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The object of this paper is to obtain existence and uniqueness theorems for (weak)
uniformly Lipschitz continuous solutions w#(z) of Dirichlet boundary value problems as-
sociated with non-linear elliptic differential-functional equations of the form

[as(grad )]s, + Flu](x) =0, (0.1)
where, for a fixed z, F[ul{z) is a non-linear funetional of %. The results to be obtained can
be considered as generalizations of some theorems of Gilbarg [5] and Stampacchia [14]
in the case F[u]=0 and of some theorems of Stampacchia [14] in certain cases F[u]=*0.

Part I deals with the functional analysis basis for the proofs. It gives existence theorems
for the solutions of certain non-linear, functional inequalities. By a weak solution of (0.1)

on a domain Q is usually understood a function u(x) having a gradient «, in some sense

and satisfying
f {“:‘(“z)% ~F [u]n} dz=0 (0.2)
Q

for all continuously differentiable #(x) with compact support in Q, i.e., n€CGH(Q). Part I
will imply existence and uniqueness theorems for functions u(x), to be called quasi solu-
tions, satisfying

f {a,-(u:) Ny~ F[&]n} de>0 {0.3)
Q

for 7 in certain subsets of Cj(C) depending on u. A particular case of this situation arises,

for example, if one seeks the solution of a variational problem

minfn{f(u,)-l- ... }dx

(*) This research was partially supported by the Air Force Oifice of Scientific Research under
Contract AF 49 (638)-1382 and Grant AF EOAR 65-42.
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in a convex set of functions . If the minimum is attained at an interior point u of the
convex set, one expects u(x) to be a weak solution of the corresponding Euler equation,
say (0.2), for all € C}(Q). But if the minimum is attained at a boundary point of the convex
set, one can only expect to obtain inequalities of the type (0.3) for a more restricted class
of test functions.

Professor H. Lewy called our attention to the technique of his paper [9]. In the varia-
tional case, this involves the consideration of the desired solution as a limit, as K —oo,
of a minimizing function for the case when the competing functions are restrained to be
uniformly Lipschitz continuous with a Lipschitz constant not exceeding K. This idea is
the motivation for our introduction of quasi solutions; cf. also [15].

Part IT will deal with a priori estimates for quasi solutions. The methods will be similar
to, but simpler than, those of [14]. One of the main simplifications (which permits the
avoidance of results of De Giorgi [4] and their extension to the boundary) arises from an
adaptation of an idea of Rado [12], p. 63; cf. the proof of Lemma 10.0 below. A similar
use of Rado’s device occurs in Miranda [11].

The first two sections of Part III give existence and uniqueness theorems for Dirichlet
boundary value problems associated with (0.3). One of the novel features of the results be-
low is the fact that the equations considered involve non-linear functionals, rather than
functions, of the unknown u. The last section is concerned with the regularity (beyond
that of Lipschitz continuity) for solutions. The results of De Giorgi and their extensions

are used only in the last section.

Part 1. Functional analysis

1. An existence theorem. Let X be a reflexive Banach space over the reals and X’
its strong dual (=conjugate space). The pairing of X’ and X will be denoted by (u',u).

Let Y be a closed linear manifold in X. Suppose that Y is also a Banach space with
anorm | - || y which may be different from that of |- || x. By the closed graph theorem, there
exist constants 0 <6,,0,<1 such that

billvllz<llylle<ll¥|x/0: for yEY. (1.1)

The pairing of ¥’ and Y will be denoted by <y’, ¥).

If 8 is a subset of X and p€X, then §-+¢ will denote the translation of S by ¢; i.e.,
S+p={u:u=s+¢, sER}.

In the theorems of Part I, § will denote a closed convex subset of X with the property

that
U, Uy €ER = u;—u, €Y. (1.2)
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This is the case if and only if there exists a closed convex set & in Y,
0ER,< Y, (1.2

and an element @ € X such that § =&, +¢. It is clear that & =&+ has the property (1.2);
conversely, if p€ &, then & =& —¢ has property (1.2') and & =&, +¢.

TEEOREM 1.1.(%) Let X, Y be as above, & a closed convex set in X satisfying (1.2). For
every w€R, let A(u) be a bounded linear functional on Y, with the metric induced by X, and
let A{u) have the following properties;

(i) of M is any linear manifold in Y with dim M <oo and ¢ €K, then (A(u),v) is a con-
tinuous function of u,v for u€® N (M +¢), vEM;

(i) A(w) is monotone, i.e.,
(A(ug) — Aluy), up—u)) =0 for uy, u,€K; (1.3)

(iii) when & ts not bounded, A(u) is coercive in the sense that there exists some @ €R
satisfying
(Au) — Alge), u—po)f[|[u—gol| x>0 as [Ju]lx>co, wER. (1.4)
Let uw—C(u) be a mapping from K to Y’ which is completely continuous (i.e., is continuous from
the weak topology of K< X to the strong topology of Y’} and which is bounded,
[Cw)||¢ <L for u€S, (1.5)
L constant.
Then there exists a least one uy€R satisfying

(A(ug), v—1ug) ><Clug), v—ug> for vESK. (16)

Remark. Since v —u, occurs linearly, it follows that (1.6) holds for all v in the cone
{v:v=uy+tw, wER —uy and ¢ >0} with vertex u,. This cone contains & and becomes ¥ +u,
when 0 is an interior point of the subet & —u, of Y. In the latter case, equality holds
in (1.6).

Theorem 1.1 contains, as a special case, the main result of [15]. We had originally
formulated this theorem with a monotony condition stronger than (1.3). The question of

the validity of the theorem, as stated above, was suggested to us by J. L. Lions.

(!) Added in proof (Jan. 18, 1966). After this paper was submitted for publication, the authors
received a preprint of the article F. BROWDER, Nonlinear monotone operators and convex sets in Banach
spaces, which has now appeared in Bull. Amer. Math. Soc. 71 (1965), 780-785. This article contains
Theorem 1.1 with C(u)= 0. Our proof is similar to Browder’s in that it involves first the case dim X <oco
and then a passage to a limit. In contrast to our Lemma 3.1, Browder’s proof in the finite dimen-
sional case uses the monotony of A(u) (and hence requires C(u)=0).
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Actually, in this theorem, there is no loss of generality in assuming that ||« || x=|-| ¢
and (-, )=, ); cf. the part (a) of Section 4. The formulation of the theorem involving
two norms for Y is suggested by applications.

In order to illustrate the significance of the different assumptions and the way that this
theorem will be applied, let X = H"%(Q) for some bounded open Q< E™ and Y =Hj3(Q);
cof. Section 7 for definitions. Let ¢(x) be a function which is uniformly Lipschitz continuous
on Q and 8 =X& the subset of H1-2(Q) consisting of uniformly Lipschitz continuous func-
tions u(x) with a Lipschitz constant not exceeding K and satisfying u(x)=g(x) for x€0Q.
If K is as large as the Lipschitz constant of ¢(z), then @(z) €Xy and & =Xy —¢ satisfies
(1.2"). In this case, & =X is bounded and so, no coercivity condition (1.5) is needed. Let
A(u) be defined by

(A(), v)=f ai(u;) vz, d
o]

for we€Xk, ve H}*(Q), where u,=gradu =(u,,,...,%;,). In this case, the continuity condi-
tion (i) holds if a,(p) =a(py, ..., p,), for 1=1,...,n, are real-valued, continuous functions of

p in the Euclidean sphere |p| <K. The weak ellipticity condition

[a:(p) —adg)](pi—q:) =0
implies the monotony (1.3).
It will be clear from the proof that if & is unbounded (so that (1.4) holds), then (1.5)

can be relaxed to
lim sup || C(w)|| /||| x < (1.7)

or even to |C@)|| v |l% —pol| £/(A(w) — Alg), u—g@,) >0, (1.8)

as u€R, ||ul x=>co.

CoROLLARY 1.1, Assume the conditions of Theorem 1.1. Let w,, u,,... be elements of &
such that wy=u,, satisfies (1.6) for m=1,2,... . Let u,—>u, weakly in X as m->oo. Then
U € R and uy=1u,, salisfies (1.6).

This assertion is a consequence of Lemma 2.3 below. For, by this lemma, (1.6) is equi-

valent to
(A(®), v—uy) ={Cuy), v—uy> for vER. (1.9)

Since & is convex and closed, it is weakly closed, so that u,,ER. It is clear that u, can be
replaced by u,, in (1.9), and letting m —oco gives the corresponding relation with u,=1u,

(since C(u) is completely continuous).
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CoroLLARY 1.2. If, in Theorem 1.1, A(u) and C(u) satisfy
(A(uy) — A(wy), Uy —u;) >{Cts) —Oluwy), g — %>  for 1y, us(*+u,)€ER, (1.10)
then ug is unique.
Condition (1.10) holds, for instance, if C(u)=y’ is independent of « and A(u) satisfies
(A(ug) —A(uy), ug—u,) >0 for u;, u,(+u,)€ER.
In order to prove the last corollary, let u,,u, be two solutions of (1.6), so that
(A(uo), uy —1g) Z{Clug), uy—tgy,  (A(uy), g —1) > Cluy), up—up.
Adding these inequalities gives
(A (o) — Auy), g —u1) SO(u) — Clay), o —u).
Hence uy=u, by (1.10).
The proof of Theorem 1.1 will be given in two parts: first, the case where Y is a finite
dimensional manifold (Section 4) and, second, a limit process (Section 5). The second part

depends on an aﬁpplication of arguments of Minty generalized by Browder (cf., in partic-
ular, the proof of Theorem 4 in [3]).

2. A priori bounds. In what follows, ¢, denotes a fixed element of &, chosen so as
to satisfy (1.4) if & is unbounded.

Lemma 2.1. Let X, Y, &, A(u) be as in Theorem 1.1 and let y' €Y', ||y'|| v <L. Then
there exists a constant R = R(L) such that any solution uy€R of

{(Aug), v —ug) 2y, v—uy> for vER .5

satisfies [l %]l < RB. (2.2)
Proof. Let v=g, in (2.1) and rewrite the resulting inequality as
(A(ug), v —Po) <Y, Ug~Po)-
Hence (A (u6) — A(go), 2o —Po) <<, % —Po> — (A(o), %o —po)-
The right side is majorized by Llug—@o|| x/02 + || A(@o)]] * || %0 — o]l x by (1.1). Thus
(A (ug) — Algo), %o —po) < (Lf6y+ || A(@o) || |%0 —Pull x-

If & is bounded, the lemma is trivial. If & is unbounded, the assertion follows from (1.4).

Lemma 2.2, In the proof of Theorem 1.1, there is no loss of generality in assuming that
R is bounded; e.g., shat & is replaced by & N {||u ||z <r}, where r> R(L) and R(L) is given
tn Lemma 2.1,

This is a consequence of Lemma 2.1 and the Remark following Theorem 1.1.
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LeEmMa 2.3. Let X, Y, &, A(u) be as in Theorem 1.1 and y' €Y'. Then u,€K satisfies
(2.1) ¢f and only f
(A(v), v —ug) =y, v—uyy for vER.

