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Intreduction

Let the (real or complex) Lie group G act analytically on the connected (real or com-
plex) analytic manifold M. In this paper we shall study the behaviour of the isotropy

subgroups @, as a function of 2€ M. If m =minges dim G, it is trivial to show that M, =
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{x€M|dim G,=m} is a dense open subset of M, the complement of an analytic subset
of M. We shall restrict attention to the case in which M = 3{, i.e. we assume that all orbits
of G on M have the same dimension. This case is well understood if G is a compact con-
nected Lie group (even for the case of continuous G-actions). There exists a dense open
subset U of M such that G, is conjugate to G, for z, y €U. Moreover, M — U is of codimen-
sion > 2 in M and, if x€ U and y€(M — U), then G, is conjugate to a subgroup of G,. Thus,
modulo conjugacy, all isotropy subgroups are the same on U and on (M —U) all that
happens is that the isotropy subgroups pick up extra components. In particular, the
number of components of the isotropy subgroup @, is an upper semi-continuous function
of x€M.

The situation is quite different in the case of non-compact . For example, there exists
an analytic action of G =SL,(R) on an analytic manifold M such that all orbits of G on M
have codimension 1 and such that, for z, y €M, @, is non-isomorphic to G, unless x and y
lie on the same orbit under @. Similar examples exist for semi-simple algebraic groups acting
algebraically on quasi-affine algebraic varieties. To give another example, consider the
irreducible representation of G'=SLy(C) on €* and let U ={x€C*| @G, is finite}; U is a non-
empty Zariski-open subset of €% There exists a Zariski closed subset 4 of U such that
G, ={e} for z€4 and @, is of order three if x€(U — ). Thus, for the action of G on U, the
number of components of &, is a lower semi-continuous function of # but is not upper semi-
continuous. For all of these examples, see §12.

In order to study the behaviour of the isotropy subgroups, we shall study the more
general problem of ““deformations” of subgroups of a (real or complex) Lie group G. Roughly,
an analytic family of Lie subgroups of G, parametrized by an analytic manifold M, is an
analytic submanifold H of G'x M such that the projection 7,,;: H— M is a submersion and,
for every t€M, the fibre s, ~'(#) is of the form H, x {t}, where H, is a Lie subgroup of G.

Our basic result concerning such analytic families is the following:

THEOREM 3.1. Let H=(H )icx be an analytic family of Lie subgroups of G, let t,€ M
and let H=H,. Let K be a Lie subgroup of H such that the component group K|KO° is finitely
generated and such that the Lie group cohomology space H(K, g/h)) vanishes. Then there exists
an open neighborkood U of t, tn M and an analytic map n: U—>G with n(ty) =e such that
H > n(t)Kn(t) for every teU.

Here g (resp. §j) denotes the Lie algebra of G (resp. H) and the K-module structure of
g/Y is determined by the adjoint representation of K on g.

Theorem 3.1 generalizes the result of A. Weil [24, p. 152] which states that if I' is a
discrete, finitely generated subgroup of & such that HY(T', g} =0, then I is “rigid”. It also
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generalizes results of the author [17], [19] on deformations of subalgebras of Lie algebras
to the case of Lie subgroups. Theorem 3.1 makes sense in the framework of C®-manifolds
and we conjecture that it holds there. However, our proof relies heavily on the assumption
of analyticity. In particular we require a theorem of M. Artin [1] on replacing formal power
series solutions of analytic equations by convergent power series solutions.

If, in particular, K< H is a reductive Lie group, then HY(X, g/%) =0 and Theorem 3.1
applies.

Let G act analytically on M such that all orbits have the same dimension and let G =
{(g.1)€G x M|g€G,}. In general G =(G)sen is not an analytic family of Lie subgroups of
G. We say that (g, t) €G is a regular point of G if there exists a neighborhood U of t in M
and an analytic map s: U— G with s() =g such that s(u) €@, for every w € U. Let G* be the
set of regular points of G and let Gf ={g€G,|(g,t)€G*}. Then G} is a Lie subgroup of G
containing the identity component of @; and G*=(G¥)is is an analytic family of Lie
subgroups of G. Thus Theorem 3.1 can be applied to the analytic family G*. If all orbits of
G on M are locally closed, it follows from a result of J. Glimm [7] that there exists a dense
open subset U of M such that G,=G¥ for every t€U.

We obtain our sharpest results in the case of algebraic transformation groups (over C).

In this case, our main result is

TrEOREM 9.3.1. Let (G, X) be an algebraic transformation space with G an affine alge-
braic group. For each t€X, let U, denote the unipolent radical of G, and let L, be a Levi sub-
group of @,. Then there exists a finite family X,, ..., X, of non-singular Zariski-locally closed
subsets of X such that the following conditions hold:

(8) X= U1 X,

(b) For each j, X, is a Zariski open subset of X —(UIZ1X)).

(c) If », y€ X, then L, and L, are conjugate.

(d) For each §, the family (U ,)iex; is an algebraic family of algebraic subgroups of G.

Many of the results of this paper were announced in [20].

§ 0. Preliminaries
0.1. As usual, N, Z, R and € denote respectively the set of natural numbers, the ring of

integers, and the fields of real and complex numbers.

0.2. Throughout this paper, F will denote either R or € and, unless stated otherwise,
all Lie groups and analytic manifolds will be taken over F. All Lie groups and analytic
manifolds are assumed paracompact and Hausdorff, Our basic reference for Lie groups and
analytic manifolds is [22] and we shall follow the terminology therein, except that we
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denote by df,: T, (M)— T, (N) the differential (tangent linear mapping in the terminology
of [22]) at 2 €M of an analytic map f: M —XN of analytic manifolds. In particular, we shall
consistently use the terminology and elementary results mentioned in [22] on immersions,

submersions, subimmersions and fibre products.

0.3. The Lie algebra of a Lie group &, H, ete., will be denoted by the corresponding
lower case German letter g, §), ete. If ¥ is a finite dimensional vector space over F, then
GL(V) denotes the Lie group of automorphisms of ¥V and End(V) denotes the F-algebra of
endomorphisms of V. If G is a Lie group, then ¢ denotes the identity element of &, G° the
connected component of e in @, and exp,: g— & and Ady: G'—GL(g) denote respectively the
exponential map of G and the adjoint representation of G. By a linear representation of G,
we shall always mean an analytic homomorphism G—~GL(V), where V is finite-dimensional
over F. Lie subgroups are as defined in (9] (for the real case; we take the analogous definition
in the complex case); in particular, a Lie subgroup of @ i not necessarily an analytic sub-
manifold of G and is not required to have the topology induced as a subset of G. If the Lie
group @ acts as a transformation group on a topological space M and if €M, then G,=
{g€Q]g-t=t} is the isotropy subgroup of G at t and the Lie algebra g, of G, is the isotropy
subalgebra of q at t.

0.4. An open box in F' is a set of the form {(a;, ..., z,) EF"| |z;| <a for j=1, .., 7},
where a is a positive real number, If V is an »-dimensional vector space over F, an open box

in ¥ is the image in ¥ of an open box in F” under a linear isomorphism ¢: #'—> V.,

Chapter I. Deformations of Lie subgroups
§ 1. Analytic families of Lie subgroups

Many of our definitions. in this section are special cases of a more general situation
considered by Douady and Lazard [6], that of an analytic family of Lie groups (or, in the
terminology of Douady—-Lazard, Lie groups over M). In contrast to [6], we require all mani-
folds to be Hausdorff.

1.1. Definition. Let G be a Lie group and 3 an analytic manifold. An analytic family of
Lie subgroups of G, parametrized by M, is an analytic manifold H satisfying the following

conditions:

(a) Hc @ x M and the inclusion map ¢: H—G x M is an immersion.

(b) If 71y: H—>M denotes the composite map pry o1, where pry, denotes the projec-

tion G x MM, then my, is surjective and is a submersion.
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(c) For every ¢ € M, the fibre my'(f) is of the form H, x {t}, where H, is a subgroup of G.

(d) Let H x ,H denote the fibre product of H with itself over M with respect fo
7y and let g Hx ,H—H and 5: H—~H be defined by u({z, £}, (y, 1)) =(=y, t) and j(z, ) =
(z71,1). Then p and j are analytic maps.

1.2. Remarks. (a) We do not require that H be an analytic submanifold of G x M. In
particular, the topology on H is not necessarily the induced topology as a subset of G x M.

(b) If H is an analytic submanifold of G x M, then condition 1.1. (d) is a consequence
of 1.1. (a)~(¢).

(¢) It follows from the definition that each H,(t€ M) is a Lie subgroup of . Conse-
quently H can be considered as a family of Lie subgroups of &, which depend analytically
on the parameter t € M. We shall frequently denote H by (H)zear.

(d) It follows from 1.1. (b) that ¢+ dim H, is constant on each component of 7. We
shall assume that ¢ — dim H, is constant on all of M.

(e) For te M, let c(f) be the number of components of H,. The function t—c(f) is not
necessarily either upper semi-continuous or lower semi-continuous. For examples, see § 12.

(f) A number of non-trivial examples of analytic families of Lie subgroups are given
in §12.

1.3. Sections. Let H=(H )iy be an analytic family of Lie subgroups of ¢ and let U
be an open subset of M. An analytic section of H over U is an analytic map s: U->@ such
that (i) s(t) €H, for every t€U and (ii) the map ¢+ (s(t), ¢) is an analytic map of U into H.
If H is an analytic submanifold of G x IV, then condition (ii) follows from condition (i),
but this is not the case if H is not an analytic submanifold. It follows easily from 1.1. (b)
that for every (w, t)€H, there exists an open neighborhood U of ¢ in M and an analytic
section s: U— G of H over U such that s(t) =x. Moreover, if U is openin M, then the constant
map $>e is an analytic section over U and, if s, s, are analytic sections over U, then

L= s,(0) s5(2) 72 is an analytic section over U.

1.4. The Lie algebra of H. For each t€M, let fj; denote the Lie algebra of H, and let
H={X,€gx M|XE€l,}. Then $ is a sub-bundle of the trivial vector bundle g x M -1;
$ is an analytic vector bundle of Lie algebras over M. We shall call §) the Lie algebra of
the analytic family H. Define expy: §—H by expu(X, t) = (expeX, #). It is not difficult to
show that expmy is an analytic map. If {,€ M, the differential of expy at (0, t;) is a linear
isomorphism. It follows from the inverse function theorem that expy defines an analytic
manifold isomorphism of an open neighborhood of (0, ¢) in § onto an open neighborhood
of (e, 0) in H.
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1.5. Coordinates on the Grassmann manifold. Let H = (H )iem be as above, let {,€M,
let h =1,, and let ¢ = dim §. In order to make computations involving the family £ = (§;)eem
of subalgebras of g, we shall need to introduce “coordinates” on the Grassmann manifold
I (g) of g-dimensional vector subspaces of g. Let W be a vector subspace of g such that g is
the vector space direct sum of ) and W and let I'}, be the open submanifold of I',(g) con-
sisting of all g-dimensional subspaces of g whose intersection with W is {0}. For each
TeHomg(h), W), let O(T)={X + T(X)|X€}h}. Then ®(T)€l'y, and ®: Homg(h), W)Ly
is an isomorphism of analytic manifolds. If F=C, then ® is an isomorphism of algebraic
varieties. We denote by 0: I'y—~Hom,(f), W) the inverse isomorphism. Classically, I'y, is the
big Schubert cell on T',(g) and © defines Schubert coordinates on I'y,.

For each t € M, the Lie algebra I), may be considered as a point of I'(g). It follows easily
from the definitions that ¢+ ), is an analytic map of M into I';(g). Choose an open neigh-
borhood U of ¢, in M such that fj, €'y, for every t€ U and let ¢: U—~Homg(f), W) be defined
by ¢(t) =0(),). Then ¢ is an analytic map.

1.6. The pull-back of an analytic family. Let H = (H ,)iem be as above and let f: N—M
be an analytic map of analytic manifolds. We wish to define an analytic family f*(H) of Lie

subgroups of @ parametrized by N, the pull-back of H by f. We set
fHH) = {(x, s)€G x N|x€H ,,}.

