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1. Introduction

1.1. Statement of result. The most striking achievement of R. Nevanlinna’s theory of
meromorphic functions is the Deficiency Relation: if fis a non-constant meromorphic
function defined in the complex plane, then its (Nevanlinna) deficiencies d(a)=d(a, f)
(@€ C*=CU{o}) satisfy 0<d(a,f)=<1 and

> s@=2 (1.1
C*

(for definitions of these terms and general information see [18], [17], [22], [23]). Those
(extended) complex numbers for which 6(a)>0 are called deficient values.

In 1929, Frithiof Nevanlinna [21] proposed the following conjecture concerning
functions extremal for this relation:
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CoONIJECTURE. Let f(z) be meromorphic in the plane and suppose the order A of

satisfies (T(r)=1(r,f))

A=limsup 0870 _ o (1.2)
row log r

Then if
IOES: (1.3)

we have
2) is an integer =2; (1.4

if a is a deficient value, then

&a)=1""p(a) where p(a) is a positive integer; (1.5
each deficient value is an asymptotic value. (1.6)

The central result of this article is the
THEOREM. F. Nevanlinna’s conjecture is correct.

Significant partial resuits have been obtained by A. Weitsman [26] and this writer
[4]. Weitsman proved that hypotheses (1.2) and (1.3) imply that the number of deficient
values is <24, and I established a weak form of (1.5): each non-zero 6(a) may be
written as d(a)=(A*)"'p(a) where A*<A, and both 24* and p(a) are integers. The
theorem here implies that A*=A.

In the special case that f is entire (or, somewhat more generally, that 6(e,f)=1)
the theorem has been known for many years [10], [11], [24]; the only change is that (1.4)
becomes: A is a positive integer.

The deficiency relation (1.1) is a special case of the more general inequality

> {s@+6@) <2, (1.7)

where 6(a) is a non-negative term which measures the branching ‘‘over” w=a
(w=f(2)). It is interesting that equality in (1.7) is considerably ‘‘easier’’ to achieve than
in (1.3). For example, (1.7) holds for solutions to a large class of ordinary differential
equations [30, Chapter 5], and if f is any polynomial of degree n, then
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T {6(a)+6(a)}=2—n""!, although all deficiencies d(a) (a%) are zero. It is also possi-
ble to find functions of any order 4 for which (1.7) holds, with no algebraic relations
between A and the numbers 6(a), 6(a).

The ideas of [4] and [5] play an important role here, but an effort has been made to
make this paper reasonably self-contained.

1.2 Outline of proof. The most familiar functions which satisfy (1.2) and (1.3) are
the exponential functions f,(z)=exp(z”). The behaviour of these functions is very
simple. Of course, 3(0)=d(=)=1. Further, the plane divides into 2p congruent sectors
D; (1<j<2p); in the odd D, f, tends to 0, and f,— inside the even D;. The remaining
values are assumed regularly near the boundaries of the D;.

Now let f be the function of our theorem. Our goal is to construct a quasi-
conformal modification of f(z%), for z sufficiently large, such that

o(flg@N=£©) (E>R)

with p=24, for certain quasi-conformal maps w and ¢. Quasi-conformal modifications
played an essential role in [4], and in Chapter 4 we give a self-contained introduction to
them. Almost all work in this paper is to show that f or a Mébius transformation of f
(which may be chosen locally) shares the value-distribution properties of f,,(z).

Until §7.8, we work locally in the Pélya peak annuli of the z-plane. Recall that the
Pélya peaks (of order 1) of T(r) are real-intervals on which

T(") < {1+0(1)} T(o,) (é)‘ A o, <r<44’g,) (1.8)

where g, and A, —; cf. [18, p. 101]. Corresponding to (1.8) are the annuli
A=A ={(A4)"0,<|zI<A4,0,}, (1.9)

in which we work. Only in Lemma 7.7 of §7.6 we are able to obtain formulae which
describe the behavior of fin the subannuli %, of A,, where

A=A, ={A;"0,<lzd<A,0,}; (1.10)

although A,—, the ratio A,(A’)™' tends rapidly to zero. Yet to pass from this to the
global result takes little more space.

A key result from Chapter 7 is needed to go from knowledge of fin the U’s to
global information. This is Lemma 7.5 (§ 7.4) which asserts that (1.3) and (1.8) imply
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that 24 is an integer greater than one. Since (cf. [7]) the set of A for which (1.8) is
possible forms an interval, it follows from Lemma 7.5 that not only (1.4) holds, but a
weak form of (1.8) is satisfied for all large r: given £>0, there exist C=C(¢g), ro=ro(€)
such that

r Ate
CT(Q)(—-) r>9>r,
0 .

T(ry = (1.11)

r A—¢
CT(p) (—) o>r>r,.
(¢

While we are not permitted to use (1.11) until after § 7.4, we note that it is weaker
than (1.8) when o=p, and (A))~'0,<r<(A})g,. Until Lemma 7.4 has been established,

we shall mention, when using (1.8), that a similar inequality holds if (1.8) is replaced by
(1.11). This means that once (1.11) is known, the arguments which have been applied to
the A may be transferred to any sequence of annuli {A;'t <|z|<A,t,} where A, and

t,—. It is this fact which leads us so quickly to the global result. In this paper, we will
use e=} in (1.11).

Since the A, of (1.8) will be diminished in our work until they become the A, in
(1.10) and since any subsequence of the {g,,A,} satisfies (1.8), we make the inessential

a priori condition

Al <ol (1.12)

It is now possible to outline Chapters 2-6, in which fis studied only in the ;. The
reader should keep the behavior of S (2)=exp(z’) in mind when reading this. Choose a
complex number a with 6(a)>0 and consider the subsets of A, (cf. (1.9)) for which

|f(2)—al<e, (1.13)

for a sequence ¢, which slowly approaches zero. The definition of deficiency

5(a) = liminf ™9 1.14

(@)= lim inf= (119

implies that these subsets meet each circle {|z|=r} ((A")"'o,<r<A’e,). In Chapter 2 we
say considerably more. First (Lemma 2.1): the sets D=D(a) which contribute to d(a) in
(1.14) may be thought as being simply-connected, whose f~images cover the punctured
discs {0<|w—a|<e}. Standard potential theory (Lemma 2.3) then shows that if A, is
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chosen so that A /A, is sufficiently small (but still A,—) then at most 2A=0(4) of
these sets D(a) (as a varies) contribute to (1.14) relative to the A, of (1.10). By

o) (1.15)

we mean any numerical expression which is bounded, with bound depending only on
the order A of f. This role for Q(4) will be convenient throughout this paper.

These Q(1) components are the basis of all further analysis. In Chapter 3, we
remove a union B* of Q(4) small logarithmic rectangles from %,,, and in the Decomposi-
tion Lemma (Lemma 3.2) show that %,—B* divides into Q(4) subsets F, in each of
which f has two near-Picard values: there exist a=a(F), b=b(F) among the full set of
deficient values such that the counting-functions satisfy

n(a, F)+n(b,F)<CAY * T(o,) (1.16)

where & is some positive constant which depends only on f.

Inequality (1.16) is a natural re-interpretation of hypothesis (1.3). The advantage of
a condition such as (1.16), is that it suggests the possibility of modifying f so that the ‘
“‘omitted’’ values a and b are always 0 and .

The theory of these modifications is the subject of Chapter 4, although in Chapter 4
they are only constructed in ‘‘admissible’’ logarithmic rectangles. Much of this infor-
mation is needed for later work, and Lemma 4.13 is needed in Chapter 7 to show that
the behavior of f in any union of Q(1) small logarithmic rectangles (such as B* in
Lemma 3.2) is negligible. Unfortunately, it is not possible to make a single modification
of f which is defined in all of % ; rather, we consider f(z*) and construct Q(4)
modifications G,, ,(z), each valid in a specific subannular region &, , of % ; cf. (5.1)
and (5.28). These G,, , depend on m, but we find that

(G/G,)— (G, /G, ) (1.17)

is an error term in &, N, ., .. Since 0 and « are near-Picard values for the G’s, we
may ‘‘divide them’’ from G-and make little change in the growth of G. Thus, for each m
we let K(z)=G(z) P(z) (P an error term), so that K=0, o« (cf. (5.31)) and then expand
each (K,/K,)* in a Laurent series (cf. (6.21)). The key result in this paper is Lemma
6.3, which uses (1.16) and (1.17) to show that these Laurent coefficients are essentially
independent of m. Once this is known, the parallels to the classical entire function case
(cf. [10, 11]) become very clear. For example, Lemma 7.5, which implies (1.4), reflects
the tension between (1.8) and the usual convexity of means of analytic functions.
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It is natural that these methods depend on the invariance of some differential
operator as in (1.17). F. Nevanlinna was led to his conjecture by studying the Schwar-
zian derivative {f, z}=(f"If") =} f"If )2, under the special assumption that f has no

multiple values; then {f,z} is a polynomial, and so f may be analysed by asymptotic
integration [19, §§ D.3, 7.4]. While {f, z} is invariant under all Mébius transformations,
(1.17) is only invariant under the transformation Z—Z~! as well as Z—tZ (t€C), but
this is all that is needed here.

There is a fundamental reason why this problem is more complicated for mero-
morphic functions than entire functions. If an entire function f(z) satisfies (1.3), then
0(0,f)=08(,f")=1, so we may study g=f'(P(z))"! in place of f’, where P is a
canonical product taken over the zeros of f'. This g is a globally-defined function, and
always satisfies (1.16) with a=0 and b=, and the idea of [10], {11] is to study the
Taylor coefficients of log g.

Nothing so straightforward will work for meromorphic functions, since multiplica-
tive terms are certain to introduce non-zero residues at the poles of f. However, when
functions G(z) are constructed in Chapter 5 so that they have few zeros and poles,
these singularities may be removed very simply. But to construct the G’s requires most
of this paper.

1.3. Quasi-conformal modifications. The idea of using compositions by quasi-
conformal mappings to study meromorphic functions goes back to Teichmiiller and is
the theme of [17, Chapter 71. 1 learned of this method with Weitsman, and [8] is our first
use of these ideas. A full exposition, with more history, is in [6, Chapter 2].

The method depends on having a large collection of functions w. The next result is
essentially Lemma 8 of [6] and adequate for our purpose.

LeMMma 1.1. Let complex numbers y and o be given with 60. Then for each 7,

0<7<(50)"! and M'=1 we may construct a quasi-conformal homeomorphism w(W) of
the plane with

el =122, < 39 (1.18)
Wy

such that

o(W)=y+oW (W|=M) (1.19)
oW)=W (W|<sM') (1.20)
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so long as M is chosen with

nlog (M/M') > C max (ly|, [log |o}| +7)

(1.21)
olog (M/M’) > Cmax (|y|, [log|o||+7),
where C is an absolute constant.
Finally, we may choose w € C* with
ow(W)| < CIW|~ [o(W). (1.22)

Proof. All but the last assertion are in [4]. Let S=|W|, and construct smooth
functions a(S$) and b(S) with [Sa’(8)|+|b'(S)|<imin (o, ), with the boundary conditions

a§)=0 (S<M'), a(S)=logo (S>M),
b(S)=0 (S<M’), b=y (§>M);

conditions (1.21) ensure that this is possible. Now consider
o(W) = ™S W+b(S)

(this is a simpler formula than in [4]). Elementary manipulations, such as in [4], give
(1.18)~(1.20) and (1.22). For example, we find that |o(W)|=CSe*S and |w,W)|<Ce*®;
thus (1.22) holds.

Lemma 1.1 will be used in the following manner. Let a; and a; be two of the
deficient values, choose o=(a;—a)~!, y=—0, and T; be the Mébius transformation
T{w)=W=(w—a)/(w—a;). Then the composition wi{W)=oT(w)=w(w—a)/(w-a;))
satisfies (1.18) as well as

w—a w-—aj
w'l(W)___ 2 ( <M’>’
w—a, w—a;
. (1.23)
w (W) =—1 ( y >M>.
w—a, w—a;

1.4. The hierarchy of perameters. Several families of parameters will be used,
which depend on the growth of the numbers T(p,), and the rate at which the limits

implicit in (1.3) are attained. We have already introduced A, and A’ in (1.9) and (1.10),
and have suggested that A, is small compared to A’. In general, if a, and 8, tend to

zero, we write a,<f, to mean that for each fixed k>1, a,,=o(1)ﬂf, as n— . A chain of



PROOF OF A CONJECTURE OF F. NEVANLINNA 9

such relations means that each adjacent pair satisfies them. Using this notation, we
shall require

(logT(e ) '<d,<e,<(A) ' <py,<y,<0,<A;, (1.29)

and will freely impose further restrictions on these sequences if they are consistent with
(1.24).

In our various constructions, it will sometimes be necessary to limit the rates at
which any other than the left-hand sequence in (1.24) tends to zero. What (1.24)
controls are the relative rates at which these can happen, but, for example, (1.24) is
consistent with any of the &’s, ...,(A,) s tending to zero arbitrarily slowly.

1.5. Acknowledgments. 1 learned of this problem in the late 1960’s from my
colleague A. Weitsman who in [26] obtained the first non-trivial conclusions from
hypotheses (1.2) and (1.3), and I have had many useful conversations through the years
with him.

The note [16] of W. H. J. Fuchs plays an important role in this work, and the germ
of Lemma 7.5 is there. Estimates for means of logarithmic derivatives are basic here
(cf. Chapter 6), and the techniques used go back to Fuchs’s articles [13) and [14].

I have profited from several suggestions from A. Baernstein and very thorough,
patient and helpful comments from W. H. J. Fuchs and W. K. Hayman. I especially
thank Walter Hayman for giving so generously of his time. It was Professor Hayman
who saw the need for Lemma 4.8, and both he and Professor Fuchs tightened several
arguments. Judy Snider and Jane Brown have patiently produced more versions of this
than any of us had expected.

Finally, the friendly encouragement shown by my family and many mathemati-
cians has helped maintain my spirits during the mostly frustrating efforts to prove this
theorem.

2. First consequences of (1.3); Significant components

2.1. Preliminary observations. The second fundamental theorem is a consequence of
R. Nevanlinna’s inequality that for any finite set a,, ..., a,€C¥*,

i N(r,a) = {q—2-0(r)} T(n), 2.1

i=1

N(r,a) = {1-0(a)—-oM} T (G(=1,...,q 2.2)
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where here and throughout this section d(r) is a function for which
o(r) >0 (r— ). (2.3)

Since (1.2) is assumed, (2.1) holds for all large r; in general an exceptional set E of finite
r-measure must be excluded. Now (1.3) implies that if we choose a;, ..., a, properly,
we also have

i N(r,a)<{q—-2+0(N} T(r) (r—> ), 2.4
i

where (2.3) holds again. Also, we have that g<21 [26]. If g=2, our results are well-
known ([24], [10], [11]); the methods given here work when g=2, but some construc-
tions are vacuous (for example we may always take a and b in (1.16) to be the two
deficient values) and thus we usually imagine that g>2.

By considering Tof, T a Mobius transformation, we may assume that w= is a
normal value in the sense that

[ has no multiple poles, 2.5)
m(r, ) < d(r) T(r) (2.6)

for some d(r) as in (2.3). The function 6(r) tends to zero so slowly that

N<r, 0, fi> <8() T(). @.7)

Throughout this article we must control error terms. Since f has at least two
deficient values, there exists a positive constant A=h(f) with

dlog T(r)

=10h>0 >r,), 2.8
dlogr 10 (r>ry) 2.8)

and we suppose that A<<10~! (this is proved in [27]). Inequality (2.8) implies that
A=10h (4 is defined in (1.2)); however Weitsman in [26] already has proved that 1=1.
By restricting the rate at which A!— in the Pélya peak inequality (1.8), we may

assume that if 6(r) is any of the functions (2.1), (2.2), (2.4), (2.6) and (2.7), then

sup {8(N T(N} < 6t T(o,, 2.9
A) o, <r<dAlo,

where 9, is from (1.24). Since [22, p. 25] if g is meromorphic, we always have
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r! f log* M(s,g)ds < C(k) T(kg) (k>1)
we may adjust A’ slightly so that

L1 . , :
ilog _—I - |+log If(@I<CTQ2A0,) (zf=A,0,),

i=1

(2.10)
+log* |f( < CTQ(A) "0, (z=(A)""0,.
=1 f( )
Similarly, an appeal to [13, Lemma 1] shows that we may assume that
5: f L@ |47 < cT2a) o). @.11)
in Ja=apte, | F@—a;

In (2.10), (2.11) and throughout, C is a constant which depends only on the function f,
at least when 7 is large in (1.8)—(1.10).
Since we will usually be in the Pélya peak annulus (1.8), the dependence on n will
be suppressed in general, save in a few cases when we use it to avoid ambiguity.
Choose a sequence e=¢, which approaches zero sufficiently slowly and consider

the sets {|f(z)—a<e} NY’, 1<i<q, where U’ has been introduced in (1.9). Obviously,
when (A~ 0,<r<Ap,, m(r,a) (asymptotically) is obtained by integrating
'—log | f(rei")—a,.| over these sets, and the purpose of this and the next section is to show
that only Q(41) components of {|f(z)—a,<¢,} relative to U’ need be considered (the

convention concerning Q(4) has been described in (1.15)).

LemMma 2.1. Let {g,} be the Polya peaks of order A of T(r). Then if d,, ¢, and
(A tend to zero sufficiently slowly, consistent with (1.24), we may find unions of
disjoint simply-connected components {D}; relative to {|z|<A'p} such that if D€ {D},,
then

lf@-al=e, (z€E@D)N A (2.12)
and
q
5: n(r,a;, U {D})+n(r,», U {D})<Cd,T(p) (A To<r<A'p). 2.13)
i=1 i=1
Moreover, all components D of f~'{{w—a,|<e} which meet {|zZ=1A'0} and {|z|=A'g}
belong to {D},.
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Remarks (1) In (2.13) we are modifying the definition of counting-function by
letting n(r, a,J) be the number of solutions to f(z)=a in Jn{|z|<r}. We also define

N(r,a,J)=f (n(t,a,N—n(0,a,n) t™ dt+n(0,a,))logr.
0

(2) Estimate (2.13) is more cumbersome than the corresponding conclusion in [5],
where it is written simply as o(7(p)). At this stage we cannot replace the right side of
(2.13) by o(T((A") "' p)) since it is consistent with the Pélya peak inequalities (1.8) that
the ratios T((A") "' o) [(A’)* T(p)]™! tend to zero arbitrarily rapidly.

Proof. Choose a (small) positive number &, so that the balls {Jw—a;<2eo}
(1<i<q) are disjoint. For a fixed e<¢y and 1<i<q let A;={|w—a;<e} and, for r>0, let
D; (=D{r)) be the components of f~!(A, relative to {|z|<r}.

We now follow the ideas introduced by Ahlfors in his study of covering surfaces
({18, Chapter 5], [23, Chapter 13]). Thus each D; is an island or tongue (relative to
{|z]<r}), according to whether D; is compactly contained in {|z|<r} or not.

We start with a simple consequence of (1.3) and Ahifors’s theory. Let S(r) be the
area of the Riemann image on C* of {|z]<r} under fand L(r) be the length, on C*, of the
image of {|z]=r}. In geometric language, S is the mean-covering number (over C*) and
L the length of the relative boundary. Then (cf. [18, p. 148]) there is a positive constant
h which depends only on the {g;} and & such that

i > ((D)-n (DY) =(q-2) S()—hL (). (2.14)

i=1 D

i

This sum is over all islands D; which are compactly contained in {|z|<r}, and n(D)) is
the multiplicity of D; (i.e., the cardinality of f~'(w) for w€A)). Also, if o(D,) is the
Euler characteristic of D;, then n;=(n—1)+(¢+1), is non-negative, and called the
excess of the island [18, p. 147]. In particular, each term n(D;)—n(D;) which corre-
sponds to an island of multiplicity m>1 satisfies

n(D)—n(D) <inD)). (2.15)

(We would like to record two observations concerning (2.14) which influence our
approach. First, (2.14) is a general result, which holds for general exhaustions as long
as we measure length and area with the spherical metric [23, pp. 324, 325, 341]. Also,
the “‘error term’’ L(r) in (2.14) may be replaced by the length of the relative boundary
which lies outside the tongues relative to {|z|<r}.)
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In the next inequality as well as in (2.18) and (2.19), I, refers to summation over
simple islands (i.e. islands having n(D;))=1) and L,, over multiple islands. Then (2.14)
and (2.15) yield that (cf. [18, p. 147])

(@=DSO-HLO< X, X nD)+D, 3, (nD)=n,(D))
<> > n(r,a,D)+} >, > nlr,a,D) (2.16)
= z n(r, a,-)—%E 2 n(r,a, D).

