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A Banach space B is said to have the approximation property (a.p. for short) if
every compact operator from a Banach space into B can be approximated in the norm
topology for operators by finite rank operators. The classical approximation problem is
the question whether all Banach spaces have the a.p. In this paper we will give a negative
answer to this question by constructing a Banach space which does not have the a.p.
A Banach space is said to have the bounded approximation property (b.a.p. for short) if
there is a net (8,) of finite rank operators on B such that S,—>I in strong operator
topology and such that there is a uniform bound on the norms of the S,:s. It was proved by
Grothendieck that the b.a.p. implies the a.p. and that for reflexive Banach spaces the
b.a.p. is equivalent to the a.p. (see [1] p. 181 Cor. 2). So what we actually do in this paper
is to construct a separable reflexive Banach space which fails to have a property somewhat
weaker than the b.a.p.—the exact statement is given by Theorem 1. Since a Banach space
with a Schauder basis has the b.a.p.—for such a space the S,:s can be chosen to be
projections—our example also gives a negative solution of the classical basis problem.

The approach we have used in this paper—to put finite-dimensional spaces together
in a combinatorial way—is similar to that of Enflo [2] but in the present paper the con-
structions are made in higher dimensions. Since we will work with symmetry properties
of high-dimensional spaces several considerations which were necessary in [2] can be left
out in the present paper.

There are several ways of continuing the work on the same lines as in this paper, it
has already been shown that Theorem 1 can be improved in several directions. We will
discuss some of these extensions at the end of this paper. There are quite a few equivalent
formulations of the approximation problem known and also many consequences of any
solution of it. For most of these results the reader is referred to [1] and to papers by
W. B. Johnson, H. P. Rosenthal and M. Zippin ([3] and [4]).

If T is an operator on a Banach space B and (M) is a subspace of B, put ||| =
SUDeqn || 7|/ ]|2||. We have
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THEOREM 1. There exists a separable reflexive Banach space B with a sequence (M)
of finite-dimensional subspaces, dim (M,)—>oc when n—oo, and a constant C such that for
every T of finite rank ||T —I|| 4y, >1~C||T||/log dim (M,). In particular B does not have
the a.p. and B does not have a Schauder basis.

In our proof of Theorem 1 we will use symmetry properties of some high-dimensional
spaces and so we will need a concept closely related to that of the trace of an operator.
Lemma 1 and Lemma 2 give a preparation for this. In Lemma 3 we will give a sufficient
condition on a Banach space to satisfy the conclusion of Theorem 1 by using this concept.
In Lemma 4 and Lemma 5 we give the finite-dimensional results which will be needed.
However, to construct an infite-dimensional space satisfying the conditions of Lemma 3
from the spaces appearing in Lemma 5 involves some complications which mainly
depend on the fact that the spaces (W™1) and (W™+) defined below have the same dimen-
sion. We use combinatorial arguments to overcome that difficulty. In the last part of the
paper we define our Banach space and prove that it satisfies the conditions of Lemma 3.

Let B be a Banach space generated by a sequence of vectors {e;}3° which is linearly
independent (for finite sums). We shall say that an operator 7' on B is a finite expansion

operator on B if for every k Te,=>, a;e, where the sum is finite.

Lemwma 1. Let B be a Banach space generated by a sequence of vectors {e;}° which is
linearly independent (for finite sums). If T is a continuous finite rank operator on B, then,

for every £>0 there is a finite rank finite expansion operator Ty on B such that || T — T || <e.

Proof. Put ||T|| =K. Assume that fy, fs, ..., f, is a basis for the range of 7'. Approxi-
mate fi, fg .. f, by independent vectors fi, f2, ..., fr all of finite expansion in {e;}}° such

that for real numbers b, b,, ..., b, we have
T r r
b.f,— 2 bl < bflK.
llgl i1 121 jf:“ 3”}; ffj“/

Now if Tw=>,b,f, then put Tyx=> b,f;. This gives
(T2 - Tya|| = 26,1~ 25, fill < el| 28 £ll/ K <ef=]).

This proves the lemma.
Let B be a Banach space generated by {e;}¥ which is linearly independent (for finite
sums) and let 7 be a finite expansion operator on B. Let M be a finite subset of the e;:s.