Let 7y denote the restriction to f*(H) of the projection G x N->N. For each s€EN, ny'(s) =
H,y x {s}. In order to define the analytic manifold structure on f*(H) we consider the
analytic maps 1, xf: @x N—>G x M and i: H—G x M. Since 7y,: H— M is a submersion, it
follows easily that 1;xf and ¢ are transversal at each point of the fibre product E =
(G x N) X(gxsnH. Thus E is a closed analytic submanifold of (¢ x N) x H. One checks
easily that the projection (G x N) x H-@ x N maps E bijectively onto f*(H). We define
an analytic manifold structure on f*(H) by requiring that this bijection be an isomorphism
of analytic manifolds. It is easy to check that f*(H), with this analytic manifold structure,
is an analytic family of Lie subgroups of G.

1.7. Expansion of an analytic family. Let H=(H )i be an analytic family of Lie
subgroups of G. It is convenient for technical reasons to “expand” the family H so as to
obtain a new family H which contains all conjugates of all H;(t€M). We define H=
{(x,t,y)€EGx M x Gle€yH,y=}. Let mpvq: H > M x G denote the restriction to H of the
projection G x (M x G)—=M x G. For each (t, y)€EM X G, ma e 1, y) = (WH.y™) x {{t, )}
In order to define the analytic manifold structure on H we proceed as in the preceding
paragraph. We define o: @ x M x GG x M by alz,t, y)=(y1xy, t). One checks easily
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that « is a submersion. We now form the fibre product L of G x M x & and H over G'x M,
corresponding to a: G x M x G—>G x M and i: H—~G x M. Since « is a submersion, it fol-
lows immediately that « and ¢ are transversal at each point of the fibre product L. Thus
L is a closed analytic submanifold of (G x M x G)x H. The projection (G'x M x () x
H—G x M x G maps L bijectively onto H; we define an analytic manifold structure on H
by requiring that this bijection be an isomorphism of analytic manifolds. One checks easily
that ﬁ, with the above analytic manifold structure, is an analytic family of Lie subgroups
of G. We write H= (H ¢, 59) t,yem~ 6> Where Hy, y=yH, y™'.

1.8. The analytic family HO. Let H°={(x, t)€H|x € H{}.
1.8.1. Lemma. H® is an open subset of H.

Proof. Let (x,, t,) EH®. We may write 2, = (expeX,) ... (expgX,), where X, ..., X, €h=
B,. Let W, U and ¢: U—~Homg(f), W) be as in 1.5. Let §,={(X, t) €H|¢€ U} and define an
analytic map o« H,—~H by
X, t) = ((expe X) (expo(X; +@(t) - Xy)) ... (expa(X, +o(t) X)), 1);
the analyticity of « follows from the analyticity of expy and the fact that the group opera-
tions on H are analytic. We have «(0, to) = (%, ;) and «(H,)< H® moreover, it is easy to

check that the differential of « at (0, #,) is a linear isomorphism. It follows that «($y) is a
neighborhood of (z,, t,) in H. This proves 1.8.1.

1.8.2. CoroLLARY. H® is an analytic family of Lie subgroups of G.

1.8.3. Remark. In general, it is not true that H® is a connected component of H. See
§12.2.

§ 2. The normal displacement of an analytic family

Throughout this section H = (H )iexr denotes an analytic family of Lie subgroups of the
Lie group G. Since we are only interested in the local deformation theory, we assume
throughout that 3f is an open neighborhood of 0 in F* and we set H =H,,. Let W be a vector
subspace of g such that g is the vector space direct sum of f) and W. The normal displacement
of the family H at 0 is an analytic mapping v of a neighborhood U of H x {0} in H x M
into W. The normal displacement determines the family H locally. Let K be a Lie subgroup
of H. The main result of this section, Proposition 2.7.1, says that if we take the Taylor
series expansion of the restriction of g to U N (K x M), then the lowest order non-vanish-
ing terms in this expansion can be interpreted as a one-cocyele of K with coefficients in an

appropiate K-module.
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2.1. Normal displacemeni functions.

2.1.1. Definition. A normal displacement function for the analytic family H = (H )em
at 0 is an analytic map y of an open neighborhood Y of H x {0} in H x M into W such that
the following conditions hold:

(a) p(x, 0) =0 for every x €H,

(b) For every (z, §) €U, (expsy(e, 1))x €H, and the map y: U—+H defined by y(w, t)=
((expey(®, t))x, t) is an analytic map;

(¢) For every w € H, there exists an open neighborhood B, of z in H and an open neigh-
borhood C, of 0 in M such that B, x C,< U and such that ¢ defines an analytic manifold

isomorphism of B, x ¢ onto an open neighborhood of (x, 0) in H.

Roughly speaking, a normal displacement function measures the normal variation of
the family H at 0. The existence of normal displacement funetions is demonstrated in 2.3.
Tt is not difficult to show that two normal displacement functions agree in a neighborhood
of H x {0}.

Let w: U—W be a normal displacement function for the family H at 0, let N be an
open neighborhood of 0 in F¢ and let f: N— M be an analytic map such that f(0)=0. Let
Uy ={(x, t)EH x N | (2, f(t)) €U} and let y;: Uy~ W be defined by py(w, £) =y(w, {(¢)). Then it
follows immediately from the definitions that , is a normal displacement function for the
pull-back analytic family f*(H)=(H,)ten.

2.2. Local parametrization of a family of submanifolds. Let 4, B and (' be open boxes
in (resp.) F?, F? and F" and let X be a closed (g +7)-dimensional analytic submanifold of
A x Bx . Let m, denote the restriction to X of the projection 4 x B x (—{. Assume
that 7., is surjective and is a submersion. It follows that each fibre 7,(z) (z€C) is a closed ¢-
dimensional submanifold of 4 x B of the form X, x {2}, where X, is a closed g-dimensional
analytic submanifold of 4 x B. Thus X can be considered as a parametrized family (X, )zec
of analytic submanifolds of 4 x B. We assume further that X;= {0} x B.

2.2.1. LEMMA. There exist open boxes A, = A, By= B and C,=C and an analytic map
y: By x Oy—~4,, with y(y,0)=0 for y€By, such that the map (y, 2) > (y(y, 2), ¥, 2) s an

analytic manifold isomorphism of By x C onto an open neighborhood of (0, 0, 0) in X.

Proof. Let t5.c: X— B x C denote the restriction to X of the projection 4 x B x €'
B x (. Since n; is a submersion and X,={0} x B, the differential of @z, at (0,0, 0) is
a linear isomorphism. The proof of 2.2.1. now follows easily from the inverse function

theorem.
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2.3. Euwistence of normal displacement functions. We define an analyticmap7: W x H %
M—-Gx M by 1(w, 2, t)=((expgw)x, t). 1f x€H, then the differential of 7 at (0, z, 0) is
a linear isomorphism. Hence 7 maps a neighborhood of (0, 2, 0) isomorphically onto a
neighborhoed of (z, 0) in G x M.

2.3.1. LeMMA. Let x€H. There exists an open box A, in W, an open neighborhood B,
of x in H, an open box C,<M in F" and an analytic map p,: B, x C,—~A,, with ¢, (y, 0) =0
for every y € B,, such that the following conditions hold:

(a) T maps A, x B, x C, isomorphically onto an open neighborhood of (0, x, 0) in G < M ;

(b) Let E,={(w, y, ) €A, x B, x C Jw=y,(y, t)}. Then T maps the closed analytic sub-
manifold E, isomorphically onto an open neighborhood L, of (x, 0) in H.

(c) The map tr>(expgy, (x, 1)) x of O into G is an analytic section of H over C,.

The proof of 2.3.1. follows readily from 2.2.1. The function y, measures the normal

displacement of the family H in a neighborhood of (x, 0).
2.3.2. LeMMma. Let &, y€H. Then v, (b, t) =,(b, t) for (b, ) (B, x C,) N (B, x Cy).

Proof. Let z€(B, N B,) and let V denote the connected component of zin B, N B,. We
may choose open neighborhoods N(z) of zin ¥V and N(0) of 0 in O, N O, such that, if (b, )€
N(z) x N(0), then t(p,(b, §), b, t)€L, N L, and 7(y,(b, 1), b, t}EL, N L,. It follows easily that
(b, t) =, (b, ) for (b, ) EN(z) x N(0). Since V x (€, N C,) is connected and y, and v, are
analytic functions, y, and y, must agree on ¥ x (¢, n C,). This proves 2.3.2.

Let U= Uzen(B, x 0,); U is an open neighborhood of H x {0} in H x M. We define
an analytic function ¢: U->W as follows: Let (b, #) € U. Then (b, ¢) € B, x U, for some z € H.
We set y(b, t) =y, (b, t). It follows from 2.3.2 that (b, ¢) is independent of the choice of
x€H. It is an easy consequence of 2.3.1 that v is a normal displacement function of the
family H at 0.

2.4, The infinitesimal displacement. Now we want to look at the power series expansion
of the normal displacement function ¢. First some notation. If «=(ey, ..., o) EN" and
t=(t, ..., t,) EF", we write *=15* ... #7= and || = oy +... +o,. For each x€H, the function
t->y(x,8) can be expanded in a power series y(w, t) = en"U(2)i* (uy(x)EW) about 0,
convergent in some open box about 0 in F". Since y(z, #) is analytic in both » and ¢, it follows
that the functions @+ u,(x) are analytic functions defined on all of H with values in W.

For each n €N, we denote by P,(F’, W) the vector space of homogeneous polynomial
maps of degree # of F"into W. Now let K be a Lie subgroup of H. For m€N and z€K we
define S,,(x) EP,(F", W) to be the polynomial map ¢+ 2 - nt,(x)t*. Then S, is an analytic
map of K into P, (F’, W). If §,=0 for all j <m, then S,, is called the m —th infinitesimal
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displacement along K of the analytic family H. The important term, of course, is the first
non-vanishing infinitesimal displacement along K.

In the case K =H the first infinitesimal displacement coincides with the infnitesimal
displacement defined by Kodaira [14] for an analytic family of compact complex submani-
folds of a complex manifold. To pass from Kodaira’s definition to ours, one needs to note
that the normal bundle of H in @ is trivial, so that an analytic cross section of the normal

bundle corresponds to an analytic map of H into W.

2.5. On the cohomology of Lie groups. Let L be a Lie group and let n: L—GL{V) be a
linear representation of L. We define ZY(L, V), the space of one-cocycles of L with coeffi-
cients in the L-module V, to be the vector space of all analytic maps f: L—V such that
fley) =f(x) +n(x)- f(y) for all z, yEL. BYL, V), the space of one-coboundaries, is defined to
be the vector space of all analytic maps of L into V of the form z+»>#(x)-v—v for some
vEV. We have BYL, V)<ZY(L, V) and the quotient vector space H(L, V)=ZYL, V)/
BY(L, V) is the first cohomology space of the Lie group L with coefficients in the L-module V.

In this paper we shall be interested in the cohomology groups HYK, W) and H!(XK,
P, (F", W)), where K and W are as above. First we need to define the K-module structure
on W. Let p: W~>g/h) denote the restriction to W of the canonical projection g—g/; p is
a vector space isomorphism. The restriction to K of the adjoint representation of G gives a
representation of K on ¢, §) is a K-submodule of g and thus we have a quotient K-module
structure on g/f). We define the K-module structure of W by transporting to W by means
of p the K-module structure of g/f), i.e. we require that p: W—g/fj be a K-module isomor-
phism. Let o: K—~GL(W) be the representation defining the K-module structure of W and
let pry: g — W and pry: g—1) be the projections corresponding to the direct sum decomposi-
tion g=h+ W. If €K and w€ W, then g(z):w =pry(Ade(x): w).