The proof depends on a device introduced by Minty [10].

Proof. The inequality (2.1) implies (2.3) by the monotone condition (1.3). In order to
deduce the converse, assume (2.3). Let w€{ be arbitrary. Then

¥ =g+ t{w —ug) =tw + (1 —1)u,
is in the convex set & for 0<<¢<1. Thus, (2.3) gives
H{A g+ tw —ug)),w —ug) =y, w—uyy for weR.
Dividing by ¢>0 and letting ¢—~0 gives (2.1) by virtue of the continuity condition (i).
This proves the lemma.

COROLLARY 2.1. In Lemma 2.3, the set of solutions u, of (2.1) is convex.

3. Finite dimensional case. In this section, we shall prove the finite dimensional

analogue of Theorem 1.1. Actually, no monotony assumption is involved.

LemMa 3.1. Let € be a compact convex set in E™ and B(u) a continuous map of € into
E™. Then there exists u,€C such that

(B(ug),v —u) 20 for v€EG, (3.1)
where (-, +) denotes the scalar product in E™.

Proof. If § is a point, the lemma is trivial. If € is not a point, then it can be supposed
that € has interior points for otherwise, without loss of generality, E" is replaced by a
suitable subspace of E™ containing €. Since a translation of the space E" does not affect
the assumption or assertion, it can be supposed that « =0 is an interior point of €.

Let u, € 8€. Then (3.1) holds if and only if there is a hyperplane 7 through u,, supporting
¢ such that if N0 is a vector orthogonal to z and pointing into the half-space not con-
taining €, then B(uy)= —tN for some ¢>0.

Case 1. G s of class C. Assume that (3.1) fails to hold for all u,€ 8€. We shall show

that
B(u)=0 (3.2)

has a solution %, €€ (which satisfies (3.1) trivially).
Let N(u,) be the outward, unit normal vector at u,€ 8. Then

Blug, 1) = (1 —£) B(uo) +1N(ug), 0<¢<1,
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is a deformation of the vector field B(u,), u,€0C, into the vector field N(u,). The assump-
tion that (3.1) does not hold for u,€ o€ implies that B(u,, )=+ 0 for u,€ o€, 0<t <1. Hence
the indices of the vector fields B(u,), N(u,) with respect to u—=0 are identical.

There is a deformation Dfug, s)=(1—8)N(ug) +5u,, 0<s<1, of N{u,) into u, and
D(uy, s)+0 since =0 is an interior point of €. Since the vector field %,, u,€E, has index
1 with respect to 4 =0, the index of N(u,) and, hence, of B(x,} is 1. This proves that (3.2)

has solutions in §.

Case 2. 0 is not of class C*. By a theorem of Minkowski (cf. [1], pp. 36-37), there exists

a sequence of compact convex sets €, <@, <... such that € is the closure of the union
G, uC,u ... and oG, is of class C1. By Case 1, there exists u,, €, satisfying

(B#,y,),v—u,)=0 for v€E,.

After a selection of a subsequence, it can be supposed that u,=limu, exists. Then, by
continuity, it follows that
(Blug), v—up) =0 for v€Q,,

m=1,2,... . This implies (3.1) and completes the proof.

4. Proof of Theorem 1.1. According to Lemma 2.2, it can be supposed that & is
bounded.

(a) Without loss of generality, it can be supposed that A(u)€Y’ and we can write
{A(u),v> in place of (4(u),v) for v€ Y. (This only affects the norm assigned to A(u)).

Let p €& be fixed and K, =8 —¢, so that {, is a closed, bounded, convex set in ¥
containing 0 and & =&, +¢. Let M be a linear subspace of ¥ with m=dim M <oo, j: M =Y
the injection of M into Y, j*: ¥’ M’ the dual map, and

K=K N M<K —¢.
It will be shown that there exists an element y,, € &, satisfying
G AWYu+9), 2= > Clyu+@), 2=y for z€Ry, (4.1)
or, equivalently, {AYu+9) —Cyy+@), 2—yp> 20 for z€Qy. 4.2)

Introduce basese,,...,e, on M and f,, ..., f,, on M’ such that {f;, e,> =8;;. Foryy, y, 2€ &y,
write
m

[m m
Y= Z (Y, y= Z Yili, 2= 2 Ziey,
i=1 i=1 i=1

I*A(y+o)—Cly+ )= El Bi(®)f:

18 — 662945 Acta mathematica. 115. Imprimé le 15 mars 1966,
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Thus (4.1) is equivalent to

ZI By(ya) (21— (yn))) =0  for z= 21 216, €Ry. (4.3)

This shows that the desired result (4.3) does not depend on the norm on M. Thus
we can suppose that M carries a Euclidean norm and write (4.3) as (3.1), where

is a continuous function from &, <M to M. Hence, the existence of a y, € ], satisfying
(4.3) follows from Lemma 3.1.

(b) Put KM)=8y+ep<f® and wuy=yy,+p€R(M). Then (4.2) becomes
(A (up), © —Upg) ={Cluyy), v—upyy for vERK(M). (4.4)
By the monotony condition (1.3),

(A V), v —up) = {Clup), v—upy for vEK(M). (4.5)

(c) For vER, let

Sv)={u: u€R, (A(v), v—u) ={Cu), v—u)}.
The sets S(v) are closed with respect to the weak topology on X. For & is closed and convex,
hence weakly closed, while the complete continuity of C(x) shows that
(A(v), v—u)—<Clu), v—u)
is a continuous function of €& from the weak topology on §< X to the reals.

The collection of sets {S(v)}, vER, has the finite intersection property. For if
vy,--,0, €] and M is a finite dimensional manifold of Y such that v,,...,,,€ R(M), then
uy€8(v,) N ... N S(v,). Since X is reflexive, the set & is weakly compact. Thus S(v)= &
implies the existence of an element u, such that

%, € N S(v) < K.

7ef
This element satisfies

(A@),v —uy) ={C(u),v—u,y for vERK.
By virtue of Lemma 2.3, %, is a solution of (1.6). This proves Theorem 1.1.

5. Another existence theorem. The result of this section is a theorem related to
Theorem 1.1 and is a generalization of results of Browder [3] and of Leray and Lions [8]
concerning the equation Au=0.

TrEOREM 5.1. Let X,Y,R be as in Theorem 1.1 and, in addition, assume that X is
separable. For u€R, let A(u) be a bounded linear functional on Y (considered as a subspace
of X) and satisfy the continuity condition (i) and the coercivity condition (iii) of Theorem 1.1.
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For u,vER, let A(u,v) be a bounded linear functional on Y, considered as a subset of X,
satisfying

(i) A(u, v) is bounded on bounded subsets of & x &;

(iiy) for fized u€R, A(u,) is a continuous function on every line segment in §;

(iiig) A(u, v) satisfies the monotony condition

(A{u, u)—Au, v), u—v)=0 for u,v€ER; (5.1
(ivg) of uy,uy, ... €K satisfy, as m—>oco,
Um—uy weakly in X, (5.2)
(A (% Upy) — A (Upyy %), Uy — ) O, (5.3)
then (A, v), w) >(A(ug, v), w) for ve R, weY; (5.4)

(vo) If uy, us,...€RK satisfy (5.2) and
(A, v), w) =Y, wy for w€Y 6.5)
and some fived vER and y' €Y', then
(A(uy, v), v—u,) > Y, v—up; (5.6)
(vig) A(w)=A(u, u) for u€R.
Then there exists uy €K such that
(A(ug), v—1u) >0 for vESK. (5.7)

Tllustrations of the conditions of this theorem in the theory of non-linear elliptic partial
differential equations are given in [3] and [8]; see Section 12 below. The formulation of
conditions {ig)—(vi,) follows [8].

If C(u) satisfies the condition of Theorem 1.1, the assertion (5.7) can be replaced by
(1.6). But this fact is contained in Theorem 5.1 if one replaces A(u, v) by the linear func-
tional on Y defined by (A(%,v),y) — {C(u),y) for y€ Y.

CoroLLARY 5.1. Assume the conditions of Theorem §.1. Let u,€R, m=1,2,..., and
let wy=mu,, satisfy (5.7) and u,— u,, weakly in X as m —>oco. Then u,ER and uy=u,, satis-
fies (8.7). '

This will be clear from the proof of Theorem 5.1; cf. the arguments leading from (6.2)
to (5.7) below.

6. Proof of Theorem 5.1. By the coercivity condition (iii) of Theorem 1.1 and Lemma
2.1, there is no loss of generality in supposing that & is bounded and, hence by (iy), that
A(u, v) is bounded, say

[(A(x, v), y)| <c|yllx for yEY. (6.1)
18* — 662945 Acta mathematica.
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Let M, M,< ... be a sequence of finite dimensional subspaces of Y such that U M,
is dense in Y. Let g €& be fixed. Lemma 3.1 implies that, if &, =& —¢, then there exist
U, €(K, N M)+ such that

(A, y), w—u,) >0 for w€(K,NM,)+g; (6.2)
cf. parts (a), (b) of Section 4. Thus (6.1) and (6.2) show that
(A(Uy ), v —p) > —cinf|lo—w||x for vER, (6.3)
where the infimum refers to w€ (&, N M) +¢. By the monotony condition (5.1),
(A, v), v—u,) > —cinfllo—wlx for vER. (6.4)

After a selection of a subsequence, it can be supposed that there exist u, €& and
y' €X'’ such that, as m —>oo, (5.2) holds and

(A(um %), )<y, y> for yeY. (6.5)
By (vy), it follows that
(A (U, W), Ug— ) >y, 05> =0. (6.6)
From (6.3), with v=u,, and the monotony (5.1),
(A, Ug)s Ug —py) = (A(Upyy Upy), g = Upy) > — ¢ inf [ ug—w)| x.
The extreme members of this inequality tend to O, the first because of (6.6) and the
last because |J M, is dense in Y. Consequently
(A(Upy ), Ug—Uy) >0 a8 m—>co.
Thus, by (6.6), the limit relation (5.3) holds and so, (5.4) holds by (iv,). This fact, together

with (v,), gives
(A(um’ ’D), v_um) - (A(uOs v)» v _“o) fOI‘ Iveﬁ;
cf. (56.6). Thus, by (6.4),
(A(ug, v), v—ug) >0 for vERK.

An analogue of the argument of Lemma 2.3 compietes the proof of Theorem 5.1.

Part II. A priori bounds

7. Uniformly elliptic linear equations. Let n>2, E" Euclidean n-space, and |z|,
|p}, |£] the Euclidean norms of points z=(2y,...,%,), 2= (Pps---»Pn)> E=(61,..,&,) In E™
In what follows, Q is a bounded open subset of E", 0Q its boundary, Q=Q U oQ its
closure, and |Q| its Euclidean measure.