We will put
Tr(M,T)= Y a; and Tr(M, T)=——1 > ay
: eieM | M| ciene
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where | M| is the cardinality of M. Let {e;}7° be a sequence of non-zero vectors which
generate a Banach space. We shall say that {¢,}7° has property A if for each finite sum
Si-1a;e; we have ||[X5; ase,f| =||ape]| for all k, 1<k<r. If M is a set of vectors in a
Banach space B we will denote by (M) the closed subspace of B generated by M.

Lemma 2. Let B be a Banach space generated by {e;}s which has property A. Let
T be a finite expansion operator on B and let M be a finite subset of {e,}s°. Then |Tr(M, T)| <

7)o

Proof. 1f ¢, € M we have |ay| = [|awexl]/ el < )12 @weill/| el <) Tl ) from which the
lemma immediately follows.

We now prove a lemma which suggests how the counterexample is constructed.

Lemwma 3. Assume that B is a Banach space generated by {e,;}7* which has property A.
Assume that there is a sequence M, of mutually disjoint finite subsets of {e,}3° and constants
a>1 and K >0 such that

(i) dim (M, ) > (dim (M,))* m=1,2, ..
() |Tr(Mpy, T)—Tr(M,, T)| < K||T|(log dim (M,,))"* m=1,2, ...
for every finite expansion operator on B.
Then there is a constant C s. t. for every finite rank operator T on B

I =Tl a,y = 1 —C|| Tl (log dim (M,,))~*

Proof. By Lemma 1 it is enough to prove the conclugion for finite rank finite
expansion operators on B. Since T has finite rank we have Tr(M,, T)—>0 when k— oo,

Lemma 2 and the assumptions of Lemma 3 then give
I = Tllagmy = | Tr( M, I—T)|>1 —kgmlTr(Mkﬂ, T)—Tr(M,, T|

>1- K“Tué (log dim (My))~'> 1 — C||T|| log dim (M,))* with
C=Kj(1—a).

We will now study some properties of the Walsh functions. Let Z, be the group with
the elements 0, 1 and consider the group H =Z3". Then | H| =22" and we denote its elements
a=(ay, Gy, ..., 0g,) Where a,=0 or 1. We define 2n Rademacher functions R;,1<j<2n,
on H in the following way: R,(a)=(—1)%. We let W™ denote the set of Walsh functions
which are products of m different R;:s and let w™ denote an element in W™, Put
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F,= Z Wi
wme W

and put |e;| =2, a,~the number of coordinates #0 for a €Z3".

LeMMA 4. (8) Fpu{0) =|| Foll o =(21:)

(b) Fula)=1—-mnY)||F,l, if |a]=1.
© | Fryl@)] =|Fra@)| <o Fpyflo=n""|Frullo if 0<]a| <2n,
(d) Fnla)=(—1)"F,®) if |a|+|b]=2n

Proof. (a) is obvious since all w™ take the value 1 in 0 and the number of w™:s is (27:) .
Obviously F,(a) depends only on n, m and |a| and so in the proof of (b) we can assume

2n—1 2n—1 2n

a=(1,0,...,0). We get F,,,(a)=( m ) — (m— 1) =(m)(l —mjn). We can also assume
a and b complementary in the proof of (d), which then follows immediately from the
formula R;(a)= — R,(b) for all . For the proof of (¢) we observe that for a complex number

2z we have

2}; 2", ()= (1+2zRy(a))... 1+ 2Re,(a)) = (L +(—1)"2) ... (1 4 (— 1)%nz2)

For |a|=r this equals (1 —2)" (1+2)*"~". This gives

F,(a)= (2m')_1J‘(1 —2)" (1 +2)2" " dz[z" !

=2a)! 2“Jm 77 gn-mo (sin Q)' (cos Q)zn—r do,|a|=r
2 2 ’ )

. Q)r QZn—r
sin 2 co8 3

E 4 r 2n—r
=(27)"! 22"2f (sin g) (cos g) de.
0

The last integral takes the same value for r=2 and r=2n—2 and then it equals | F,(a)].

This gives
do

|7 1(@)] = | Fara(a@)] < (20) 220 f "

-7t

If 2<r<2n—-2 the integrand is.a geometrical mean-value between (sin 6/2)2(cos 0/2)*"-2
and (sin 6/2)>"2(cos 6/2)2 and so in this case the integral is not bigger than | F,(a)|, |a| =2.