This inequality is to be integrated with respect to r~!dr. Since T(r)=[" S(¢) tYdt+o(l)
(18, p. 131, and-[20] for each A>0

J LOC de<TO" >y, 2.17)

1

the fundamental hypothesis (1.3) (cf. (2.4)) lets us conclude that
>3 f n(t, a, D)t dt = o)) T() (2.18)

from (2.16).
The integrand in (2.18) is an increasing function of r. It is then no loss of generality
to retard the rate at which the §,—0 in (1.24) and (2.9) so that

> D n@A’e,a, D)< 82 T(e). (2.19)

We use (2.18) and re-examine the standard proof of (2.14) (cf. [18, pp. 146-7]; our
aim is to get a bit more information than is contained in (5.27) thereof). We consider the
covering of {|z]<r} over the Riemann sphere C* for a fixed r>0. We first remove all
tongues D whose image under f “‘lies over’’ the various A; (1<i<g). What remain are
certain simply-connected regions G’. Next, remove all islands D which are over the A;
from the G'; what remain are certain domains G which are mapped by w=f(z) to the
region C’, where C’ is C* with the g discs A;={|lw—ai<e}, (1<i=q) deleted.

We divide the G’ into g+1 classes. G' is a G if it is not compactly contained in

{lz|<r}, and G’ is placed in G| (1<i<q) if it is compactly contained in {|z|<r} with
i q
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|f(z)—a)|=¢ on 3G'. Those components G which are contained in a G| (0<i<q) are
denoted by G;, and we let 4, be the union of all G,and %, the union of the G, (1<i<g).

Recall that each G is mapped by f onto a covering of C’, and [18, p. 136] C’ has
Euler characteristic equal to (g—2). Hence [18, p. 146]

max (0(G), 0) = (g—2) Sz(C")—hL(C") (2.20)

where, if I(C’) is the area of C’ on C*, we have
Se(CH = {I(C’)}_'f 0F 1A+ PP dxdy
G

(= mean covering) and L is the length of the portion of the relative boundary which
projects onto C’. Since always o(G)=—1, we have that max (o(G), 0)<o(G)+1, and so
(2.20) implies that

Z (e(G+1)= (q=2)S¢(C)—hy Ly (r) =(q—2) S¢(C')—hL(r). 2.21)
%

Next, if G is a G,. with i=1, then LG,.(C’)‘_“O and since g>2, (2.20) implies that
Q(G-,.)>0. Each inner boundary of a G,. separates G,. from an island D, and each island
inside G is on an inner boundary of exactly one G_,.. Now Q(G-i)+1 is precisely the
number of inner boundary components of G, [18, p. 136] so now instead of (2.21) we
have that

i E (¢(G)+1) = number of islands D c ¥,

i=l G
= > nD)- Y, n(D) 2.22)
Dc, Dc
n(D)>1

= > n(D)-8T(0)

Dc ¢,

in view of (2.19).
Since L (C)=0 (1si<q), fassumes every value in |w—a|>¢ (including =) with

the same multiplicity in each G, which is Swe) (C), where S(UG-)i(C’), is the mean
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covering over C’ from the G which are contained in a G;. In particular, we may take
D=D; for any of the (g—1) choices of j+i and deduce that n(Dj)=S(UG-)l_(C’). Thus the

last expression in (2.22) is equal to

TS n(D)+(g—1) S4(C")~6*T(o).

i=1 D,cUG!

We now sum (2.21) and (2.22) and recall [18, p. 133] that S(r, C')>S(r)—hL(r); thus

S =3 3 n(D)+(q—2) Sy, C")

Ge{lz<r} i=1 D;cUG]

+(@—1) Sg(r, C")—6* T(¢)—hL(r) (2.23)

= i n'(r, a)+(q=2) S(r, C)+S4 (r, C)— 82 T(@)~ hL(r),
i=1
where n’(r,a) is the number of solutions to f(z)=gq; in each G/.

According to [18, p. 147], the left side of (2.23) is precisely L [n(D)—n,(D)], where
the summation is over all islands in {|z|<r} and the non-negative term n(D) has been
introduced in (2.15).

Thus, if #"(r, a;) is the number of solutions to f(z)=a; which are assumed in tongues
relative to {|z]<r}, we obtain from (2.23) that

in(r a)= i "(r,a)+ii 2 n(D)

tI]chUG

>i n'(r, a)+i§’, > {nD)-n,D)}

i=1 j=1 DcUG

(2.24)
> i n'(r, a)+ D, (0(G)+1)
i=1 G

=Y n'r,a)+ >, n'(r,a)+(q—2) S(r, C')+Sq (r, C) =82 T(@)—hL().

This inequality is integrated from (A")"!p to 4A’p with respect to dlogr. Thus (1.24),
(2.1), 2.4), (2.9) (2.17) and [18, p. 13] the equivalence of the Ahlfors-Shimizu and
Nevanlinna characteristics yield that
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1A' 44'e
f Sg(r, Cyr! dr+2 [n'(t,a)+n"(t,a) ¢ dt

(7 i J@ante
S{Z N(4A'0,a)—(q-2) T(4A’Q)}—{Z N(A) 'o,a)—(q—-2) T((A')"Q)}

+2T(4A'0)"*+36%(log A") T(0) (2.25)
<C(*{1+log(A")} T(0) < 6T(p).

For 1<i<gq, let {D}, be the union of tongues D; in {|z|<4A'o} which also meet

{lz/=1A"0} and whose outer boundary is mapped to 3A, by f, together with all compact

components of their complement relative to {|z|<A’e}. These {D}, are thus disjoint

unions of simply-connected sets relative to {|z|<A’g}. Then
> n24'0,a, (D))< D, n'(2A'0,a)+n"2A'e, a)+54(24'0,C"),
ij
so (2.25) shows that L, jn(r,a; {D}j) satisfies (2.13). By Rouché’s theorem,
nA'e,®,{D})=(g-1)"" >, n(A'e,a, {D}),
JFi

so a similar bound holds for the poles.
Finally, all this was done for a fixed £>0, and so holds if e=¢,—0 sufficiently

slowly, subject of course to (1.24). For example, for each fixed, &, 0<e<e,, the mean-

coverings S7(r) over any of {|{w—aj|=¢}, {lw—a|<e} satisfy
f S0 ' de ~ T(r) (2.26)

(Cartan’s identity); then by retarding the rate at which ¢,—0 we may arrange that

r 2n
f ! 1 n(t, a+¢, ey do dt—T(r)| <(A") "> T(o)
0 27 J,

2.27)

(Isisq,r=(4)7"0,n—),
with a similar asymptotic equality for coverings over the solid disks {|jw—a/<e,}.

2.2. Significant components. In principle, each set {D}; of Lemma 2.1 may have a
large number of components. We now use some elementary potential theory and show
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that if A/A’ is sufficiently small (compare (1.9), (1.10) and (1.24)) then only Q(4)

components are significant in 2, where Q(4) is described by (1.15). This result is similar

to that of Lemmas 3 and 5 of [4], but the methods are important here, since we will be

considering several different exhaustions, in this chapter, and in chapters 4 and 7.
We begin with a simple estimate on Green functions.

LEMMA 2.2. Let D be a region in {|z|<R}, and let g(z, zo) be the Green function of
D with pole at 2y, |zo|=ro<R. Then

f g(re®, z,) dd < 2z min {log (R/r), log (R/ry)}. (2.28)
Dn{fz|=r} '

Proof. By the maximum principle,

R*~7,z
R(Z_Zo)

g(z, Zo) <log = hR(z’ Zo)-

Thus

2n
fg(z,zo)desj he(re®, z,) d6,
. 0

and [ hr d6 can be explicitly computed, and gives (2.28) with equality.

CoroLrLARY. Under the same hypothesis, let 1<p<x. Then there exists a function
,(s), 1<s< such that

1/p
{ f g(re®, zoF de} <Q, (min(R/r, RIry), (2.29)
Dn{lz|=r}

and Q, is uniformly bounded in each region 1<s<M.

Proof. 1t suffices to take R=1, zy=ro>0 and compute with the function
hi(z, z9)=log |(1—Z 2)/(z—zo)|- The resulting integral in (2.29) is a continuous function
of r and r, in this range, so (2.29) follows.

Remark. More refined estimates may be found, for example, in [28] and [29].

We now produce a subset of Q(4) tongues contained in U; {D}; which will be the
basis of all our constructions.

2-878288 Acta Mathematica 158. Imprimé le 10 avril 1987
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LEMMA 2.3. Let W' be the annulus (1.9) centered at the Pélya peak of T(r). Let the
unions of components {D}; be constructed as in Lemma 2.1. Then we may choose a
subset of s components U 9; of (U{D})nA’ with

s<2+6=Q(4), (2.30)

such that: each component D of 9, reaches {|z|=A'o}in A';

E m(r, a;, D) > m(r, a,.)—C(A')'Sh T(e) (I=i=gq, (104) "o <r<104p)); (2.31)
DES,

if DE D, then DN {(10A)™' 0<|z|<10Ag} is simply-connected in {|z|<A’0}.

Remarks. (1) The s components D of U 9; are called the significant components of
f@n A’ relative to A).
(2) In (2.31) and for the rest of this article, we write

1 1
m(r,a,J)=— logt ————d
J) 2n refcy e |f re'e)—a|

where J is any open set; this complements the notation used in Remark 1 following the
statement of Lemma 2.1, concerning n(r,a,J).

Proof. Let Q be any subregion of %' and suppose |f(z)—a;|<e for some z€ Q. Then
z is in some component D of f~!(A;), as in Lemma 2.1, and according to potential
theory

1 -_
logm = log & 1+Z gg(z’ ZV)-Z gg(z, wﬂ)
(2.32)

1
+|  log———dw/(,DNER,DNQ),
J;man |f(©)—al

where gg is the Green function of DN, the z, and w, are the zeros and poles of
f(@)—a; in QND, and dw, is harmonic measure at z. If D is one of the tongues D,
selected in Lemma 2.1, enlarge D=D, in (2.32) to be the corresponding component of
{D},; this means we may be adding some compact components of its complement, and

thus D now may have poles of f, although (2.13) shows that their number is an error
term.

Hypotheses (1.2) and (1.3) with the extremely elementary bound (2.28) will always
show that means of Green functions are negligible: if A<(20)"'A’, then
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27 2n

gg(reio, z,)d6+ f

0

{3

o Wy 0

gore’, w,) de} < C(A") " T(p)
(2.33)
(10470 <r<10Ap),

where we set g=0 outside DN Q. For D’s contained in U {D}; of Lemma 2.1 this is clear
from (2.13) and (1.24), but (2.33) holds for all D’s.

To obtain (2.33) in general, divide the z and w into classes (I) and (IT). To simplify
notation, let r=z, or w,. Then the pair (¢, D) is in class (1) if {|z|]=¢} ND+@ and DNQ is
contained in {|z|<(14+(4")~*717%")|r|}; the other pairs are in class (II). Since (1.8) [or
(1.11) with e=1] implies that n(r, a)<C(A'Y*! T(p) for r<2A'p, we obtain from (2.28)
that

2m
2 gp(re?, 1 do < C(A')**! T(g) log (1+(A") ™'~ < C(A") " T(p)
on Jo (2.34)
((104) ' o < r< 10A0).

We use (2.24) and (2.25) to show that the number of terms in class (II) is small.
Indeed each pair (r, D) of class (II) contributes to n"(r, a;) in (2.24) on an r-interval of
logarithmic length at least C(A’)™*~17% Let Z(A'0) be the total number of pairs
(r, D) of class (II), where |r|<A’e. Then (2.25) yields that

24’0 i
CZ(A'Q) (A< f n'(t,a) ¢ dt < 8T(0);

since Q<W’, (1.8), (1.24) and (2.28) now give that

A'o
r

2n ,
2 ga(re®, 1)do < Z(A'o)log (ATQ> < C(A"Y*Dslog (

) T(0) < C(A") ™ T(o)
{an Jo

((104)™' o < r < 10A0),

and this and (2.34) establish (2.33).

Now we choose Q=" in (2.32). It is necessary to estimate the boundary integrals.
On {|z|=(A")""p} we use the uniform bound (2.10), (2.8), (1.24) and the obvious fact
that w(z, Dn{jz|=(A") "o}, DNA')<I. On {||=A"0}, we have (2.10) and the classical
estimate [15, p. 102]

A'e
(2,14, DY) $4exp{——n f ?g(tT)}’ (2.35)
2040
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where I,,,=Dn{|z/=A’e}, and 6(¢) is the angular measure of Dn{|z|]=t}. Thus we
obtain using (1.8) [or (1.11) with ¢=1] that

j log—1— dw, < CTQA'0) 0(z, L., DN A+ CTRAA) ' @)
Dnag

|f—a _
< CIi(A’)’1+l exp {—n J’Alg -it-—}+(A’)_5h] T(9).
2040 to(t)

Thus suppose D meets {|zj=A’¢}. Lemma 2.1 ensures that if D also meets
{lz]<10Ag}, then DcU {D},. Thus the harmonic means inequality [15, p. 108] and
(1.24) show that if |z|<10Ap, then

(2.36)

(2,14, DNA') < CA'IA) 4V <(4) 2 (2.37)

for all but at most 2A+6=Q(4) components D of U {D};nY’. We use (2.37) and (2.35) in
(2.36), and then (2.36) and (2.33) in (2.32). Thus, if |[D(r)| is the angular measure of
Dn{|z|=r}, we find using (1.24) and (2.32) that in the components D for which (2.37)
holds [and in particular for all D’s which do not meet {|z|=A’0}] we have

>N m(r,a, Dy<loge™ D, |D()|+CA") " T(@) D, ID()]+CA") " T(e) < C(A)) ™ T(e)
D D D

1

((104) ' o < r<10Ap),

since A<{; in (2.8). This proves (2.31).

Each circle {|z]=r} with large r must meet D’s from at least two &, since g=2. Let
D be a significant component, so in particular D is a component of %'nU {D};. We
have constructed the {D}; in Lemma 2.1 to be simply-connected in {|z|<A'0}. Suppose
now that a component of D, of DN {(104)7' o<|z|<104@} were not simply-connected.

Choose j*i, and let 9} be the components of &; which meet {|lz/=(104)~" o}. Then for
large r, (2.31), (2.8) and (1.24) show that

m((104)™" ¢, a;, 9) = }6(a) T((104) ™' )~ C(A") ™ T(@)
=C{A™"—(4) " T(e)
=CA™'"" T(o).

However, D, prevents any D of ¢ from reaching {|z}]=A'g}, so the right side of (2.35)
vanishes, and this simplifies (2.36). Thus the analysis of (2.32) leads to
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m((104)"'0,a;, ) < CA) " T(@) (i+i.

By combining these last two inequalities, we would have a contradiction to the

understanding of (1.24) that (4')"'<(4)~!. This contradiction completes the proof of
Lemma 2.3.

CoRrOLLARY 1. For 1<i<gq, let 9; be the union of the Q(A) significant tongues D of
U’ described in Lemmas 2.1 and 2.3, and let

2z

S@i(r)=—21; f ng(r,as+ee®)do, (2.38)
0

where ny(r,a;+¢ ey counts those solutions to f@=a+e e® which arise from points of
3%,. Then

] f Sg (Dt~ dt—d(a) T(r)

<CANY™T@) ((10A)'o<r<104p). (2.39)

Proof. Let ;N {|z|=r}=U(am(r),B.(r). Since |f(z)—a|=¢ on 3%;, the Cau-
chy-Riemann equations and the argument principle give (cf. [4, Lemma 1])

d - ' —a) =
2ar = m(r, 0, @) =loge™ 3 r{B,—an}+ X A, 050 (a’gf—a,-)

n

=loge™! Z r{ﬁ:n—a:,,}-i-S@i(r)-i'n(r, o, D)-n(r,a, D) (2.40)

- E A arg——l—
a, (A '), 8,440 o) f-a, ’
Now

<4n,

f , > (Bl—aL)dr
Al

¢ tends slowly to zero as n—, and we also have (2.11) and (2.13). Thus we deduce

(2.39) on integrating (2.40) from (A")"'o to r and recalling (1.24), (2.8), (2.13) and
(2.31).

Remark. Note that (2.40) may be applied to any collection of components D such
that |f(z)—a|=¢ on each 8D. Thus for 1<i<q, let S,(#) be the residual covering of

{lw—aj=¢}. This refers to the contribution to the total covering SAD) (cf. (2.27)) which
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is not included in S, (#) in (2.39) nor in S;(#), the contribution from simple islands in

{|z]<t} (this is estimated from below in (2.14) and above in (2.1)). Thus (1.8) [or (1.11)
with e=1] and (1.24) give the

COROLLARY 2. The residual coverings Sq satisfy

84¢
f i Sa(n 17" dt < C(A) ™ T(o), (2.41)

i=1

840
> nt,a, R)t™ dr< CA") > T(o). (2.42)
Proof. The previous paragraph justifies the following lines:
840 84p
> f Sa) ' dt = > f [S7(0—Sa(0—Si(0) 17" dt
<CT(BAQ) [q+(A") " +(A") = 8(a)—(g—2)+0]
<CA**!(A")™ T(e) < C(A") ™ T(o),

which is (2.41).
Inequality (2.42) is a consequence of (1.24), (2.13) and (2.19). Thus, let n (¢, a;) be
the number of solutions to f(z)=aq; in simple islands in {|z]<¢}. Then

84¢
Z f [n(t,a)—nt,a)lt " dt< { j N@BAg,a)—(q-2) T(8AQ)+6T(Q)}
1 i=1
<26T(0) < C(A") " T(p).

Remark. Because of estimates such as (2.41) and (2.42), we let k(r) be a generic
non-negative function such that

8A¢
f k(t) ™' dt < C(A") " T(p). (2.43)
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3. The Decomposition Lemma

3.1. A negligible grid. Lemma 2.3 will be combined with Lemma 3.1 below to study
value-distribution by means of the argument principle. If f* is the spherical derivative
of f, (2.17) becomes

fF(2) drdo < T(r)"**" 3.1)

{1=|zj=r}
for large r. An immediate consequence of (3.1) and (1.24) is

LeMMA 3.1. Let 1 be a positive number. Then for n sufficiently large, the Pélya
peak annulus W' (cf. (1.9)) may be sliced by a grid

@=[{ra},{6ﬂ}] (Isasa,<w,1s8<f, <) (3.2)
with
T<|0p,~05 <2t (1<p<p,~1) (3.3)
7<|(0,+2m)—6, | <27, (3.4)
r<log r‘;“ <21, 3.5)
—r<log—1 <0, O<log—"r <7 (3.6)
Aan'e '
such that
> f i F#(r, e rdo+>, f | f#(re“’ﬂ)|ﬁ“gsr(g)2’3. G.7
a Jo B Jn,

In fact, Lemma 3.1 holds so long as t,,>(A,’,)‘l in (1.24).

These sets {|z|=r,} nA’, {argz=0,} NA' comprise what we call a negligible loga-
rithmic grid. Note that if E is any subset of %', then E may be éunounded by aset E,
such that

OE, c %, (3.8)
and (d=non-euclidean distance with respect to the metric r~'|dz|)

d(3E,, 3E) < Cr. 3.9
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Although the (logarithmic) separation of the sides of the grid approaches zero as r—«,

there are limitations to the rapidity. For example, if f(z)=¢%, no 6z can be too near

+7/2, since the spherical length of {|z|=r} n {argz==*7/2} is proportional to r.
Lemma 3.1 will be used with the particular choice

=0, (3.10)

and for this choice of 7, we study our function f relative to a special network of
(logarithmic) rectangles. A logarithmic rectangle centered at z; of (logarithmic) side-
length 20 is defined by

B=B(z)) = {z; log z_? <g', |arg (i,) 7 < o”} 3.11)
Zp %/ |
where zo€ ¥,
|0’ —o|+|0"—0| < 30° (3.12)

and z; is chosen so that (for some branch of logarithm)
z

log (-?)
%

9B, 4. (3.14)

<20’ (3.13)

and, with % the grid of Lemma 3.1,

If B is a logarithmic rectangle in the sense (3.11)-(3.14) and k>0, then kB is a
rectangle similarly defined, except that (3.12) is modified to

|0’ —ko|+|0"—ko| < 30°. (3.15)

The slight inaccuracy of thinking of z, as the center and of 20 (resp. 2ko) as the side-
length of B (resp. kB) when only (3.11)-(3.15) are true is compensated by (3.14).