If m >0, C™Q) [or C™(Q2)] denotes the set of functions having all continuous partial
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derivatives of order <m on Q [or Q]. CJ(Q) is is the subset of functions in 0™(Q) vanishing
near 9Q. For a>1, the L¥Q) norm of u(x) EL*(Q) will be denoted by ||u||, or |4 q-
The completion of C™Q) [or CF(Q)] with respect to the norm

'”““H”uoc(n)= > ||D’u||,
o<lilsm

&3

will be called H™ *(Q) [or Hg" %(Q)]. In the last display,
Diu=o"ufoxl...0x%, |§] =jy+... +]n

For o =2, we write H™(Q) or HJQ) in place of H™ %(Q) or HI*2(Q). If u(x) € H* %), then
we write u, for u, =gradu(z) = (us,, ..., %s,) and ||u,||, or ||u.]« o for the L¥Q) norm of the
Euclidean length |u,| of u,€ E". Similarly, for any vector valued function

f(ft) = (.fl(x), '"’fn(x)):

the L*(Q) norm of |f(z)] is denoted simply by ||f||.. The norm on H§(Q) will be taken to
be fJuz]ls o

- If 1<a<oo,then o’ denotes the Holder conjugate exponent, 1/a+1/a’ =1. If 1 <a<n,
then «* denotes the Sobolev exponent

lo*=1/a—1/n.

LeMMA 7.1 (Sobolev). Let 1<a<n and w€HY Q). Then there exists a constant S,
depending only on o, n but not on Q, such that

lltllcn < Saff ot (7.1)

We shall make occasional use of the following simple lemma which is an analogue of
the Case 1 of Lemma 2.1 of [14].

LemMMA 7.2. Let o(t) be a non-negative, non-increasing funciion on t >0 such that o(t) >0
as t->oco and

- fk (¢ — k) do(t) < c[o(k)] (7.2)
for 0<k<co, where ¢>0, y>1 are constants. Then
ot)=0 for t=c[o(0)7"1y/(y —1). (7.3)

Proof. Define the function H(k), 0<k<co, by

Hk)= — f "t~ k)l - f "o, (7.4)
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since the existence of the integral in (7.2) implies that #o(t) >0 as t—>oco. Thus, by (7.2),
H'(k) = —o(k) < —[H(k)/c]'".
Hence a quadrature gives
0<yH'(k)[(y —1) <yH'*¥(0)/(y —1) —k/c'".
Consequently, H(k)=0 for some k<k,
ko =ye " H' 7 (0)](y 1)

in which case, p(t) =0 for t > k, by (7.4). Since H(0) <cp7(0) by (7.2) and (7.4), (7.3) follows.
A function »€H"%(Q) is said to be bounded from above on 9Q by a constant @ if
there exists a sequence {u,,} of functions in C*(Q) such that u,,—u in H*%(Q) and %, <®
on 9Q. The least such @ will be called maxu(x) on 6Q. The minu(z) on 9Q is similarly
defined.
Let a,,(x), where 4,j=1,...,n, be bounded and measurable functions on Q such that
there exists a number » >0 satisfying

a, ()&, >v|E|2 (7.5)

By a weak subsolution [or supersolution] of
IZI [(@y(2) ¥z)zy — fiz] = 0 (7.6)
is meant a function u € H(Q2) satisfying

f (@1)() Uz, — f;) 95, d <O [or > 0] for 0<v€ HyQ). (7.7)
a

LemMma 7.3 (Maximum principle). Let f(x)=(f,,....f,) ELH(Q), a>n, and u(x) satisfy
(7.7). Then
u(@) <maxu-+ (Sp) | fll| Q[ (7.8)

[u(z) > minw = ($}) | £l ", (7.9)]
where $=[(1+1/n—1/a)/(1/n—1/a)]inf S, and the infimum is taken over the range
1<r<2,r<n.

This result is due to Stampacchia; cf. [14], pp. 387-388. For the sake of completeness,
a variant of the proof of [14] will be given here.

Proof. We shall only prove (7.8), as (7.9) is a consequence of (7.8). It is sufficient to
suppose that ® =0, where ® =maxwu on 9Q. For otherwise, we replace u(z) by the function
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v(z) =max (u(x) —D,0) and f,(x) by the function which is f,(x) or 0 according as v(zx)>0
or v(x)=0 (i.e., in (7.7), we consider only #(z) with support on the support of v(x)). Then
v(z) is a subsolution of the resulting equation and maxw»{x) =0 on 9.

Let k>0 and A(k) = {x: u(x) >k}. Then the choice 7(x) =max (u(z) —k,0) in (7.7) gives

J\ a,-,-(x) ux"uxj dx < f,uz, dx.
Ack) A(R)

Then, by (7.5) and Schwarz’s inequality, v(||u.||2, 400)? < ||f|l2. 2¢0|%z|l2. 40> S0 that
W %e ls, aco <[ fllz. aco- (7.10)

Let 1<v<2if n>2 or 1<7<2 if n=2. Then Hélder’s inequality applied to both sides of
(7.10) gives

v [z le. a0 < [ £ lle. aco | AR) [~

Applying Sobolev’s lemma to the function max(u(x) —k,0), we see that the left side is
not less than (v/S;)||u —k||++, 40y The exponent 7* can be reduced to 1 by Hélder’s inequality.

Thus |Iu'—k||1.A(k)<0|A(k) |}', (7.11)
where =S| fllafr, y=1+1m—1/x>1. (7.12)

Write (7.11) in the form

f (u—k)de <c| A(k) (7.13)
Ak)

or, equivalently, as - f E—k)d|A@)| <c|AR)]. (7.14)
6

Thus, by Lemma 7.2 with o(t) = | A(f)|, | A(t)| =0 if ¢ =cper-1(0)/(y —1); Le.,
|u(@)| <eper(0)/(y—1),
where g(0)=|Q|. Hence (7.8) follows from (7.12).
Remark. For applications below, it is important to note that, for the validity of (7.8)
[or (7.9)], it is sufficient to know only that (7.7) holds for the functions
n(x) =max (w(r)—k,0 [or n(x)= —min (% +u(z),0] (7.15)
for , k>maxu [or k< -—minu] on oQ. (7.16)

In fact, it is sufficient to have the inequality (7.10) for A(k)={z: u(z)>k} [or A(k)=
{z: u(x)< —k}] for k in (7.16).
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8. Quasi solutions and a maximum principle. Let X =J(Q) denote the set of uni-
formly Lipschitz continuous functions w(x) on £ (or, equivalently, on Q). If u(z) €X, let
A(u) denote its best Lipschitz constant

Mu) =sup|u(z?) —u(z®)|/|z1 —2°] for 2t 2'€Q. (8.1)

Let ¢(x) be a function defined only on éQ and uniformly Lipschitz continuous there. We
shall also use the notation

Mg) =sup | () —@(a) |/ |2+ —a?| for 2°,21€HQ. (8.2)

Let X, be the set of functions u(x) €X for which u(z) =g(x) on Q. For a given K >0, let
XE be the set of functions u(x) € X, satisfying A(u) <K. The sets Ky, K correspond, of
course, to g(x)=0.

By a quasi or K-quasi solution of
[@;(uz)]e; + Flu] (x) =0 (8.3)

will be meant a function u(x) € X satisfying
f [a;(u,) (v — u)z; — F[u](v—u)lde >0 for v€ Kgp*. (8.4)
0
The object of this section is to obtain a maximum principle (i.e., an a priori bound) for
K-quasi solutions under suitable conditions on a,(p) and Flu](x).
(A1) Let a(p)=(a,(p),...,a,{p)) EC°(E™) and satisfy

a,(p)p;=p|p|*—N, (8.5)

where #>0,1<a<n, N are constants.

(A 2) Let »—F[u] be a mapping of X into LY{Q) such that
Flu](@) sgnu(@) < 3 o | w68 ul@) PO u(u) 'O, (8.6)
=1

where ¢,>0, «()>1, B(E)>0, p(i)>1, 8()>0, and
ali) <o, BE)+y(i)+8(0) <. (8.7)

A simple example of an admissible F[u] is one which has the form
Flu}(z) =Glulg(z,u,u,), (8.8)
where Q[u] is a non-linear, real-valued functional of w satisfying 0<@[w]<||u|%} and
g(x,u,p) €CQ2 x B x E™) satisfies ug(z,u,p)<c,|u|7®|p|*®. For example, if one con-

siders a variational problem of the form
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min {fg fu,)de — U;) h(z, ) dx] ﬁ} ,

then the corresponding Euler equation is of the form (8.3) with a,(p) =fy(p) and Flu] of
the type (8.8) with

Glul= [f h{z, u(:r/;))d:t:]ﬁ—1 and g(z, u) = fhy(z, u),
Q

independent of u,.

The reason that the right side of (8.6) has been chosen as a sum rather than as one
term is, not to obtain greater generality but, to illustrate the fact that two different situa-
tions occur according as f(z) +y(¢) +8(¢) <o or f(2) +9(¢) +8(¢) =a. In the first case, there
will be no restriction on the constant ¢; [and, in fact, ¢; can be replaced by a function
c,(x) € L*P(Q) for a suitable £(i)]; in the second case, smallness conditions will have to be
imposed on c;.

In order to make this specific, let ¢ denote a number satisfying

max[a(t), yE)] So<a* for i=1,...,m; (8.9)
cf. (8.7). Put A=A(o, 2, Q)= inflll—lzilll—l‘i‘ for u € Hy*(Q). (8.10)

For example, if o=a¥, then A(a*,«,Q)>1/§,; if a=0=2, then A%2,2,Q) becomes the
first eigenvalue for Au +Au=0 on Q, =0 on 0Q. In any case, Sobolev’s inequality implies
that
A> 1S, |Qfueve,
The smallness condition on certain ¢, mentioned above will be the following:
(A 3) Let the coefficients ¢; in (8.6) satisfy
w— Z' ¢ A&(i)—a | (9] I(l-alu) (1 —6(@)/ )+ B/ (@) > 0’ (811)

where 2 is the sum over the indices ¢ for which (i) +9(3) +6(3) = a.
The following conditions will not be used in this section but will be stated here for

reference later.
(A 4) For every number M >0, there exists a number y(M) such that
|ue)| <M on Q@ = | Ful@)] <y +|u@)]| ),
where 0 <4(0)<a—1.

(A B) If uy(x) €KY for h=0,1,... and up(x) > uy(x) in HYQ) as b —~co, then Flu,](z) >

Fluy)(x) in measure on £ as k—oo.
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This holds, for example, if F[u] has the form (8.8), where g(z,u,p) €CQ x E* x E™)
and Glu,]— Glu,) as b »>oo; cf., e.g., [3], [7].

If Flu](x) depends essentially only on u(x) and not on its gradient u.(x) (as in the
case in (8.8) when g(z,u,p) =g(x,u) does not depend on p), then (A5) can be replaced by
the simpler condition:

(A5') If uy(z)EXE for h=0,1,... and uy(x) >uy(x) uniformly on Q as k—>oo, then
Flu,](x) > F[u,] (x) in measure in Q as h->co.

