that is ~(el-e~) is divisible by  tin. This gives ~>$~/lel-e~l >~t~/~. I f  tm/v>nm+l 

then 4 ~ follows. We have ~ 2 ~ 2 t,n/v Lt,n/krn+l kmt,n/t,n+lk,n+l. This has the order of magnitude 

t~ +2-~(y+1)) where the exponent is positive by  assumption. Thus 4 ~ holds for large m and 

Theorem 1 is proved. 

I t  has recently been proved by  Kwapien, Figiel and Davie tha t  the method of 

construction in this paper can be used to get subspaces of 1 p without the a.p. for all 

P >2.  For I~ <2,  however, the problem remains open. Also the log dim (M~) of Theorem 1 

has been improved to a positive power of dim (Mn). Because of the way we have worked with 

symmetries in this paper our method does not give an immediate idea of how to 

construct a Banach space which has the b.a.p, but  which does not have a Schauder basis 

I t  might  be an interesting task to t ry  to construct such a space. 
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