3.2. The Decomposition Lemma (Lemma 3.2). We now use the s=Q(4) significant
components D€ U %; (of Lemma 2.3) to partition almost all of the annulus %’'. The
purpose of this is to show that the @;s divide a large family of regions £ into
subregions, in each of which f has two near-Picard values in the sense (1.16). Lemma
2.1 shows that all q; and ® are near-Picard in the &;, but the analysis in A'—U &; is
more subtle and depends on properties of plane sets.
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DEecoMposITION LEMMA 3.2. There exists a union of Q(A) rectangles B, so that if
B*=UB,, (3.16)

then the subset W* of A defined by
A* =Y —B* 3.17)

has the following property. Let Q be any region in N*, whose boundary relative to
A*UOB* consists of Q(A) closed Jordan curves with

Rc Y. (3.18)

Then F=Q—U D; may be partitioned into sets Fi,j) (=Hi,j)(Q)) (i*], 1<i,j<q) and
F*=F*(Q) so that the relative boundary of each FE % is contained in 4 and U 3%;,
and '

n(a;, Fi, j))+nla;, Hi,j)) < CA)** T(o). (3.19)

In F*, all values a; are near-Picard in the sense that

i n(a,, F) < C(A") ™ T(g). (3.20)

i=1

Remarks. (1) Inequalities (3.19) and (3.20) complement the bounds (2.13) for value
distribution in U @;. | ‘

(2) The description of the sets i, j) and " is quite explicit. Thus a component F
of Fis assigned to Hi,j) if QNIF includes portions of 39;, 89; (i+/) and subsets of ¢
while 3FN3%,=@ (k=+i,j). All other components F are assigned to #*. More precise-
ly, we place F in HQD) or i, ..., i,) if (RQN3F)—¢ meets a subset of 8@,.1, ...,a@,.p.

The Decomposition Lemma, is motivated by many examples. For instance, if
f(@)=e* and D,={|f(2)|<e}, D,={|f(z)|>¢"'}, then D, and D, are half-planes bounded
by vertical lines. In the region F between D, and D,, f assumes all values w with
log |w||<e but, independent of ¢, 0 and « are Picard values in F. This suggests that the
Picard values g; correspond to the indices i, such that dF<=(U,389%,), and “‘usually”’

there are two such i, at least in R2. This is not the case in R" (n=3), and this difference

is crucial in the construction of quasi-regular mappings in R” which have a large (albeit
finite) Picard set [25].
We now begin the proof of the Decomposition Lemma. Choose ¢>0 and let D be a



26 D. DRASIN

fixed component of U %;. For each {€3DNA’, consider a rectangle B,(¢) as described
in (3.11)-(3.15).

Definition. A component D' EU @; (D'=+D) is called adjacent to D (at &, through
B,) if D may be joined to D’ by a continuum contained in B, which (other than
endpoints) is disjoint from U &;.

The next lemma is proved by an elementary connectedness argument.

LemMa 3.3. Let D' be adjacent to D at £, and &,, and let T({,, &) be that portion
of dDN{|z|<A’o} with &, and &> as endpoints. Let {ET(Sy, §,) with

B(ON[B,(EDUB(E] = 2.

Then no D; (D/+D’) can be adjacent to D at .

Proof. For j=1,2 let z; be a point of D’ which may be joined to §; by an arc y; in
B(£)—(U 2). Since D’ belongs to exactly one component of {|z|<A'g}—D, it follows
that z; and z; are endpoints of a unique arc I'' of 3D’ n {|z|]<A’g}..

Now I'($1,82), T, v, and y, form the boundary of a Jordan region J whose
boundary (other than the arcs T, I'") is disjoint from U 9;. Let £ and B() be as in the
hypotheses the Lemma. If D; (+D') were adjacent at { through B((), then there would
be a continuum in B(§) which connects ¢ to D; without otherwise encountering D or D'.
Thus D; would meet the interior of J. Since we saw in Lemma 2.3 that D; must also
meet {|z]=A'p}, it follows that D; must meet 3J, and this is a contradiction.

3.3. Removing rectangles. Choose DEU @;, and for each D'+D, D'€U Z;, we
construct boxes B,(Z'), B,(L") with &', £"€ANSD subject to two conditions:

D' is adjacent to D at ¢',&" through B(L'), B(E"); 3.21)

further, if I'($’, £") is the arc of 83D N {|z]<A'e} which contains ¢’ and ¢” as endpoints (cf.
statement of Lemma 3.3) then

if D' is adjacent to D at some €D NN’

3.22
then either EET (L', L") or B,(8) N [BAL') U B (L] + D. G.22)

This may be achieved in the following manner. We consider all components D’ which
are adjacent through (at least) two distinct rectangles B({;), B(E;) with &, and &, in
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UAD. Now each D of U %; is a component of A’ which meets {|z|=A’e}, and thus &,
and {, are always in the same component of 3D n {|z|<A'g}.

Under the obvious ordering of points on 8D N {|z|<A’e}, we may assume that
£1<&,. By choosing &’ close to inf&; and " close to sup §,, we obtain (3.21) and (3.22).
To each ordered pair D, D’ thus corresponds at most 2(Q(4)—1) such rectangles, and
thus Q(4) as D and D' vary. We replace each of these B, by the similar B,,, and let B}

be the union of these. Finally, B* is the union of B} with compact components of 2A—B7
and those noncompact components of A —B¥ whose closure meets only one component

of 3. Then B* is also a union of Q(4) rectangles whose (noneuclidean) area is 0.
The set A*, defined by (3.17), is connected.

3.4. The Decomposition Lemma in an ideal case.

LEMMA 3.4. Let F be a union of regions in {JA™'0<|z|<24¢}—[B*U(U D)), each
component of which is bounded by portions of 99,039, (where i%*;j) and a subset T of

4. We assume that T consists of Jordan curves or Jordan arcs, each of whose
endpoints lies on 9%,U3%,. Then as A’—», we have independent of F that

i n(r,a,, F)=(q—2)S(r, F)+n(r, a;, H)+n(r, a; F)—C(A")™* T(Q)—Ce_1 L) —k(r)

: (3.23)
(Ao <r<2A4p)

where L(r) is the length on C* of the image of {|z|=r}, and k(r) satisfies (2.43).

Remark. For each pair (i,j), the set F so described may consist of many compo-
nents.

Proof. Estimate (3.23) follows from the argument principle applied to the function
(f(@)—ay) " (where k=i, /) in the region F(r)=Fn {|z|<r}.

Choose a,+a;, a; and consider

1
Aypparg——-o,
3F(r) f_ak

with 1A~'<r<2A¢. The key estimate is that

AaF(,)argf+ < CHA) ™ T(e)+&™'L()+k()] (A o <r<249). (3.24)

ak‘
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On the level-sets {|f—a|=¢}, {|f~a|=¢}, we find, using the notation suggested by
(2.26), that the change in arg(w—a,) and arg(w—a) is at most S(4Ag) or S7(4A0).

Thus since a,%a,, a ;, this means that on these level-sets |arg ( f—a,)| changes by at most

Ce[S{(4A0)+S(4A0)] < CeT(8AQ) < CeA*™ ' T(g) = o(1) (A") * T(0)  (3.25)

since we have (1.24).

It is next necessary to obtain a bound similar to (3.25) for the change of |arg (f—a,)|
on 3,(r) (where we set 9,(N=0F(n—(39,u3%)). Let {Ua,} (=Uar), {Uai}
(=U af(r) be those subarcs of 3,(r) on which, respectively, |f—a]l<e or |f—a,|>e7",
and let {8} (=6(r)) be the complement of the a’s relative to 3,(r). The length of the
image of 8,(r) is at most L(r)+CT(0)**, since 3,(nNc=%u{|zl=r} and (3.7) holds. In
particular, this gives that

> Asarg(f~a)| < Ce\LM+TEP) (r>147"). (3.26)
B
We next show why

D 1A, arg(f-a)l+ > A arg (f-a)| < CA) * T)+k() (r>14"), (3.27)

by considering the first sum of (3.27) and leaving the analogous estimate of the o} to
the reader (this latter discussion is a bit simpler, since by hypothesis 8(«)=0). Since
Fc'~U 2, and the components of 3F are closed Jordan curves, or Jordan arcs with

endpoints in 99;u89;, it follows that the a, are cross-cuts I of preimages D of
{lw—a,|<e} which are not among the significant components of P,. (Itis to ensure that
the a, be cross-cuts that we require that T consist of Jordan curves or Jordan arcs,
whose endpoints are in U 39,.)

There are two possibilities. First, let I* =I;“k be those arcs 7 such that | f(2)—a,|>Le

for all z€I. Then exactly as in (3.26) we have
> |Aarg(f-a)| < Ce (LIN+T™) (r>1A""0). (3.28)
I*

Next, if n* is the number of arcs I in U a, which are not in I*, then the image of
each I has spherical length |f(Z)| at least Ce, so (2.17) and (3.7) give that
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en*<C Y |fD)] < CLN+T(™).

Now if I is also contained in a simple island D, over {jw—al<e}, the argument

principle shows that |A,arg(w—a,)|<2n, so the total contribution from these I's
satisfies

> Alarg(f-a))< Ce L)+ TP, (3.29)

IcuD,

Another idea is needed to estimate the contribution to (3.24) which comes from the
I's of {a,}—I* which are not cross-cuts of D,’s. Instead, these I's are cross-cuts of
residual coverings %, which were introduced at the end of Chapter 2 and satisfy (2.41)
and (2.42). Thus (2.41), (2.42) and the argument principle show that

2 A, larg (f—ay)| < C(A") " T(e)+k(r), (3.30€)
I€R,

where k(r) satisfies (2.43), and (3.27) follows from (3.28), (3.29) and (3.30). Finally,

(3.24) follows from (3.25), (3.26), (3.27) and (1.24). Since there are (g—2) choices of
ay¥a;, a;, (3.24) yields that

E n(r,a,, F)=(q—2) n(r, ®, F)—C(A")"*" T(0)— Ce ' L(r)—k(r). (3.31)

ki, j

This is (3.23) once we derive the general result: if 9F— ‘5:{893,.], vees Qbik}, then

|n(r,a, F)—S(r, F)| < C(A") " T(0)+ Ce ™ 'L(r)+k(r)
(3.32)

(mjn (la—a))>2e", 1A o <r< 2Ag> ;

in particular, since here OF—%cd%;U3%;, (3.32) holds for a=, and we use (3.32)
(with a=) in (3.31) to get (3.23).

We now prove (3.32). To compute S(r, F), let C* be the sphere with the discs
lw—a]<2¢” deleted (1<i<gq). It is not hard to see that we may replace a, by a (a € C¥)
in the analysis of (3.24) and deduce

Asrpyarg (ﬁ) = |n(r, ©, F)—n(r,a, F)| <(A")*" T(0)+ Cs-'L(r)+k(r)

(3.33)
(@€C* 1A o <r<2Ap);
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the only modification is that here ¢ is to be replaced by £!2, but (1.24) implies that this
makes no difference in the final bound. Next, if a § C*, the first fundamental theorem
implies that n(r,a, F)<CT(A'9)<C(A'Y** T(p). The spherical area of such a’s is O(e),
so the contribution to S(r,F) from the complement of C¥ is at most £(A'Y**! T(p).
This, (3.33) and (1.24) give (3.32).

COROLLARY 1. Let F be as in Lemma 3.4, except that OF<[0%;U 4l. Then

i n(r, ai, F) = (q—1) S(r, F)+n(r, a;,, F)— C(A") " T(0)— Ce " 'L()—k(r)
" (3.34)
(A o <r<2Ap).

Proof. All that need be observed is, since there are (g—1) choices of a,=+a;, the
sum (3.31) becomes

> n(r, a,, F) = (q—1) S(r, F)=C(A") ™ T(0)~ Ce ' L(r)—k(r)

k+i

and (3.34) follows as did (3.22).

COROLLARY 2. Let F be as in Lemma 3.4, except that we suppose 3Fc%. Then

i n(r,a,, F) = qS(r, F))—C(A") " T(0)—Ce"'L(N—k(r) (Ao <r<2A4p). (3.35)
1

3.5. Regions F which meet several 9;. We have observed in Remark 2, §3.2, that
the set A*—U P; is a union of components F, where each F is put in a class
Hi), ..., Hiy, ..., i), or HD). Classes Hi,j), Hi) and HAD) have already been ana-
lysed in Lemma 3.4 and its two corollaries. Our next result uses properties (3.21) and
(3.22) of our construction to reduce the analysis of classes #ij,...,i,) (with r=3) to
these simpler situations.

LemMMA 3.5. Let F*=Hiy, i, ...,1I,) for a given r-tuple with r=3. Then F may be
divided into at most r+1 classes of type Hi), HD), by means of curves and arcs from
the logarithmic grid 4. These curves may be chosen to be Jordan arcs, each of whose
endpoints is in U 3%;.

Proof. Choose FE€ Hi,,...,i,) with r=3, and suppose 3D NAF+®, with DE %,
According to (3.8)-(3.10) and (3.14), each component of 8D nN3F may be enclosed in a
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Jordan domain J whose boundary in ¥’ is contained in % and such that (d=noneucli-
dean distance)

d(3J,3DN3F)<Cr=Co°. (3.36)

Let 9* be the set described in (3.17), and suppose that the closure of FnJ relative
to A* meets a significant component D” for some D"#D, with D" €U ;. According to
(3.36), D" and D may be joined within some B,({), with (€D NF. Thus some D'+D,
D' €U %;, is adjacent to D (in the sense of §3.2) through some B,({), with §o€ODNF.
Properties (3.21) and (3.22) guarantee that B,(') and B,(£") satisfy (3.21) and (3.22),
and so are in the set B* of (3.16). Thus, the portion of F inside J is either in &, j) Gf
J=Fi) or in Hi) (f j=i).

This argument may be applied to each D which meets 3F. Thus we obtain Q(4)
unions of these Jordan domains J which may be divided into r classes $, which
correspond to iy,...,i,. For example, $, consists of those J for which the closure of
FnlJ relative to Y* meets only a component D € 9. The complementary set F—J is,
relative to A*, a union of regions whose closure does not meet 3(U %;) and whose
boundary is contained in %; this set is an D). This proves Lemma 3.5.

3.6. Completion of proof of the Decomposition Lemma. (Recall the statement of
this Lemma as Lemma 3.2 in §3.2).

Let Q be as in the statement of Lemma 3.2. According to (3.5) and (3.10), we may
choose a sequence r,, 1<isSM=M(n,Q) with A~ o<r <r,<...<r,<10Ap, such that

each circle {|z|=r;} <%, and that each region
{ri<l|zdl<ri}—Q is simply-connected. (3.37)

Note from (1.24), (3.5), (3.6), (3.10) and (3.14) that we always have M<A?7~'<o™!2,
Since 3Qc%U(UAD)), (3.37) may readily be arranged. We also let ro=(A")"' o, and let
B, be the annulus {r,_;<|z|<r,}.

As we observed in the discussion of (2.14), property (3.37) allows Ahlfors’s
estimate (2.14) to be applied in each B,—Q. Thus (2.14) and (3.7) give that

> n(r,a, B,~Q)=(g~2) S(r, B,—~Q)~hL(r)—L(@3B,~-Q)

(3.38)
=(q-2) S(r, B,—Q)—hL(N—-CT(@)"".
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Consider next the value distribution in Q,=B,nQ. Each Q,—{U 9;} becomes a union
of AD)'s, Hi)'s, and (i, j)’s, perhaps, as in Lemma 3.5, by introducing additional
cross-cuts from 9. Using (3.23), (3.34) and (3.35), we find that

2 n(r,a, Q)= Z n(r,a;, W)+2 n(r, a;, iJk HJ, k))
Ji

= gS(r, AD)+ D, n(r, a;, FD)

+(g—1)S(r, U 9/7(i))+%{ > n(r, a, U H, j)) (3.39)
JFi

+E n(r, a;, U .°7f(i,j))}+(q—2) S(r, ] 9_‘(1',J')>
7 e

i+
~C(A") 3" T(0)— Ce™ ' L(—k(r).
For {|z|<ro} and in the set B* of (3.16) we use (2.14) and (3.7):

Z n(r,a)=(g=2)S()—hL(r) (r<ry=(4""0), (3.40)

> n(r, a, B¥) = (g—2) S(r,B)~hL()-CT@* (A)'e<r<A'e). (.41

We combine (3.38)—(3.41) and integrate with respect to logr from Ri=(A")"oto
r, where 44p<r<8Ap. An appeal to (2.17) and (2.43) gives that

> N(r,a)- >, NRR,,a) = (q-2) f S dt
Rl

+2 J' S@t, HD)) t_‘dt+j S, U F) ' dt

R R,

+> j n(t, a, F) e dr+}y Y. | [nt,a, F, J)
Rl

i# JR,

+n(t, @, K, N1t dt—Co™I(A") " T(0)+T()*"]log A’

since there are at most ¢~ '? annuli B,. All terms on the right (other than the last) are
increasing functions of r. Thus (1.24), (2.1), (2.4), (2.8) and (2.9) imply that
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I (3.42)
< 0T(9)+Co™[(A") " T(9)+ T(0)**] log A’ < (A") "% T(p).

S(4o, FD)+S(Ae, U Fi)+ Y, n(Ae, a, R+, n(Ag, a;, U K, j))

Inequality (3.19) is an immediate consequence of this. In order to obtain (3.20), we see
from (3.42) that we need only show that

>, n(Ag,a, AD)+ Y, n(Ae, a;, Fi) < C(A) * T(o),

i JFi
but this follows from (3.42) and (3.32). This proves Lemma 3.2.
COROLLARY. In addition to (3.19) and (3.20), we have
S(Ag, FH< C(A")  T(o). (3.43)

Further, if $5(F) is the mean-covering over \w—aj|=¢ which comes from 32,0 Q, then

lsgi(F)_S@j(F)l <CAY " T) (FEHI,J) (3.44)
In(e, Q-4 > S4(Q)| < C(A)? T(e). (3.45)

Proof. Conclusion (3.43) is immediate from (3.42) and Lemma 3.5. According to
(2.13), it is only necessary to compute in the various F’s, but if F is not an %, j), then
(3.20) (relative to Q) applies. Thus (3.44) and (3.45) need only be checked on the
Hi,j). Let FEHi, j). Then A -(arg(f—a,)) is small unless k=i or j and in that case
the significant effect is from Sg,i(F) and S@j (F). Thus if FE i, j), we have by (3.32)

(where L(r)=0) and (3.19) that
S (F)—S5(F)| <|A,r(arg(f~a))|+|As (arg (f-a))|+CA) " T(@)+k(r)
< |n(, F)—n(a;, F)|+|n(, F)—n(a;, F)|+n(a;, F)
+n(a;, F)+C(A") "> T(0)+k(r)
< CA) (),
and (3.44) follows on integrating from 4Ao to 84o.

In order to obtain (3.45), we observe that estimates (3.25) and (3.26) apply when
k=i or j, and, from (3.24), that the only significant contribution to A arg(f—a,) comes

3-878288 Acta Mathematica 158. Imprimé le 10 avril 1987
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from 9FN39;, where FE (i, j). Thus (3.19), (3.20), (3.24) and (3.26) yield after
integrating that

(e, 2)~1 >’ 54(9)| s%{}‘, Y, ltn(e, F)~na, F)~S4 ()|
i+j FEHi,j)

+> |(n<oo,n—n(a,,m)—s%(sz)|}

i* Hi,j)

+C(A") ™ T(g) < C(A") ™ T(o),

which proves (3.45).

4. Applications of local quasi-conformal modifications

4.1. Introduction. In this chapter we make our first use of quasi-conformal modifica-
tions. In the z-plane, rectangles B,(z) (as in (3.11)~(3.14)) were the natural domains;
now we will also use circular regions A(Ey, k), A(Lo, hy, hy) and C(&o, k) with

Ay h) = (|5 o < RIEl}, Ao, By, hp) = Ay, hy)— ALy, hy),

4.1)
C(8y, h) = {IE—Col = hIG,[}
to simplify many later formulas.
Let A* be as in (3.17) and
Ak = {z€UA*,d(z, B¥) = 20} 4.2)

where B* is from (3.16) and d is non-euclidean distance with metric |z|™' |dz|. We will
study f in rectangles B_(z,) with z,€ %X

Definition. Let the 9, (1<i<q) be the Q(1) significant components of f. A rectangle
B=B_(z,) (z,€UY is called admissible (with respect to quasi-conformal modification) if
each component of B—U %, meets 99, for at most two indices i.

If B is not admissible, then for some i a point  of BN38%; would be adjacent in B to
%; for two different indices j (#i). The set B* in (3.16) has been chosen so that this
cannot happen if BcU* (see Lemma 3.3, (3.21) and (3.22)) or in particular if z,€ %¥.