Remark. Assumptions (A4) and (A5) [or (A5')] imply that the map u —F[u] is contin-
uous [or completely continuous] from KZ < HY(C) to the conjugate space of HY(Q), where
Flu} is interpreted as the linear functional

J‘ Flu](z)n(zx)dz for 5 €HyQ).
o

THEOREM 8.1 (4 priori bound). Assume (Al), (A2) and the inequality (8.11) in (A3).
Let ¥ =max|p(x)| on 8Q. Then there exists a constant T, depending on the parameters
n, o, i, N, |Q|, ¥, and ¢, a(s), BG), y(3), 6(3) for i=1,...,m (but not on K), such that if u(z)
18 a K-quasi solution of (8.3), then

luz)| <T on Q. (8.12)

The proof of this theorem will depend on modifications and simplifications of the
proofs of Theorems 6.1 and 6.2 in [14]. For related results, see [7], [13].

Proof. In the proof, 7' will denote a constant (not always the same) depending on the
parameters mentioned in the theorem. By 7'(¢) will be meant a constant depending on an
additional parameter .

(a) The first step in the proof will be to obtain an inequality of the form ||ul[,s<T.
To this end, we shall first majorize |||, 4, Where 4 is the set A ={z:|u(z)| >'¥}.

Define the function U(x) to be u(x) —¥, 0, or u(z) +¥ according as u(z) >V, |u(x)| <V,
or u{z)< —W¥. Then U{z)=0 on Q—A4 and U(z)€X,. Define v(z) by the relation

() —u(z) = — Ulz);

in other words, v(z) =", u(z), —¥ according as u(z) >V, |u(x)] <V, or u(x) < —¥. This
makes it clear that v(z) €Xy. Thus (8.4) gives

f ay(u,) Uz da < f Fu)Udz.
A A

Since ¥ >0, sgn U =sgnu. Consequently, by (8.5) and (8.6),
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o Juabde=141< 3 allul [ upo- o] ]

Since |U| <|u| on A, the last integrand can be replaced by |u|"®|u,|*® and so, Hélder’s
inequality gives, as a majorant for this integral,

f Voo [P O e < |0 |15, a [ e 15, (8.13)
A
o) =y () af(x —8(3)) e (8.14)

Using Holder’s inequality again, it is seen that the right side of (8.13) does not exceed

”u”‘5(1)”,ulc':”f‘fli1 IAIV(!)(IIU(i)-llﬂ)’

By a similar use of Holder’s inequality for ||« |y, and | 4]<|Q|,
pllull s <N|Q|+ Z aillwllE® N ue |l | QI (8.15)

(i) =F(0) [1/a(d) ~ /o] + 1 —8() e —y(i) o (8.16)

Note that, for any number a >0,
Jﬂluladxsz (U] +Pyds+¥2| Q. (8.17)
Also, if ¢>0 is arbitrary, there is a number ¢ =¢(¢,a) such that
L (U|+WF)yde<(1+e) L | Ultdx + cle, a) P2 Q|,

since (JU|+¥)°<(14¢)*|U]|*+(1 +1/e)*¥F* as can be seen by considering the two pos-
sibilities ¥'<¢|U| or ¥ >¢| U|. Consequently, if ¢>0, there is a number 7'(¢) such that

Pl TIE<+e) 3 | U0 02010 + Te) 0+ 2| 00,

where 2’ is a sum over indices ¢ for which §() +y(¢) >0, so that §(¢) <«.
Since U(x) EX,< HH(Q), (8.10) gives

wllUlle< @ +e) Z ATPOTONTROTOHOQIO + T(e) (1 + 27 || T ).

From (8.16), 7(¢)=(1 —afo)(L—d(i)/a) +B(¢)/a(s) when B(i)+p(t)+6(i) =a. Hence (8.11)
shows that there exists a constant T such that

ll2elle, a = | Ul <. (8.18)
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By Sobolev’s inequality, ||U||,s<T§,. Finally, the analogue of (8.17), with a=a*,
implies the existence of a constant 7' such that

[uflas <T. (8.19)
(b) This result and {8.6) show that

Flu](z)sgnu(x)<T % | u(z) PO ua(z) PO (8.20)
i1

(c) We now show that if a > «*, then there exists a constant 7'(a) such that
%l < T(a). (8.21)
To this end, let k> and A(k)= {z: u(z) >k}. Determine v by the relation
v —u= —max (u(z) —k,0),

so that v(x) =k or v(z) =u(z) according as u(z) >k or u(x) <k. Thus v€X} and (8.4) gives
f a(u,)uzdx < f Flul(u— k)dx.
Ak) Ack)
By (8.5) and (8.20),
,uf |u, " de <N|AK)|+T X f w® |, 'V dz. (8.22)
Al i=1J A)

From the inequality
|ab| < |ea|T/r+ |bfe|T[r', 1jr+1[r'=1, (8.23)

applied to r=a/0(), a =|u,|*®, e"fr=u/2T, b=u"®, we get

f |u[fdz<T|A®)|+T 3 | uPdu; (8.24)
Ak i

=1J A)

cf. (8.14), (8.18) and A(k)<= A.
From the relation

- Jw (t —‘F)ﬁd,(f |, l“dx) = j (u— TP |u,|*dzx
¥ A® ACE)

and obvious integration by parts, (8.24) gives

J (u—FP|u, |*dx<T f (u—PPde+T > (u—TPu®dz, (8.25)
408

ACE) i=1J AY)

whenever §>0 and the right side is finite. In this case, Sobolev’s lemma applied to
max[(u —F)' ¥ 0] gives
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f (u =Py P0G < [+ Blo) ST {... 1275, (8.26)
ACE)

where {...} denotes the right side of (8.25).
From this last inequality, it follows that, for @ > «*, there is a T'(a) satisfying

[ max (v —-¥,0)|,< T(a). (8.27)

In fact, the choice f=o*—a in (8.26), where f+o(i)<a* gives such an inequality for
a=(o*)?/a>o* If (8.27) holds for some a>o*, the choice f=a—a in (8.26) gives (8.27)
when q is replaced by a*afa. This proves (8.27). Similarly, one obtains |jmin (u +¥,0)|[, <
T(a). Hence (8.21) follows.

(d) Completion of the proof. Choose o =2n, so that o(i)ja <afa<a/2n. Then, by (8.24)
and Holder’s inequality

f |u,|°‘dx<T|A(k) Il—al2n.
Ak)

An application of Sobolev’s inequality on the left, followed by Hélder’s inequality to reduce
the exponent from o* to 1, gives

f (w—k)de<T[A®)|, y=1+1/2n>1,
Ak)

for k=Y; cf. the deduction of (7.11). An application of Lemma 7.2 shows that u{z) <V + 7T
on . Similarly, one obtains —wu(z) <W¥ + 7. This proves Theorem 8.1.

9. Lipschitz constants of quasi solutions. The object of this section is to obtain an
a priori bound for the best Lipschitz constant A(u) of a quasisolution u(x). For this purpose,

we shall have to impose additional conditions on Q, a,(p) and ¢(z).
(B1) Let a(p)=(a,(p),...,a,(p)) EC*(E") satisty
a(0) =0, 9.1)
[a,(p) (@)D, — 4,) >7o[1 +max(|p|% | g|)F | p—al*, 9.2)
where 9,>0 and —1/2<¢<0 are constants.

Remark 1. Condition (9.1) is no loss of generality, for the replacement of a(p) by
a(p) —a(0) does not affect (8.4).

Remark 2. Conditions (9.1), (9.2) imply (8.5) with u=v, and «=2(1+7), for ¢=0 in

(9.2) gives :
a)(P)ps = volL + |p T |p 2w, | p 5" — NV.
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Remark 3. If the functions a,(p) € C*(E™), then (9.2) is equivalent to

oay(p)
op

i

&&= (1+]|p ))& (9.3)

In order to see that (9.2) implies (9.3), let ¢=p —t& with £>0, use the mean value theorem
for the difference a,(p) —a,(g), divide the resulting inequality by ¢, and let {0 to obtain
(9.3). In order to deduce (9.2) from (9.3), note that

1oay(tp + (1 - t)q)

ap) —a(q)= fo ops (2 —g)dt.

By (9.3),
[2,(p) ~ a/(@))(py~ 4) > wo[1 + max|tp+ (1~ )¢ T|p—gf’
so that (9.2) follows from [tp+ (1 —¢)¢| <max(|p],|q|).
(BY’) Let a(p) be as in (B1) with (9.2) replaced by

[a,(8) — 0@ (Bs—0) >¥ | p—g]%  »>0. 9.4)
(B2) Let a,(p) €C(E") satisfy
zo<p)lflz<aig;fi’5@<zl<p)Isiz, (9.5)
Ao®) vl + 2|2, —1/2<7<0, (9.6)
AD)Aa®) <1+ [2]2) 93>0, ©.7)

where »,, », are positive constants.
If A(p) =vo(1 +|2[?), this condition takes the form:
(B2') Let ay(p) € CY(E™) satisty

oa '
vo(L | PP | <7 6l <vorm(1+ | p 0 &, (9.5)
3
where v, v, are positive constants and —4 <7<0, §>0.

(B3) The function ¢(z), € 2(2, satisfies & bounded slope condition with constant K
for every x,€0Q, there is a pair of linear functions n*(x) =ajf (v’ — ) + @(x,)
of z satisfying, for z € 0Q,

o (&'~ xd) + () < p(x) < of (! — 2§) + (o),

n (9.8)
| 7% () I2=121 o < K3

When n =2, this is equivalent to the classical 3-point condition. If ¢(z) is the restric-
tion to 6Q of a linear function of z, then ¢(z) satisfies (B3). When ¢(x) satisfies (B3) and

is not the restriction of a linear function to 8Q, then Q is necessarily convex.
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(B4) The function @(x), x€ ), satisfies a generalized bounded slope condition with
constants K, and @: for every x,€0Q, there is a pair of functions n*(x) € C*}(Q2)
(ie., #*(x)€CYQ) and its partial derivatives are uniformly Lipschitz con-
tinuous) such that
7 (%) = (,); (9.9)
the best Lipschitz constants of z* and its partial derivatives satisfy
Ma*)<K, and A#3)<Q (9.10)

for i =1,...,n; finally,

a-(x) <@r)<a*(r) for z€0Q. {(9.11)

When @ =0, this condition reduces to the bounded slope condition (B3). A sufficient
(but not necessary) condition that ¢(z) satisfy (B4) is the following.

(B4') @(x) is the trace of a function of class CV}((}), i.e., there exists a function
Y(x) €0"1(Q) such that W(z)=g(x) for x€2Q. (In this case, n*(z) =¥(x) for
each ,€0Q, Ky=AY), and Q=max (A(¥,),...,A(¥s,)) are admissible.)

If Q€C™! is uniformly convex, then (B4') implies (B3). Conversely, if Q €C"! is convex

(but not necessarily uniformly convex), then (B3) implies (B4’); see [6].

TaeorEM 9.1, Let Q be convez, a,(p) satisfy (B2) with
0<9<1/2, (9.12)

and @(x) satisfy (B4) [e.g., (B4')]. Let Flu] satisfy conditions (A2), (A3), (A4) of Section 8
with a=2+27, p=v, Then there exists & constant T, (depending on the parameters specified
in Theorem 8,1, on 6(0) in (A4), and on v,, &) with the property that if u(x) is a K-quasi
solution of (8.3), then

Mu)<T, where T=3K,+T,[1+Q+Q'" 2] (9.13)

As to the choice & =2+ 27 and y =v,, see Remark 2 following (B1) above. This type of
result, in which >0, is permitted, seems novel. If @ =0 (so that @(x) satisties (B3)), then
the condition on a,(p) can be reduced from (B2) to (B1).