We define a representation g,, of K on P, (F", W) as follows: if f€P,(F", W) and z€W,
then g,(z)-f=p(x)of. Equivalently, note that P,(F", W) is canonically isomorhic to
P, (F", F)® W, where P, (F", F) is the vector space of all homogeneous polynomial funec-
tions of degree m on F'. Then g, is the tensor product of the trivial representation of K
on P, (F", F) and the representation g of K on W. In particular, the K-module P, (F", W)
is the direct sum of K-modules isomorphic to W. Thus the vanishing of H(K, W) implies
that HYK, P,(F", W)) vanishes.

2.6. T'wo technical lemmas.

2.6.1. LeEmMA. Let C< M be an open box in F' and let f: C—g be an analytic map such
that f(t)€Y); for every t€C. Expand f in a power series about 0: f(t) = D, c.t* (¢, €g), convergent
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in some open box, and assume that the power series is of order > m, i.e. ¢, = 0 whenever |a| <m.

Then c,€Y for every o such that |«| =m.

Proof. Choose C small enough so that [),€L'y, for every t€C, let ¢: ¢ —~Homy(f), W) be
as in 1.5 and assume that the power series expansion of ¢ converges in (. Since f(t) Ef),i for
t€C, we have f(t) =u(t) +¢(t)-u(t), where u(t) =pryf(t). Take power series expansions for
u(t) and @(t):

= 2 b t* (b.€1)

|| zm
P(t) = MZ>1 a,t*  (2,€ Homg(§, W)).
Thus FE) =u(d) + pft) - uw t)—— Z b,t*+ (higher order terms).

Consequently ¢, =b,€Y, for |a| =m. This proves 2.6.1.

Let D be an open box in g such that exp, defines an analytic manifold isomorphism
of D onto an open neighborhood D, of e in G. Similarly, let E be an open neighborhood of
(0, 0) in § such that expy maps E isomorphically onto an open neighborhood E; of (e, 0)
in H.

2.6.2. LeMMA. Let C<= M be an open box and let [: C—G be an analytic section of H over
C such that {(0)=e and {(C)< D,. Let logg: Dy~ D denote the inverse of expg and expand

loggL(t) in a power series about O
10gG C(t) = zzaat“ (aa € g)’

convergent in some open box, and asswme that this power series is of order = m. Then a,€Y)

whenever || =m.

Proof. We may assume C' chosen small enough so that ({(t), )€ E, whenever t€(. If
t€0, it follows that log, {(t) €)),. The conclusion now follows from 2.6.1.

2,9. The first non-vanishing infinitesimal displacement is a bne-cocycle. Lety and S,(j >0)
be asin 2.4. and let m be the smallest positive integer such that S,,+0; the analytic function
S, K—~P,(F', W) is the first non-vanishing infinitesimal displacement of H along K.

2.7.1. PROPOSITION. 8, is a one-cocycle.
Proof. Let z, y€ K. We must show that

For z€ K and t€ F", let s,(z, t) =8S,,(z) (t). It suffices to show that

sm(xy» t) = sm(x) t) +Q($) sm(y: t)
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for all ¢ in some neighborhood of 0 in F'. Choose an open box C in F' such that
C=0,nC,NC,, where ¢, C, and C,, are as in Proposition 2.3.1. Define analytic
maps o,, ¢, and g, of O into G by: 0,(t) = (expg w(x, 1)) x; 0,(f) = (expe w(¥, 1)) y; and o,,(l) =
(expe wlzy, 8))zy. 1t is a consequence of 2.3.1. (¢) that o,, ¢, and ¢,, are analytic sections of

H over C. Define an analytic section {: C— ¢ by

£(t) = 0.(1) 0, (t) 0 (1) = expe y(x, 1) (x(expg p(y, 1)) 2™) expe ~y(@y, 1)
=expe (2, 1) expe (Adgx - p(y, 1)) expe — p(ay, £).
We have {(0) =e. From the first order terms of the Campbell-Hausdorff formula, we see that

the power series expansion about 0 of log; {(¢) has the form
logs L(f) = sp(, t) + Adg z - s, (y, 1) —s,, (2y, t) + (terms of order > m in ?).
This series converges in some open box ¢, = C. It follows from Lemma 2.6.2. that
0 =pry(sp(z, 8) +Adg - s,(y, 1) —su(@y, 1) =su(@, ) +o(x) 8,(y, ) —s,(wy, t), for €0,

This proves 2.7.1.

§ 3. Proof of Theorem 3.1
This section will be devoted to the proof of the following theorem.

3.1. TuEoREM. Let H=(H )enr be an analytic family of Lie subgroups of G, let ty€ M and
lee H=H,. Let K be « Lie subgroup of H such that the component group K[K?® is finitely
generated and such that HY(K, g/h))=0. Then there exists an open neighborhood U of &, in M
and an analytic map n: UG such that v (¢) Kn(t)-'< H, for every t€U.

The proof of Theorem 3.1 falls into two parts. By using Proposition 2.7.1 and the
vanishing of HY(K, g/§), we show that there exists a formal power series solution of the
problem. Then we use a recent theorem of M. Artin [1] to show that the formal power
series solution can be replaced by a convergent power series solution.

We assume throughout § 3 that M is an open neighborhood of 0 in F" and that {,=0.

3.2. Enlarging the family H. Let H- (H ¢ 1))t 0yesrxg be the “expanded” family de-
fined in 1.7. Define an analytic map 6: M x WM x G by o(t, w) = (I, exps w) and let H
denote the pull-back family o* (fl). Thus we may write H=(H; )it memxw, Where
H; ) = (exps w) H,(expg —w). We let U, be a neighborhood of H x {(0, 0)}in H x M x W
and ¥V': Uy— W be a normal displacement function for the analytic family .

In order to be able to use standard notation for the power series expansion of " we
assume that we are given a basis (X, ..., X,) of W and we identify ## with W by the linear

isomorphism
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w= (W, ..., w,) > w Xy +...+w, X,.
With this identification, we have the power series expansion

IF(x? 1A ’I,U) = Z U, ) (%) tuwﬁ'
(e, )

Here the sum is taken over all («, §) EN" x N? and, for each (o, ), x+>a(, g () is an ana-
lytic map from H into W. For each 2 € H, the corresponding power series in (¢, w) is conver-

gent in some open box in F' x F?.

3.2.1. LEMMA. 2518, g (@) =w — o(z) - w.

Proof. Define y: WM x W by y(w)=(0, w). Then v*(H#)=(H,)wew, Where H,=
(expg w) H (expe—w). Let U={(y, w)€H x W|(y,0, w)€U,} and define ¢: U—>W by
oy, w)y="F{y, 0, w); then ¢ is a normal displacement function for the family y*(H). Let C
be a (sufficiently small) open box in W, let € H and define an analytic section {: 0—G of
y*(H) over C by

{(w) = (expg w)a(expg —w) ™! expg ¢z, w).
We have {(0)=e. The power series expansion of log, (w) about 0 has the form

logg {(w) = w—Adg(w) - w— mZ:I g, () 1P + (B),

where (&) consists of terms of degree higher than one in w. It follows from 2.6.2 that

0= pry(w—Adg (@) -w— 1,312=1a(°”3) (@) wf) =w— o) - w Nl $1 @o,5 (@) wﬁ-‘

i=
This proves 3.2.1.

3.2.2. Remark. Equivalently, 3.2.1 says that D;¥ (0, 0, 0), the partial derivative of ¥
with respect to w at (0, 0, 0) is 1, — (). (1 denotes the identity map of W.)

3.3. The formal power series solution.

3.3.1. ProrosiTioN. There exists a sequence (9;);ex of homogeneous polynomial maps
g,EPL(F", W) such that, if m€N and f,=go+... +gu, then the power series expansion about 0
of the analytic function t+>¥'(x, ¢, f.(t)) is of order = m+1 for every x€ K.

Proof. By induction on m. If we define g, =f, =0, then it is clear that {—~¥(x, ¢, f,(t)) is
of order >1 for every x € K. Assume that we have have defined g, EP,(F’, W) forj=1,...,m
satisfying the conditions of the proposition. Let f,=gq+...+¢,, and let ¢, M~M x W
denote the analytic map ¢ (t, fu(f). Let U,={(@, t)EH x M|(x, t, f.(t) €Uy} and let
Yum: Un—=W be defined by g, (x, £) =W(x, t, {,.(t)); v, is is a normal displacement function



48 R. W. RICHARDSON, JR.

for the pull-back family gn(H). Thus we have a power series expansion about 0 (in ¢)
Y (@, £) = 2 uenrCq () 8% for each a, ¢, is an analytic map of H into W and, for each x€H,
the series converges for ¢ in some open box in F. It follows from the induction hypothesis
that, for each « such that |«| <m+1, the restriction of ¢, to K vanishes. We define gy,
H x F'>W by @n1(®, 1) =2 ja1=m+1 Ca(®)t* and we let Q.1 K—P,,(F", W) be defined by
Qi1 (@) (£) =@msa(x, t). By Proposition 2.7.1, applied to the analytic family gn(H), we see
that Q.1 €ZYK, P (F7, W)). Since HYK, P, (F", W)) =0, there exists g,, ., EP,, (F", W)
such that Q,.,(¢) =0(x)°gn,1 —FJn1 for every z€K.

Set Yy, )=V (@, t, fult) +gna(®)), for (z, ) in a sufficiently small neighborhood of
H x {0} in H x M. Let y€ K. We want to show that the power series expansion about 0 of
t>y,q (y, t) is of order >m + 1.

It BEN?, we define 8!=[]7.18,!. We need the multivariable form of the binomial

expansion:

3.3.2. If a,b€EF? and SEN? then

(@+bf~= 3 (g) af~%p.

SeNp,0<8

Here (g) =B BN H((B—6) !, and §< B means f— JEN?.
If we use 3.2.2 and expand t—>,,,,(y, t) in a power series about 0, we obtain

WM+1 (yvt) = Z a(a.ﬁ) (y) (g) tm.fm (t)ﬁ_dgm—ﬂ (t)a;
(a, B8,8)

here the sum is taken over all triples («, 8, 6) EN" x N* x N” such that 6 <. If we sum over

all terms with 6 =0, we obtain the power series expansion of y,(y, t). Thus we have

Y1 D) =y (y, 1)+ Z e, 5y (Y) (g) fm (t)ﬁ—égmﬂ (t)d-

(2,8,8), 640
Let pup.0(t) = (g) 2 f 0P 21 (8)’; Piap.sy is a polynomial in #. The order of ¢,p,s) (a8

a formal power series in f) is > |«| + | ~6|+ (m+1)|8|. Thus, if § +0, ¢, 4,4, is of order
>m+1 unless |a|=|f—0| =0 and [§]| =1. The homogeneous component of degree m +1

in the power series expansion of y,(y, f) is

(¥ 8) =0(Y) * Gmsa (8) — Frnia (D)-

Thus the homogeneous component of degree m +1 in the power series expansion of y,,.,(y, )

is
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@) Inia®) = ® + 2 300,50 (Y) Gnia )
eY) Imia Im+1 e 0.6 (Y)Im1();

it follows from Lemma 3.2.1 that this homogeneous component is 0. Thus the power series
expansion of t—v,, ,(y, #) about 0 is of order > m+1. This completes the induction and

concludes the proof of 3.3.1.

3.4. M. Artin’s theorem. If the formal power series f(t) = > 29 g,(t) converges (where the
g,(t) are chosen as in Proposition 3.3.1), then setting #(f) =expg—~f(t), the conclusion of
Theorem 3.1 would be satisfied. We shall use a recent theorem of M. Artin [1] to show that
the g,(f) can be chosen so that >2,g,(t) converges in a neighborhood of 0. In order to
apply this theorem directly, however, we need to reformulate things slightly, so there is

still more work to be done.

3.4.1. ProrosiTION (Artin). Let f; (j=1, ..., m) be analytic functions defined in a
neighborhood of (0,0) in F*x F¥ such that {;(0,0)=0 for j=1, ..., m. Assume there exist
formal power series y; (i=1, ..., p) in r variables with O constant term such that the formal
power series f; (x, p(x)) (=1, ..., m) vanish identically (here x=(xy, ..., x,) and p(x) = (p,(z),
weoy ¥ (). Then there exist analytic functions t; (j=1, ..., p), defined in a neighborhood A of 0
i B, such that fx, ©(x))=0 for x€4 and i=1, ..., m. Moreover, one may require that the
power series expansion of v;—t; (=1, ..., p) about 0 is of order > n, where n may be chosen

arbitrarily.