In §84.2 and 4.3, we show that quasi-conformal modifications may always be
constructed in admissible rectangles. This development has two purposes. First, it
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displays in a simpler setting the main ideas which are needed in Chapter 5 to construct
modifications of a more global nature. In addition, two results which are important for
later work will come from our local study.

The most compelling conclusion is obtained in §4.7 (Lemma 4.11): the set F* of
components of A*—(U D) (i.e. those that are not in K, j) where iZj) cannot meet A%
This information makes it possible to construct our main quasi-conformal modifications
(§5.2) in a simple way, since we will need only consider regions F whose closure meets
aD; for exactly two indices i.

In the final section, § 4.8, we will obtain Lemma 4.13 which is needed in Lemma
7.2 to show that integrals over certain B,’s are negligible.

The principle of this chapter is that we may treat logf(z) (after quasi-conformal
modification) as an analytic function in its own right (see (4.44)).

4.2. First encounter with quasi-conformal modifications. The importance of ad-
missibility (introduced in §4.1) is seen in the proof of

LeMMA 4.1. Let B=B (z,) be a rectangle contained in ¥, where A} is defined in
4.2).

Then if n is sufficiently large in (1.9), we may construct a quasi-conformal
modification

H(Z)=w(f(z)) (ZEB) 4.3)
such that (for 1<i<q)
H@) =(f(2)-a)*' (ZEBNI) 4.9
and
H,.
lug2)| = Tf(Z) <n (zEB). 4.5)

Proof. Choose a fixed component D, of BN {U @;} with, say Doc@;, and let, for
example,

1

H@)= -,

(zED,NB). (4.6)

Formula (4.6) thus determines H on zero-stage D’s.
Let {F} be the components of B—U 9;. First-stage F’s are those whose closure in
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B meets 0D, If F, is any first-stage F, the condition that B is admissible ensures that
there is at most one j=#i (j=j(F})) such that the closure of F; meets 3%; in B. In an
analogous manner, components of BN{U %;} (other than D;) whose closures meet
first-stage F’s are called first-stage D’s. In turn, their closures determine second-stage
F’s, and by continuing this process we assign a stage to each F and each D of
Bn{U %}.

We next extend (4.6) to first-stage F’'s. Let F; be such a region, thus
{0F NB}c{69;U8%;} where j=j(F,)*i (we are assured that such j exists, although it
will not be unique when F; € ). Then F, is divided into (F;). and (F)), by

174 >1},

<1}

In order to apply Lemma 1.1, take M'=1 and M=M,, so large that all w; (1<j,k<q)

f-a,
(F)y=F,n { sy

F)e =Flﬂ{

i

may be constructed as in Lemma 1.1 with ““w,-k”w<%'7 and such that (1.23) holds for all j

and k.

We then choose »n in (1.9) so large that the ¢, of (1.24) satisfy e<MJ;l for allj and k
(this is consistent with the condition é<# in (1.24); note from (1.21) that #log M=C).
Once this is done, we can and do define

{w,-,(f(z)) (zE(F).)
H(»)=

. 4.7
[wF GEE) “n

A check of (1.23) ensures that H is continuous in the F;’s, and on 8DyN3F;, and,
further,
f(2)—a; (zEOF;n39)

H@= {Lf(z)—a,.]“ (ZEOF,N3%) “8)

Formula (4.8) makes it clear how to extend H to first-stage regions: H(z)=[f(z)—a] ! ‘
(z€EDc<D) or H(2)=f(2)—a; (if z€ D=}, j*i). This places us exactly in the situation we
confronted when attempting to extend (4.6) to first-stage F’s, and so now H may be
extended to second-stage F’s so that formulas such as (4.8) hold at points in the closure
of second-stage D’s. By continuing this process, H becomes defined in all of B.

It is cléar that H is of the form (4.3), where we take w(w)=w—a; or (w—a;)~!
when w=f(z) with zEUZNB, and w=wi{(w—a)(w-a))(wW=£(z),z€(F1).) or
o={o(w-a)(w-a))} " (W=F(2), € (F)o).
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Assertions (4.4) and (4.5) may be readily verified. For example, (4.4) follows from
formulas of the nature (4.6) and (4.8). Also, (4.6) and (4.8) show that uyz=0 for
z€{U 9D} nB. If z is in an F, then since |u,, o £(2)]|=|u,,(f(2))|, (4.5) follows from (1.18).

“Remarks. If BN{U %;}=0, we take H to be any of the functions (f(z)—a;)/
(f(z)—ay), for any distinct i and j. Note that once a component Dy is chosen, and H is
defined as in (4.6), then H is uniquely defined on all of B if #* nB=@. By this we mean
that there is no subdomain of B—U &; whose boundary consists of portions of ¥ and
arcs of 39; for r+2 indices i [see Remark 2 of §3.2 which follows the statement of
Lemma 3.2].

4.3. A nearly-equivalent meromorphic function. Standard methods allow the func-
tion H of Lemma 4.4 to be replaced by a nearly equivalent (genuinely) meromorphic
function; this depends on solving a Beltrami equation. -

LEMMA 4.2, Let H and B be as in Lemma 4.1. T hen there exists a homeomorphism
of the plane z=y(8), such that if E=@(z), then the composition

GO =H@@) CEy'(B) 4.9)

is meromorphic in y~'(B). Further, by choosing A, and y appropriately (consistent
with (1.24)) we may arrange that

2© _,
4

<y ((304)' o <z <3040). (4.10)

G has 0 and « as near-Pic.ard values in y~'(B) in the sense that

n(0, G,y ' B)+n(>, G,y (B) < CAY * I(g). @.11
Each set y~'(B,(zy)) contains the disc A(z,,30).
Proof. Define v in B by

_H®) 0y o F@  (cp 4.12
¥(2) O o, (f@» o (z€B) 4.12)

(the right equality used (4.3)) and extend v to the full plane by taking

z)=0 (z¢B). (4.13)

Thus ||V, <7.
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Consider the Beltrami equation
Y =vy,) (<) 4.14)

where v is to fix 0, ¢ and . Then [2, Chapter 5] there is a unique solution, {=y(2),
which is a homeomorphism. The function ¢(§), which is our real interest, is the inverse
function to y. Our assumptions ensure that both 9 and ¢ are (14+%)/(1—7) quasi-
conformal mappings of the plane.

If G is defined by (4.9), a computation [2, p. 9] using the chain rule shows that
G¢=0 a.e. and so G is meromorphic.

We achieve (4.10) in an elementary manner. Consider the family of functions
®(0)=0""g(0%) as B and v vary, subject to B meeting the hypotheses of Lemma 4.1 and
[W|l.<n. Then if the n,—0 sufficiently rapidly, and y,—0 and A,—> sufficiently
slowly (cf. (1.24)) we may apply normal family considerations to the family {®}, and
deduce (4.10) since the ®’s tend to the identity map.

Formula (4.9) shows that (4.11) depends on a similar bound for the zeros and poles
of H in B itself. However in the components of Bn{U %;}, HZ)=[f(z)—a]*}, so the
zeros and poles of H for such z are controlled by (2.13). Since B is admissible and
satisfies (3.18) (with Q@=B), the components F of B—U @; may be apportioned to
classes HD), Hi), Hi,Jj) relative to B, much as described after the statement of
Lemma 3.2, depending on the indices j such that the closure of FnB meets 99;. If, in
this classification, F € i, j) (with i#j) then (4.7) shows that the zeros and poles of H
in F are among the a; and a-values of fin F: thus (3.19) gives the bound (4.11) in this
case. If, however, F € F*={HJ), U i)} then (3.20) applies and so does (4.11).

That A(zo,%a)cqf’(Ba(zo)) follows from (4.10).

4.4. Local logarithmic means. For each z,€ ¥ Lemmas 4.1 and 4.2 produce a
modification G(£) in each disc A(zy,20). We now consider of the functions log |G($)| on
circles C(z,, ), where o’<t<io.

We begin by making some calculations concerning the behaviour of fin the various
9;, where the 9; are from Lemma 2.3. These computations play an essential role in our
work but the reader may pass over this section to §4.5, and refer back to results here
when needed, as this section is very technical. Our analysis uses a (non-euclidean)
proximity function

=L -
m(t.f) =~ L (Zo,’)log | fi(2)| darg (z—z,) (4.15)
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where
fl@)= {{(Z)(z éz;;[) Y (4.16)
In these calculations we use the local polar coordinates
2=2p=tlz| €%, &~y =ulgy|e”.
LEMMA 4.3. Let 7o €. Then for 1<i<q
m, (1,f) < CAM'T(p) (o’<t<1). 4.17)

Proof. Let zEDNC(z,t) with D a component of {|f(z)—aj<e} and D€ ;. We
study f; in D by the formula (2.32), with Q the annulus {(A’)~!o<|z]<R} and R chosen
with 20Ap<R<30Ag and such that (cf. (2.10))

sup 2 [log |f(z)—a/|| < CT(40A0) < CA**'T(0) (|z]=R). 4.18)
z 1

Then (Ag) (0*|z0|) "'<CA%~3, so (1.24), (2.13), (2.28), (2.36) and (4.18) (with R in
place of A’g and the trivial bound w=<1) give for z € D= 9; that

f log |f(2)|dv<log 1, CA") " T(p)log (CA%™%)
Clzg, 1) €

+CAYT(0) sup wl(z,1p) (4.19)
2€D0Clzg, )

<CA™'T(0) (zEDNC(zy,1),0°<t<1),

and (4.17) follows on summing over all Q(A) D’s of %;.’

LEMMA 4.4, Let 2 €AY, and let G(§) be the function of Lemma 4.2, which is

therefore meromorphic in A(zy,t) for all t<}o. Then

52
j llog |G(&))| u™" du dv —ZJ mZO(t,f,.) ' dt
A(zg, 51, 59) 5

(4.20)
12
< CA*'T(p) {1og %} (AN +2+C(p)} (P <s,<5,<Cs,<)0)

1
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where in (4.20) and below, C(y) is a generic function with
Cip<Cy® 4.21)
Sfor some £,>0.
Proof. Inequality (4.20) follows from two similar inequalities which use the func-

tion H(z) of (4.3). We first prove the stronger assertion that for each ¢, %03<t<§0,

<CAY T (o’st<io). 4.22)

f flog |HR)|| d(p—i m, (t.f)
Clzg, 1) i=1

In the various &, this is immediate by, for example, (4.6), for log |H|=tlog|f} in the %;.
Consider now a region HD), Hi) or Hi, j) of B,(Ly); in such a region, H is defined by
formulae such as (4.7) (where always j+i). In these %’s, we have that either
e<|H(z)|<e™"! or that log|H(z)|=%log* {1/|f(z)—ai} or *log* {1/|f(z)—a/}. The inte-
grals over the sets where |log|H||<loge™! may readily be absorbed into (4.22), since
(1.24) shows that (log T(p,))~'<e,<(A!)~!. Otherwise we have that z is in a component
D& U 2, and so (2.31) allows these contributions to { log |H]| to be absorbed into (4.22)."
 More interesting is that if 0’<s,<s,<Cs,<lo, then

f llog |H(2)|| " dt dpp— f log |G(Q)|| #™" du dv
Ay, 51, 5,)

Ay, 51, 89)

i 4.23)
sc{logi:i} {Y’+C(p)} A*'T(0)
1

where now, unlike in (4.22), we need an area integral. In order to prove (4.23), we need
further information about y than we have used to obtain Lemma 4.2 (recall that
=@~ "). The Jacobian of y is [2, pp. 33, 27].

I =y L~y = A+Coly.f (4.24)
where we are using (4.14), and C(z) is as in (4.21). According to [2, p. 92], the function
h@=y,~1 4.25)

is in L,(C) and

Ih@)ll, <A,0™n"* (1<p<w) 4.26)
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where A, is a constant which depends only on p (this is because the theory of [2]
applies to the normalized function o~ 'y(0~'2)).
When changing local variables, we have that

ududv=Jtdtdg 4.27)

where J is as in (4.24). Now (4.10) implies that |p(2)—y(zp)|=llz—zo/=i0’lzy| if
z2EA(d’,)), so we find using (4.10) and (1.24) that

z{l—ﬂzl}—z {1——w(z°)}
z ° Z

[(1+£,(2))—(1 +&,(2))| (2] +]2,)) (4.28)

Z_Zo _ — 1
Y(2)—y(zy) [W(2)—y(z,)]
< 1
[p(2)—y(zy)|

<Coy=Cy’ (z€A(z,40°, 1)

where &, and &, are functions which are of order y'°. Since t|zo|=|z—2¢| and
uly(zo)|=|y(2)—y(20)|, we have

jlogIG(C)l u“dudv=j llog |H(y(E))|| u™%u du dv
A A

tlyp(zy)| }2 _2
= log |H@)||{ ————} ¢ 3Jtdtd
J;(A)logl (Z)”{W(Z)—w(zo)l ¢

2

W(Zo)

2o

Z'—Zo

2
Jt ldtde.
v@D—(zy) ¢

= j llog |H(2)||
@A)

According to (1.24), (4.10), (4.24)(4.26), (4.28) and the convention (4.21), this means

fllog|G(C)||u”‘dudv—f llog |H(2)||t~" dt dg
A @

@) (4.29)

<I[CY'+C] | log|H(2)l| ¢! dt dp+C J (|r|+R*)) llog |H(z)|| ™" dt dgp.
o(A) @A)

Thus, the discrepancy in (4.23) is due to two factors:
(I) the right side of (4.29) is not zero
and

(D) ¢(A) is different than A.
We first show that if a>lo® and a<f<Ca<jo, then
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f {5‘, llog | £2)|[+log IH(z)II} (Y +Clp+Ch|+R} 17 di dg
Alzg, o, ) Li=1

(4.30)
<cliog2}" o7 +com a0
a
There is no problem to obtain this bound for the terms Cy’ and C(y) since the means of
llog | £l and |log |H]|| satisfy (4.17) and (4.22). However, we do not have a uniform bound
(p=) for the functions 4 and A? in (4.30), so we need L, forms of (4.17) and (4.22)
with p near 1; we then take p’ near « and use the fact from (1.24) that » in (4.26) will
overwhelm all A’s, y’s and o’s.
We thus claim that there is a po>1 such that if 1<p=<p,,

I/p 1p
{ f [log |H()|IP d(p} +z { f llog | fDIF dq)} < CA**'T(p)
Clzg g0

i

4.31)
(o’ <t<lo),

where C does not depend on p. To see this, we first observe that it is possible to bound
H(z) by

‘ M
llog|H@)|| < Clog % +CAMITO)+ D, 8%z, 2,) (4.32)

where Q={(A")"'o<|z|<R}, R is from (4.18), and such that the number of Green
functions which appear is M<C(A’)~2* T(p); this bound on M follows from (4.11). For
let z€A(zp, 1) with z€ D;U HAD)U Hi)U A, j) for some i and j, with i*j. Then if
llog|H(z)||>loge™!, it follows that H(z)=(f(z)—a)*' or (f(z)—a)*'. Thus we use
(4.18) and find that

- M'
llog |H()|| < log — +CA** ' T(g)+log" |f]+log" 11+ 8%, 2,)
€ v=1
(4.33)
ZEAN[DUVHADYUFADUHAI, j)D

where M'<C(A")" " T(g). Since (2.32) and (4.18) give for each i that
”

llog | £ slog%+CA“'T(@)+ > ¢%z) (4.34)

zEQN D)

with M"<C(A")~%" T(p), we deduce (4.32) from (4.33) and (4.34).
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The L,-norms of the first two terms on the right side of (4.32) and (4.34) are clear.
Since we may take r=10"|z)|>10’A "0 and R=CAg in (2.29), we find from (2.29) and our
bounds on M and M" in (4.32) and (4.34) that

M+M 1p
E [f 8@, 2,y d¢] <SCA) *T() QA7) <(A) " T(e) (o'<r=<1),
Clzy, 1)

(4.35)

where the last inequality is a consequence of the understanding in (1.24) that (A")™!
tends to zero as rapidly as desired compared to o and A~! (one could avoid this by
making estimates of ©, in (2.29), but this is not needed).

The bound (4.31) follows from (4.32), (4.33), (4.34) and (4.35).

Before we estimate the L,-norm for h, where h is defined in (4.25), we relate local
coordinates in the various B, and A(z,, h) to those of a standard polar (r, 6)-system
(centered at zero). Suppose o<} and |y|=s,. For the moment, write z=r¢". Then our

systems are related by: z—z,=1|(,| e=r,t e, with Jacobian ry?. Thus
tVdtde =t {tdtdp} = t7{r;* rdrd@} = (ritry)* {r~" drd6}. (4.36)

Now we consider the bounds on k. We first use (4.26), (4.36) and the assumption
that a>1o” to deduce that

f |hP t™ ' dtdp < CU"“rsz |h(2)fP" t dt dg
Ay, a,)
= Co ™ %’r;? J |WZ)P dXdY (Z=X+iY=0 'z=0""(w+z))
<Co°A*A, n'?Y, (4.37)
and a similar estimate will follow for A? since ||h’(|,=||h||3,. (The penultimate term in
(4.37) simply reduces A to the normalized form covered in [2].)

Inequality (4.30) follows from (4.31) and (4.37). For example, we may choose
1<po<2, 1<p<pg and p'=p/(p—1)<. Then we obtain from (1.24) that

1/, 1
f [log [H(2)|| ()| t"dtdcps( f llog| H|P t"dtdqa) ,,( f |l t"dtd(p)
Alzg, a,B)

p’
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Y , \
sCA‘*‘T(g){log%} (oA ALY (4.38)

=C(n T(e) {log{z—}”2 (o’ <a<p<Ca<lo).

This shows how we handle (I). To resolve the complications in (II), we note from
(4.10) that (@(A)—A)U(A—@(A)) is contained in narrow annuli s;<s,<s{, 5;<s,<s3,
with

log—=+log—<Cy". (4.39)

) 5y
Thus we may use computations such as (4.29) above, with a=s, or s; and f=s] or s5.
Then a>}s,>}0” and the factor {log(8/a)}'” in (4.30) is at most Cy’, so this may be

absorbed in (4.20). We omit the details.
We record from (4.17) and (4.20) that

17
f log |G| u™" du dv < CA**'T (o) {]ogg—} (@ <a<ps<Caslo).
Alzy, a,B)
(4.40)

4.5. Taking logarithms. We next introduce an ‘‘important’’ error term; it is an
error term because of (4.43) below, but important since it allows us to take a logarithm
in (4.44).

Thus, let P({) be a canonical product

PO= a(1-¢la,)

4.41)

whose poles include the zeros of G and whose zeros contain the poles of G. We assume
for all n that

04)o<la,|, |b,|<2040 4.42)
and that
(0, P)+n(, P) < C(A")" T(0)  4.43)

((4.11) shows this is possible).



PROOF OF A CONJECTURE OF F. NEVANLINNA 45

LeMMA 4.5. Let P be as in (4.41)—(4.43) and let

L) = _T(igf (log G P(2)), LEA=A(z,0) (4.44)

where the branch is chosen such that
larg G(&*)|+|arg P({¥)| < 4n (4.45)

for some point £* of A(zy,10).

Then L is regular in A and

f |T(0) (Re L(£))—log |G| dv < C(A) ™ T(@) (ca®<u<io).  (4.46)
C(zy, w) .

In particular,
|Re L(§)| < CA*!  (€3A = A(zy,10)) (4.47)
and

ILQ)| < CAM! (CEJA = Az, J0)). (4.48)

Remark. Although A—, the convention (1.24) allows this to occur arbitrarily
slowly; thus (4.48) will be good enough to let us treat the various L()=L(E, zo), as 2o
varies, as forming a normal family.

Proof. According to (4.44),
|T(0)Re L(§)—1og |G(Q)|| < [log |[P(E)|| (L€ Clz,30) U Alz, 40))-
It is not hard to combine (1.24), (4.42) and (4.43) with Lemma 2.1 of [18] to show that
f log |P(8)||dv< C(A") ™" T(0)log (%) <CAN™T), (Co’<s<l).
Clzg,u
. (4.49)
Thus (4.46) follows from (4.44) and (4.49). Using also (4.40), we see that

f |Re L(2)| dv < CA**!
Czg, )
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for some u such that 11/12<u<1. This and the Poisson integral formula

L@)= zi f Re L(ue®) <i‘—e-i) dv+1Im L(zy) (4.50)
T Clzg, ) ue —z

together with (4.45) lead to (4.48).

4.6. Normal families. The next result is a simple consequence of the theory of
normal families. We first need a definition which is modelled on the classical Boutroux—
Cartan Lemma ([3], [23, § V.5]).

Definition. A subset E of the plane has Cartan span h if
h=inf Y r,

where the inf is taken over all coverings of E by discs C; (1<<i) of radius r;.
This is related to one-dimensional Hausdorff measure, but we do not demand that
the radii of the covering discs be uniformly small.