THEOREM 9.2. Let Q be convex, a,(p) satisfy (Bl), and ¢(x) satisfy (B3). Let Flu] be
as in Theorem 9.1. Then there exists a constant T, (depending on the parameters specified in
Theorem 8.1 and on 6(0) in (A4)) such that if u(x) is a K-quast solution of (8.3), then A(u) < T,
where T=3Ky+T,. '

For the variational case, Stampacchia [14] derived a similar a priori bound for A(u)
under the additional condition that € is uniformly convex. Theorem 9.2 can be used to
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reduce the assumption that Q is uniformly convex to the assumption that Q is convex in
theorems of [14].

The convexity assumption on Q in Theorem 9.1 can be relaxed if condition (9.12) is
strengthened to ¢ =0.

THEOREM 9.3. Let a,(p) satisfy (B2) with 8 =0, p(x) satisfy (B4) [e.g., (B4')]; and Q
have the property that for every x,€0Q, there is closed sphere X(xy, R) of radius R (independent
of xy) outside of Q such that the intersection Q N X(xy, R) s the point x,. Let Flu] be as in Theo-
rem 9.1. Then there exists a constant T, (depending on the parameters specified tn Theorem
8.1, on 6(0) in (A4), and on R,v,) with the property that if w(z) is a K quasi solution of (8.3),
then A(u)<T, where T=3K + T4(1+Q).

A part of the condition (B4) can be stated as follows: n£(x) € H>*(Q) and the norms of
wt(z) in H**(Q) are uniformly bounded with respect to the parameter z,€2Q. By a dif-
ferent technique, it will be shown that if (B2) is strengthened to (B2'), then Theorem 9.3
remains correct if the space H>* (L) is replaced by H>*(Q), x>n{(n +1)/2, and that the same
is true of Theorem 9.1 if the “convexity’ of Q is replaced by ‘‘uniform convexity”. Instead
of formulating an analogue of (B4), we shall merely use the following relaxation of (B4'):

(B5) @(x), € 0Q, is the trace of a function ¥(x), x€Q, which is uniformly Lipschitz
continuous and of class H>*(QQ) for some x>n(n+1)/2. Let K,=A(¥) and
Q= ”(22 IlFrtzil )”n.ﬂ-

If Q satisfies a cone condition, then ¥" € H>*(Q) implies that ¥ € CY(Q). In this case,

the assumption that ¥ is uniformly Lipschitz continuous is redundant.

(B6) Q is a bounded, uniformly convex domain; i.e., there exists a number my,>0
such that through every point z,€ 0Q, there passes a supporting hyperplane =
of Q satisfying dist (z, 7) >m,|x —x,|? for 2€ 0Q.

If 2Q is smooth, this means that the curvatures of the 2-dimensional sections of &Q

are bounded away from zero.

THEOREM 9.4. Let a,(p), ¢ and Q satisfy (B2') with 8 <1/2, (B5) and (B6), respectively.
Let Flu] be as in Theorem 9.1. Then the conclusion of Theorem 9.1 remains valid, but T,
also depends on x in (B5) and m, in (B6). ' ,

Remark. If (B6) is replaced by the condition that  is convex Theorem 9.4 remains
correct provided that the assumption  <1/2 is strengthened to

9<1/2[1+(n—1)(1 +2/n —1/x)[(n+3)];
cf. the Remark following Lemma 10.4 a below.

THEOREM 9.5. Theorem 9.3 is valid if condition (B4) on ¢ is relaxed to (B5), but T'g
depends also on .
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10. Proofs. The proofs of Theorems 9.1-9.5 will be given in this section and will be
based on several lemmas. The first of these (Lemma 10.0) depends on a device of Rado
and shows that it is sufficient to derive a priori bounds for the Lipschitz continuity at
points of 2Q2. We then state and prove Lemmas 10.1-10.3 and derive Theorems 9.1-9.3,
respectively, from these. Theorem 9.4 will be proved with the use of Lemmas 10.4 and .
10.4a. Finally, we indicate the proof of Theorem 9.5.

Lumma 10.0. Let a,p)ECHE™) satisfy (9.4) in (BY'), @(x) be a uniformly Lipschitz
continuous function on 0K, and g(x) ELX(Q). Let u(x) EXE satisfy

f [a;(uz) (v — u)e; — glx) (v —u))dx =0 for vEXE, (10.1)
o]

[(@y) —u(ax®)| <K,|xg—2°] for x,€0Q, 2°€Q. (10.2)
Then the best Lipschitz constant A(u) of u satisfies
l(u)<K1+25|Q|1’""g||w/v, (10.3)

where § is the constant in Lemma 7.3 with o= co.

This lemma involves no convexity assumption on Q.

Proof. It has to be shown that (10.2) remains valued if “z,€0Q” is replaced by “z, €Q”
and K, by the constant on the right of (10.3). For the sake of simplicity, it will be supposed
that 2% —x, is in the direction of the x,;-axis. Let 2° —x,=(1,0,...,0) A =Ae¢,. Introduce the

notation
Up(x) =u(x + Ae,) —u(x). (10.4)

Let Q_, denote the translation Q —Ae, of Q, so that (10.4) is defined on Q N Q_,.
Note that if 2 in (10.4) is on 8(Q N Q_,), then one of the two points z or z -+ Ae, is on
2Q. Hence, by (10.2),
|ua(z)] <K,|A| for z€(QNQ_,). (10.5)

Let U(x) =max (up(x)—k,0) for x€Q N Q_, and U(x) =0 for x€Q —Q_,. Thus U(x) EX, if
kE>maxup(x) on (QNQ_,). (10.6)

Determine v(z) by the relation
v(2) —u(z) =U(z);

ie., o(@)=ulx+Ae)—Fk if ua(z)=k, z€EQN Q_, and v(x)=u(x) otherwise. Thus, in the
case (10.6), »(z) XX and (10.1) gives '

f [a;(uz) uaz(x) — g(x) (ua(@) — k)ldz >0, (10.7)
A,
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where Alk,A)={zx: x€Q N Q_4, us(x) >k} (10.8)

Similarly, let V(x)= —max (us(x —Ae,) —k,0) for z€Q N Q4 and V(z) =0 otherwise, where
k>maxuy(r—Ae) for 2€3(QNQ, (10.9)

Defining v by v —u = V(x), we get

- fB s {a;(u () uaz(x — Ae,) — g(x) [ua(x — Ae,) — K1} dx >0, (10.10)
k.

where B(k,Ay={z: 2€Q N Qa, us(z —Aey) > k}.

Note that A(k,A)= B(k,A) —Ae,. If x—Ae, is introduced as a new integration variable in
(10.10),

f [as(uz(x + Ae,)))uas(z) — g(x+ Ae,) (ua(z) — £))dx < 0. (10.11)
Ak, A
Subtracting (10.11) from (10.7),

[ {tounta+ de) = auoNuaste) - gato) wae) - B}z <0, (10.12)

and using (9.4),
f (] %ac [* — ga(®) (s — B)]dz < 0. (10.13)
Ak, A)

Let ga(@) =0 for x4 Q N Q_, and let Q NQ_, be in the half-space x, >c¢. Put

f1(x)=f lgA(t‘, Ty, eees T)dE,  fy=...=f,=0.

Then, for x€Q NQ_,,
I+ A £ 7
fl(x)=f . g, , ...)dt-—f g, z,, ...)dt.

c+ c

Hence |f,(x)| <2x|A|. Integrating the last term of (10.13) by parts gives
f [v| uas P + f(2)uaz)dz < 0.
AGe, &)

Thus the proof of Lemma 7.3 and the Remark following it show that, for zt€Q N Q_,,
ua(@)<  max  up(z)+ 28| QY x|Alp. (10.14)
aNQ-A

Similarly, we obtain a lower bound for u,(x). Thus, by (10.5),
|uat@)| < (K, +28| Q"2 | Al
for z€Q N Q_g. This proves (10.3).
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Lemma 10.1. Let a,(p),Q,¢p satisfy the conditions of Theorem 9.1 and let g(x) EL®(Q).
Then there exists a constant 8 =8(Q, vy, v,, T, 3) with the property that if u(x)EXE satisfies
(10.1), then

Au) < 2K, +8[Q + @YY + || gl + | g |12 (10.15)

Proof. Let v, »* denote the constants

y=wg[l+ 22w, »*=»[1+212u)]% (10.16)
so that for [p|, [¢| <i(w),
v|p—aP <[a(p) — (@10 —0); A(P)<v;  A(D)/Ao(p) <. (10.17)
oa; oa;  oa;
By (9.5), 0 =2<A4(p), [+ —[<24(p) 10.18
y (9.5) op; 1(P) op: " ap, 1(P) ( )

Let 2,€0Q. Consider a closed sphere X(z,, R) of radius R, outside of {2, and inter-
secting Q only in the point z,. Let r =r(x) be the distance of a point x from the center of
X(z,, R). Define 8(x) by

O(x) =1—e*® ", (10.19)

where k, a, R are positive constants to be determined so that
J‘ [afn™ + kd;)nz; — XAp]de=>0 for O0<neX,, (10.20)
Q

%=9]l and 7+t =n*(x) is a function occurring in (B4). (Actually, in this proof, we shall
let a=1 and choose k, R suitably. The number « is inserted in (10.19) to facilitate the
proof of Lemma 10.3.) 7

Integration by parts of the first term of (10.20) shows that a sufficient condition for
(10.20) is that —oa,(7; +kd,)/ox,; >y, i.e.,

= (752, + kby5,) (a;/0m) > X.
Since | n;,,,| < Q and (10.19) show that
O, =ae*FNxfr, 8,,= —[(a+1jr)ax;/r* — 8yfrlae®® ", (10.21)
it is easily seen that (10.20) holds if
ka[Adg —ndyr]e*® " > x + n?QA, (10.22)

for x€Q, where 4y and 1, are evaluated at p =n} +kd,. Let d=d(Q) satisfy0<r—~R<d
for x€Q and let a=1. Then (10.22) holds if B> 2nl,/4, (so that Ay—nd;/r > }1,) and

k> 20X fry + n2QA, JAg] €%, (10.23)



296 PHILIP HARTMAN AND GUIDO STAMPACCHIA

Thus if R =2n»* and ke=2{yv+n2Qv*]e?, (10.24)

then (10.22) holds provided that |7} + k3, | < K, + k< A(u). On the other hand, if A(u)<
K,+k, then the end of the proof will show that the lemma is correct.
Determine v(x) by the relation

v—u= —max(u—at—k5,0).