2n-2 2n—2 2n—2 2
(7)) (2)|-(G2) / vt

Y| Fp 14l This completes the proof of the lemma.

Andfor|a|=2|F,(a)|=

We now consider the Banach space of real-valued functions on H with sup-norm.
I p is & permutation of the 2n copies of Z, in H then we have R;(p(a))=R,-1;(a) with
obvious notations. Thus p defines an isometry U, of (W™) onto itself by the formula



A COUNTEREXAMPLE TO THE APPROXIMATION PROBLEM IN BANACH SPACES 313

(U, w™) (a) =w"(p(a)). Let 2 a—>a-+b be a translation in H. Then we have R,(f(a))=
(—1)" R, (a). Thus ¢ defines an isometry U, of (W™) onto itself by the formula (U,w™)(a)=
w™(Ha)). Let G be the group of isometries of (W"-1U W"+1) generated by the U,s and
Ugs. Since the Walsh functions are pairwise orthogonal regarded as vectors in
B(H), W*-1U W ig a basis for (W"-1U W™+1). We will consider that basis in the following

lemma.

Lrevma 5. Let T be a linear transformation in (W-1U WnH), There is a U€G such
that with f=F,_y[|| Fy_y|| — Frpaf || Fraall

| Tr(W™-1, T)— Tr(W™, T)| <2071 TUF|| /|| US|

Proof. Put T = |G| Jyeg U1TU. Since each U permutes the elements of W™ and

the elements of W"+! and changes signs of some of them we get
Tr(WrL, Ty = Tr(W™-1, T) and Tr(W*, T) = Tr(W™*, T). (1)
By the definition of 7', ’
for each & € (W"-1U W™*) there is a U such that || TUx|| > || T=||. (2)

For each U we have U-1TU =1'. Since for each pair of Walsh functions w,, w, € WU W+
there is a U, such that U,w,=w, and U,w,= —w, this implies that Tw=Fk,w for each
w€Wn-1y W™+, Together with (1) it also implies that k,=Tr(W"1, T) if w€ W™ and
kp=Tr(W™L, T) if we Wn+. This is since for each pair w} !, wi~* or wl*!, wi*! there is

a U, which maps the first component onto the second. Thus by (a) of Lemma 4
Wl = [(TH )| = | Tr(W™L, T)— Tr(W™, T)]

By (a), (c) and (d) of Lemma 4 |[|f|| =||Uf|| <2/n. By (1) we now choose U such that
|TUf|| =]|Tf|| and that completes the proof of the lemma.
The spaces (W"1) and (W"+!) play in Lemma 5 a role similar to that of (M) and

(M) in Lemma 3. Since = is of the same order of magnitude as log ( 2m ) we see that the

n—1
condition (ii) is satistied. However, since (W™ 1) and (W"*!) have the same dimension there
is in Lemma 5 nothing similar to the condition (i) of Lemma 3. We will use combinatorial
arguments to overcome this difficulty.

We now turn to the construction of B. With two increasing sequences k,, and n,, of
positive integers which will be chosen later we put K,,;=23"" and introduce the disjoint
union K,=K,_ UK, ,U..UKy,. In the space C(K,,) of real-valued functions on K,, we
introduce sup-norm and we let B, be the Hilbert sum of the spaces C(K,,) that is the set. of all
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f=(fss 2> » s ---) With f, €C(K,,) and ||f[|2=2[|fx]|% < o°. It is well-known that a Hilbert
sum of finite-dimensional spaces is reflexive and since our B will be a closed subspace of
B, it will be a separable reflexive space. We will use Lemma 5 for different n:s and so we

change our notation W™ to Wi. Put

tp=dim (W7n~!) = dim(Wpn*Y) = (n2 ’f"l)
'm

We will choose out of C(K,)®C(K,,;) a subspace (M,) of dimension %,t,. It will be
defined by a set of basis elements M, with k,t, elements with the following properties:

1°. The component of e€M,, in C(K,,;) equals O for all j but one where it is an element

of Win*t

2°, The component of e€M,, in C(K,,,, ;) is either 0 or an element of Wan H‘l and for each

1

y Ny 41
j every element of W7»+1"% appears for some e.