LEMMA 4.6. Let A be the unit disc and let kA={|z|<k}. Let k<1, N<, £*>0 and
On>0 be given. Then there exist d1,03,...,0n—1 such that if g is holomorphic in A
with ||gll«<1, and if for any m 2<m=<N) we have

le@@)|=<6,_, (EkANy) (4.51)
where yNkA has Cartan span greater than €*, then

le(@)|<3,, EKA). (4.52)

Proof. By taking O, sufficiently small, we find that (4.51) implies (4.52) when
m=N. For otherwise, there would be a sequence d, (=6x-1,,) tending to zero, and
g, such that (4.51) holds for g,, 8, on a y=y,. As n—, a subsequence of the g, tend
to a bounded holomorphic function go, but (4.51) implies that g, is zero on a sequence
with an accumulation point, so go=0.

Now that dn—, is known, this argument may be repeated with dx—; in place of
dx, and we obtain dx_, so that (4.51) yields (4.52) with m=N—1. By continuing this
process, all 6’s are produced.

The particular normal family of interest here is {L({)}={L(&, z0)}, Where L is as in
(4.44) and based on the modification G(£)=H(z), with z € B,(z¢). Our next result shows
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that the polynomial factors P of (4.44) can often play a negligible role in normal-family
considerations.

Let Ay and A, be disks with A=A(zp, Sto)=A,;NA,, where
70> cOo°. (4.53)

Suppose we have modifications L, and L, in A; and A, where @(A)cB(z)
(i=1,2), with ¢ from Lemma 4.2, and, as in (4.44),

L) T(o) =log(GAL) PAL)) (LEA;i=1,2). (4.54)
Finally, we assume that
{BO_B(,(ZI) ﬂB‘)}sO(ZZ)} n F/T,# = @ (455)

where F* is determined relative to B,(z;)NBy(z,) in accord with Remark 2 which
follows the statement of L.emma 3.2 in §3.2. Thus there is no subregion of
[Bo.s(21) N By go(22)]— U 2; whose boundary consists of portions of % and arcs of r <2
of the ;.

LemmMma 4.7. The functions G;i=H{@{L)) (cf. (4.9)) may be chosen so that

G2(D)=G(P(D)) (LEA) (4.56)

where

D) = @7 (9,(8) = ¥, (@,(D)). (4.57)

When (4.56) is known, then

R(§) = {log P»(5)—log P1(P(8))} (T(e)) ™! (4.58)
is holomorphic in A and (if Lo=1(z0))
IRQ)—Im (R s CA)™?  (LE A, Ty). (4.59)

Proaf. Note from (4.55) and the remark at the end of §4.2 that the only possible
ambiguity in the construction of the H; in Byg,(z;) NBos,(z2) is that H; may be
replaced by its reciprocal, so we may arrange that

Hy(2) = Hi(2) (2€ Bo.30(21) 1 Bo.8:(22)). (4.60)
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Thus if p=gj; is as in (4.9) and ® as in (4.57), we see from (4.60) that if CEA;NA,, and
in particular if € A, then :

G,(8) = Hy(@,(D) = H\(9o(5)) = Hy(@, 0 97 ' 0 9y())= G,(P()) (CEA)

which is (4.56).
According to (4.54) and (4.56), for €A,

T(0) L () = log {G,(£) P»(8)}
=log {G(D(D) P,(D)}
= T(0) L,(®())+log Py(£)—log P(P(L))
= T(o) {L(®()+R(D)},

(4.61)

where R is defined by (4.58).

Since (4.60) is known, we recall that equations (4.14) which determine ¥, and ¥,
(inverse to ¢, and @,) agree on By, (z,) NBy4,(2,)- Thus the chain rule [2, p. 9] shows
that ®=1, o @, is holomorphic in A, and so is R in (4.61).

We obtain (4.59) from the Boutroux-Cartan Lemma ([3], [23, § V.5]) and the
bounds (4.10). According to the Boutroux-Cartan Lemma, if P is any product as in
(4.41)~(4.43), then there exists a network of circles C; of radius r; such that

> r=c@a)?a, (4.62)

and outside the C; we have that
llog|P)|| < C(A) ™" T(0)log (CAYA)) < c(A) " T(0) (£€C) (4.63)

(we are using (1.24) to obtain the last inequality; also we mention that this lemma gives
lower bounds for —X log|1—¢&/b,| and upper bounds for —Llog|1—-¢t/a,| in (4.41), but
the corresponding upper and lower bounds are very elementary).

We apply (4.62) and (4.63) to P, and P, in (4.58); note that ® is holomorphic and
(4.10), (4.57), (1.24) and Cauchy’s estimates give that

j (@(E)—E)
ety G0

ey

l(@'©)-D|= o

de,| <Co® (CEAGy2)),  (4.64)

so that ® is uniformly Lipschitz. Thus, the image of the Cartan circles C of (4.62) for
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Py, after composition by ®, may still be enclosed in a similar network C3 such that
(4.62) remains true.

If C, is the Cartan-network for P, then (4.63) holds for P, and P, outside C,U (>,
and thus by (1.24) and (4.53) there is a region Q, with

A(z, 21) = Q < Az, 31)

such that (4.63) applies to both P; and P, on 9Q. By the maximum principle for
harmonic functions, [Re R(Z)|<C(A")""?T(g) in A(zy,270), and so (4.59) follows from
the Borel-Carathéodory inequality.

4.7 The set F* disappears. The next two lemmas show that the bound (4.48) may
be significantly improved when F* N} B (z)#@, where

2€AIN{BA) o <|t| <340},

and F* is any region in AX—{U %;} whose boundary consists of the grid ¢ and
portions of 89; for r+2 choices of i. (A* is defined in (4.2).)

LemMA 4.8. Suppose zo€ AN {(3A) ! o<||<3Ap} with
B,(20)n{U Z;} = D. (4.65)
Then if H, G, P and L are constructed as in §§4.1-4.5, we have that
LIS CY (CEIA = Alzy, 1)) (4.66)

Proof. Since log|G| is harmonic in A(zy, J0), estimate (4.66) is a consequence of
(4.44), (4.45), (4.49), (4.50) and the estimate

j tog |G(©)||u~" du dv < Cy*T(p),
A

where A’'=A(z,,10,10). However, (4.20) and (1.24) imply that this estimate for [log|G||

follows from

Jo
j mzo(t,ﬁ)t_’dtSC(A')'MT(Q) (Isisg),
1y

4

wher¢ the f; are from (4.16). Assumption (4.65) ensures that m, (z,f)=0 for t<lo, so
(4.66) follows.

4-878288 Acta Mathematica 158. Imprimé le 10 avril 1987
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The next results presents another situation in which we may obtain a conclusion
much like (4.66).

LEMMA 4.9. Let o€ AN {(3A) " 0<|¢|<3Ag} such that
{8F N(U3D)} N§B,(z9) *+ D, (4.67)

where F* is as described at the beginning of this section. Then there is a set y* in
A(z0,0.80) with Cartan span at least (2/3)0|zo| such that the function L of (4.44)
satisfies

L) <CAN™ (€YY (4.68)
in addition to (4.48).

Proof. According to (4.67), there is a z,€AB,(z,) with z,€0%9;. Let
B=(99/100) B(z,). We refer to the four sides of B as the horizontal sides (on which |z| is
constant but arg z varies) and vertical sides (on which arg z is constant and |z| varies). It
follows that there is an arcy of 3%;N 8 %" which joins z, to a point z, of 3%;n 8B, and is
contained in B otherwise. With no loss of generality, we assume that z, is on one of the
vertical sides, so that argz varies by at least Jo|zy| on y.

On y,|f(z)—aj=¢, and since ycdF*, (3.20) and (3.43) ensure that arg(f—a,) is
nearly constant on y: there exists a complex number ¢ with [Re ¢|=|log¢| such that

log (fz)—a)—c|<CA)Y " T(@) (ZEY).
Thus (4.4) implies that if H is as in Lemma 4.1, then
llog H(z)—c'| < CA"Y ™ T(o) (z€y) (4.69)

where, by (4.45), |c’|<[log ¢|+27.

Estimate (4.69) is almost what we need, but has the disadvantage that the branch
of log H is taken on y, and since there is no a priori regularity of y, there is no obvious
way to directly control arg P on all of y, where P is from (4.41).

We deduce a bound for |log P(z)|, similar to that of (4.69), on a substantial subset j; .
of y. We have assumed that y ‘‘ends’’ on one of the vertical sides of 8B. Let y* be one
of the horizontal sides on 3B, say the one on which |z| is smaller, and for each { €y*, let
z(%) be the point of y which may be ‘‘seen’’ from {: arg z({)=arg{ and the segment

I'@Q) = {te*;a=arg g, |t <t <]z}
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is disjoint from y.This collection of these points z(£) forms a subcomponent y; of y, and
also has Cartan span at least Jolz,|, since z({) exists for { € anarc of 8B which lies below
z; and z,. Since y;<y, (4.69) persists on ¥.

Finally, let {C;} be the Cartan.circles of (4.62) and (4.63) which correspond to the
factor P in (4.44), and let y,=y,—{C;}, so that (by 4.62)) y, has Cartan span at least
{0lz|. Of course, (4.63) implies that |log |P|| is uniformly small on y,. We claim, further,
that if z=2z({) €y, then

largz—argz,| < C(A") " T(@) (zE€y,). 4.70)

This is proved by first constructing a path I, from z, to z=z(§), which consists of a
portion of the vertical side of 3B which contains z,, a portion of y* and I'({). There is
another path which connects this pair of points: the portion of ¥ (which we call y({))
between z, and z(). Then I'=p(§)UT, is a closed curve, so the argument principle
and (4.43) yield that |Aparg P(2)|<C(A") " T(g). Since T is composed of three
noneuclidean line segments, we also have from (4.43) that |A,—Zm arg P(2)|
<C(A") " T(p), and these two estimates yield (4.70).

Choose £ €y,. Then from definitions (4.44), (4.45) of L and (4.63), (4.69) and (4.70)
(twice) we have

IL(©)] < T(@)™" {[log G(8)| +[log |P()]|+]arg ()|}
< CA) " +ANY ™ +AY Y T) €Yy

which is (4.68).
We now use Lemmas 4.6-4.9 to show that if F¥nA*+D, then the functions L
must be uniformly small on large subsets of .

LeMMA 4.10. Suppose &1=y(z,) with z; EA*N {3F* U(U D)} as in (4.67), with
By(z)=U*n {(BA) ' o<|z|<3Ap}.
Let A, ..., Ay be a chain of discs A=A, 20)7'0), {=y(z), ;;EUX, N<Co?,
GEIA,, =D 4.71)

Then if n is sufficiently large in (1.9), we may arrange that the functions L;i=L(g, §;) of
(4.44) satisfy.

ILE)|<CP (EE0I9A,1<i<N). 4.72)
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Proof. Recall the terminology of Lemma 4.6 and choose
On=0’A~%D, k=09, e*=107,

and let d,,...,0y—1 be the constants obtained from Lemma 4.6. Now consider
modifications of f in rectangles B;=B,(z,).
Let J; be determined from Lemma 4.6, and choose n so large that

CA1+1(AV)—h/2+CA}.+ly2S61; (4'73)

(1.24) shows that this is possible.

By hypothesis, %" meets the ‘‘center’’ of B;, so (4.67) and (4.68) hold relative to
the rectangle B,. Thus |L,(z)|<C(A")™" on a subset of A; which has Cartan span at
least (2/3)7'(10) ! 0|z,|=15""0zy|; hence Lemma 4.6 and (4.48) yield for i=2 that

IL;_ (2| < (CA*™ N6, (CERA.). (@.74)

We claim that if (4.74) holds for some i<N, it holds for i+ 1. There are two cases.
Suppose first that

[0.8B,_,n0.8B]n{F"} + B, 4.75)

and consider the various rectangles B; contained in [0.8B;.,n0.8B;] with, say
s=2"%¢. By (4.75), we see that some such B, is contained in some 9; (and so satisfies
(4.65)) or else meets some 9P;N3F*, so that (4.67) holds. It then follows that (4.74)
holds with i+1 in place of i: if (4.65) holds, we see this at once by (4.66), and if (4.67)
holds, we use (4.68) and Lemma 4.6, in fact (4.74) then holds with J, in place of 6,
(since obviously 6,>6;_,>...>9d, in Lemma 4.6).

Next, suppose that (4.75) is not satisfied. Then hypothesis (4.55) holds. We now
imagine L; as an ‘‘almost’’ analytic continuation of L;_,, in the sense of Lemma 4.7.
Choose a disc A=A(E*, 5t) such that

Ac(0.8A,00.8A,_, and ®(A)c=(0.8A,N0.8A,

with ®=¢,_ llotp,. (Compare with (4.57)). Because of (4.10) and (4.71), we may take
7=(10)"20. According to Lemma 4.7, we may arrange L; and L;_, so that (cf. (4.61))

T(e) L(Z) =log {G(Z) P(0)} =log {G, (®L0) P(D)}

= T(0) {L,_,(®O)+R(D)} (LEA) .76)
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where (4.59) holds. Choose Q such that 3Q is disjoint from the Cartan network for P;
and P;_(®,) and A(L*,31)oQ>A(E*,27). Then (1.24), (4.45) and (4.63) show that
|RAZ)I<C(A") "2 T(g). Thus (4.76), (4.74) and (4.59) yield that

IL(O| < (CA**N o +CA') " < CA*) s, (EEA) | 4.77)

by (4.73). Relative to 0.9A,, A has Cartan span at least 10 %0]¢]. Thus (4.77) and
Lemma 4.6 yield (4.7) with i in place of i—1, even when (4.75) fails. By repeating this
process, we get |L(Q)|<CA**1dy for LEU0.9A,, and by the original choice of dy, this
implies (4.72).

It is now possible to prove

LEeMMaA 4.11. Let A% be as in (4.2). Then F*nA*=0.

Proof. Suppose the lemma false, and choose z; € F*n¥U¥, with 2H1EF*. Let
Z1=v(zy). Since the set B* of (3.16) is a union of Q(1) small rectangles, we take
&1=v(z,) and construct a chain of discs A(Cj; %9 (1j<SN<Co™?) with €U, so that

(4.71) holds. Further, we may arrange that each point { with (1—}o) s,<|C|<(1+}0) 5, is
covered by the union of the annuli A=A, 10,40); here sy is some number with

0<50<2¢. Lemma 4.9 implies that (4.72) holds in each of the A,;.
We recall the family m.(z, f)) of (4.15) and first prove that for {=¢;

i[ mc(t,fi)t’ldtszf log | f{(2)| £~ dt dp < Co®*T(g). (4.78)
i=1 Jig i JA;

Indeed, we find from (4.20), (4.46), (4.72) and the convention (1.24) that ({={;, A’=A))

Zf m(t, )t dr<
e 4

f llog |G(©)| |~ dudv— >, f my(t, £yt~ dt
& o

+f llog |G(&)|| u~" dudv
A
<Cd’T(e)+ f log|G(&)|| u™" dudv
A
SCGZT(Q)+ T(Q)J [Re L(Z)| u™" dudv
A

+ f |T(0) Re L(2))~log|G(©)|| u™" dudv
N
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< Ca’T(0)+Co*T(p)+C(A") ™ T(p)
< Cd’T(p).

which is (4.78). We add (4.78) over the O(o~?) annuli A}, and use (4.36) where now
Jo<t<lo, CA™'o<r<Ap. Thus, using (1.24)

Jo
E f log| f,.(re"")|d9r-"drsCA4olz j m,(t,f) 1 d1 < Ca*T(g)07%,
i Ja; _ i Je

and so

soli+io)
f m(r,a, D) r~' dr< Co®*T(g). 4.79)
i Jsg1-}o)

However, this contradicts (1.3) and (2.31), for since sy>¢ and the annulus
so(1-§0)<|z|<s,(1+}0) has logarithmic length comparable to o, we find from (1.24),

(2.31) and (4.79) that

so(l+§o)
CoT(g) = CoT(sy) = E f m(r,a,) rtdr

o(1-Jo)

< E f m(r, a;, D) rldr

+2 j [m(r, a)—ml(r,a; @i)] rdr

<> f m(r, a, @) r~" dr+Co(A) " T(g)
< Co*T(p).

Since 0—0, we have a contradiction, and the lemma is proved.

Remark. Lemma 4.10 clarifies one question raised at the end of Section 4.2: how
unique is each G (or H)? There are two ambiguities in constructing H. In (4.6), we made
the initial choice that H be large in Dy N B; we might as well have taken H(z)=f(z)—a; in
DynB. Also, in extending H from a component DN B to an F, the choice of j (cf. (4.7))
will not be unique unless F € &G, j). However, we now know that all F’s which meet U}
are in U &(i,/). Thus the only ambiguity in the definition of G is whether we use H or
H™! and the particular choice of maps ¢. This observation is the basis of (6.24).



PROOF OF A CONJECTURE OF F. NEVANLINNA 55

4.8. Proof of Lemmas 4.12 and 4.13. In this final section, we give a situation in
which the bound (4.48) may be significantly improved. Inequality (4.89) will be needed
in §7.2 to show that the removal of B* from ¥ in (3.16) and (3.17) does not seriously
affect our estimates.

LEMMA 4.12. Let 19<1 be chosen, and suppose that B=B(z,) is a rectangle with
ZEANGBD). (4.80)
Then, in the terminology of (4.15) and (4.16), we have

mzl(t,f,.) <Co™T@e) (1<i<g; lo=st=<lo). (4.81)

Remark. In (4.80) it is not essential that z; EAX of (4.2); in fact, the most
convenient application of this lemma will be when z; € B* (cf. (3.16)).

Proof. We start with the first inequality of (4.19), and Q as in the proof of Lemma
4.3, but use the estimate in (2.35) for harmonic measure, where now 6(¢) is the angular
measure of DN C(z;, ). Let j satisfy 1<j<gq. Then assumption (4.80), the obvious bound
6()=<2n and (1.24) give for 1j=<gq that

A
m, (1,£) < log—i— +C(A")™" T(o) log (%?ZQ-I) +CAMT(0) exp {~7 f (100" dr)
: ' (4.82)
SCAM(HA)’ T() (@ <1<1),
and we use this standard estimate for r=¢> with (1.24) to obtain that
m, (0, f) < CoA* *T(p) < CaTlo) (1<j<q). (4.83)

The trivial bound 6(#)<2x in (4.82) is not adequate, however, when ¢ is near o.
However, according to (3.8)~(3.10) and (3.14), we may find a region Q with 9Qc%and
A(zy,0)=Qc A(z4, 20). For each j, 15j<gq, define p; so that

S@j(Q) = "'T(p) (4.84)

(and take p;=c when 39;nQ=¢). Order the indices j so that p;<p,=<.... For this
proof only, let 2p=1—1, and suppose that

p=l-n=1+n 4.85)
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(thus (4.85) also holds for all j=1). Then (1.24), (2.13) and (2.40) (applied to discs
centered at z;) yield from (4.84) and (4.85) that

m(t,ﬁ)—m(aj,fj)=f u-—‘—i-—m(u,f})tflduSCloge‘1
l du

t
+ j So(t, Q) 1™ di+C8T(o) 1og§ (4.86)
03 J

< Ca’°+"log—(1’— To)<o™logT(e) (I<j<gq,o’<t<1).

and thus (4.81) would follow from this and (4.83). Thus we need only show (4.84).
Note that the situation p,<1—7 and p,=1—1}y is impossible from (3.44), since there

are only Q(2) classes %(j, k) in Q. Indeed, (3.44) and (1.24) ensure that p,=p;+o(1).
We will prove that

D1+p=2—0(1). 4.87)

Let us grant (4.87) for the moment. Then (4.87) gives (4.85) and so (4.81). This would
prove Lemma 4.11.

We now prove (4.87). Once again, we use (1.24), (2.13) and (2.40) as in (4.86).
Thus, since QcA(zy, 20),

40
S%(Q)SSQJ(A(ZI,ZO))S C I s@j(t) tdt
20

< CU)* T(Q)+C[m, (40, )~ m, (20, £)]+Ollog-)
<C(A)* T(@)+Cm, (4o.f),

and an upper bound for m, (40, f}) may be obtained from (1.24) and the first inequality
of (4.82). Thus, for 1sj=gq.