3.5. 4 technical lemma. Asumme that M < F' is chosen small enough that §,€1'y, for
every t€M, let O: I'y—~Homg(), W) be defined as in 1.5 and define the analytic map ¢:
M —Homg(f), W) by ¢(t) =0()),). Expand ¢ in a power series about 0.

p(t)= aeEN Fut” (9. €Homy (5, W)).

Let r: Homy(h, W)—Homy(f, W) denote the restriction map. Then the power series expan-
sion of rog about 0 is giVen by rog(t) =2,(r o @)= 1f the terms of order less than m in the
power series expansion of ro@ vanish, then the terms of order m in this expansion give the
mth order infinitesimal displacement along f of the analytic family §=(,);ey of subal-
gebras of g. It is intuitively clear that if the mth order infinitesimal displacement along K
of the analytic family H = (H,),e; vanishes, then so does the mth order infinitesimal dis-

placement along f of the analytic family § = (§),):cx. This is proved in the lemma below.

3.5.1. LEMMA. Let p be a normal displacement function for the analytic family H = (H )sem
and, for jEN, let S;: K—~P,(F", W) be defined as in 2.4. Assume that S; vanishes for j<m.
Then the power series expansion of rog about O is of order > m.

4- 722901 Acta mathematica 129. Tmprimé le 1 Juin 1972.
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Proof. For every X €g, let »(X)€End,(qg) be defined by the convergent power series

symbolically, one can write »(X) = (¢** —1)/ad X. For z€G, let R(x): G- G denote right

translation by z, y>yx. It is well known that
(3.5.2) d(R(expg—X)oexpg)x= #(X)

(see, e.g. [9, p. 95]).
Let s be the order of the power series expansion of rog about 0 and assume that s <m.
We shall show that this leads to a contradiction. We may choose X € { such that the fol-
lowing conditions hold: (i) (X) is invertible; (ii }»(X) (W) Nnh={0}; and (iii) there exists
€N such that |a| =s and @.(X)+0. Let QEP (F", W) be defined by
Q) =pralX) (3 gulX)89).

It follows from (i), (i), (ili) above that @ =0.
Let C< M be a (sufficiently small) open box in F' and define 7: C—~g by

7(t) = logs (expe (X +¢(t) X) expg—X).

Then 7(0) =0 and it is a consequence of (3.5.2) that the power series expansion of 7 about 0

takes the form

(3.5.3) (t) = »(X) (”Z @ (X)t%) + (terms of order > s).

Define an analytic section {: C—@G by
£(t) = (expa (X +¢(t) X) (exps —X) (expe —p (expg X, 1)).

We have {(0)=e. Since the power series expansion of t—y(exp, X, f) is of order > s, we

see from (3.5.3) that the power series expansion of log;e { takes the form
loge C(8) = »(X) ( 2, @u(X)t*)+ (terms of order > s).
) =3

It follows from Lemma 2.6.2 that pry(»(X) (X)) =0 for every « such that || =s. This

implies that
Q) = protX) (3 9l X))

vanighes identically in ¢, which gives a contradiction.

3.6. The convergent power series solution. Let ¥ be as in 3.1, let g,€P,(F", W) (jEN) be

as in Proposition 3.3.1 and let f(t) denote the formal power series > 2, ¢,(t). Then it follows
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from Proposition 3.3.1 that, for every x € K, the formal power series t ¥ (2, ¢, f(f)) vanishes
identically. Choose elements x,, ..., 2, €K such that the cosets x; K9, ..., x, KO generate the
component group K/K°. Let C< M and A be (sufficiently small) open boxes in (resp.) F”
and W and define analytic function 4; Ox A—-W(j=1, .., %) by A(t, w)=Y¥(,, t, w).
Define an analytic map 1y €' x A—Homy (f, W) by Ay, w) =roO(Ad, (expg w) (1,)); note
that f< Adg; (expe w) (§,) if and only if A,(t, w)=0. It follows immediately that the formal
power series A,(t, f(t)) (j=1, ..., n) vanish identically. Let m €N, let f,(f) =go(f) +... +g.(?),
let @,: M—~M x W be as in the proof of Proposition 3.3.1 and let y,, (z, §) = V(z, £, {,,(t))
(wy is defined in a neighborhood of H x {0} in H x M). It follows from Proposition
3.3.1 and Lemma 3.5.1, applied to the analytic family g (}) with normal displacement
function y,,, that the power series expansion of ¢ 2,(t, f,(f)) about 0 is of order > m +1.
Thus the formal power series Ay(¢, f(f)) vanishes identically. Hence we can apply Artin’s
theorem to the family of analytic functions A, ..., 4,. Thus there exist an open box U< in
F7 and an analytic map f: U—W such that S(U)<= A4 and such that A, §(¢))=0for t€U
and =0, ..., n. Define 5: U-G by 5(t) =exps—p(t). Since Ay(t, (£)) =0, it follows that
fc Adg(5(®)7) (), hence that K°<=y(t)~1H,n(t) or, equivalently, that #(t) Koy (t)1< H,.
Similarly, for §>0, A,(¢, B(£))=0 implies that z,€4(t)"LHy(t), or that n(t)z,n@t)1€H,.
Since KU {xy, ..., x,} generates K, it follows that »(t) K»(t)*< H, for t€ U. This completes
the proof of Theorem 3.1.

§ 4. Relation of Theorem 3.1 to results on deformations on subalgebras of Lie algebras

Let G be a Lie group with Lie algebra g, let ¢ <dim g and let 4, be the Zariski closed
subset of I',(g) consisting of all ¢-dimensional subalgebras of g. The following result was
proved in [19, § 97:

4.1. Let {) be a g-dimensional subalgebra of g and let f be a subalgebra of §) such that
the Lie algebra cohomology space H({, g/l)) vanishes. Then there exists an open neigh-
borhood V of fjin 4, and an analytic map §: ¥V — G such that Ad¢(B(n)) (f) = a for every a € V.

Now let H=(H,);ey be an analytic family of Lie subgroups of G, let t, €M and let
H=H,, Let K be a connected Lie subgroup of H such that H(f, g/§) =0. Then it follows
from 4.1 that there exists an open neighborhood U of ¢, in M and an analytic map #: UG
such that Adg(n()) (f) =B, for every £€ U. This implies that 5(¢) K#(t)~*< H, for t € U. Thus,
if K is a connected Lie subgroup and the Lie algrebra cohomology space H! (f, g/h) vanishes,
the conclusion of Theorem 3.1 follows from 4.1.

If K is connected and g: K—GL(V) is a representation, then the Lie group cohomology
space H! (K, V) can be canonically identified with a subspace of H1(t, V). Thus, H'(f, V)=0
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implies that HY(K, V)=0. The converse statement does not hold, e.g. for K a torus and )
the trivial representation. There are many examples of analytic families H = (H,);c) and
connected K< H, as above for which H(K, g/§)=0, but H(¥, g/h)+0. Consequently,
even if K in Theorem 3.1 is assumed connected, the conclusion of Theorem 3.1 is stronger

than any corollaries one can derive from 4.1.

§ 5. Variations on Theorem 3.1

8.1, An extension of Theorem 3.1. Let the Lie group G be a closed normal Lie subgroup
of the Lie group L. If €L, then Int, z: L—L denotes the inner automorphism y+—azyz—1. If
x €6, then Int;x maps ¢ into ¢ and induces the identity isomorpism of L/G. Since Ad,z
is the differential of Int,z, it follows that Ad x induces the identity map of {/g; equivalently,
if X €, then (Ad, - X —X)€q.

5.1. THEROREM. Let G be a closed normal Lie subgroup of the Lie group L, let W= (H ),y
be an analytic family of Lie subgroups of G, let ty€ M and let H=H,. Let K be a Lie subgroup
of H such that the component group K|K® is finitely generated. Assume that there exists a
vector subspace V of | such that the following condition holds: For every o€ Z\(K, /), there
exists vEV such that g(x)=myy(Adyr-v—v) for every x€EK (here mgy: g — gff) denotes the
canonical projection). Then there exists an open neighborhood U of ty in M and an analytic

map n: U~V such that (exp, n(t) K(exp, —n(t))< H, for every t€U.

We shall only sketch the proof of Theorem 5.1, which is essentially the same as that
of Theorem 3.1. Let M be an open neighborhood of 0 in F* and let ¢, =0. First define an
expanded analytic family H= (Hs, ). yemxr a8 in 1.7 (with G replaced be L; H is an ana-
lytic family of Lie subgroups of ¢ since G is normal in L). Let oz M x VM x L be the
map (£, »)—>(f, exp; v) and let ¥ be a normal displacement function for the pull-back an-
alytic family o* (fI). Asin § 3, one defines a formal power series f(f) =2 20g,(t) (¢, €EP;(F",V))
such that, for every x€XK, the formal power series ¢t >W(x, t, f(f)) vanishes identically.
Using Artin’s theorem, one can replace f(f) by a convergent power series —#(t), and /(£)

satisfies the conclusion of Theorem 5.1.

5.2, Remark. Let the Lie group 4 act analytically on @ by automorphisms and let
L=Gx A be the corresponding semi-direct product. The Lie algebra | can be identified
with the vector space direct sum g @®a. Let H, H and K be as in Theorem 5.1 and assume
that g satisfies the hypothesis on V in the statement of Theorem 5.1. In this case, Theorem
5.1 can be regarded as the extension of Theorem 3.1 from the case of the group of inner

automorphisms to the case of an arbitrary Lie group of antomorphisms of G.
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5.3. More on the cohomolgy of Lie groups. Let H be a Lie group, let L be a closed normal
subgroup of H and let ¥ be an H-module. Set V:={v€V|gv=v for every g€L]. Let
ZNH,L, V)={peZ\H, V)|p(L)={0}} and let H'(H, L, V) denote the image of Z'(H, L, V)
in H(H, V).

5.3.1. LemMA. Let the notation be as above. Then HYH, L, V) is canonically tsomorphic
to HY(H|L, V*).
The proof of 5.3.1 is elementary and will be omitted.

5.4. Analytic families contatning a fized normal subgroup.

5.4.1. PrRoPOSITION. Let H=(H),ey be an analytic family of Lie subgroups of (, let
to€M and set H=H,. Assume that the component group H|H® is finitely generated and that
there exists a normal Lie subgroup L of G such that L is a closed Lie subgroup of H, for every
t€M and such that H{(H/[L, (g/§)*)=0. Then there exists an open neighborhood U of t, in M
and an analytic map n: U—G with n(0) = e such that n(t) Hy(t) "t < H, for every t€U.

We shall only sketch the proof, which is similar to the proof of Theorem 3.1. Let H=
(Hs, ) (6,0 emxc be the expanded analytic family, defined asin 1.7, let g=) @ W as in §2
and let o: M x WE—>M x G be defined by «ft, w)=(t, expew). Let ¥ be a normal displace-
ment function for the pull-back family oc*(f-I). It follows from the normality of L and the
definition of H that L< H (t.a0y TOT €very (¢, w)€M x WE. Therefore W(x, t, w) =0 for every
(x, 8, wy€ELx M x WE Consequently, if H’ is any analytic family obtained by pull-back
from the family oc*(f[), it follows that the first non-vanishing infinitesimal displacement
along H of the family ' is an element of Z'(H, L, gffy). Since HY(H, L, g/h)=
HY(H|L, (g/h)*) =0 one can, exactly as in 3.6, find a formal power series f(£)=>20g,(t)
(g,EP;(F", W'} such that, for every #€H, the formal power series t>W¥(z, ¢, f(¢)) vanishes
identically. The rest of the proof is as in §3.

5.4.2. CorOLLARY. Let H, G and H be as in 5.4.1. Assume that M is connected, that
H}=H" for every t€ M and that H,/H} is of (finite) order m for every t€ M. Then H,is conju-
gate to H for every t€ M.