Then % <z* on 0L implies that v—u=¢ on 9Q and A(v) <min (K, A(zxt) +kA(6)). Thus if
M) +kA(G) <K, (10.1) and ||g||,=y give

f a;(u;) (u—nt — kd)ydx < ZJ (v —n* — kd)dz,
A A
where A={z:u—a" ~k§>0}. By the choice 7= max(u —x" —kd, 0} in (10.20),
- f ams + kd ) (u—at —kd)yda< — xf (w—n" —kd)dz.
A A
Adding these two inequalities and using (10.6),
vf [(e—n* —kd), [Pdz<0. (10.25)
A

Thus » <z*+ k0 on Q. Similarly, we obtain « =7z~ —kd on Q.
Since A(nt) <K, and 4(8)<1, by (10.21) and a=1, we have for z,€0Q, 2°€Q,
| ulzg) —u(z®)| < |2y —2°| min (K, Ko+ k).
Consequently, by Lemma 10.0,

Mu)<K,+E+28|Q|V"y/v. (10.26)
From (10.16), (10.24) and (10.26), it follows that 1 =A(u) satisfies an inequality of the form
ASKy+8,Q(1 +2%) +8, x(1 +A7%), (10.27)

where S3=8,(Q,7,, %), S;=(Q,7,7). By 28 <1, —2r<1, and the inequality (8.23) for the
arithmetic-geometric means, there exist constants S;, S; (depending on the same para-
meters, respectively) such that

SOQ}»%SX,/4+ S{’)QI}(I—zﬁ)’ Slxz—hgl/‘i_*_ S;xl{(1+2l>.
Thus Lemma, 10.1 follows.

Lemua 10.2. Let ay(p), Q, ¢ satisfy the conditions of Theorem 9.2 and let g(x) EL*(Q).
Then there exists a constant S =8(Q, vy, 7) with the property that if u(x) € X, satisfies (10.1),

then
AMw)<2K,+ S[llg | + |l g [[%*+*°]. (10.28)
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Proof. Suppose first that a,(p) €C(E™), so that (9.3) holds. In this case, Lemma 10.2
follows from the proof of Lemma 10.1 if it is noted that @ =0 implies that the second term
in (10.23) vanishes, so that no estimate for 4,/4, is needed.

In order to show that the extra assumption a,(p) € C*(E™) is unnecessary, note that
there exist sequences {a,,(p)}, m=1,2,..., a functions of class CY(E™) such that a,,(p)—>
a,(p), m—>oo0, uniformly on bounded p-sets and (a,,(p), ..., % (D)) satisfies condition (B1),
say, with v, replaced by »,/2. Theorem 1.1 and the remarks following it show that there
exist functions u,,(x) €KXy satisfying

f (@) m(Umz) (0 — Unm)z; — g0 — Up)]dz >0 for vEXKE.
Q

Since @, €C, the function u=u,, satisfies (10.28), where 8 =8(Q,7,/2,7). Hence, after a
selection of a subsequence, it can be supposed that limu,, =u, exists uniformly on Q and
weakly in HY{(Q). Consequently, u=u,(z) satisfies (10.28). Furthermore, a variant of the
proof of Corollary 1.1 shows that u=wu,(x) satisfies (10.1). Since the function u(z) satis-
fying (10.1) is unique by Corollary 1.2, u(x) =u,(x). This completes the proof of Lemma 10.2.

LewMma 10.3. Let a,(p), Q,¢ satisfy the assumptions of Theorem 9.3 and let g(x) € L2(Q).
Then there exists a constant 8 =S8(Q,v,,v,,7, R) such that if u(x) €KY satisfies (10.1), then

Aw) <2K o+ 81Q + |9/l oo+ [l ]|+ (10.29)

Proof. This proof is identical with that of Lemma 10.1 except that, in order to satisty
(10.22), choose @ =1 +nv*/R and determine % so that

ka = (y/v +n2Qv*)e™,
where R is given. ‘

Proof of Theorems 9.1-9.3. The function u(x) EX5 satisfies (10.1) with g(z) = Flu](z).
By Theorem 8.1, there is a constant 7T such that |u(z)] <7 on y. Hence, by (A4), Jlg]], <
2(T)(L+2°®), A=A(u). If this is substituted in (10.15), (10.28), or (10.29), the respective
Theorems 9.1, 9.2, or 9.3 follow from §(0) <a —1=1+27<1.

LEMMA 10.4a. Let Q be a bounded, uniformly convex domain and x,, 7, my as in (B6).
Let Z(xy, R) be the closed sphere of radius R outside of Q and tangent to 7 at x,. Let r=r(x)
be the distance from x to the center of Z(xy, R). Then there is a number L=L(s,m,Q), in-
dependent of 2y € 0Q and R >0, such that §(x) =1 —e®7 satisfies

.f 0%(@)dr<L<oo if s<(n+1)/2. (10.30)
o

19 — 662945 Acta mathematica. 115. Imprimé le 15 mars 1966.
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Remark. If Q is convex (not necessarily uniformly convex), then (10.30) can be re-
placed by

f&’s(x)dz<LRs‘l<oo if 1<s<(n+1)2
Q

and R =1, where L=1L(s,8); cf. the proof of Lemma 10.5a below. It will be clear from the
proof of Theorem 9.4 that this inequality can be used to prove the Remark following
Theorem 9.4.

Proof. If d=r— R, then d(z) >e%(r — R) and r— R >dist(z, 7). Hence Lemma 10.4a
follows from [14], p. 404; cf. also the proof of Lemma 10.5a below.

LreMma 104. Let ay(p), @, Q satisfy the conditions of Theorem 9.4 and let g(x) € L®(Q).
Then there exists a constant S =8(Q, vy, v;, T, D, ) with the property that if u(x) € Xy satisfies
(10.1), then (10.15) holds.

Proof. Let 2,€0Q and X(z,, R) be as in Lemma 10.4a. Let v,v*, d,x =g}l 7, 6(2) =
1—e®~", and R=2ny" be as in the proof of Lemma 10.1. Let ¥ be the function given in
(B5). Choose k, to be

ky=2e%/v, (10.31)
SO thﬂt - kazizi(aa}(lpz + ka:)/ap{) > x if k 2 ko.

The beginning of the proof of Lemma 10.1 shows that

f a ¥, + kd,) ;4 > f x—w*Jd@)pdx for 0<neX,,
o Q

M=

where J@)=2 3 |Pusn@))
k=1

i=1

Letting 5 =max(u — ¥ — k4, 0) gives

- f a( ¥, + kd;) (u— ¥ — k) da < f (—x+w* D) (u—F —kd)dx, (10.32)
A

Ak
where A(k) = {z: v — ¥ > kd}.
Let & be on the range
ky <k <A(u)— K, (10.33)

where, without loss of generality, it can be supposed that A(u) > K, +k,. Since A(‘Y + kd) <
K,+k, the last inequality shows that v=u —max(u—¥ ~£3,0) is in X5. Thus, by (10.1),
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f afu,)(w—F —kd)y,de< % f (u—¥ — kd)da.
Ak

Ao

This relation, (10.32), and (10.17) show that

vf | (w—F —kd), [Pdx < m* f J(u—Y¥ - kd)dx.
Al

Al

From Sobolev’s and Hélder’s inequalities
]| W — k8 ov, ato < S3* | [lav, aco:
where 1/2*' =1/2 + 1/n. Holder’s inequality applied to both sides gives
vilu—F — kb, Ay < SEw” Q| A(R) 12",

since ||J|x, aco <|| I la=@Q.

From »>mn(n+1)/2, the last exponent satisfies
1+2/n—1[x>142/(n+1)=(n+3)/(n+1).
Thus there exists a number 6 less than, but near to, (= +1)/(n +3) such that
y=0(1+2/n—1fx)>1 and s=06/(1-0)<(n-+1)]2.

From (10.34) and

|Ak)|= 8°(x) 67 (x)dx < (fm)a(z) dx)o (fné‘s(x)dx)l_e,

Ack)

we get J‘ [(u—‘I")/B—k]édx%c(J‘
A

Ak)

o(x) dx)y,

% - —
6=S%Q'V L(l 6OA+2/n 1/%)’

and L is given by (10.30).
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(10.34)

(10.35)

(10.36)

(10.37)

The inequality (10.36) can be written in the form (7.2), where k is on the range (10.33)

and

e)=| O(x)de,

A®
Thus Lemma 7.2 implies that

u~¥Y<kd on Q if k=Fky+clo(ke)]1y/(y —1),

provided that this value of & satisfies (10.33). Since (z) <1 shows that o(k,) <|Q| and
since A(0) <1 and A(¥)=K,, there is an S,=.8,(Q,») such that k<k,+S,@v*; hence,

(%) —u(@®) < {Ko+ ko +8,Qv* }| %, —a20|
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for 2, € 2Q, 2°€QQ, provided that the coefficient of |2, —x°| satisfies {...} <A(z). Obviously
this last proviso is unnecessary.
We can obtain a similar lower bound for u(z,) —u(2?). Hence, by (10.31),

o) —u(2®)| < {Ky+ 2%y +S,@*} | 70—

for 2, € 9Q, a°€Q. By Lemma 10.0, the same inequality holds for a,,2°€Q if the coefficient
of |x,—29 is increased by 2§|Q|V"y/v. The arguments used at the end of the proof of
Lemma 10.1 can be used to complete the proof of Lemma 10.4.

Proof of Theorem 9.4. It is clear that this theorem follows from Lemma 10.4 in the
same way that Theorem 9.1 follows from Lemma 10.1.

LeEMMA 10.5a. Let Q and Z(xy, R) be as in Theorem 9.3, r=r(x) the distance from x
to the center of X(xy, R), and d(x) =1 —e**—", a>0. Then there exists a constant L =L(a, R,s,Q)
such that

f o (@) de<L<oo if s<(n+1)2. (10.38)
Q

Proof. By replacing R by R/2, if necessary, it can be supposed that there is a closed
sphere X(x,,2R) of radius 2R, containing X(z,, R), tangent to it at x,, and lying out-
side of Q.

Choose a coordinate system such that z, =0 and the center of Z(x,, B) is (0,0,...,0, — R).
We can suppose that Q lies in the half-space z,> — R/2, for the contribution of
Qn {z,< — R/2} to the integral in (10.38) can be estimated trivially.

First, make the change of integration variables z, —r and introduce polar coordinates

on the hyperplane z,=0. Then, at x€Q,
dx =rp"%(r2 — )~ 2drdp dw, (10.39)
where ¢ = | (x,, ...,%,;,0)| and  is the surface of the unit sphere in z,=0. In fact, (10.39)
follows from 72 = (x, + R)? +¢?, so that r/dz, = (x, + R)[r=(r? —p})'?[r.
Let y=y(x) be the point where the line joining the center of Z(x,, R) and x €Q meets
the hyperplane x,=0. Let o = |y|. Thus R/o =(,+ R)/o, hence

o=or[(R2+06%V2, 0ploc=rR?/(R?+c?)*"?
and ¢ = Ro(r2 —p?)~V2, Thus (10.39) implies that

dx = Rr*-16"2( R + o?)"2drdodw.

For x€Q and d=r— R,
Rr YR+ 02 ™2 <(1 +d/R)"L.
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Since §(z) = e %a(r - B) and x¢X(zy,2R),

D R+d
f 0~ (r)da < L“f " %o f (r— R)™%dr,
Q

0 R+ed?

where Ly=Ly(s,d,a, R), D= D(d, R) and e=¢(R)>0. This implies Lemma 10.15a.
It is clear from the proof of Lemma 10.4 that one can derive an analogous lemma
leading to the proof of Theorem 9.5.