A
54(Q) < C(A') " T(0)+ CA*"'T(o) exp {~ f 60) " dr},
20

and so, in the notation of (4.84), we have from (1.24) that

A
—p;logo~ —p;log (%Ta) = {1+0(1)} nfz (tt9j(t))'l dt.

o
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Hence (4.87) follows from the inequality [15, p. 108]

1 1 -
x (0—1(7) + 0@) = 47(0,(D+0,(t) ' =2,

since we may use this to give lower bounds for the p; of (4.84).
CoOROLLARY. Let 2o € A% and suppose that
d(zy,z)=<C,0 (4.88)

(d=noneuclidean distance) where z; satisfies (4.80). Then

Jo
f m, (6,17 dt<Co™T(e) (1<i<g), (4.89)
Jo

where C may depend on C,.

Proof. Let z—z9=t|zo| €'?, z—z,=¢'|z1| €'®". Then, as in (4.36), we have that
2|z, |2

2L @) tdr de'
2y

tldtdp =t"tdtdp = t7z)| |dz' = (t—t,)

and in A(zy,40,40), (4.88) ensures that C<(¢'|z,])/(t|zo|)<C where C depends only on
C,. Thus (4.89) follows from (4.81).

LEMMA 4.13. Let 7,<1 be given, and let B=B(z;) be a logarithmic rectangle with
20€ A%, and such that for some fixed C>0

B (z)N(U3D) 2. (4.90)
Then the function L() of (4.44) satisfies
ILE)|<Ca™" (L€ A(zy, 40)). 4.91)

Proof. Hypothesis (4.90) allows (4.89) to be applied, where we take 7,<7o<1.
Choose s,={0 and s,=10 in (4.20). Then (4.20), (4.89) and (1.24) yield that

pd
J |log IG(C)” u-l dudvs 2 j mzo(t,f;.) l‘—1 dt+CA;'+1T(Q) {(A!)—3h+02+c(17)}
Atz fo. Jo) b

< Co"'T(p).
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Since the correction term P in (4.44) always satisfies (4.49), (4.91) follows from these
estimates for the harmonic function Re L({) and (4.45).

5. Division of the annulus %; The main quasi-conformal modification

5.1. Subdividing the annulus. In this section we use the set B* of (3.16) to divide the

annulus U of (1.10) into Q(1) overlapping concentric annuli A3, =Aj, , as suggested in
§1.2.
Let

P .1

be those numbers r such that r=|¢| where  is the center of any of the Q(4) rectangles in
B*. Arrange the numbers x of PUA 'oUAp in increasing order so that
A" lo=x<x,<...<x;=Ap, where k=Q(1). Set i;=1, and for m=2, define i,, to be the
first index such that i,,>i,,—; and

x;>x;_,exp (150). (5.2)

Then set M=sup m. If i<i,,, I<m<M, we take s,, to be so that {|z|=s,,} is in the grid ¢
and

x;exp(—=50)<s,, < x,exp(—40). (5.3)

Also, we define a sequence s,, by taking i=i,,.;—1 for 1sm<M and i=k for m=M,
and then determining s, with {|z|=s,,} in the grid such that

x;exp (40) < s, < x;exp(50). 5.9
LEMMA 5.1. For 1sm<M, consider the overlapping annuli
AY = {sm<|z|Sshpi1} =ALUALUA, (5.5
so that A5, NAp 1 = {Sm+1<|2| <Spp+1} =Am =Ap+1. Then
UAS, oYU (5.6)
Further, if P is as in (5.1) and if for >0 we let

P.={s; logi
5,

0

2| (942} () 59

<40 for some s,€ P}, 5.7

then
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and, as n—x,
si
suplog-= < CQo 5.9
m s

m

where Q=Q(4) is an upper bound for the number of rectangles in B*.
Finally, we may arrange that

log2">Co, log—">Co (1<m<M®) (5.10)
S

s
!
m Sm-1

for all large n.

The subannuli A*,A*, A~ are called respectively the kernel, upper and lower
portions of A°=A;,. The lemma asserts, in addition to (5.6), that none of these
subannuli are too thin. Further, all circles {|z|=s}, with s € 2 are well inside the upper
or lower portions of the A°.

Proof. Clearly M<k<(Q(A) and (5.6) and (5.7) hold. It follows from (5.2)~(5.4) that
for 1=sm<M we have

Smi1> S exp(40), s, <s,expl15(k+2)0]
and
Sy > S, eXp (80),
which yields (5.9) and (5.10). This proves the lemma.

The function f will be considered in regions A,, modified from the A°. Let
B=B,({o) € B* be such that BN A°+@J, and suppose for example that {,€EA™ (cf. (5.5)).
We now define

!

Sm+1

0% = o)} = llog ",
sm+l
then (5.9) and (5.10) imply that
Co<o%*<Co. (5.11)

A rectangle B,: will be deleted from A°, where B, is chosen so that
A">5B+>By(&o), and so that two sides of B,« lie in 3A*. More exactly, B, is a
logarithmic rectangle composed of arcs from |z|=s,,,|z/=S,.;» and rays
6" (Zo), 07 (Zo) in {Sm+1<|z|<Sin+1'} Which are also in %, with
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Fig. 1

|6* —[arg §y+0*]| < 27,
|6~ —[arg&—0"]| <27
where 7 satisfies (3.10) (see Fig. 1). If {, €A™, the only change is that B[] includes

arcs of |z|=s,, and |z|=s,, as well as the corresponding segments of argz=0"(o) and
argz=0"({y). Let '

B*=UB_,[§], 6.12)

a union of Q(A) rectangles. Each rectangle B, of B* (cf. (3.16)) is well inside B*. In
particular, (5.7) and (5.8) ensure that Y —B* is in A%, where A* has been introduced in
(4.2). Thus any rectangle B,(zo) With zo € 24 —B* is admissible and no set #* may meet
A—B*. However, we note from (5.11) that

d(8B*,3B*) < Co, (5.13)

where d is non-euclidean distance.
We also record that if A=A,, is defined by

A=A°-B% (5.14)
then A is doubly-connected,

SAcC Y,

(5.15)
[A°—-Alc[ATUAT],

and if A% is as in (4.2), then

AcUx (5.16)
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5.2, The main quasi-conformal modifications. We can now produce the functions
H,, which were mentioned in § 1.2. The idea is not very different from that of §4.2, but
since each A,, is doubly-connected rather than simply-connected, it will be necessary
to make modifications of f{z?). For this reason, we introduce sets &}, , which are
related to the o, , of Lemma 5.1 by

A, n=(Am, ) (5.17)

Each point of A,, , has two antipodal antecedents in &, ,. Let 2[m] and Fm]
be the components of (UZ)NA,, , and A, ,—(U%). To limit notation, we will
identify the P[m] and Hm] with their images in s, ,, and freely write 9;, #(,j) in
A oo However, T(r, f) will always refer to the characteristic of f relative to 2.

LEMMA 5.2. Let >0 be given. Then if n is sufficiently large in (1.8), it is possible

to define, for each (m, n), a quasi-conformal mapping w on the Riemannian image of
A . n 0f (5.17) such that

H@) = o(f(%) (€, n) (5.18)
has
|ka@||o<n (€, (5.19)
and (™=, ) |
n(0, H, A~ )+n(, H, 4™) < C(A") > T(g). (5.20)

Proof. Most of the work has been done already. The components of #m] would
normally be classified as HD) [m], ..., Hiy, ..., i,) [m], but it is now easy to see, using
Lemma 4.11 and (5.16), that they are all %, j) [m], with i¥j. For let ¥ be a component
of £ n{U3F;} with, say, y=d%D,. Then each B,{),0€ 0%, is admissible since (5.16)
holds; recall the definition of admissability from § 4.1. Thus, if F is the component of
A~ —{U39;}, whose boundary contains y, then (5.16) and Lemma 4.11 imply that
F nB,,(C)r\SQBfF@ for some j#i. If also FNB(Z)N3%+D for some k=+i,j and some
£ €y, then according to the construction of § 3.3, there would be a rectangle B,({), with
£ €y, which belongs to the set B* of (3.16). Thus, y could not be connected relative
to .

Hence, o~ itself is admissible for quasi-conformal modification. Now choose
some component D of U %[m], say D€ P[{m], which meets both components of
9A,,, ; this is possible from (2.31), since significant components of each F(1<i<q)
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meet {|z}=A"'¢}. Then D corresponds to two antipodal components D, and Dj
in o,

We start with Dy in ¢~ and slightly modify the ideas of Lemma 4.1. Let E(D,) be
the union of D, with the components of &f~—D, which do not contain Dj. Then Dy is a
zero-stage component of E(D,) which bounds various first-stage F’s of E(D,). (Accord-
ing to Lemma 4.11, these F’s are i, j)’s).... Then H is defined in E(Dy) by (4.6), (4.7),
4.8).

Now &~ —Dy is connected and we move along &~ anti-clockwise from E(Dg). We
first encounter an FE€ #i,j), and use (4.7) there. If E(F) is the union of F with
components of &/~ —F which do not contain D§, we may extend H to E(F) by reflecting
from F.

We continue in this manner anti-clockwise in &~ until we encounter Dy. If we are
led to defining H(z)=(f(z)—a;)~! in Dy we have that H(-z)=H(z) in E(Dg); if
H(2)=(f(z)~a;) in Dy, then H(—z)=H(z)"! for z€ E(Dp), and the relevant identity
persists as H is continued from Dj to D, through ™.

Note that no pair {z, —z} can be in an E(D) or E(F). For example, suppose this
happened with {z, —z} € E(D) with D=+D,. Then z could be joined to —z by a curve y
which would fail to meet one of Dy or Dj, and so y* would correspond to a curve which
surrounded the origin but failed to meet D. Since this is impossible, it shows that H is
well-defined.

5.3. Back to meromorphic functions. We have alrea;iy seen, in the proof of
Lemma 4.2 in § 4.3, how to replace H by a nearly equivalent meromorphic function G.
For each pair m, n, define v=v,, , on &~ by

(Hm, n)i
(H

m, )z

Vi, n(2) = W(H,, (2)) = (z€ ). (5.21)

We extend v to be zero outside &~ so that v is defined in the plane with
Wl <7. (5.22)
With v now defined on all of C, we solve the associated Beltrami equation:

v, = ) y(2),

(5.23)
P(0) =0, (@)=, y')=0"

Again, as in §4.3, there exists [2, Chapter 5] a unique homeomorphic solution {=1y(z)
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to this equation. As in § 4.3, our interest is in the inverse function

z=@(£). (5.24)

The notations A*,A7,A°, A* from Lemma 5.1 now translate to the y(z)-plane.
Thus of°, of* are the largest annuli centered at the origin with

(P(H)) cA°, (p()) c A*, (5.25)
and we write |
A ={sm<|z|<sm+1}, L*={sL<l|z|<Sm+1}s (5.26)

as suggested by Lemma 5.1. Similarly, Q(A) logarithmic rectangles B,+[{] are removed
from of°—of*, and are chosen so that they reach the boundary of #£°, and are minimal
with respect to the property that their image under ¢> contains the union B¥* of (5.12).
Finally, let

A=~ B,=[]. (5.27)

It then follows from the chain rule that if

GQ) = of @) =H(@() zEsH (5.28)
then

G is meromorphic in HA. (5.29)

We may now make the choice of parameters =7, of (1.24) more precise; namely
n is taken so small that

'%D B ‘ <7 (G04) e <[t < (304)"¢"). (.30

This may be ensured from normal family considerations, and on retarding the rate at
which A— o in (1.10); compare with (4.10).
Given G(z) as in (5.28), let

K© =60 =2

JT()(C)

where the canonical products are taken over zeros and poles of G in & (compare with
definitions (4.41) and (4.44)). Unlike in (4.44), we hesitate to take a logarithm, since &
is not simply-connected, but K is free of zeros and poles in sf). The logarithmic
derivative of K will be intensively studied in §6.3 and afterwards.

=GQOPQ) (€S (5.3
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Note from (5.20) that
n0,G, H+n(>, G, # < C(A") * T(g), (5.32)

so the factor P in (5.31) will be an error term, as in Chapter 4.

6. The logarithmic derivative and quasi-conformal modification

6.1. The logarithmic derivative. If g is meromorphic in the plane, the behaviour of its

logarithmic derivative, g'/g, plays a central role in R. Nevanlinna’s work. Indeed, the

key step in his proof of the second fundamental theorem is the ‘‘lemma of the

logarithmic derivative’’, which says that [log* |g'/g| d6=2xm(r, g'/g) is an error term.
Later, W. H. J. Fuchs [13] showed that |g'/g| itself satisfies

2n
Y f
0

and he has used (6.1), and refinements thereof, several times (cf. [14], [16]). (Inequality
(6.1) fails on an exceptional set, but we will use area integrals in this work.)

Our use of (6.1) is in this spirit but we will want to apply it to K(z) or, what is
essentially the same, to G(z), where K and G are related by (5.31). If we apply the chain
rule to definitions (5.28) and (5.31), we find that derivatives of the mapping ¢ must be
estimated, and this will require us to use the calculus of §4.4.

The first section of this Chapter is independent of all earlier work. We suppose g(z)
is meromorphic in the plane, and will study means of g'/g over an annulus

g?’(re"’)‘ d0<CT(r, 2), ©.1)

H=Hr,A)={A""r<|z{<Ar} (A>2). 6.2
The prototype result is

LEMMA 6.1. Let g be meromorphic in the plane and ¥ the annulus (6.2). Then for

1\:‘0S%,
” g, N {f
r,A),p X

Remarks. (1) Inequality (6.3) concerns an L,-norm with respect to logarithmic
measure. We write |- |5 for the L,-norm with respect to this measure and let ||-||, be
the norm with respect to planar measure. When the context makes confusion unlikely,
the dependence on the set % or r and A will be ignored.

g (1)
g

-k
8

p

1/p
”dtde} < CA"VPrYP-1T(4Ar, g).  (6.3)
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(2) We have required p<} so that all estimates in (6.3) are independent of p, but

(6.3) holds for each fixed p €1, 2). It cannot hold when p=2, for near a zero or pole,
lg'/g|~clz—zo|~* with c=0.

(3) The powers of A in (6.3) and later formulas are not crucial, only that they are of
polynomial growth as A—.

Proof of Lemma 6.1. According to the differentiated Poisson-Jensen formula,

-% )=~ f 1oglg(Re"”)| 2Re d‘p +t ——~—J—|— (<R, (6.4

2—dz)(z—a)

where the a’s are the zeros and poles of g in {|z|<R}; a +sign is used when a is a zero
of g, and a —sign when g(a)=. Let z € ¥ and choose R=2Ar; then routine estimates
give

2Re” dg *
(R e%—2)*

2
f log|g(Re™)|
0

’ <4~ , 1
< H T TR.£1+0(D)]

*.p

<ClAr'TR, 2%, (6.5)

< CT(4Ar,g) A"P*!rP71,

Also since R=2Ar, each term in the summation of the zeros and poles is O(|z—al)~".
Now if |a|=(24)~'r, we have

Ljal
ff ——-pdtdos—z—ff 1 tdtd0=££ 1P dt
[e—al<jal ,a, lz—al<ial ,z_a‘p a Jo

i—a
= 0apr=0(4)"

6.6)

since 1<p<j. On the rest of ¥, we have |z—a|=l|a|, and in particular if |a|<r/(2A4) we
have for z € ¥ that |z—a|=r/(4A). Hence

lz—a)'|l , < CA™ ot 6.7)

and there are n(2Ar,0, g)+n(2Ar, ©, g)<CT(4Ar, g) terms in the sum. This, (6.5) and
(6.6) give (6.3).

5—878288 Acta Mathematica 158. Imprimé le 10 avril 1987
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COROLLARY 1. Under the hypotheses of Lemma 6.1, we have that

”%’ < Co?'r'""'T(4Ar, g) (6.8)

*
X,p

when A=1+0 with o<}.

Proof. We leave to the reader the task of adapting (6.5) to this context, and
concern ourselves here only with the at most CT(4Ar, g) terms in the sums of zeros and
poles in (6.4).

Let a be one of the zeros or poles of g, and ¥;c¥ be the subset on which
lz—a|>4or.

Then

1
x, [z—af

dtdo < C(Ar~"Y or;

otherwise, we find that
1 2 -
———dtdo<—- | |z—a|Ptdtdo
w-s, [z—af lal

4or
CA
<=
rJo

7P dt = CAd*?r' ™.
COROLLARY 2. Let X be a region ir<|z|<4r, 6,<argz<6y+o. Then

' lip
g—s" dtde] < Ca?P P T(4Ar, g). 6.9)

I8

The proof is exactly that of Corollary 1.

6.2. Lemma 6.1 after quasi-conformal modification. In this section we show that
estimates of the nature (6.3) are preserved under quasiconformal modification. It is
possible to do this in considerable generality, but we need this only for the situation
described in §5.3, and trust that the interested reader will be able to adapt our
arguments to more general situations if necessary. The principal simplification here is
that all dilatations are uniformly small as in (5.22) rather than just having norm <1.
Thus, in our situation, Neumann series such as in [2, p. 92, equation (5)] will converge
for each fixed p€(1,®) if |||~ is sufficiently small; when we only assume that
|lull-<k<1, then p must be very near two {2, p. 91].
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Thus, suppose that g is meromorphic in the plane, X is the annulus {A~"2r<|z|
<A'”r}, there are quasi-conformal maps @({) of the plane and w(w) (w=g(2),z€ %)
with ||to|l and ||| small, and such that

G(8) = wogop(l) = Hogp(l) (LEX) (6.10)

is meromorphic in %. In the notions of (5.18) and (5.28), we are taking g(z)=£(z%), so
that 7(r, g)=2T(*,f). The mapping ¢ is inverse to ¥, where y satisfies (5.23) (with
r=0'?), and ¢ and vy are rigid in the sense (5.30). Finally, we suppose that

|@ww(w)| < Clw| ™! jw(w)| (6.11)
(according to (1.22), (6.11) is satisfied in our application).

LEMMA 6.2. Let G be defined by (6.10). Then for each p<}, we have
G
G

where » is a generic function of at most polynomial growth in A as A—>=.

*
< x(A) r'?7'T(4Ar, g) < x(A) r'P"'T(4Ap, ) 6.12)
H,p

Proof. Since ¢~ ! and H=wog satisfy the same Beltrami equation and g is
meromorphic (g,=0), we find from (6.10) that
G'(Q)=(wog), o+ (wo°g), P,
=0, 8, Pt 0,8, Pt 0,8, P tw; 8, P
=w,2o9)g (@ e +w,(g°op)e (@) @;

so (5.22) and (6.11) imply that

%(C) = (W)™ [0,w) &' (@) P+ 0, ) T (@) ;]

' 6.13
={l1+C(} o~ 'w, g'g, = B(C)%GP(C)) P, (w=gop(t) 613

with C(») as in (4.21), and B({) in L...
We first show that if 1<p<3, then ({=ue")

il

p

' 1
i— (@(&) r du dv} < %(A) """ T(4r, ). (6.14)
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Let z=¢({), and choose g>1 so that Pq<3. Then (4.24), (5.30), (6.10) and (6.11) give
that (J=Jacobian, X' =@(X), y=¢~!)

{/

1/ ’ E3
~(<p(z,:))”’dudv} = “g;(qa)

X.p
{f g( ©) ududv}
x*
\ip
= 2 do 6.15
{L ® ‘w() ar } 6.1
<cH (s, 3
X'.pq

& 2|1 * 1/p
S

According to (4.25), (4.26), (5.30) and the conventions (4.21) and (1.24),

. —1l% o <% r"|y,~1|, 616
<x(A)Cp) r'e = Cy) r'?, )

so in particular

”vji”;[’,q’ = ”(WZ— 1)2”;[',(;""”2%’*' 1”§(',q'

, 6.17)
= {“wz_ 1”;}',2(;'}2"‘"2'/’# III;(',q’ = Crllq .

Recall that 1<q and Pq<3 We use (6.3) in our computation and obtain in (6.15) that

*
< {2(A) r'Pa1T(4A 2y, 2)} {crP7}
X,p

g
” e (@)

<(A) r'?71T(4Ar, g).

The function @ in (6.10) is the inverse function to y as in (5.24), so that @ solves the
Beltrami equation

¢g= Q@ (@0)=0, 9" = 0", p(w) = ») (6.18)

where [2, p. 9]

v (O = -%(z).
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Thus ||v;|«=||¥||, so that (4.24)—(4.26) and (6.16) apply to ¢ (except that in Chapter 4,
@ and y were to fix z=p, while now ¢ and v fix z=p'?; see (5.23). Thus (6.13), (6.14)
and (6.16) (using ¢ in place of y) give (6.12):

GI

G

*

scu&(q))
A p 8

*

”¢C"§,pq’

X, pq
*

”1"'(‘?7;_ D”?[,pq'
X,pq

sC”g—(q))
g

<x(A)r'""'T(4A"r, g).
COROLLARY. Let £ be a logarithmic region

L= {t;ar<|t|<Br}

or
L= {Eir<|t|<3r, 6y <arg§, < O,+y},
where
log§-< Co or y<C(Co. (6.19)
Then
Hi ) < %(A) 7P 1 T(g). (6.20)
Gllg,

Proof. This just requires the more refined estimates (6.8) and (6.9) in (6.15), and
the proof is omitted.