Proof. Let N be the normalizer of H® in G. Then N is a closed Lie subgroup of G and
H,< N for every t€ M; thus H is an analytic family of Lie subgroups of N. Therefore we
may assume that G=N, i.e. that H is normal in G. Let s€M. Since H [H? is finite, the
cohomology group HY(H/H], (¢/9,)"’) vanishes, and we may apply Proposition 5.4.1. This,
plus the fact that the order of H ,/H?is independent of ¢ € M, implies that H,is conjugate to H

for every ¢ in a neighborhood of s. Since M is connected, the econclusion of 5.4.2 now follows.
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§ 6. Algebraic families of algebraic subgroups

In this section we shall deal with (complex) algebraic families of algebraic subgroups of
a (complex) algebraic group. Our methods involve a somewhat unsatisfactory mixture of

transcendental and algebraic techniques.

6.1. Conventions. Our basic reference for algebraic geometry and algebraic groups is
[2] and we shall follow the notation and terminology therein. All algebraic varieties and
algebraic groups are taken over C. If X is an algebraic variety, then X has an underlying
structure of (reduced) complex space, which we denote by the same letter X . Thus there
are two topologies given on X, the Zariski topology and the usual topology of X as a
complex space; we shall refer to the latter topology as the Hausdorff topology of X. If
f: X~ Y is a morphism of algebraic varieties, then f is also a holomorphic map of the under-
lying complex spaces. An algebraic subgroup of an algebraic group G is a subgroup of ¢

which is a Zariski closed subset of G.
6.2. Algebraic families of algebraic subgroups.

6.2.1. Definition. Let G be an algebraic group and M a non-singular algebraic variety.
An algebraic family of algebraic subgroups of ¢, parametrized by M, is a non-singular

Zariski locally closed subvariety H of G x M satisfying the following conditions:

(a) Let 7t5,: H—~ M denote the restriction of the projection pry: G x M — M. Then 775,
is surjective and is a submersion (i.e., the differential of x, is surjective at each point of H).
(b) For every t€ M, the fibre 75/ (t) is of the form H, x {t}, where H, is a subgroup of &.

It follows easily from the definitions that an algebraic family of algebraic subgroups of
@ has an underlying structure of a complex analytic family of Lie subgroups of the complex
Lie group G.

Let H=(H,),e, be an algebraic family of algebraic subgroups of the algebraic group G.

1t follows from the definition that dim H, is constant on each component of M.

6.2.2. LEMMA. Let H = (H,),c,, be as above, assume that M is connected and let q be the
common dimension of the H,(t€M). Then the map t—Y, of M into I')(g) is a morphism of

algebraic varieties.

The proof is elementary and will be omitted.

6.3, Some lemmas on algebraic families. Let H=(H );c, be an algebraic family of alge-

braic subgroups of the algebraic group G and let K be an algebraic subgroup of G.

6.3.1. LEMmA. Let A={t€M|H,oK}. Then A is a Zariski locally closed subset of M.
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Proof. Since H, o> K?° if and only if §j;> ¢, it follows immediately from Lemma 6.2.2
that Ay={t€M|H,> K"} is a Zariski closed subset of M. Let a;, ..., ®, be a complete set of
representatives for the cosets of K modulo K°® and let A;~{t€M|z,€H,} (j=¢, ..., n). Then
Hn ({x;} x M)={x,;} x 4; is Zariski locally closed and hence 4, is a Zariski locally closed
subset of M. Thus 4 =} 4, is Zariski locally closed.

We recall that a subset ' of an algebraic variety X is constructible if C' is the union of a
finite number of Zariski locally closed subsets of X. A constructible subset of X contains
a Zariski open, Zariski dense subset of ity Zariski closure. If € is a constructible subset of

X and ¢: X— Y is a morphism of algebraic varieties, then ¢(C) is a constructible subset of Y.

6.3.2. LEMMA. Let B={(€M|H, contains a conjugate of K}. Then B is a constructible
subset of M.

Proof. Define or: G x M x G— G x M by ax, t, y) = (y'zy, t), let H- o« (H) and let
Tarxg: H-> M x G denote the restriction to H of the projection pryye: G x (M x )= M x G.
Then the fibre 7737, ¢~ 1(y, t) has the form (yH,y1) x {{t, y}}. Let H ,,=yH,y~. One checks
easily that I~I=(H . (8, memxc 18 an algebraic family of subgroups of . By Lemma 6.3.1,
A={(t,y)€EM x G|yH,yt> K} is a Zariski locally closed subset of M x . Let pry: G x
M —M denote the projection. Then B=pr,(4) is a constructible subset of M.

6.3.3. LEMMA. Let X be an algebraic variety, let U be a subset of X which is open with
respect to the Hausdorff topology of X and let B be a constructible subset of X which contains U.
Then there exists a Zariski open subset V of X such that U< V< B.

Proof. By induction on dim X (dimension as an algebraic variety). The lemma is trivial
for dim X =0. Let n=dim X and assume that the result holds for varieties of dimension
less than n. Let X, ..., X, be the irreducible components of X which do not meet U and
let X' =X - Jj-1X,. Set B'=X'B. Then X' is Zariski openin X and B’ is a constructible
subset of X’. Replacing X and B by (resp.) X’ and B’, we may assume that X meets every
irreducible component of X. It is clear that U, and hence B, is Zariski dense in X. Thus B
contains a Zariski open, Zariski dense subset V, of X. Let C=X—~V,. Then UNC<=BNC
and dim C <. Thus, by the inductive hypothesis, there exists a Zariski open subset V; of
Csuchthat UNC< V,c BNC. Let V=V, U V,. Then V is Zariski openin X and Uc V< B.

6.4, Application of Theorem 3.1 to algebraic families of algebraic subgroups.

6.4.1. THEOREM. Let H=(H,);cy be an algebraic family of algebraic subgroups of the
algebraic group G, let t,€ M and let H=H,. Let K be an algebraic subgroup of H such that
HYK, g/4)=0. Then there exists a Zariski open subset V of M containing &, such that H,

contains a conjugate of K for every t€V.
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Proof. Let B={t€ M|H, contains a conjugate of K}. Then B is constructible and by
Theorem 3.1 there exists a Hausdorff open neighborhood U of ¢, such that U< B. By
Lemma 6.3.3, there exists a Zariski open subset V of M such that U< V< B. This ecom-
pletes the proof.

6.4.2. Remark. The cohomology group which occurs in the statement of Theorem
6.4.1 is defined using holomorphic cochains. If L is an algebraic group and g: L—>GL(V)
a rational representation, one can define Z1, (L, V) to be the set of all morphisms ¢: LV
which satisfy the cocycle condition. We set Hig(L, V) =21, (L, V)/BYL, V). We have
HY (L, VIS HYL, V). If L is an affine algebraic group, then it is known [12] that HYZ,
V)= Hkg (L, V). However, this equality does not necessarily hold for the case of an arbitrary
algebraic group (e.g. an extension of an abelian variety by the “additive group’” €). Thus our
statement of Theorem 6.4.1 is somewhat unsatisfactory, except for the case of affine alge-
braic groups. It seems virtually certain that the statement of Theorem 6.4.1 remains valid
with “HYK, g/f)) =0" replaced by “Hjs (K, g/h)=0". However, the proof will probably

require more sophisticated algebraic techniques.

6.5. Variation of the unipotent radical. Let V be a finite dimensional vector space over C.
For every subalgebra a of the Lie algebra gl(V), let 11{a) be the maximal ideal of nilpotence
of the a-module V (see (3, p. 60] for the definition of the maximal ideal of nilpotence).
If a is the Lie algebra of an algebraic subgroup 4 of GL(V), then u(a) is the Lie algebra of
the unipotent radical of 4 [5). It is known {3, p. 127, Ex. 11] that u(a) can be characterized

as follows:

6.5.1. Let E be the associative subalgebra of End(V) generated by 1, and a. Then
w{a) ={z€a| I'r(xu) =0 for every u€ E}.

Let g be a Lie subalgebra of gl(V), let n<dim g and let L,(q) be the algebraic variety
of all n-dimensional subalgebras of g; L,(g) is considered in the obvious way as a closed
subvariety of the Grassmann variety I',(g). For each m<n, let L, ,(g)={a €L,(g)|dim
u(a) =m}. Then, using 6.5.1, it is not difficult to prove:

6.5.2. (a) For each r<n, UperLin o(g) is a Zariski open subset of L, (g); in particular,
each L, ,(q) is a Zariski locally closed subset of L,(g).

(b) For each m <n, the map a+>1u(a) of L, ,(g) into L,(g) is a morphism of algebraic
varieties.

Now let G be an algebraic subgroup of GL(V) and let H = (H )., be an algebraic family
of algebraic subgroups of G. For each t€ M, let u,=u(Y,); if U, is the unipotent radical of
H,, then 1, is the Lie algebra of U,. Let m =min,c, dim 1, and set 8= {{€ M [dim u,=m}.
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Then 8 is a Zariski open subset of M and the map §: S->L,(g) defined by f(t)=u, is a
morphism of algebraic varieties.

Let N (resp. M) be the Zariski closed subset of gl(V) (resp. GL(V)) consisting of all
nilpotent (resp. unipotent) endomorphisms of V and let 77: %¢—11 denote the restriction of
the exponential map expercy): g{(V)—~GL(V). Since 3 consists of nilpotent matrices, 7 is a
polynomial mapping. In fact, » is an isomorphism of algebraic varieties; the inverse of %
is given by the log series.

The set {(z, {)€g x S|w€u,} is a Zariski closed subset of ¢ x S. Since n: N1l is an
isomorphism, we readily see that U={(g,t)€G x S|g€U,} is a Zariski closed subset of
G x 8 and that U= (U,);cs is an algebraic family of algebraic subgroups of G¢. Thus we

have proved:

6.5.3. LEMMA. Let G be an affine algebraic group, let H = (H ), be an algebraic family of
algebraic subgroups of G and, for each t € M, let U, be the unipotent radical of H,. Let m =min;ey
dim U, let S={teM|dim U,=m} and let U={(g,t)€G x S|g€U,}. Then S is a Zariski
open subset of M and U=(U));cs s an algebraic family of algebraic subgroups of G.

6.6. Algebraic families of subgroups of an affine algebraic group. If @ is an affine algebraic
group and U is the unipotent radical of (7, then an algebraic subgroup L of ¢ is a Levt sub-
group of G if the canonical homomorphism G—>G/U defines an isomorphism (of algebraic
groups) of L onto G/U. It is known (in the characteristic zero case) that G admits Levi
subgroups. A Levi subgroup L of & is reductive and any reductive subgroup of G is conju-
gate to a subgroup of L.

If R is a reductive affine algebraic group and g: R—~GL(¥) is a rational representation
of R, then HY(R, V)=Hy, (R, V)=0 [12].

6.6.1. PROPOSITION. Let M = (H ) be an algebraic family of algebraic subgroups of the
affine algebraic group G and let M be irreducible. For each t € M let L, be a Levi subgroup of H,.
Let r =max,e, dim L, and let S ={t€ M |dim L,=r}. Then S is a Zariski open subset of M
and. LY is conjugate to LY for every s, t€S. Moreover, there exists a non-empty Zariski open

subset T'< 8 such that L, is conjugate to L, for every s, t€T.

Proof. The fact that S is Zariski open follows from 6.5.3. It is a consequence of Theorem
6.4.1. that, for every ¢€.9, there exists a Zariski open subset S, of S, containing ¢, such that,
if ¢, €8,, then LY, is conjugate to L{. Let s, t€S. Since M is irreducible, S, and S, intersect.

This implies that LY and L are conjugate.
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Let p be the maximum number of components of L; as ¢ ranges over S and let t,€.8 be
such that L; has p components. It follows from Theorem 6.4.1 that there exists a Zariski
open subset T of M containing ¢, such that H, contains a conjugate of I, for every t€ 7.
The conjugacy of Levi subgroups and the maximality of the number of components of

L,, implies that L, is conjugate to L, for every ¢ € T. This proves Proposition 6.6.1.