11. The case F[u](x)=0. A priori bounds for |u| and A(u) are particularly easy in
this case.

(G1) Let a(p) = (ay(p), ..., a.(p)) €CE") satisfy
a(0)=0, (11.1)

[ay(p)—ai{d)](p;—¢;)>0 if p=+gq. (11.2)

Lemwma 11.1. Let a(p) satisfy (C1) and u(z) EXE satisfy
f aj(u;) (v —u)ydx >0 for vEXE. (11.3)
Q
Then, for x€Q, min ¢ <u(r)<max g. (11.4)
oQ oQ
Proof. Let ® =max g(x) on 0Q and v —u=max(u — ®, 0). Then (11.3) gives
f aug)uy,dx<0.
{uzd)}

By (11.1) and (11.2), it follows that the function max (u(x) —®,0) is a constant. This gives
the last inequality in (11.4) and the first is obtained similarly.

LemMma 11.2. Let a(p) satisfy (C1), Q be convex, p(x) satisfy a bounded slope condition
with constant K (cf. (B3) in Section 9). Let w€ Xy satisfy (11.3). Then
Mu)< K,. (11.5)
Proof. Let x,€9Q and mt(z) the linear functions of z in (9.8). Then
a(x) <u(xr)<at(x) for z€Q;
cf. the derivation of (10.25) with §=0, y =0. Thus

| u(g) —ul@) | < Kolag—2x| (11.6)
if 2,€0Q, 2z€Q.
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Repeating the arguments in the proof of Lemma 10.1, one obtains
f (2w + Ae,)) — ay(ue(@)] (u(z + Aey) — u(@))sydz <0
AGe D)

in place of (10.12). Hence (11.2) implies that max(us(z)—%,0)=0 on Q N Q_, if (10.6)
holds. This proves (11.6) with z,,2€Q, hence (11.5).

Part II1. Existence theorems ()

12. The general case. Let Q< E" be a bounded open set, g(z) a function on Q which
is uniformly Lipschitz continuous, and A(p) the Lipschitz constant defined at the begin-
ning of Section 8.

LemMma 12.1. Let a(p)=(ay(p),...,a.(p)) be continuous for |p| <K and satisfy

[a,(p) —a(@)] (P, —4,) 20. (12.1)

Let K > Alp). For every u(x) EXJ, let Fu](z) be a measurable function satisfying (A4), (A5’)
in Section 8. Then there exists at least one u€ Xy such that

f [a;(uz) (v — w)gy — Flu] (v —u)]de =0 for vEXKS. (12.2)
Q
Proof. Let X =H'(Q), Y =H}(Q), = X5, and

(A(u), w)= f a,(u)wydx for weY,
Q

(C(u),w>=f Flu](z)w(z)dx for weY.
a

The remarks following Theorem 1.1 show that X,Y,f, A(u) satisfy the conditions of this
theorem. Also, the Remark following (A5’) in Section 8 shows that u—>C(x) from Xy < X
to Y’ is completely continuous. Hence Lemma 12.1 follows from Theorem 1.1.

CoroLLARY 12.1. Let A(u), C(u) in the last display satisfy (1.10), e.g., let a(p) satisfy
(11.2) and let

| 11 P} g - w) <0 for g uye X,
0

then the solution w(z) €XE of (12.4) in Lemma 12.1 is unique.
This is a consequence of Corollary 1.2.

() Added in proof (Jan. 18, 1966): More general results can be obtained using the same methods;
see P. HarTMAN, On quasi linear elliptic functional-differential equations, Proceedings of the Inter-
national Symposium on Differential Equations and Dy ical Systems, Puerto Rico, 1965.
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LeMmA 12.2. Let a(p) =(ay(p), ..., a,{p)) be continuous for |p| <K and satisfy

la(p) —a,(D](p;~2) >v|p—q|* for |p|.|q| <K, (12.3)
v>0 constant. Let K> A(p). For u€ Xy, let Flu](x) be a measurable function satisfying (A4)
and (Ab) in Section 8. Then there exisis at least one u€XE satisfying (12.2).

Proof. This will be deduced from Theorem 5.1 with the choice X =HY(Q), ¥ =H§(Q),
K=XE, and

(A(u, ), w)= fn [ajv.)ws; — Flu]w]ldz

for u,v€Xs and weY.

The remarks following Theorem 1.1 and (A5’) in Section 8 show that A(u)=A4(u,u)
is continuous from }J< X to Y. Since XX is bounded, no coercivity is required and (i),
(iiy) in Theorem 5.1 follows from (A4), (A5). The monotony condition (5.1) holds; in fact,

(A(u,u) — A(w,v),u—v)>yl|lu—v||% for u,vEXS.

In order to verify (iv,), let the conditions (5.2), (5.3) hold. Then the last inequality
implies that u,, »>u, in X as m —>oo. Hence, (5.4) is a consequence of (A4), (A5); i.e., of the
continuity of the map u —F[u] from Jf< X to Y’. This gives (ivy).

In order to verify (v,), it has to be shown that if (5.2) holds and there is a y’ €Y’
such that

f Flug)(x)w(x)dx—~y',w> for weY, (12.4)
o

then f Flun)(v—uz)dz—>y',v—u,> for v€XE. (12.5)
Q

Since {F[u,](x)} is uniformly bounded on Q by (A4), there exists an increasing sequence
of positive integers {m'} and a function y'(x) EL*(Q) such that

Flun]~>y'(x) weaklyin LXQ),
Uy —>Ug uniformly in Q.
Thus if {m} is replaced by {m'}, (12.4) takes the form
f Flum] (x)w(x)dx»J‘ y' (z)w(x)dx.
o Q

It also follows that

f Flu,,] (x)um,(x)dx»f ¥ (@) u,(x)dz.
o Q
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This gives (12.5) if {m} is replaced by {m'}. Clearly, (12.5) follows from this. Thus Lemma

12.2 is a consequence of Theorem 5.1.

LemMMA 12.3. For every K >0, assume the conditions of Lemma 12.1 [or Lemma 12.2
with v=v(K)]. Let K(1)<K(2)<... and K(m)—>co as m—>co. Let u=u,(x)E€Xg™ satisfy
(12.2) with K =K(m), Au,)<T independent of m, and u,(x)—>uy(z) uniformly on Q as

m—>oo. Then u=wuy(x) satisfies
fn [a)(u,)nz; — Flulglde=0 for 5 €HyQ). (12.6)

Proof. After a selection of a subsequence (if necessary), it can be supposed that u,, —>u,

weakly in X = H}(Q) as m —>oco. Since u =u,(z) satisfies
f [@)(uz) (v — u)e;— Flu](v—u))dz=0 for vEXS (12.7)
o

when K(m) > K, it follows from Corollary 1.1 [or Corollary 5.1] and the proof of Lemma 12.1
[or Lemma 12.2] that u=u, satisfies (12.7) for all K >0. Consequently, u =uy(x) satisfies

f [a;(u,)ns;— Flulnldz =0 for n€ X, (12.8)
0
This proves the assertion.

THEOREM 12.1. Let a(p), Q, p(x) satisfy the conditions of Theorem 9.1, 9.2, 9.3, 9.4 or 9.5.
Let F(u](x) satisfy conditions (A2)~(A5) of Section 8 with « =2 +27, up=v,. Then there exists
at least one function u(x), uniformly Lipschitz continuous on Q, satisfying (12.6) and the
boundary condition u(zx) =@(z) on 6Q.

Proof. Let T be the constant supplied by Theorem 9.1-9.5. Let max (A(g), T) < K(1) <
K(@2)<,..,K(m)—>co as m->co. Then, by Lemma 12.2, there exists u,(x)€X ;"™ such
that w=u,,(x) satisfies (12.2) with K = K(m). By Theorem 9.1-9.5, A(u,) <T, independent
of m. It can be supposed that {u,,} has a uniform limit u,(z) on Q. Then, by Lemma 12.3,

% =uy{x) satisfies the assertion of the theorem.

13. The homogeneous case. The last theorem involved the ellipticity conditions
given in either (9.2) in (Bl) or (9.5)-(9.7) in (B2) or (9.5) in (B2’). In the homogeneous
case (Flu]{x)=0 for all u), we obtain existence theorems under the mild ellipticity condi-
tion

(a,(p) —a,@)l(p,—q;) =0 (13.1)
and uniqueness when

[a)(p) —a(@))(p;—q) >0 if p*q. (13.2)
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THEOREM 13.1. Let a(p) =(a,(p),-..,a,(p)) ECYE™) satisfy (13.1). Let Q be a bounded
convex set in E™ and let p(x) satisfy a bounded slope condition with constant K, on Q (cf. (B3)
in Section 9). Then there exists at least one function u(x), uniformly Lipschitz continuous on
Q, satisfying

fg a;(uz)n,de=0 for n€H(Q) (13.3)

and the boundary condition u(x)=g@(x) on 6Q; in fact, u€XE, K=K, The set of solutions
w€X, of 13.3 is convex. If (13.2) holds, then there is exactly one w€J, satisfying (13.3).

Proof. Under the assumption (13.2), the existence statement and A(u)<K, can be
obtained by the same proof used for Theorem 12.1 except that one uses the a priori esti-
mate A(u) <K, supplied by Lemma 11.2 in place of Theorem 9.1-9.5. Uniqueness in this
case follows from Corollary 12.1.

In order to obtain existence under the condition (13.1), let m=1,2,... and put
n(P) =a4(p) +p;/m for j=1,..,n. (13.4)
Then [@5n(P) —@m(@)] (D5 —4)) > | P —q|*/m. (13.5)
Hence, by the first part of this proof, there exists a u,€XJ, K =K,, satisfying

f i Ung) (0 — Um)gyd2 =0 for v—u, € H§(Q). (13.6)
Q

After a selection of a subsequence, it can be supposed that
4y =1im u,, exists weakly in HY(Q). (13.7)
Then u,€ X, K=K,. By (13.5) and (13.6),

f (V) (0 — Um)z;de =0 for v—u, € XK,.
Q
It is clear from (13.4) and (13.7) that a term-by-term integration of the last relation
is permitted,
J‘ a;(v) (v —ug)y;dx =0  for v—uy€X,.
ol

This is equivalent to

f a;(ug) (v — Up);dx >0 for v—u,€ Ky
Q

of. Lemma 2.3. Since this, in turn, is equivalent to (13.3), the existence proof is complete.
The convexity of the set of solutions follows from Corollary 2.1.
The proof of the last theorem suggest the following
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THEOREM 13.2. Let f(p) =f(py, ..., Pn) be a real-valued, convex function for all p. Let Q
be a bounded, convex set in E™ and p(z) satisfy a bounded slope condition on 652 with constant
K. Then in the class X, of uniformly Lipschitz functions on Q satisfying u(z)=gp(zx) on 0L,
there exists at least one u=wuy(x) such that

minj Hu,)dz= f flug,)dz (13.8)
a o}

(and u € XE, K =K,). The set of solutions uy€X, of (13.8) is convex. The function uy€X, is
unique if f(p) is strictly convex.
When, in addition,
Hp)€C® and fupéi&;>0, (13.9)

Stampacchia [12], p. 395, has shown that any minimizing function u(z)€CY(Q) n H(Q)
satisfies A(u) < K,. This a priori estimate can be obtained from Lemma 11.2 for any mini-
mizing u(x) € X,, without the assumption « € C{(Q) n H*(Q2). In fact, a minimizing function
satisfies the Euler equation

f fou)nydz=0 for 9€HG(Q.
Q

Miranda [10] uses the a priori bound A(u) < K|, to prove Theorem 13.2 for strictly convex
f(p) € C®. We shall use it in a similar way.