6.3. Almost-analytic continuation revisited. For 1<sm<M(n), let the functions G
and K be as in (5.28) and (5.31) (G=G,,, K=K,,). Each function K},/K,, is single-
valued and regular in &, and has a Laurent expansion in s#% (see (5.26)). We will
prove in Lemma 7.1 that the coefficients of

K, 2 .
(—K—(C)> =La(m (z€A3) 6.21)

are nearly independent of m. In the simplest case, when f(z)=exp(z”), then
(K'IKY (©)=T*(0) 0~ 2(£)**~2, so that a,,_>=T%(0) 0~ % and all other a’s are zero.

Let us see why (6.21) is likely to be invariant. According to (5.27), (5.31) and
(5.32), for each m,
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X

G 1
Gm

’
m

€ ,) (6.22)

where the ¢’s include all zeros and poles of G in#,, and
N, <CA)Y*T() (<ms<M@)). (6.23)

Let o€ ,,. Then z*=@(L)*’ €A, NU* (cf. (5.16) and (5.17)) so there exists a local
quasi-conformal modification in B,(z*) as described in §§4.2 and 4.3, say
G*(O)=H*(@*({)) in A(z*,}0). According to Lemma 4.11 (and the remark at the end of

§4.7), any other local q.c. modification can only replace H* by (H*)~'. Thus the
expressions

H \? H.\?
(logH): = (7;—) , (logH),= (7") (6.24)
are invariant. This suggests that (G'/G)? is almost invariant, and (6.22) and (6.23) will
transfer this invariance to K. This is the motivation for the following result.

LEMMA 6.3. Let Alml=sA[m,nl=sdp nNApni1,» (thus Alml is what remains
when QL) rectangles B,«[L] disconnect a narrow annulus). Then K,, and K,,+, are
holomorphic in dm), with ({=ue")

G -(G2)
Am] Km Km+l

(2 a,,) <> a® (@,>0,0<as<l), (6.26)

12
dudv < Cy*T(p). (6.25)

Proof. Since

we find that
2Dk )" = I |2—g*| " dr d6 = (||(g+(f- &) — D% 1"
X

=(|Qe(f-)+(f-)ll% 1"

<(2e(f~-2%, 1"+~ 1" ©6.27)
= (Re(F- )%, 1" +II(F~ M

<2"%(gll%. )2 (- gllf, )2+ f~ell.
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This formalism means that when fand g are close in 1-norms, they are close in +norms.

To control notation, we will write G, H and ¢ in place of G, ({)=H.,.(¢~({)), and
K in place of K,,; and G;, H; and ¢; for G (O)=Hpm+1(@m+1(0)) and K; for
K, i1

Finally, much as in (4.57), we let

w=0Q)=g; 0pk), {=VPw). (6.28)

Here are the key steps needed to obtain (6.25):

j m)

(with similar inequality for K, and G,);

K’ Gl

X dudv < C(A")"**T(p) (6.29)

f G 0 0-(pp,)| dudv< cyTi0Q), 6.30)

Am] G

f (w) (1-@,) | dudv < Cy’T(g), (6.31)
Am] Gl

and finally that
G 2 Gl 2|12
—(w)) ] —[(——(C)) @ )w]
J:‘ﬂm] [(Gl G !
Note that (1.24) and (6.12), (6.29)—(6.32) give (6.25), since by (6.26) and (6.27),
K'\2_( Ki\}|" K’ G
()~ (&) | e “ (&)
’ G' 2 2 G 2% Y12
+ “ i ( ¢,) S @ (—Gl—‘Pc) }
1 172

g [J | (3
(@) (' )”} -1y

du dv < (C(n)+Cy’) T(0) < CY’T(Q).

6.32)

L.

KI I K! Gl * }
SC +
E],)" (e-gl) <.,
* ? ' * 1] G *
+C “— ) ( » ) +[|—=—1—(¢)),, }
X1 G G X1 G : X1
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G’ : (G :
+ f ‘(F@ (<p.)w) —(?:(w) wg)
G; * 1/2 * 12
+C | ||= +
&)« )

I
L (gp—1
G (p.—1)
G’ * 172 ® 12 Gl K!
+C{<H l ) ( ) i T,
Gl X, 1 Xt

G, K, W}
< CT(4A0) {#(A) (A") " +y*+9°} < ¥*T(0)

Proof of (6.29). This follows from (5.32), .(6.7) (with A=2) and (6.22):

N
j dudv< E
Am]

Proof of (6.30). The functions ® and ¥ of (6.28) are holomorphic, and are
compositions of maps each factor of which satisfies the estimate (6.16). Thus (1.24),
(5.30) and Cauchy’s estimates show that

n
dudv

*}
1

Gi
E(w) (p.~1)

G _K;

G, K,

K G

K G

1
—c

dudv < CA')Y *T(p).

Am)

' (O)-Dl<C 10 20A -12 1/2< < (20A 172,172 s
[(@'Q)-DI<Cy® ((204) o™ <[Z[<(204)"¢™) 6.33)

(&' w)-D|<Cy"® ((204)" < |w| < (204)"%0"?),

(compare with (4.64)).
Let h=¢@:—1 and h;=(p,),,—1, as suggested by (4.25). Estimate (6.16) applies to &
and h,. Thus (5.30), (6.28), (6.33) and the chain rule give that

l(@),—1] = |(‘P1);lp'(w)“ 1
< (@)~ 1|+ (¥'(w)-1)| (6.34)
< |hy|+Cy"|1+h,),

and we deduce using (1.8) [or (1.11) with e=1], (6.12) (with A bounded), (6.16) and
(6.34) that

L

G

G @ U=(py,)

Gl
dudv < ||—
udo< || &

E 3
{1311, +CY Ol +Ryl%, )
o, p

< {Cr'P7'T8AQ)} {r'? (Cim+v")

< %(A) (Cp)+y") T(e) = (Cp)+7°) T(0)
<Cy’T(o)
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by the conventions (1.24) and (4.21).
Proof of (6.31). This is symmetric to that of (6.30), and is left to the reader.

Proof of (6.32). We use the definitions (5.28) for G and G, (where H and H; have
small maximal dilatation) and the invariance suggested by (6.24) in sfm] to obtain that

G'Q)=H,p+H,¢,= {1+CON} H, ¢,

and a similar formula for Gj; thus, on taking (6.28) into account we find that

[H,(p) o, | H(p, D) g, |
| " H) C] E{”C(”)}[ H(p, ) C]
[(H),(p, D) ]2 0
| Hy9,P) & .
(H),(@,w)) (@), @
=D = @0
_(H1°(P1)w 149 ]2

| Hiogp, (@),

G o, |?
={1+C -t ¢ ] )
{1+C@m)} [ G, (w) )

%’,@)Z = {1+C)}

= {1+C(p}

2
] (w=2(5))

= {1+C(n)}

Thus, if £€ #[m] and w=d) € .sd[fn], we have that
G, 2 (G 2
(—Gf(w) «pg) —(—G—(C) (qo,)w)

and so (1.8) (or 1.11) with £=1), (6.12), (6.16) and (6.34) give that

@) — Pw
AmINY(sflm]) G G

We next observe that sf{m]nW([m]l) is nearly all of sf[m). According to (5.11),

(5.14) and (5.17), sf[m] is a narrow annulus from which Q(A) rectangles B,- have been
removed:

12

<ctm) ‘% @

1

2 '
G!
dudv<C(@n) || —
udv (ﬂ)”G

* *®
, [, (6.35)

< Cx(A) C(n) T(@) < C(n) T(0).

MY = {E; Sms1 <|C| < Spns1, 0+ 0% <argl < 6;,,—0"} (6.36)

where, by (5.9), (5.10) and (5.11), log(s},+1/Sm+1) and o* are comparable to o. Thus
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(5.30) and (6.28) ensure that there are numbers r'<1<r/’ and 0;<6i<...0;<6/<
0j1<...0v<07+27x (N=Q(4)) such that

r &
log—+ % 0-0;< cy'? (6.37)
r 1

(compare with (4.39)), and such that

{sfim)—D(Am)} U {P(Am)—Am]} < {r'Sm+1<|8] <P'Sms1} U{r'sm+1
<&l < P'Sp1} U {38sy <I| <25,,4; 6/ <arg E< 67} (6.38)
i
Then (6.20) may be used to show that the contribution to (6.32) from the sets (6.38) is

negligible. We choose p slightly larger than one in (6.20). For example, let
FL={r'Sm+1<|8|<r"Sm+1}. Then using (6.34), we find that

J‘ du dvsj
£ &
G e 1p , 1
S{f - dudv} {J. [1+{k,|+Cy" R[] dudv}
2l G o

<x(A)y"*T(o) < ¥’T(0).

L G

1
G,

%(c) @

%’ (1+|h,|+Cy'°|h,|) dudv

Ip

Similarly,

’

dudv < y°T(g),

and these manipulations may be applied on the remaining Q(1) choices of Z. This
proves that the contribution from (6.38) may be absorbed in the right side of (6.32), so
(6.32) follows from this and (6.35).

This proves the lemma.

7. Completion of proof

7.1. Maximum-modulus and H,,-norms. We begin with an elementary consequence
of Cauchy’s inequality:

LemMa 7.1. Let y>0 be fixed and for k>0, let kB=kB(zo) be the logarithmic

rectangle
r
max ( log (—)
To

, |0—00|) <ky (z=rye z=re?.
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If h is holomorphic in B with

f |h|"2drd6<p, (7.1)
B
then
2 2y
max |h(z2)| < CP4; (2€1B). (1.2)
yn

Proof. Since |h|'?? is a subharmonic function of w=logz, we have

1/2$L g 1 2 _dﬂzdz
e R LERLE
=L |h|1/2 drdo
a? r

so long as |w—w,|<t is contained in B. Let w,=logz,;, with z, €{B. We may then take

1=}y and observe that r=rqe™. Thus

G2 < EE2
yrn
from which (7.2) follows.
7.2. Analysis of Laurent coefficients. Recall the functions K=K, and the Laurent

expansions of (6.21), where a;=a/{m). The next result indicates that these coefficients
are nearly independent of m.

LeMMA 7.2. Let 1,,0<7,<1 be given. Then the Laurent coefficients afm) of (6.21)
satisfy.

lafm)—a(m+1)|1< C2Ms ¢V oo™ T(g) (7.3)
where s,, is given in (5.26).

Remark. In this chapter, we view the K’s as the main object of study, and so write
K(2) (z=re®) in place of K(£).

Proof. The modified annuli #°=45, and =4, have been described in
(5.25)—(5.27). The mappings y (cf. (5.23)) are rigid in the sense (5.30). Thus there exist
O(0™") rectangles B,(z) (1<i<p) such that
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Fig. 2
BJz)c b, (1<i<p,p<Co™), (7.4
U B,(z) is a continuum with winding number 1 about the origin (7.5)
B (z)c i, (§W (7.6)

where U is a set of at most Q(A) indices i. Let B} (m) be the union of these rectangles
B,(z). Similarly, we let B,(m+1) be rectangles as in (7.5) and (7.6), with
Bo(z)c Ay, 1.

Next, let (for j=m, m+1)y; be a curve contained in %B5(m) or B,(m+1) with
n(y,0)=1 (winding number) such that if y;,NBz)+3, then y;NB,(z;) has length
comparable to the side-length of B,(z;). We can assume that y,, =y,,+1=y for z in all
but Q(4) rectangles of B (m)U By(m+1). (See Fig. 2.) The interior of

Um[()’m")’) u (Ym+ 1 —Y)]

contains the Q(1) excluded rectangles B, of (5.27).
According to Cauchy’s formula,

—_1_ _Ki : —(+1)
afm) = - J; ] ( Km) (2)z dz, .7

with a similar formula for a,(m+;1). We will use (7.7) to get (7.3).
Suppose (7.6) holds for B(z;). Let

Lol ()
B (z) 'Km Km+l

then (6.25) shows that £p,<Cy*T(p), and so L(p,)*’<(Zp)’><Cy*T*(0) (summation only
over all B,(z;) which satisfy (7.6)). Because of (5.17), we have that the length of

yiNBz) is at most C(A@)"?0 and each B, lies in [z=(A7"9)">. When
i€ U, Ym+1=Ym=Yy, and since o<1, (1.24), Lemma 7.1 and (7.5) give that

12
drd6=p;
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2|6 -(2)
i€% JynB y(z) Km Km+l

where x is a function of polynomial growth.

We now control the contributions from y;N B,(B;) with i € .

Consider the rectangles B (z), where 77 € %*(cf. (4.2)). Then two modifications of
fin Az}, }0) are L(w) and (T(0))~'log Kw'?) (w€A(% 40)) where L is given by
(4.44), and K by (5.31) (it is now possible to take a logarithm since the A’s are simply-
connected). Thus we are in the precise situation (4.54) with (4.55), and obtain from
Lemma 4.7 and (6.24) that (T(p)) 'log K(w'"?)=+L(®(w)), wGA(z,, 10), where @ is
rigid as in (4.57) and (6.33); i.e. that

|dz| < #(A) ez*'E (09"2) <x(4) (@™, o)
icq0 (7 8)

<#A) (") y*T0) = #(A) 0~ "*T(0),

—KK—'(z) = £ @) D' (D) T) (€ Az, 10)). (7.9)

The factor @' is well-controlled by (6.33), and (4.48) gives a trivial upper bound for
L', which is not adequate for our purposes. What saves us is that we are able to apply
(4.89) with 1<z <1. In order to apply (4.89), it is necessary to check that (4.88) is
satisfied, where zo=¢(z;)> and hence some history must be reviewed. The B_(z?) (i € U)
are contained in the rectangles B¥ of (5.12) which have been removed as in (5.14).
According to (5.11), (5.13) and (5.30), the noneuclidean distance from z,? to B* is

comparable to ¢. Finally, our construction (3.21), (3.22) of B* implies that each B of B*
meets U (89;). Thus (5.30) implies that

d(p(z)*, (V8D)) < Cy’+d(Z%,(VU3%D)) < Co
and so we have from (4.91) and Cauchy’s estimates that
IL'(®)| < Co™T() (0ol (z€ B, ().

This information is used in (7.9), and we conclude using (6.33) that

j —|drd6=<CT(o) j |lzL'(z)| dr d6
B%o(zi) 1o(z

<Clz) 0" T(e) (0|2 ~" |z}
< Co' "™ T(g).
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According to Lemma 7.1, this gives the uniform bound
X
K

Finally, on summing over the Q(4) rectangles B,(z;) of % and recalling (7.5), we deduce

that
Ym™V

r
m
m

02+ 2z, Tz (Q)

2
-
T oef

<x%(A)0™ '0"'TAo) (zEB 1,(2)-

2
|dz| < Co™ o™ T%(g); (7.10)

of course, (7.10) also holds when m is replaced by (m+1). We choose 7, in (4.98) so
that 2zo—1>7;, where 7, appears on the right side of (7.3).

In order to obtain (7.3) from (7.8) and (7.10), we consider the integrand in (7.7) and
estimate [z]"®*" on the contour by: |z]"*P <2M*!5-¢*D 4, and use (1.24) to absorb the

factor #(A) into o™.

7.3. Analytic continuation of the Laurent expansions. There are only C=0Q(4)
modified subannuli <%, so if A=A, in (1.10) is sufficiently large, we may find
y*,y°,andy’ with

A”29<()")2<115AQ
40 < (¥°)2 < 100Cp 7.11)
16A o< ¥y’ <A™,

such that
A = {%y’ <|= 4y'} c off (7.12)
L= {%y°$ S 4y°} c o} (7.13)
and
—_ # #
o =P <|z| <4y*}c o (7.14)

for some j’,j° and j* (perhaps not all distinct).
We first record an O(1) form of Lemma 7.2.

LEMMA 7.3. The Laurent coefficients ofj"), afj°) and oj7) satisfy for any fixed
0
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lo ()| < c@ (-(v%)z)uﬂ_! 37 Myt (7.15)
) < c-T-ZL) 3Hg-2 (7.16)
and
lo, (i) < C%Q (Ly%—)z)u_e_l 37 Mly*) (7.17)
o

Proof. According to (1.8), (6.7), (6.22), (6.23), (6.12) and (7.11)-(7.14),

I VAN /] Y [
f (5— ) drdBEf & drdesf ’i drd0+zf L_drds
A\re L% .G =
1)2 A+el2
< CI(6y'V)+CANAY *Tg)< C (%) Te).  (1.18)
K 2\ 122
f(?’ ) drd0 < CT(p)
£ 7

and

2\ 12
) drd6 < CT((6y™)*)+C(A") " T(g)

<C ( (y:)z )/1—5/2 T(Q)

These inequalities with Cauchy’s estimates, (7.7) and (7.2) give (7.15)—(7.17).

Lemma 7.3 may be used to estimate the terms of the Laurent series in (6.21) when
|l| is large. Thus (7.11), (7.15) and the Pélya peak inequality (1.8) (or the weak form
(1.11)) show that if t<y’; then

- Nl = S . nl Ll ((_y_’_)_2_>u+€_l (Lyjﬁ)‘# TZ(Q) 7.19
el gla,u)l(y)(y,)sc - L)PLe, a

where, if we use (1.11) instead of (1.8), it is possible that C=C,.

Since we may pass from &' to &° or & (cf. (7.12)«(7.14)) by passing through at
most Q(4) of the s}, we use (7.19), (7.3) and (7.11) to obtain for example that if
|IL—4)<5 then
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D 1aGN0Y< DN O+ Dy D () =2 0
L L L m
T(0) ((y )2)2“‘ ! - * { i (f)’}]
sC—= p LY P 7.20
e [ 0 (()"’) ) - S (7.20
sci@[(ﬂ)uﬂ-*#wﬁz*{iﬂn (y_)}]
o (o] - T S,

where L* refers to a sum over Q(4) indices m which correspond to those s, with
3y°<s,,<(Ag)"? (note (7.13), which implies that s is well disjoint from the circles
{lz|=5m}). Thus, if 2A+e—1-1L=<0,(7.11) and (7.20) yield that

hed 2
> laj96)'< CLQ@ [Py e, (7.21)
L
and similarly
kel 2
N a0 < cl@‘—@ (a1t cgn]. (7.22)
L

This argument is symmetric in the sense that we may start with the aj*) and
work to the a,(j'). Thus, start with (7.17) in place of (7.15), use (1.8) (or (1.11)), (1.24)
and (7.11). Then, if t>y* we have

N v 2 #2 \ U—e—1 M
_Ela,(j‘*)lt‘sc%[((y ) ) 2( )]

<erm(2 ())

Thus if 2A~e—1-1M=0 but |[M—44|<5, we deduce from (7.3) and (7.11) that

i e 07 < c@ [(ﬁ)u"“ ( (S )-%M +a"]

e 0
=¢ TZQ) (7 vl (7.23)
$ oy <T@ (L0 (2)) ¥et]
—o o) 0 y
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7.4. Proof that 21 is an integer. In this section we obtain the first part of the theorem.
We first need a result which is a modification of Fuchs’s lemma 3.2 of [16]. We consider
K'/K (where K=Kj) in the annulus & of (7.13), which is close to {|z}]=0"?}. For ¢>0,
let cof°={(4c)~ y°<|z|]<4cy°}, with similar definitions of csf' and csf* (these annuli
were introduced in (7.12) and (7.14)).

LeMMA 7.4. There is a constant ¢, which depends only on f, when n in (1.8) is

large, such that
f l |
jor

Proof. Inequality (7.24) is a consequence of Schwarz’s inequality and

fﬁ
jor | K

since |, - drdf=cg. We recall G from (5.28) and (6.22). According to (5.28) and
2

drdf = c = co™?T¥(p). (7.24)

drdf = cT(p), (7.25)

formulae such as (4.6)-(4.8), each circle |z|=r must have a point re’®” such that
llog |G(re®)||>cT(r*)>cT(p). Also, since each circle |z|=r must meet 2 for at least two
indices i, we may find 6’(r) with [log|G(re®®)||=|loge|. Choose r such that

0" < r< 100Co"?, (7.26)

where C=0Q(4) is the number of modified annuli &f. Then we have that

cT(?) <f

0

2n G'

rdo, (7.27)

s0, since T is increasing and (7.26) holds,

cT(@)< j
jor

This, (6.7) (with A=4), (6.22), (6.23) and (7.26) give (7.25), for

K’ G’ 1
”7 drdG?j |? drdo->, f }—

z—c
= cT(n—C(A") ™ T(g) > cT(e).
This proves the lemma.

drdo.