§ 7. Complex-analytic families of subgroups of complex Lie groups

There exist reasonable analogues of the results of §6 in the complex-analytic case,

provided we restrict attention to connected Lie subgroups.

7.1. An extension of Theorem 3.1 for complex-analytic famslies. Let V be a finite dimen-
sional complex vector space and let & be a connected complex Lie subgroup of GL(V). Let
G' denote the Zariski closure of (¢ in GL(V). If g€G”, then g is stable under Adgy(yyg and
consequently ¢ is stable under Intgy,yy: 2+—>gxg~!. By abuse of notation, we denote by
Intgg: G—@ (gE€G) the restriction to ¢ of Intey,yy 9.

7.1.1. THEOREM. Let G GL(V) and G’ be as above and let H = (H,); <) be a complex an-
alytic family of complex Lie subgroups of G, parametrized by a connected complex manifold 3 .
Let t,€M, let H=H, and let K be a connected complex Lie subgroup of H such that
HYK, g/h)=0. Then there exists a connected denrse open neighborhood U of t, in M, such
that the following condition holds: for every t€ U, there exisis g€Q suchthat (Intgg) (K)< H,.

We shall need the following lemma for the proof of Theorem 7.1.1.

7.1.2. LEMMA. Let ¢: M~ X be a holomorphic map of a connected complex manifold M
into an algebraic variety X, let t€ M and assume that there exists an open neighborhood U of
t and a constructible subset A of X such that (U)=A. Then there exists a connected dense
open subset V of M, with t€V, such that p(V)c A.

We omit the proof, which is straightforward.

7.1.3. Proof of Theorem 7.1.1. Let ¢=dim H and let <@ xI' (g) be defined by
E={(g, W)EG" x Pq(g)l(AdGL( ng (W)=t}

E is a Zariski closed subset of @' x'(g). Let pr, denote the projection G' x I' (g)~T",(g)
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and let 4 =pry(E). Then A is a constructible subset of I',(g); we note that W€l (q) is
in A4 if and only if W contains an Adgy1»(G’) conjugate of . Define p: M-I, (g) by @(¢) =1;.
1t is an easy consequence of Theorem 3.1 that there exists an open neighborhood U, of ¢, in

M such that ¢(U,)<= 4. The proof now follows from Lemma 7.1.2.

7.1.4. Remork. If G is complex-analytically isomorphic to a complex linear algebraic
group, then one may assume that G =G in Theorem 7.1.1. It has been shown by Hochschild
and Mostow [11] that ¢ is complex-analytically isomorphic to a complex linear algebraic
group if and only if the factor group of the radical of G modulo its maximal normal connected

nilpotent complex Lie subgroup is reductive.

7.2. Reductive complex Lie groups. A complex Lie group G is reductive if it satisfies the
following conditions: (i) component group G/G® is finite; (ii) ¢ admits a faithful (holo-
morphic) representation; and (iii) every linear representation of ¢ is semi-simple. We shall

need the following results concerning reductive complex Lie groups.

7.2.1. Let p: G—GL(V) be a linear representation of the reductive complex Lie group
G. Then HY(G, V) =0.

7.2.2. Let G be a connected complex Lie group which admits a faithful representation.
Then G has a maximal reductive complex Lie subgroup H, which is closed and connected,
and every reductive complex Lie subgroup of & is conjugate to a subgroup of H.

The proof of 7.2.1 is an easy consequence of the semi.simplicity of linear representa-

tions of a reductive group. 7.2.2. is proved in [11].

7.2.3. PROPOSITION. Let G be a connected complex Lie group which admits o faithful
linear representation Let W =(H ), ¢ be a complex-analytic family of complex Lie subgroups of
G, parametrized by a cownecled complex manifold M, such that each H (1€ M) is connected.
For each t€M, let L, be a maximal connected reductive complex Lie subgroup of H,. Then
there exists a connected dense open subset U of M such that if s,t€U, then L; is conjugate
to L,.

The proof is an easy consequence of 7.1.1, 7.2.1 and 7.2.2.
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Chapter II. The variation of isotropy subgroups
§ 8. The analytic family G*

8.1. Let the Lie group G act analytically on the connected analytic manifold M, let
¢=min,e, dim G, and let My={t€ M |dim ¢, =q}. An elementary argument (see e.g. [18,
§ 21) shows that M, is a dense open subset of M, the complement of an analytic subset. We
assume throughout § 8.1 that My =M, i.e. that all orbits of ¢' on M have the same dimen-
sion. We set G={(g, {)€G x M |g€@,}. In general, G =(G,);ey is not an analytic family of
Lie subgroups of G.

We say that a point (g, {) €@ is regular if there exists an open neighborhood U of ¢ in
M and an analytic map s: U—G such that s(u) €Q, for every w€U and such that s(¢)=g.
Let G* denote the set of regular points of G and, for €M, let Gf = {g€@,|(g, t) is a regular
point of G}.

8.1.1. LEMMA. G is a closed Lie subgroup of G, and Gi< G,

Proof. Let ¢y, 9, €Gf and let s;; U—~G (j=1,2) be an analytic map of an open neigh-
borhood U of ¢ in M into G such that s;(u) €G, for every u € U and s,(¢) =g;. Define an ana-
lytic map s: U—G by s(u) =s,(u)sy(x)"t. Then s(u)€G, for every w€U and s(f) =g,95".
Thus ¢, 95 " € G}. This shows that Gf is a subgroup of G.

Let §=g,, let W be an r-dimensional subspace of g such that g is the vector space
direct sum of §j and W and let I'y, and ©: I"y,—Homg(f), W) be as in 1.5. Choose an open
neighborhood U of ¢ such that g, €Ty for w € U and define an analytic map ¢: U—Homg(f), W)
by ¢(u) =0 (g,). Let g€G?. We may write g =expg(X,) ... expg(X,), where X, ..., X, €l.
Define an analytic map s: U->G by s(u) = expg(X; +¢(u) Xy) ... expg(X, +@(u) X,). Then
s(u) €S, for every w€U and s(t) —g. Thus g€GF and we have shown that GY< GF. Since G?

is a closed Lie subgroup of G,, so is GF.

8.1.2. LEMMA. Let r=dim M and let p be the common dimension of the orbits of G on M.
Let yp: Gx M—M x M be defined by (g, t)={g -t, t). Then the differential of y at each point

of G x M is of rank (p+r). In particular, p is a subimmersion.

The proof of 8.1.2 follows from an easy computation of differentials and will be

omitted.

8.1.3. ProrosiTION. (a) G* is an open subset of G. (b) G* is an analytic submanifold
of G@x M. (¢) G* is an analytic family of Lie subgroups of G.
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Proof. Let (g, {) €G* and let s: U~ be an analytic map of an open neighborhood U
of ¢ into & such that s(u) €@, for every €U and such that s(t) =¢. Since y is a subimmer-
sion, there exists an open neighborhood § of (g, ¢) in G x M, an open neighborhood 7' of
{(,) in M x M and a closed submanifold ¥ of 7 such that v(S)=7V and such that y:
S—V is a submersion. Choose an open neighborhood 4 of ¢ in M and an open neighborhood
B of g in @ such that the following conditions hold: A x A=T; Bx A<S8; A< U, and
s(AY= B. Let S8;=8nyp Y4 x 4); 8 is an open neighborhood of (g,¢) in G x M. Let
;: 8;>4 x A denote the restriction of v and let V=V N (4 x 4). Then ¥V, is a closed
analytic submanifold of 4 x 4 and y,: 83—V, is a submersion.

Let A, denote the diagonal of 4; A, is a closed analytic submanifold of 4 x 4. If
u€A, then (s{u), u)€EB x A and y(s(u), u) =(u, u). Therefore A < V,. Consequently A, is
a closed analytic submanifold of ¥, and, since y,: S,— ¥V is a submersion, i (A ) =8, N G
is a closed analytic submanifold of §;.

Assume that U is sufficiently small so that g,€l'y, for every €U and let ¢: U—
Hom; (), W) be as above. Define the analytic map «:ix U-Gx M by o(X,u)=
(8(u) expg (X + p(u)- X)), u). For u€U we have (X +¢(u)- X)€q, and thus (s(u) expe (X +
p(u)- X)) €G,. Consequently a(fh x U)=@G. One checks easily that, in fact, a(f) x U)<G*.
Moreover, the differential do, ; is injective. An easy dimension count shows that
dim (§) x U)=dim (S; N G&). It follows from the inverse function theorem that o maps an
open neighborhood of (0,%) in §x U isomorphically onto an open neighborhood of
{(g,t) in S; N G. This proves 8.1.3. (a)-(b). It follows from the definition of G* that
7y 6*— M is a submersion, which proves 8.1.3. (c).

Combining 8.1.3, 8.1.1 and 8.1.2, we obtain

8.1.4. CorROLLARY. Let GO={(g, t)EG x M|g€EGY}. Then G is an analytic family of
Lie subgroups of G.

We note that G* can be equivalently defined as follows. Let &; be the subset of G
consisting of all points (g, f) €G such that G is locally a submanifold of G'x M at (g, t).
(See [22, p. LG 3.22] for the appropriate definition.) Let 7, Gy — M denote the restriction
to G, of the projection and let G be the set of points (g, ) €G; at which the differential
d{7ts)i0, » 18 surjective. Then Gf = G*. This follows easily from 8.1.3 and the implicit func-

tion theorem.

8.2, An example. If the Lie group @ acts analytically on the analytic manifold M, it is

not necessarily the case that there exists a non-empty open subset U of M such that
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@, = Gf for every t€U. One counterexample goes as follows (see [23, p. 758 and p. 797] for
more details):

Let f be the 2 x 2 matrix (i f) Then f induces a diffeomorphism f, of the torus

T?2=R?7? and the periodic points of f, are dense. Let Z act on T2 xR by n-(§, )=
(fot), s+n) and let M be the orbit space (1'% x R)/Z. Then M is a compact three-dimen-
sional manifold and the suspension of 7, gives a flow, i.e. an action of R, on M; the set P of
points lying on periodic orbits is dense in M. For this action of G=R on M we have
Gf = {0} for every t€ M, but G,+G; for ¢ belonging to the dense subset P of M.

8.3. Glimm’s results on the continuity of the isotropy subgroups. Let the Lie group G act
continuously on the locally compact space M. Following J. Glimm [7], we say that the
isotropy subgroups are continuous at € M if, for every sequence (;) in M converging to ¢
and for every g€, there exists a sequence (g,) in @ converging to g such that ngGt,. for

every 4. Glimm proves the following result:

8.3.1. Let the Lie group ¢ act continuously on the locally compact space M and as-
sume that every orbit of ¢/ in M is locally closed. Then there exists a dense open subset
U of M such that the isotropy subgroups are continuous at each point of M.

In order to apply this result to analytic transformation groups we need the following

lemma:

8.3.2. LEMMA. Let the Lie group G act analytically on the analytic manifold M such that
all orbits of G on M have the same dimension. Let t € M and let g €G,. Then the following condi-

tions are equivalent:

(1) For every sequence (t;) in M converging to t, there exists a sequence (g;) in G converging

to g such that g,€ Gy, for every j.
(i) gEGY.

Proof. It is immediate that (ii) implies (i). Assume that (i) is satisfied, let & be as in 8.1
and let my: G—M denote the restriction of pry,: G'x M —~M. Let U be a neighborhood of
(g, ) in G. Then I claim that 7,,(U) is a neighborhood of ¢ in M. For assume that 7, (U) is
not a neighborhood of ¢. Then there exists a sequence (¢;) in M converging to ¢ such that
t;¢7m,,(U) for every j. By (i), there exists a sequence (g;) in G converging to g such that
ngth for every j. Then (g,,¢,) €6 for every j and (g;, ;) converges to (g, t). For § sufficiently
large, (g;,t;) €U and hence ¢, €y (U), which is a contradiction.
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Let w: G x M—M x M be as in 8.1.2; p is a subimmersion. If V is a neighborhood
of (9,t) in Gx M, then p(GN V)={(v, v)|v€my,(GN V)}, and 7, (G N V) is a neighborhood
of ¢ in M. Since ¢ is a subimmersion, we may choose an open neighborhood V of (g, ) in
G x M, an open neighborhood 4 of ¢t in M and a closed analytic submanifold V, of 4 x 4
such that the following conditions hold: w(V)=V,; y: ¥V, is a submersion; and A, < V.
It follows that GN V=y~1(A,) is a closed analytic submanifold of V. Moreover, since
maps G NV submersively onto A ,, it follows easily that there exists an analytic map s:
A @G such that s(v) €G, for every v € A and such that s(t) =g. Thus g €G¥ and 8.3.2 is proven.