Proof. Assume first that (13.9) holds. By lower semi-continuity (cf. the arguments
leading to (13.12) below), min Iu], wheve

Itu)= f flud,

is attained on the set of functions X, which is not empty for K > K, and is compact under
uniform convergence. The set J(g is convex and I[u] is strictly eonvex, so that the mini-
mizing function u,(z) is unique and, by Lemma 11.2, A(u,) < K,, independent of K. Thus
uy(x) minimizes I[u], u€X,.

When f(p) does not satisfy (13.9), let /,{»), fo(p), ... be a sequence of functions satis-
fying (13.9) for all p and f,(p) —>f(p) uniformly on every bounded p-set, as m —co. It can
also be supposed that for any R >0, there is an m(R) such that

[@)<falp) for |p|<R, m>m(R). (18.10)

Let u=wu,(z) be the unique minimizing function for

fn fm(uz)dz
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in the class X,. Then A(u,) <K, After a selection of a subsequence, it can be supposed
that u, =1im u,, exists weakly in H1(Q) and uniformly on Q. Then, by a well-known theorem,
there exist numbers N(m) and A,,;, j =m,...,N(m), such that

N(m)

imy=20 and > A,=1,
f=m

N(m)
> Amyt;—>uy in HY(Q), m— oo,
j=m

Consequently, as m - co through a suitable subsequence,
N(m)
2 Amjus~>uo; almost erverywhere. (13.11)

j=m

Let v € X,. Then, by the convexity of f,

N(m) N(m)
f f( 5 zmjux,) < S Ay | fn)da
Q i=m j=m 0

For large m, (13.10) shows that this is at most

N(m) N(m)

z z-mj fj(ulx)dx< Z lmj fj(vz)dx:
j=m Q j=m Q
where the last inequality follows from the minimizing property of u,. Thus
Nom) N(m)
f f( > Zm,u,,) A< 3 Ay | fiw;)da.
Q \j-m i-m Jo
By (13.11) and A(%,) < K,,, we get

f Hugs)dz < f f(v)de; (13.12)
Q Q

i.e., uy(@) minimizes ITu], u € X,
This proves existence in Theorem 13.2. The convexity of the set of solutions follows

from the convexity of I[u], and uniqueness from the fact that I[u] is strictly convex if
f(p) is strictly convex.

14. Regularity of solutions. The existence theorems of the last two sections were
obtained without the use of the regularity theorems of De Giorgi and their extensions. If
we use these results, we can show that additional conditions on the given data a(p), Q, ¢(x),
Flu] imply more smoothness for the solutions. The first two theorems of this section deal
with the homogeneous case of Section 13 and the last two with the case of Section 12.

Before stating the results, we recall some definitions. A function u(x) defined on
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Q [or Q] is said to be of class C™4(Q) [or O™*(Q)], where m=0,1,... and 0<A<1, if it is
of class C™(Q) [or C™(Q})] and its mth order partial derivatives are uniformly Holder con-
tinuous of order A on compacts in Q [or on Q}. The boundary 0Q of Q is said to be of
class C™ [or C™%] if, for every x, € &Q, the subset of 2Q in some neighborhood of z, has a
parametric representation x=x(t,,...,t,_,), where z(t,...,t,_;) €C™ [or C™*]on |t,|2+... +
[t |2<1 and the rank of the Jacobian matrix of z,,...,z, with respect tot,, ...,£,_,isn —1.
In this case, a function @(x), x€8Q, is said to be of class C™(0Q) [or c™4aQ)] if, in
terms of local coordinatest,, ...,¢,_,, the function g(x) =@(x(ty, ...,t,_;)) is of class C™ [or C™ M.

THEOREM 14.1. Let a(p) €CY(E™) satisfy
oa, .
—&&>0 for O+EEET, (14.1)
op;

Q a bounded open convex set, and p(x) a function on €2 satisfying a bounded slope condition.
Then the unique solution u(x)€X, of (13.3) supplied by Theorem 13.1 has the following
properties:

(i) u(x)€H2(L,) for every open Q), Q<= Q;
(i) w(x) satisfies

day(uz) &w (14.2)
op; 0x,0x;

almost everywhere on Q;

(iii) u(x)€ECTA(Q) for every A, 0<A<]1.
If, in addition, dQ E€C™, then u(x) € HA(Q) n C*(Q) for every 4, 0<A<1.

Proof. Condition (14.1) implies (13.2), so that Theorem 13.1, including its uniqueness
assertion, is applicable. Since u(x) €X,, u.(x) is bounded. Consequently, (14.1) implies the

existence of positive constants », ¥, such that
a—"é—f‘j") £ >v|E[ for z€Q, EEE, (14.3)
i

0,(z) <w, for 2€Q (14.4)

!
The arguments in the proof of the first part of Theorem 3.1 in [14] give properties (i), (ii).

Let Q, be on open sphere, Q= Q and h=1,...,n fixed. If, in (13.3), 5 is replaced by
ofjox, for £ €CF (L), then v=0u/ox, satisfies

daj(u,) ov of
T de= o . 14.5
fﬂ op om, 8x,dx 0 for (€CF(y) (14.5)
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Hence, De Giorgi’s theorem implies that there is some 1, 0<A<1, such that v satisfies a
uniformly Holder condition of order A on compacts in Q. Thus, u€C"*(Q).

In particular, . {x)€C*Q) and so, the coefficients in (14.2) are continuous. Conse-
quently, u €C**Q) for every A, 0<A<1; cf. [2]. This gives (iii). Note that the conditions
oQEC™ and p(x) satisfies a bounded slope condition imply that ¢(x) €C**(2Q) and is the
trace of a function W'(x) €C*!(E™); see Corollary 4.2 and the Remark following it in [6].
Hence, the proofs of the last parts of Theorems 3.1 and 3.2 in [14] give the last part of
Theorem 14.1.

THEOREM 14.2. Let the conditions of the first part of Theorem 14.1 hold. If, in addition,
a(p) EC™*E™) for some m>1 and 0<A<1, then u(x)€E€C™ Q). Moreover, if 3Q€EC™ "4
and (x) €C™ 1 H0Q), then u(x) O™ HQ).

This is a consequence of Theorem 14.1 and the usual boot-strap arguments involving
Schauder estimates; cf. Theorem 3.3 in [14].

TaEOREM 14.3. Let a(p) €CY(E™), Flu], Q and @ satisfy the conditions of Theorem 12.1.
Then a solution u(x) €X, of (12.6) has the properties:

(1) u(x) € H2(Q,) for every open Qq, Qy<=Q;

(ii) u(z) satisfies

daj(u;) u
" L F =( 14.6
o, 6xiaxj+ [w] () (14.6)

almost everywhere on Q;
(i) u(x)€CTHQ) for every 4, 0<A<1.

If, in addition, Q€ C™, then u€ HXQ) N O*(Q) for every 2,0<A<1.
Since (A4) and u(z) €X, imply that Flu](z)€L®(Q), the proof follows from those of
Theorems 3.1 and 3.2 in [12] and from the remarks above in the proof of Theorem 14.1.

THEOREM 14.4. Let the conditions of the first part of Theorem 14.3 hold. In addition,
assume that a(p) €C™ X E™) for some m>1 and 0<A<1 and that
o(x)€CTTIH) = Flvl(z)eCHQ) (14.7)
for r=0,1,...,m—1. Then o solution u(x)€X, of (12.6) is of class C™*}(Q). Moreover, if
aQEC™ 2 and p(x) EC™ 1 A0Q), then u(z)€C™ Q).

The proof is similar to that of Theorem 14.2. One can obtain analogous theorems by
replacing Schauder estimates by L* estimates and (14.7) by an assumption of the type

v@)EHNQ) = Flu](x)EH(Q).



310

[1].
(2]

[3].
[4).
[5].
(61
[71.
(8].

(91
[10].
[11].

[12).
[13].

[14].

[15].

PHILIP HARTMAN AND GUIDO STAMPACCHIA

References

BONNESSEN, T. & FENCHEL, W., Theorie der konveren Korper. Ergeb. Math. (Berlin) 1934.

Bers, L., Jorx, F. & ScHECTER, M., Partial differential equations. (New York) 1964,
Part II, Chapter 5.

BrowDER, F. E., Non-linear elliptic boundary value problems II. Trans. Amer. Math.
Soc., 117 (1965), 530-550.

DE Grorai, E., Sulla differenziability e Ianaliticita delle estremali degli integrali multipli
regolari. Mem. Accad. Sci. Torino, 3 (1957), 256-43.

GILBARG, D., Boundary value problems for nonlinear elliptic equations in n variables.
Symposium on Nonlinear Problems, Madison (Wisconsin) 1962.

HarrMaN, P., On the bounded slope condition. To appear, Pacific J. Math.

LADYZHENSKAIA, O. A. & UraL’'tsEVA, N. N., Quasi-linear elliptic equations and varia-
tional problems with many independent variables. Uspehi Mat. Nauk, 16 (1961),
19-92; translated in Russian Math. Surveys, 16 (1961), 17-91.

LERAY, J. & Lions, J. L., Quelques résultats de Visik sur les problémes elliptiques non-
linéaires par les méthodes de Minty—-Browder. Bull. Soc. Math. France, 93 (1965),
97-107. .

Lewy, H., Uber die Methode der Differenzengleichungen zur Losung von Variations- und
Randwertproblemen. Math. Ann., 98 (1928), 107-124.

MinTy, G. J., Monotone (non-linear) operators in Hilbert space. Duke Math. J., 29 (1962),
341-346.

MiraNDa, M., Un teorema di esistenza e unicitdh per il problema dell’area minima in 7
variabili. Ann. Scuola Norm. Sup. Pisa, 19 (1965), 233—-249.

Rapo, T., On the problem of Plateaw. Ergeb. Math. (Berlin) 1933.

SERRIN, T., Local behavior of solutions of quasi-linear equations. Acta Math., 111 (1964),
247-302,

SramMPaccHIA, G., On some regular multiple integral problems in the calculus of varia-
tions. Comm. Pure Appl. Math., 16 (1963), 383—421.

StampaccHIA, G., Formes bilindaires coercitives sur les ensembles convexes. C. R. Acad.
Secs. Paris, 258 (1964), 4413-4416.

Received May 19, 1965, in revised form June 30, 1965