3°. Different elements of M, never have the same component =0 in C(K,,) or in
O(Km+1’ j)

1°, 3° and | M| =k,t, give that there is a one to one correspondence between M,
and W’,ﬁz“ x{1,2, .., k,}. We denote by M,, the set with ¢, elements of M, which
have a component +0 in C(K,,) and by N,; the set of f,., elements of M, which
have a component +0 in C(K,,,,,,). The sets M, are pairwise disjoint. Conversely if we
have £k, disjoint sets M,,; each with ¢, elements and k,,, subsets N,, of U, M,, each
with ¢,,, elements, then we get M, with the properties 1°-3° in an obvious way. We
will put more conditions on M,, later on and finally prove that they can all be satisfied.

B will be the subspace of B, generated by M =U M,. We first prove that M has
property A. To do this it is obviously enough to prove that we always have
max, | (2 a,e,)(p)| > max, |(aye;) (p)| when p runs over one K,;. We know that in each
K, e,€ M takes the value 0 or takes values like a Walsh function w,. In the first case the
inequality trivially holds and in the second case it holds because of the following reason:
Since the Walsh functions are pairwise orthogonal regarded as vectors in 2 the I2:-norm
of the sum of w,, and a linear combination of other Walsh functions will not be smaller than
the [*-norm of wy. Since w), just takes the values 1 and —1 this would be impossible if the
sup-norm of such a sum were <1. Thus J has property 4. It thus remains to consider
(i) and (ii) of Lemma 3.

We first study (ii) and observe that if 7' is a finite expansion operator on B we have
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Em41

Epsa|Tr(Mp, T) = Tr(M i1, T)| = | bpir Tr( M, T) — 21 Tr(M piv,s, T)|
i<
Km+1 Em41

< Ikm+1TT(Mm7 T) - Zl TT(ij’ T)l + zll TT(ij: T) - 7.'17‘(ﬂlm+1,h T) | (3)
j= j=

The last expression will be estimated in the following lemmas. We will need three more

conditions on M,
4° lein ij[ St 2Mpyn, CF]
5° |ij n Mmil <min (t,,,+1/n,,,+1, b/ Mm)

6° If we put o(e) =the number of jis such that ¢€N,; then

Z I I/kmtm_ o'(e)/]"m+1tm+1| < 1/7Lm+1.

eeMm

LeMMA 6. If 6° holds then for every finite expansion operator T on B

km+1
|TT Mm’ T Z TT( mj> T)/km+1| < ”T"/nm+1
j=1
Proof. For e€M, put Te=a(e)e+a linear combination of other elements of M.
Then |a(e)| < ||7'|| by Lemma 2 and

Ema1

Mrm T Z TT mis T)/km+1 = % (1/kmtm— G(e)/km+1tm+1) a/(e)
which proves the lemma.

Levma 7. If 4° and 5° holds and 7' is a finite expansion operator on B then
‘T/"(Nmb T)"Tr(anl’ 72 T)‘ <4="T“/"'m+1~

Proof. Let E be the space generated by N,,;U M, , ;. Define T": E— E in the folllowing
way: If Te,=> aje; then T"e, =2 a,e; where the last summation is extended only over
those vectors which are in E. Obviously 7T and 7" have the same trace on N,, and on
M, .1, ;. Moreover Ta(p)="1"z(p) if p€K,,,, ; since all the vectors of M except those of

N,UM,,, ;are 0 on K, , The restriction to K, ; gives a bijection

E— (an+1—1 U an+1+1)

Tmg1

and we define a norm ||| ||| in B so that it becomes an isometry. Let the element Uf of
Lemma 5, with n=n,,,; and T replaced by 7", correspond to z€ E. Then Lemma 5 gives
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TN s T) = Tr( M, 5, T)| < 22 | 77 2l

We have
|17 %||= max |T'x(p)|= max |Tw(p)|<|T|.
DEK, peK,

€Km+1,5 m+1,7

It thus remains to prove =]l <2l ]|l (4)
(b) of Lemma 4 gives || z||= maxpex,,,, , |2(p)| = 2/mpi1. If i] 4° gives

lx(P)l<NminijI/tm+1<2/"'m+1 if pE€EKyiq,u

and so |||z||equals max |2(p)|overall K,,,,.In K, we have by 5° |a(p) | < | Nppy 0 M| [y <
1/nm+l<“|x”|/2' And in Km+2,i we have Ix(p)l <IllInH—l.in]Vm+1.il/tm+l<1/nm+lg”lxm/z'
In all other K8 #(p)=0 and so (4) and the lemma is proved.