As an easy consequence of Proposition 8.1.3 and Lemma 8.3.2, we have

8.3.3. ProrosirioN. Let the Lie group G act analytically on the connected analytic
manifold M such that each orbit of G on M is locally closed. Then there exists a dense open
subset U of M such that all orbits of G on U have the same dimension and such that G,=G
for every t€U. Thus if &' ={(g, t)€QAx U|g€Q,}, then G’ =(G,),ey is an analytic family of
Lie subgroups of G.

8.3.4. Remark. If (G, M) is an algebraic transformation space (over C), then each
orbit of & on M is locally closed. Using this, one can show, for example, that if p: G—
GL(V) is a linear representation of a (real or complex) reductive Lie group, then every
orbit of @ on V is locally closed. Thus 8.3.3 applies to all of these examples. For the case

of algebraic transformation spaces, however, we have a much stronger result (see § 9).

§ 9. Algebraic transformation groups

9.1.Let (G, M) be an algebraic transformation space (over C), where M is a non singular
algebraic variety. We assume that all orbits of G on M have the same dimension. Let
G={(g.)€G x M |g-t=t}, let G; be the set of simple points of G and let G* be the set of
points (g, £)€G, at which the differential d(zzy)(, o Ty 1y (Gy) > T (M) is surjective. Then
G* is a Zariski open subset of G, hence G* is a Zariski locally closed subset of G x M.
For t€ M, let Gf ={g€G|(g, t) €G*}. Then, as in 8.1, G, is a subgroup of G and ARGy
thus Gf is an algebraic subgroup of G. Therefore G*={G});cs is an algebraic family of

algebraic subgroups of G.

9.1.1. ProrosiTION. Let (G, M) be an algebraic transformation space with M a non-

singular algebraic variety and assume that all orbits of G on M have the same dimension.
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Let ty€M, let H=H, and let K be an algebraic subgroup of H* = G, such that HY(K, g/§)) =0.
Then there exisis a Zariski open subset U of M containing t, such that Gf contains a conjugate
of K for every t€U.

The proof follows immediately from 6.4.1.

9.1.2. CorROLLARY. Let G, M, tyand H be as in 9.1.1. Assume that H contains a connected
reductive affine algebraic group R. Then there exists a Zariski open subset U of M containing
to such that G, contains @ conjugate of R for every t€ U. In particular, assume that H s a reduc-
tive affine algebraic group. Then there exists a Zariski open neighborhood U of ¢, tn M such that
@Y is conjugate to H° for every t€U.

9.2, BExistence of a Zariski open subset on which the isotropy subgroups form an algebraic
family. Let (G, X) be an algebraic transformation space. Rosenlicht [21] has proved that
there exists a non-empty G-stable Zariski open subset ¥ of X such that there exists a
quotient sr: ¥ =G\ Y for the action of ¢ on Y. (See [2, pp. 171-180] for a discussion of
such quotients.) We may assume that ¥ and G\ Y are non singular and that r is a submer-
sion. Let yp: Gx Y=Y x Y be defined by (g, £)=(g-t, {) and let E=9p(@xY); E is
the graph of the equivalence relation defined by the orbits of ¢ on Y. We note that
E is the inverse image of Ag\y under wxm: ¥ x Y- (G\Y) x (G Y). Since 7z x 7 is a
submersion and Ay is a non-singular subvariety of Y x Y, it follows that ¥ is a Zariski
closed non-singular subvariety of ¥ x Y. But, by 8.1.2, ¢ is of constant rank (it follows
from the existence of the quotient G\ Y that all orbits of ¢ on Y have the same dimension).
Thus % maps G x Y submersively onto K. Consequently G=y1(Ay) is a closed non-
singular subvariety of &' x M. But G={(g, t)€G x Y|g-t=¢}. Thus G=(G})sey is an al-
gebraic family of algebraic subgroups of . Thus we have proved:

9.2.1. LeMMA. Let (G, X) be an algebraic transformation space. Then there exists a non-
empty, non-singular, G-stable, Zariski open subset Y of X such that G = (G);ey s an algebraic
faomily of algebraic subgroups of G. Moreover, we may asswme that the number of connected

components of G, 1s independent of t€Y.
The last statement in 9.2.1 follows immediately from standard properties of mor-
phisms of algebraic varieties (see e.g. [2, p. 39]).

9.3. Affine algebraic transformation groups.

9.3.1. THEOREM. Let (G, X) be an algebraic transformation space, where G is an affine
algebraic group. For each t€ X, let U, be the unipotent radical of G, an let L, be @ Levi subgroup
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of Q. Then there exists a finite set Vo, ..., V., of G-stable, non-singular, Zariski locally closed
subvarieties of X such that the following conditions hold:

() X=Um7V;
(ii) For each j=1, ..., m, V; is a Zariski open subset of X — Ui}V,
(iii) If s, t€EV, then L, is conjugate to L,.

(iv) U;={U );e v is an algebraic family of algebraic subgroups of G.

Proof. It follows from 9.1.2, 9.2.1 and 6.5.3 that there exists a non-empty, G-stable,
non-singular Zariski open subset V, of X satisfying conditions (iii) and (iv). The proof
follows by an easy induction, using the fact that X is a Noetherian space with respect to

the Zariski topology.

§ 10. Analytic transformation groups

10.1. ProPOSITION. Lef the Lie group G act analytically on the analytic manifold M
such that all orbits of G on M have the same dimension. Let t,€ M, let H=H, and let K be a
Lie subgroup of H* =G, such that K|K° is finitely generated and H\(K, g/§) =0. Then there
exists an open neighborhood U of t, in M and an analytic map n: U— @ such that n{t) Kn(t) <
G, for every teU,

The proof of Proposition 10.1 follows immediately from Theorem 3.1 and Proposition
8.1.3.

10.2. Reductive subroups of isotropy subgroups. A real Lie group R is reductive if: (1)
R/ RS is finite; (i1} R admits a faithful linear representation; and (iii) every linear representa-
tion of R is semi-simple. If B is reductive and if g: B—~GL(¥) is a linear representation of
R, then it follows immediately from (iii) that H(R, V) =0. Let R be a real Lie group which
satisfies (i) and (ii) above. Then it is known [10] that R is reductive if and only if the center
Z of R is compact and R/Z is a semisimple Lie group.

Let the notation be as in 10.1 and let K be a reductive (real or complex) Lie subgroup
of H. Then HYK, g/fj) =0 and therefore the conclusion of 10.1 holds. Thus, for example,
in the real-analytic case, if G, contains a compact connected subgroup K, then G contains
a conjugate of K for every s in a neighborhood of £. In the complex-analytic case, we can

obtain somewhat stronger results.

10.3. Complex-analytic transformation groups. Let V be a finite-dimensional complex
vector space and let G be a connected complex Lie subgroup of GL(V). Let G’ denote the
5722901 Acta mathematica 129. Imprimé le 2 Juin 1972,
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Zariski closure of G in GL(V) and, for g€@, let Intyg: G—@G be defined as in 7.1. Let @
act complex-analytically on the connected complex manifold M and assume that all orbits

of G on M have the same dimension.

10.3.1. PROPOSITION. Let (G, M) be as above, let ty€M and let H=G,,. Let K be a
connected Lie subgroup of H such that H\(K, g/f)) =0. Then there exists a dense open neigh-
borhood U of t,in M, such that the following condition holds: for every t€ U, there exists g€G’
such that (Int;g) (K)<G,.

10.3.2. ProrosiTION. Let (&, M) be as above and, for every t€ M, let L; be a mawi-
mal connected reductive complex Lie subgroup of G, Let m~max,cy dim L, and let U=
{te M|dim L,=m}. Then U is the complement of an analytic subset of M and, for every
s, teU, L, 1s conjugate to L.

The proof of Proposition 10.3.1 follows from 8.1.4 and 7.1.1. Proposition 10.3.2 is an
immediate consequence of 8.1.4 and 7.2.3.

Our methods seem unsatisfactory in dealing with components of the isotropy sub-
groups, even when all isotropy subgroups have a finite number of components. Along this

line, we conjecture that the following complex-analytic analogue of 9.3.1 holds.

10.3.3. CoNJECTURE. Let (G, M) be as above and assume that each isotropy subgroup has
only a finite number of components. For each t€ M, let L, be a maximal reductive complex Lie
subgroup of G.. Then there exists a connected dense open subset U of M, such that L is
conjugate to L, for every s, t€U.

(We note that if K is a complex Lie subgroup which admits a faithful linear representa-
tion and if the component group K /K9 is finite, then K admits a maximal reductive complex
Lie subgroup and any two such subgroups are conjugate in K. The proof is the same as in

the case in which K is connected [10]. Thus the groups L, in the above conjecture exists.)

§ 11. Relation between analytic families of subgroups and families
of isotropy subgroups

11.1. One question which naturally arises is whether every analytic family of Lie
subgroups of G can be obtained as the family of isotropy subgroups for an analytic action
of ¢ on an analytic manifold. It is clear that the answer to the question as stated is negative.
For example, it is easy to find analytic families H = (H,);csr which do not contain every

conjugate of every H,; such a family cannot be the family of isotropy subgroups for an



DEFORMATIONS OF LIE SUBGROUPS AND THE VARIATION OF ISOTROPY SUBGROUPS 67

analytic action of ¢ on M. However, the following result shows that every closed analytic
family of Lie subgroups of & can be obtained by pull-back from a family of isotropy sub-

groups.

11.1.1. ProPosiTiON. Let H=(H,);cp be an analytic family of Lie subgroups of the
Lie group @G, and assume that H is a closed analytic submanifold of G x M. Then there exist
an analytic manifold N, an analytic action of G on N and an analytic map ¢: M~ N such that

the following conditions hold:

{8) G =(GY)ien is an analytic family of Lie subgroups of G.
(b) @*(G&) =H (this implies in particular that Gy, = H, for every t€ M).

Before giving the proof of Proposition 11.1, we need to recall some elementary facts

concerning equivalence relations on manifolds.

11.2. Let X be an analytic manifold and let < X x X be an equivalence relation on X.

Then the following conditions on R are equivalent:

(a) The quotient set X/R admits a structure of analytic manifold such that the ca-
nonical map p: X—X/R is a submersion.
(b) Let mz: R~ X denote the restriction to R of the projection pr, of X x X on its

second factor. Then R is a closed analytic submanifold of X x X and 7y is a submersion.

The proof of 11.2 is given in [22, p. LG-3.27].

11.3. Proof of Proposition 11.1. Let R be the equivalence relation on G'x M defined
by: (x, t)~ 5 (y, s) if and only if =5 and 2~y € H,. We claim that:
(i) R is a closed analytic submanifold of (G x M) x (G x M). For the proof of (i), let

@ (GxMyx (Gx M)—>GxMxM
be defined by ¢((, 1), (v, 8)) =(x", ¢, s). Then ¢ is a submersion. Let
W' ={(x,t,s)€Gx M x M|s=t and x€H,}.

Then H’' is the image of H under the analytic manifold isomorphism of G'x M onto
G x Ay given by (x, t)~>(x, (¢, t)). Since H is a cloged analytic submanifold of G x M, and
G x Ay is a closed analytic submanifold of G x M x M, we see that H' is a closed analytic
submanifold of ¢ x M x M. Since ¢ is a submersion, R=¢~(H') is a closed analytic sub-
manifold of (G x M) x (G x M), which proves (i).