'

drd6

6—878288 Acta Mathematica 158. Imprimé le 10 avril 1987
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We now apply (7.24) to prove assertion (1.4):
LEMMA 7.5. Under the hypotheses (1.2) and (1.3), it follows that

21 is a positive integer. (7.28)
Proof. The first goal is to show that

4] is a positive integer, (7.29)

by using (7.22) and (7.23).
Choose integers M and L and £,>0 so that

M<2(22-1-26,) <2(2A—1+2¢)) <L. (7.30)

If A=41-2 is an integer, take M=A—1,L=A+1; otherwise, choose g so small that
(7.30) is possible with L=M+1. Then |L—44|<5 and |M—4A|<5, so (7.22) and (7.23)
hold in s, and thus (K=Kj).

1\ 2
‘('%) —aAZA

where we take a,=0 if A is not an integer. Thus if a, =0 in (7.31), we would have from
(7.24) and (7.31) that (K=K}y)

2
=IS@)| < Ca"% (Z€ 1) (7.31)

Co™""T (o)< f

1

2
X drdé < Ca"o™"*T¥(p),

which is a contradiction. This proves (7.29), and, moreover, a, cannot be too small:

A

los| = cTe)o” . (7.32)

Now we recall from (6.21) that the a’s are coefficients of (K'/K)?, where K'/K is
single-valued in &°. It follows from (7.31) and (7.32) that (K’/K) is a non-vanishing in
js£°. Choose the branch of square-root of K'/K so that

IK'(K—a'? A" < Co?"'T(g) 012

in the intersection of }s#° with the positive axis and continue this branch through & to
the negative axis in the positive and negative directions of rotation. If JA is not an
integer, then (7.31) and (7.32) yield that
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5o () e

which contradicts the fact that K'/K is single-valued. This proves the lemma.

>2|al?| A"~ Co"'T(e) o™

=cT()o 12,

CoROLLARY. Let fiz) satisfy (1.2) and (1.3). Then there is a fixed integer N=2 such
that all Pélya peaks of T(r,f) have order A=}N. In particular, (1.11) holds for all large

oandr.

Proof. Lemmas 7.4 and 7.5 show that all Pélya peaks must have order im with m

an integer. But ?={4; T(r) has Pélya peaks of order} is connected [7], and hence some
m=N works for all peaks.

Since Weitsman [26] has shown that (1.2) and (1.3) imply that A4 in (1.8) must
always be at least one, it follows that N=2.

1.5. Growth of the functions G. We apply the last results, in particular the
corollary, to analyse the G,(z) which were constructed in Chapter 5 (cf. (5.28)). The
next result is much like Lemma 4.4,

LEMMA 7.6. Let r\<ir, be such that the annulus

Alr,,dr)={ir <|zl<dr}c A, (7.33)

for some s, of (5.27). Let G=G,, be associated to f by (5.28). Then if ir;<t,<t,<2r,,
with

t,>(1+0)1, (7.38)

we have

It 1, ] t
1 j f llog |G(re®)|| r™" dr d6 < Clog = T(2t,)%). (7.35)
2% 0 4 L

Proof. Assumptions (5.30) and (7.34) guarantee that the image of the annulus
{ti<|z]<t,} under ¢ is contained in {(1—a)#,<|z|<(1+0)t;}. Let w=g(z)’=se", so
that z=y(w'?), let W=w'? and s=|w|. Then (5.28), (4.24), (5.29), and (1.24) give that
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(1, n (4
J’ f log |G(re®)|| r ' drd6= f [ [log |w(f(@@)|| r~*rdrdé
0 Jy 0 1

t

m (1401 s \2 1
<c f pogloCul (5 Iwfis™ dsd

o J-aye? Iyl
(7.36)

2 (140 t)
< Cj j |log |w(fw)|| lzpwlzs" dsdt.
0o J-o)’

Let ((1-0)t)’<s<((1+0)1,)*. Now [ log* |1/( f(se*)—a)|dt is small unless
a€ {a;}%and E is contained in the sets U @(m) of Lemma 5.2, and the construction of H

in Lemma 5.2 has the precise effect that if Ec @(m)n {|z]=s} and E'? is one of the two
preimages of E in s, then

f [log |H(re®®)|| d6 = f llog|f(se™)—a)| dt. (7.37)
EV E

Thus (7.35) follows from (7.36) in a routine way, using (1.11) (compare with (4.38)).

7.6. Asymptotic expansions of the functions G. There are only Q() subannuli &/°
in § 5.3 (see (5.25)) and U &¢° has logarithmic length >clogA. Thus there are subannuli
o° whose logarithmic length is large. Such subannuli are not necessarily centered at
02 (where o is the P6lya peak), but now Lemma 7.5 (and its corollary) show that
(1.11) holds, and this is good enough.

Thus, let

A;=logA. (7.38)
It follows that we may choose pairs s, f;, and s,, £, with
A—-l/4gl/2< 5, < (Al)—301/2’ AZ:QI/2< 5, <A”4Q”2, t,=A§ 5 (739)

and such that each annulus {(4,)"?s;<r<A}1} (i=1,2) is contained in one of the annuli
. of (5.27). We choose the “‘center’’ u; by

W= st (i=1,2). (7.40)

i

Choose y>0 so that

24— (1P @+ <~ (7.41)
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this is equivalent if y<1(22+1)~". We then define

B = (A7 u,<|lzd<Alu)} (=1,2) (7.42)
and

%= {A7s;<|d=Aly} (=1,2. (7.43)

Thus %; is nested well inside €;.
We recall the definition (5.31) of K=K;=G;P;(i=1,2) which is valid in each €;.
Each function K is holomorphic and zero-free in its € and has a ‘‘Laurent’’ expansion.

logKQ= >, 4y log (£) €€ (7.44)

since Re {log K} is single-valued, y* is real. We use weak estimates of these coefficients
y to get good asymptotic formulae in the %;,

LeMMA 7.7. In each expansion (7.44) (i=1 or 2) we have (u=u;)

¥ <(A) 2 T6H), (7.45)
and
log K—y*log (f) —yu 22 < CAT2 TP (€ B, (7.46)
while
vl > cu P T, (7.47)

Proof. We first show (7.45). Now since K+0, « in %;, we have that

1 K’
=— —(2)d 25 < r<A’t),
14 2”"L=r X (Ddz (A7%s;<rs<Ait)
so that, in the notation (6.3), |y|<C||K'/K||},;, where B is any annulus {so<|z|<2so}
which is contained in C. By taking s, close to A;Zs; we deduce from (1.11), (6.22),

(6.23), (7.39), (7.40), (6.7) and (6.12) that

NTE]
< c{ ”%” +2 lz—o)'ll§ ,} <CT((4A72S)H+C(A") " T(p)
B,1
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= CTWAT W) +C(A4) ¥ Tio)
= CAT TWh),
and this implies (7.45).
The next goal is to bound |Re |K]|| locally; this is much like the situation in Lemma

4.5, now that we know (7.45). In terms of the local coordinates in §4.4 and the
definitions (4.1), we find that if JA;'s; <|z5| <4A, 1, then

log |K(zy)| = f log|K(2)| de.
Clzy, 0

so that (5.31) and (4.49) give

llog |K(zp)||<C f llog |K(z)|| de t ™" dt

Az, 3.9

sCJ |log|P||t"dtdq)+CI llog |G|t~ dtdg
AL P

Alzg, 1D

<CA)*T()+C f llog|Gl| ¢~ dt dg.
Atz 4.d)

The local (f,¢) coordinate system is related to the standard system by
(z=re®): z—zy=tlzg| €. In A(zy, 4,9, we have }<t<} and br,<r<2r,(ry=|zy|). Thus

tVdtde =t"tdtde = (tr)) *rdrdé < Cr~'drdo,
and we may rewrite our last step as

2 Cry
|Re log K(zy)| = Jlog | K(zy)|| < C(A") " T(@)+C j j llog|Gl|r~" drd6
0 Jerg (7.49)
<CT() (A7 s;<|z| <AT%1),

where we use (1.11), (1.24) and (7.35) to obtain the last line. According to the Borel-
Carathéodory inequality, (7.49) implies that
[log K(z)—log K(zy)| < CT(r}) (z€ A(zy,}) (7.50)

so long as JA['s; <|z)| <4A, 1,
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We use (7.50) and (1.11) to prove that

SCAT™MTW) (o=1s,i=1,2) (7.51)

log K(z)—v* logf

log K(z)—y* log—l:-‘ SCAMTWD) (z=41,i=1,2). (7.52)

Because of (7.45), it suffices to prove (7.51) and (7.52) in the slit annuli
{is;<|z|<4t,, |arg z]|<xz}, and so we show that

log K@< CAT** T} (|2|=1s,argz|<m), (7.53)
flog K(z)| < CA** " T(ud) (|z| = 41, |arg z| < 7). . (1.59

Choose a point w, on |z|=1s,, |arg wy| <, and choose |arg K(wo)|<z. The circle
{lz|=4s;} may be covered by at most C discs A(w,, }) (1<i<C) where w;,, € A(w,,}), so
we may start with (7.49) [w1th ro=}s,-] and obtain (7.53) by using (1.11) and (7.50) on

each of these circles. _
The proof of (7.54) is similar, once we know that our branch of log K also satisfies

larg K(w,)| < CA**"* T(u?) : (7.55)

for some w,, with |w,,|=4¢;. We obtain (7.55) from (7.50) and (1.11), by moving from
wytow,, by m=Clog(t/s;) discs A=A(w;,}), and to do this efficiently, we arrange this
so that |w|=(11/10)| w,_,|,i=C. In this chain of discs, suppose that wy, s w,, satisfy
|wj=u;. Then (1.11), (7.39) and (7.50) show that

-1
|arg K(w,,)— argK(wh)|<z|argK( w;, ) —argK(w)|

w. 2.+1/4
<C 2 T(w)P) < CTw) ( )
h h

e}
U;

22+1/4 m—=1 24+1/4
= CTw 2)( ) > (ﬁ

h
wm 2A+1/4 )
<C|— T(u,')
u;

< CA%"-HM T(u%),
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and we control the contribution from the |w]<u in an analogous manner. This proves
(7.53) and (7.54), and thus (7.51) and (7.52).
We now observe from (7.41), (7.45), (7.52) and Cauchy’s estimates that (|z|=r)

oo - I
z v SCA%“”"T(u?)Z ( r )
Ay

22+1 22+1

< CA%IH-IM T(u,z) 2 (A¥—1)1

22+1

< CA%;.+1/4~(|—7)(2).+1) T(u?)
<SCAT"TW?) (A" u;<r<Alu)

and, similarly, using (7.51) with (7.41) and (7.45), we have that

2A-1

2 }’IZ'

-

SCATTW) (A7 u;<r<Aluw).

These estimates give (7.46).
Finally, log K is holomorphic in A(z,, #) if t<} so that when {u<|z|=r<2u,, we have

that
X logX(® ,
' @)= jC(z n (- -2’ C]

Thus (7.44)(7.46) give that

l‘f’c““ < 2yy| P +HCTG) ' [A7 2+ ATE ).

However, (7.27), (6.7) (with A=4), (6.22) and (6.23) now show that

cT(uz) < d0 -

K?' drd0+2jf

< Clyy,| uP+CAT 2 T(Wd);

——| drdé
z—c

since A;—, this is a contradiction unless (7.47) holds.
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CoROLLARY. For i=1,2, define B; as in (1.42). Then each G; (i=1,2) satisfies

N
log G(2) =y 24~ tlog (1— i) +S, (z€B) (7.56)
C

where the c’s are the zeros and poles of G; in B; (so that N<C(A')~** T(o)) and
IS@I< CAT2T(ry?  (ry<|z] <2ry). (7.57)
The coefficient v, satisfies (7.47).
Proof. This is just rewriting (7.44) using (7.45)—(7.47).

7.7. Behaviour of f near the Pélya peak. Recall the %;(i=1,2) from (7.42). Let &
be one of these annuli. Then (7.47), (7.56), (7.37) and the explicit relation between
G=G; and f(z%) (described above in §5.3, centering on (5.28)), determine f(z) in each
(). Thus, each circle [z|=r (A]” u;<r<(A{”u, i=1,2)) divides into 44 intervals I, in
which Re(G(z)) is alternately small and large. According to the formulae in §4.2
(especially (4.6)—(4.8) where w{a;, a;}={0, ©}) the 44 intervals on which |log|G(z)|| is
large correspond (after the map w=2z%) to 24 intervals I; on which fis near the various
deficient values. Further, (1.24) with (7.47), (7.56) and (7.57) shows that
|, log|G(re®)| d8] is [within error CA7"? T(?)] independent of j. In fact

log |G(r )| ~ 24)~) T(?) ~ - f log* —L g6 (7.58)
f,. Gl =72 ), e

4

Thus, we may choose ¥, and y, and define 6; ; (relative to (%)% and 6,
(relative to (%,)?) with .

6,1 =, +mi™", 6,,=y,+miA”!
(0sj=<21—1). For each >0 let

1.0={16-6,1<Z—t}, 1,0={l0-6,./< -1},

where I; 1, 1; , are used in place of I; 1(0) and I; ,(0). We deduce that if 7 is fixed (but
small) and » in (1.8) is large, then each I (7N 93,2 is contained in some D €U %;, where

the U &; are the significant components of f from Lemma 2.3, say D=D.
According to (7.39), %f is well inside the bounded component of the complement

of %&. Let us correspond the integers k, 1<k<21 to components D=®,(k) of U %; by:
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®,(k)=D if I, (r)cD. Similarly, we may define ®,(k) by identifying the D € UZ; with
the integer k such that I, »(z)<D.
We call these D strongly significant in %; or %.

LEMMA 7.8. Let DEU D; and suppose ®,(k1)=...=®,(k))=D. Then there are r
distinct integers k', 1<k’ <2 with ®,(k'")=D.

Proof. Suppose there were a component D* of D in {A;% u3<|z|<A’g} such that
D* c {|f-a|=¢€}U{lz| = AT u}} (7.59)
(thus D* does not meet {|z]=A’g}). Choose r* with A;? uj<r*<2A;? uj and such that

(22, p. 25
M

Toal ) (= 7.60
- [loF |f(z)—a,.|’sCT(2A1 ") (| =r*). .60

Let Q={r*<|z|<A’@}nD*, and consider the estimate (2.32). We estimate the
Green functions by (2.33) and the boundary integral by (7.60). Thus (1.11), (1.24) and
(7.59) yield that

m(r, a;, D¥) < C(A") " T(9)+ CTQA; ¥ i) < CQA; )49 T(u}). (7.61)

If we take r close to Af" uf and compare (7.61) with (7.58) and use (1.11) once more, we

are led to the contradiction that
CAY* 9 T(ul) < CA™'T(AY u}) < CAT* 9 T(d). (7.62)

Thus if ®,(k)=D, then D may be joined to {|z|=A’e} from %nI, , without entering the
other I; (7).

Our argument gives a little more. Not only does each component D* of
D0 {jz|=A;* u?} which is the range of ®, meet |z]=A’p (and so pass through %2) but
when it enters % it cannot be contained in the small sectors of %; defined by

2n—WU1; 5(r). For if D*n {|z]=r} were contained in 21 intervals of opening r where
A7% u<r<A? u} then the useful “*small arcs’’ Lemma of Edrei-Fuchs [12, p. 322] and
(1.11) would show that

m(r, a;, D¥*) < Crlog t“T(A%" u%)
< Cr'T(Ap) < CT*PA*9T(A™ ) (7.63)
< CAT*9 T}
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so long as, using the notions of (1.24),
T, <A, (7.64)

(for example, we could choose 7,=0,), and we would reach a contradiction just as in
our analysis of (7.62)).

Finally, suppose ®(k;)=...=®(k,)=D. We claim that p distinct components D*
of DN {|z|=A " u,} meet 9. The simpler case is to assume that

k—k.%1 (mod24) (7.65)

for any choice of [ or I'. Then if our claim was false, then two D* would have to merge
before encountering %;. Hence some strongly significant component D**, of
U PN {|zZ=A;% 43} in %] is “trapped” by D*, so that D**n {A;¥ ul<|z]<A’e} would
have a component D¥ such that (7.59) holds with D¥ in place of D*. Thus (7.58) and
(7.61) would both hold for D¥n %%, and this is a contradiction exactly as in (7.62).

It remains to show that (7.65) always is satisfied. Suppose (7.65) were false. Then
for some k,k' with k—k'=1(mod24) we have I, (v)cD,I;. |(t)c=D for some DE %;.
Let Q be the region %in{|0—6,|<t}, where 6 is chosen so that QNI ,()+@ and
QNI 1(r)*+D. According to (5.28), (7.47), (7.56) and (7.57), we have (I=k or k’):

N
=yr*cos A0-06, 1)+S+2 +log

. S z
log |f()~a) 1 a‘ €L, (@), @1.7)

where N<C(A") ™" T(g), |S|<CA;"T(¢)and |y|>cu~*T(u). Further, we may take y to
be real, since the I; ; are chosen so that the function G; is small only near 37, ;.

It is easy to see from (7.71) that the change in arg (f(z)—a;) along |arg z—8o|=7(—17)
is negative (positive), and the contribution from {|arg z—6o|=7} N {r<|z|<2r} in absolute
value is comparable to T(r). Also, m(r, a;, Q) satisfies (7.63), and hence, by differentiat-
ing the proximity function (cf. (2.40)), we may ensure that

|A arg (f(2)—a)|<CAT T(s})
on |z|=h, with & nearly A7? &3. Thus, by (1.24) and the argument principle we have

n(®, Q)—n(a, Q) = CTW?)—CAT4 ™9 TWd)
= CT(ud),
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and similarly, n(a;, Q)—n(a;, Q) = CT(uf) for all j=i. Thus

H

D onlr,a, Q= (- Sr,Q) (AYuE<r<AYu)).

Since (g—1)>(g—2), this and (2.14) contradict (1.3). Thus (7.65) cannot hold, and we
have proved Lemma 7.8.

Remark. Lemma 7.8 and the representation (7.56) (subject to (7.57) and (7.47))
show that in the region {A;”u}<|z|]<A} u}}, the only significant contribution to

m(r,a;) come from components D of U 9; which are in the range of ®; or ®,, since
(7.64) holds. We summarize our results in

LEMMA 7.9. There is a 1—1 correspondence between strongly significant compo-
nents in %%and ?/B%, so that the set B* of (3.16) is disjoint from

®B*={A%0, < <Ajo,} (7.71)

where, as in (7.38), Ai=logA. Thus (7.56), (1.57) and (7.47) hold for all zE B*. In
particular, the annulus {%0,<|z|<360,} is divided into 21 disjoint sectors I;=

{|0—aj<n/2A} such that

1

2 N
log e —al L) 0—a)+R £1
*fre—a (£) cosio-ay+R+2) 4108

1—1‘ GE)  (1.72)
a

for some a;€ {a;}] where N<CA") " T(o) and |R|$CAl'”2 T(o).

Let us check a few of these assertions. The bounds in (7.71) follow from (7.38) and
(7.39). Next, consider the set B* of (3.16), which is a union of rectangles from §3.3.
Since the strongly significant components link %3 to %, it follows that B*n %*=0.
Thus in (7.39) we may take s,=A;'0"2and#=A,0", and observe that
{Al‘2 s1<r<Af t,} is contained in some annulus &/, of (5.27). Since o=s,t the repre-
sentation (7.56) subject to (7.57) and (7.47) applies and gives (7.72) (cf. (7.71)).

7.8. Proof of the theorem. We have already shown (1.4), and (1.5) follows from the
asymptotic expansions (7.58).

Finally, consider (1.6). Thus far, we have centered all attention on subannuli (1.10)
of (1.9), where the {p,,} satisfy (1.8).

Now that (1.11) is known for all £, we modify the original g,, by
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0,=2", 7.73)

and use (1.11) with e=}. Then the developments of Chapters 2-5 apply to slowly

expanding annuli centered at the g,, and for each n, a sequence G,, , may be
constructed in the modified annuli &, , as in (5.25)-(5.29). Next, we obtain subannuli
Bi(n), By(n) for n, as in (7.42), which lie well on opposite sides of {|z]=¢,}. Lemma 7.4
(§7.4) is a global statement, and only it and (1.11) are used after §7.4. Thus (7.56),
subject to (7.57) and (7.47), (7.58) and Lemma 7.9 apply, and we deduce that (7.72)
holds in each annulus

(%0 <zl <360,}.

Since now g,, satisfies (7.73), we see that these annuli overlap, and thus (1.6) follows at
once. This completes the proof.
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