We can now finally prove Theorem 1. Choose constants a>1 and »>1 such that

1<a<y and e<(2+y)/(1 +7). (5)

Put n,=[a"], k,=[t,]. Stirling’s formula gives f,~ 22"//zn,,—that means that the
quotient between the numbers —1. We will show that M, can be chosen so that 1°-6° is
satisfied which is a purely combinatorial problem. If we accept it for a moment we get
log dim (M) =log (k,t,)~ (v +1)(log 4)a™ and so (i) of Lemma 3 is satisfied. (3), Lemma 6
and Lemma 7 give that if T is a finite expansion operator on B then |T7(M,,,, T)—
Tr(M,, T)| <5||T)|/tmsy <K||T||/log dim (M,,). Thus (ii) of Lemma 3 is satisfied and
Theorem 1 follows.

In the construction of M, we first observe that ¢,,,/k,=0(*"?) is very small. With
L =[ky/ty,] we thus get 0<k,—Lt, , <t,.,=0(k,t,~7). We will choose all N, 8=N;s
as subsets of {1, ..., Lt,.,} xZ, where Z, denotes the group of integers mod ¢, under
addition. Weidentify Z, by W;»*! andsoeach N,will beasubsetof M,,={1, ..., k,} x Win*1,
M,,; will be the set {j} x Wi»*. To choose the N;s we enumerate the elements in the
order

(1,0), (2,0), ..., (Ltpq, 0), (L, 1), (2,1) ...

The general formula is

(4, jo+k) where j=1, ..., Lty s, =0, 1, .0, t—1, t,—1, 0=0,1,2, ...

and the order is lexicographical first by increasing g then increasing k and finally increasing §.
We choose the sets Ny, N,, ... each with {,,,, elements successively among these. Since each
o gives Lt,, N ;s and we need %,,,; N ;s we will use all elements with 0 <g <» but no with
o>v if v=[ky1/Lt,]. We have |o(e) —kyy/Lt,| <1 if €M, V..U My, 1s,,, since every
such e appears once or each g. And we have ag(e¢) =0 for other e:s in M,,. In the first case

we get
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o §¢0| 1/kmtm - 0‘(6)/’0,,,+1tm+1| < kmtm (]-/km+1tm+1) (lkm+1 tm+1/kmtm - km+1/_Ltml
< kmtm(llkm+1tm+1 =+ IL - km/tm+1 l/Lkmtm)
<L+ Eptplkms1bni).

This is much smaller than 1/n,,,, for large m. The relative number of e:s with o(e) =0
is O(t3"?) which is also much smaller than 1/n,, ,. Thus 6° is proved. 5° obviously holds
with 1 on the right hand side. It remains to verify 4°.

Suppose that two different N,:s have a common point (j, jo, +k,) =(J, jo, +k;) Where
01, %4 =04, k5. Then g, +0,. All other elements in the intersection of these N ;s can be written
(%> 201+ 1) = (¥, x0a+kz) Where |y —j| <tpiy. If |y —j|=p then 0<p <ty and (4, pe,)=
(1, ugy) that is u(o, —e,) is divisible by #,,. This gives u>t,/|o; —0z| Ztnfv. If t,/v>ny4
then 4° follows. We have t,/v~ Lt,2/kp 1~ knt® [tyi1Kpmiq. This has the order of magnitude
3 +2-a+1) where the exponent is positive by assumption. Thus 4° holds for large m and
Theorem 1 is proved.

It has recently been proved by Kwapien, Figiel and Davie that the method of
construction in this paper can be used to get subspaces of 17 without the a.p. for all
p>2. For p<2, however, the problem remains open. Also the log dim (M,) of Theorem 1
has been improved to a positive power of dim (3£,,). Because of the way we have worked with
symmetries in this paper our method does not give an immediate idea of how to
construct a Banach space which has the b.a.p. but which does not have a Schauder basis

It might be an interesting task to try to construct such a space.
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