Let my: R—G x M denote the restriction to R of the projection pry: (G'x M) x
(Gx MYy=Gx M.
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(ii) 7, is a submersion.
Let ((z, &), (¥, 1t,)) € R Choose an open neighborhood U of ¢, in M and an analytic map
o: U—G@ such that «(t)€H, for every ¢€U and «ft,) =2~ly. Define an analytic map §:
Gx U—-(Gx U)x(GxU) by B(z, t)=((za(t)™L, t), (2, t)). Then, since (ze(t)~1)~1z = «(t), we
see that B(G x U)< R. Furthermore, 7,08 is the identity map of G'x U. It follows that
the differential of 7, at ((x, &), (y, &) is surjective. This shows that 7z, is a submersion.

It is a consequence of (i) and (ii) that there exists a unique structure of analytic mani-
fold on the quotient N =(G x M)/R such that the canonical map p: @x M —~N is a
submersion.

We define an analytic action of G on @ x M by z(y, t) = (xy, t) for z, yEG and t€ M.
Using 11.2 and functorial properties of quotient structures, it is not difficult to show that
there is an induced analytic action of G on N such that p: G X M — N is a G-equivariant
map. Furthermore, a similar argument shows that G =(G,),ey is analytic family of Lie
subgroups of G. Define an analytic map ¢: M =N by @(f) =p(e, t). Then it is easy to check
that (p.*(Gr) =H. This proves 11.1.1.

11.4. Remark. The only place in the above proof in which we used the fact that H
was a closed analytic submanifold of G x M was to insure that N was Hausdorff. Thus if
we drop our requirement that manifolds be Hausdorff, Proposition 11.1 remains true if

we only assume that H is an analytic submanifold of G x M.

§ 12. Examples

12.1. Let G=8L,(C), let V be the four-dimensional vector space of homogeneous
polynomials of degree three in two indeterminates X and Y, and let G act on V in the usual
way. Every P€ ¥V can be written as a product of three linear forms. It is a classical fact that
PSL,(C) =SLy(C)/{ £ 1} acts simply transitively on the set of triples of distinct lines inC2.
Using this fact, it is easy to show by direct computation that if P € V has no linear factor of
multiplicity greater than one, then the isotropy subgroup G; is a cyclic group of order three.
However, if P has a linear factor of multiplicity two, e.g. P=X2Y, then Gp={e}. Let V=
{P€V |Gy is finite}; V, consists of all cubic forms with no linear factor of multiplicity three.
Let @=X2Y. The orbit G(Q) is a Zariski closed subset of V,and we have: G ={e¢} for PEG(Q);
G(P) is cyclic of order three for P€(V,—G(Q)). For the action of G on V,, the number of
components of Gy is a lower semi-continuous function of P€ ¥, but is not an upper semi-
continuous function. It is trivial to check that G»=G% for every PEV,, hence (Gp)pey,

is an algebraic family of algebraic subgroups of G.
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12.2. Let G =SL,(C), let g =2l,(C) and let G act on g via the adjoint representation. We
say that an element x €g is regular if the isotropy subgroup G, is of dimension »—1 and we
let ¥V, be the set of regular elements of g; V, is a Zariski open subset of g. It follows from the
results of Kostant [15] on the adjoint representation that G=(G,);cv, is an algebraic
family of subgroups of G. If x € ¥ is semi-simple, then @, is an algebraic torus and hence is
connected; the regular semi-simple elements form a Zariski-open subset V; of V. If
2€(V,—V,), it is not necessarily the case that G, is connected. For example, if z is the
regular nilpotent element Ky, + By +...+ E,_, , (E,; denotes the matrix with 1in the i—j
position and 0 elsewhere), then G, has n connected components. For the action of G on V,,
we can prove the following properties:

(a) The number of connected components of @, is an upper semi-continuous function
of z€V,.

{(b) G = {G,)zev, is a connected analytic manifold, but G+6° (6= (G, cy,)-

12.3. The following example was pointed out by Mostow [16]. Let N<GLg(R) be the

two-dimensional vector group consisting of all matrices

1l a b
7(a, b) = (0 1 O) (a, bER).
0 0 1

N acts on R? by matrix multiplication and the hyperplane 4 ={(z, ¥, 2)ER?|z=1} is N-
stable. If ¢ = (z, y, 1) €4, then the isotropy subgroup N, is given by N,={z(a, b)|ay +b=0}.
Thus each orbit of N on 4 is of codimension one (a line) and, since N is abelian, if s, t€ 4,
then N, and N, are conjugate if and only if s and ¢ lie on the same N-orbit.

Let 3 be the Lie subalgebra of gl;(R) spanned by E,,, B3, E;; and E,; and let S be the
corresponding connected Lie subgroup of GLy(R); 8 is a closed, simply connected subgroup
of GL3(R). Let dg: 3—1n be the Lie algebra homomorphism defined by do(F)=E,,,
do(Eg) = B3, do(E,) =do(E,5)=0 and let p: S—N be the corresponding homomorphism
of Lie groups. We let S act on 4 by means of p. If ¢ =(z, y, 1) €4, then the isotropy subal-
gebra 38, is spanned by (B, —yEs3), By and Eyy. If ¢ =(2, ¢, 1), then it follows from the
classification of three-dimensional Lie algebras [13, p. 12] that 3, is isomorphic to §,. if and
only if either y =y’ or (1+y) (1+y’)=1. Let B={(z, y, 1)€A|y>0}. Then B is N-stable,
and hence S-stable, and, for ¢,#’ € B, 3, is isomorphic to 8, if and only if £ and ¢’ lie on the
same S-orbit.

The homomorphism ¢: §—SL,(R) given by

_((detg)™* 0
o) _( 0 y)
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maps S isomorphically onto a closed Lie subgroup S’ of SL,(R) =&; to simplify notation we
identify S with §’ by means of ¢. Thus G—G/S is a principal fibre bundle with structure
group S. Since 8 acts on B we may form the associated fibre bundle £->@G/S with fibre B;
E is an analytic manifold and & acts on ¥ in the usual way. For this action of G' on E, each
orbit is closed and of codimension one and, for s, t€ B, we see that G? is not isomorphic to

G? unless s and ¢ lie on the same orbit. Thus we have shown:

12.3.1. There exists an analytic action of G =SL,(R) on an analytic manifold ¥ such
that each orbit of ¢ on % is closed and of codimension one and such that, for s, t€ E, G? is

not isomorphic to GY unless s and ¢ lie on the same G-orbit.

12.4. The example given in 12.3. is not an algebraic transformation group. Similar
examples exist in the case of algebraic transformation groups, but it seems to be difficult
to give an explicit description of them. Let (&, X) be a (complex) algebraic transformation
space, with @ an affine algebraie group, and, for z€X, let U, be the unipotent radical of
G, and let L, be a Levi subgroup of G,. It follows from Theorem 9.3.1 that the L, fall into
a finite number of conjugacy classes, so one is led to study the conjugacy classes of the uni-
potent radicals. The problem here is that it is hard to find explicit invariants to distinguish
between conjugacy classes of unipotent subgroups.

First we shall show that if there exists an infinite number of isomorphism classes of
isotropy subalgebras for the action of G on X, then there exists a G-stable Zariski locally
closed subvariety ¥ of X such that (@, V) has properties similar to the example of 12.3.

Let £, be the set of Lie algebra multiplications on C*. L, is a Zariski closed subset of
the vector space of all alternating bilinear maps of €* x C” into C* and thus has a natural
structure of an affine algebraic variety. The general linear group H =GL,(C) acts in a
canonical manner on £, and the orbits of H on L, are just the isomorphism classes of Lie
algebra structures on C". Applying the result of Rosenlicht [21] mentioned in 9.2 to the
algebraic transformation space (H, L,), we see that there exists a partition of £, into a
finite family of disjoint, Zariski locally closed, non-singular H-stable subsets Vi, ..., V,
such that the following conditions hold for each j=1, ..., m: (i) V, is a Zariski open subset
of C,— UIZ1V;; (ii) there exists a quotient = V,~(H\V;)=Z, for the action of H on V,.
Let Z be the disjoint union of the algebraic varieties Z, ... , Z,,. The points of Z correspond
bijectively to the isomorphism classes of n-dimensional complex Lie algebras.

Now let (G, X) be an algebraic transformation space and assume that all isotropy
subgroups G,(x€ X) have dimension n. For each € X, let y(x) €Z denote the isomorphism
class of g,. For j=1, ..., m, let X;={x€X|y(x)€Z,} and let y;: X;,~Z; denote the restric-
tion of y. Then a straightforward argument shows that X; is a Zariski locally closed
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subset of X and that y; is a morphism of algebraic varieties. We note that y, is constant

on G-orbits.

12.4.1. ProrosiTiON. Let (G, X) be an algebraic transformation space and assume that
there is an infinite number of distinct isomorphism classes (resp. conjugacy classes) of isotropy
subalgebras g,(x € X). Then there eixsts a Zariski locally closed, non-singular G-stable subvariety
V of X such that the following conditions hold:

(a) AUl orbits of G on V have the same dimension and dim G(x)<dim V for z€V.
(b) For every x€V, there exists an open neighborhood U of x in V (with respect to the
Hausdorff topology of V) such that if y, 2€ U, then g, is not isomorphic (resp. conjugate) to g,

unless y and z lie on the same G-orbit.

Proof. We shall give the proof for the case of isomorphism classes. By passing to a
Zariski locally closed subvariety of X, we may assume that all isotropy subgroups G, (z € X)
have dimension » and that there exists ¢ (1 <i{<m) such that y(x) €Z, for every x € X, where
y is as defined above. By a straightforward argument, involving only standard properties
of morphisms of algebraic varieties and the result of Rosenlicht mentioned above, we can
show that there exists a G-stable, non-singular Zariski locally closed subvariety V of X and
a non-singular Zariski locally closed subvariety 4 of Z, such that the following conditions
hold: (i) There exists a quotient ;: ¥V—(G\ V)= B for the action of & on V; (ii) B is non-
singular and dim B>0; (iii) (V)= B; and (iv) If 7: B~ 4 is the morphism induced by y,,
then for every b€ B the differential dv,: T, (B)— T, (4) is a linear isomorphism.

Conclusion (b) of 12.4.1 follows immediately from (iv) via the implicit function theorem.
This proves 12.4.1 for the case of isomorphism classes.

To prove 12.4.1 in the case of conjugacy classes, we let 4,(g) be the algebraic variety
of all n-dimensional subalgebras of g and we apply [21] to the action of G on 4,(g) deter-

mined by the adjoint representation of @. The rest of the proof goes as above.

12.4.2. Tt was shown in [18, p. 432] that for » sufficiently large, there exists a rational
representation of G'=8L,(C) on a vector space W such that there exists an infinite number
of isomorphism classes of isotropy subalgebras g,(x€W) for the action of G on W, Thus
Proposition 12.4.1 applies to (G, W).

We can give explicit examples of representations of SL,(C) for which there exists an
infinite number of conjugacy classes of isotropy subalgebras. Write C*" as the direct sum
Vi@V, of two n-dimensional subspaces and let §) be the abelian subalgebra of 3l;,(C)
defined by

h={T€8ly,(C)| T(V,)= Vyand T(V,)={0}}.

Every k-dimensional subspace of I is the Lie algebra of a commutative unipotent algebraic
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subgroup of G =8L,,(C). For n sufficiently large and k<n? chosen properly (e.g. n=4,

k=8), an easy dimension count shows that there exists an infinite number of conjugacy

clas

ses of k-dimensional subalgebras of ). Let m =4n?—k; m is the number of linear equa-

tions needed to determine a %-dimensional subspace of gls,(C). Let (€*™)* denote the dual
space of C*" and let E be the mth exterior power of the vector space €+ (C*")*; K has
natural structure of a G-module. An argument due to Chevalley (see [4, pp. 161-171])

shows that each k-dimensional subalgebra of §) occurs as an isotropy subalgebra for the

acti

on of G on E. Thus, if £ and » are properly chosen, there exists an infinite number of

conjugacy classes for the action of G on E, and Proposition 12.4.1 applies to (G, E).
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