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Let K, ..., K, be compact subsets of complex N-space OV, each the locus of a smooth
(continuously differentiable) curve. Let K=K, U ... UK,.

For any compact set ¥ in CV define its polynomial convex hull ¥ as

{peC”:|f(p)] < mgxl f| for all polynomials f},

and say that Y is polynomially convex whenever ¥ =7.
Let X be a polynomially convex set in OV,

THEOREM.

A. m — (K U X) is a (possibly empty) one-dimensional analytic subset of C¥ — (K U X).

B. Every continuous function on K U X which is uniformly approximable on X by poly-
nomials 18 uniformly approximable on K U X by rational functions. '

C. If K is stmply-connected and disjoint from X or, more generally, if the map
IVP(K UX; Z)—>I§1(X; Z) induced by X <K VU X 1is injective then KU X is polynomially

convex.

Comments (Technical)

1. N may be infinite, but = is finite.

2. A closed subset V of an open subset U of OV is a one-dimensional analytic subset of
U if and only if a neighborhood of each point in ¥ can be covered by finitely many sets
of the form ®(A) where A is an open disk in the plane and each ®:A -V is a non-constant
analytic mapping, i.e., for each complex coordinate z, on C¥, z;0® is analytic on A.

3. Y is the spectrum of the algebra of all uniform limits of polynomials on ¥ [18].

4. In part B, if KU X is polynomially convex then the rational functions may be
taken to be polynomials [18].

(1) This work was supported in part by N.S.F. grant GU-976.
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Ax arprIicATION: If F is a family of smooth complex-valued functions on a closed
interval I such that for every pair x==y in I there is an € F with f(x)+ f(y) then every con-
tinuous function on I is a uniform limit of polynomial combinations of members of F.

Proof. This follows directly from parts C, B and Comment 4 if we view the members
of F as the coordinates of a smooth injection I —C?, set K =the image of I and let X be
empty.

Comments (Historical)

We are paving the path pioneered by John Wermer in [15], [16] and [17]. He proved
the theorem for K a single non-singular real analytic arc or simple closed curve, X empty
and X finite. He also constructed examples [14], [17] to show that without some smoothness
restriction on K parts A, B and C can all be false, even for K an arc, X empty and N finite.

Next, Errett Bishop in [1] and Halsey Royden in [10], each emphasizing a different
aspect of Wermer’s approach, went further and settled the case of a general real analytic
K and empty X.

Then, in [2], Bishop developed a completely new approach as part of an attack on the
general problem of determining the extent of analytic structure on the spectrum of an
algebra of analytic functions. In this way he redid the real analytic case (with X empty),
but by methods which he knew could also be used to settle the general smooth case. He
invented a theory of interpolating semi-norms with which he exposed and exploited the
local nature of the problem. ,

We do not interpolate semi-norms; but the local character of our theorem is implied
by the presence of the extra set X. Our information about K U X is only local, smoothness
on K. The smoothness is used, with Sard’s Lemma [12] to get certain polynomials which
project the part of K U X lying over some sector in C* locally one-one onto a finite disjoint
union of smooth non-singular ares (Lemmas 1-4). Then, by our variation (Lemmas 5-9)
on Bishop’s argument from pp. 496497 of [2], we produce some strategically located analytic

p———
disks near K in K UX —(K U X). This uses

(i) The Local Maximum Modulus Principle (L.M.M.P.). If T< Y<C" and & is the
topological boundary of T in ¥ then T<oU (TN Y), and

(ii) (The) Maximality Theorem. The uniform closure of the polynomials on a closed disk
in C! is maximal among all uniformly closed algebras of continuous functions on that disk
which satisfy the maximum modulus principle with respect to the boundary.

(The LM.M.P. was proved by Hugo Rossi [9]; there is a relatively short proof from
first principles in [6]. Generalizations of this maximality theorem were proved by Walter
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Rudin in {10} and by Wermer. There are two very short proofs of Wermer’s result on
pp. 93-94 of [8].)
Finally, to get from these isolated analytic disks to analyticity everywhere on

m — (K U X) we use ideas of Royden from his elegant and illuminating treatment of the
real analytic case in [10]. In particular, we adapt to our local situation his way of using an
analytic kernel to “‘cross over edges” [10, pp. 39-41], and with that plus his criterion
(Lemma 10 and [10, p. 25]) for a linear functional on an algebra to be a linear combination

of homomorphisms we get an explicit parameterization of the analytic structure on

Y ey
KU X~ (KUX). This is accomplished in Lemmas 10 and 11.

Note. Throughout this paper the elements of commutative Banach algebra theory are
used freely, often without comment. For a general reference we have [18].

Proof of part B

(A special case was done in [7].)

By the theory of antisymmetric sets (see [4]) it suffices to prove that if p€EK—X
then for each q==p in K U X there is a real-valued f, with f(g)= f(p), which is uniformly
approximable by rational functions on KU X.

Since X is polynomially convex there is a polynomial g such that g(p) =1 and Reg <0
on X U {g}. Let ¢ be a real-valued continuous function on g(K U X) which is identically 0
for Rel <} and with ¢(0) =1. The following argument of Wermer shows that ¢ is a uniform
limit of rational functions on g(X U X).

Namely, it suffices to prove that any measure y on g(K U X) which annihilates all
uniform limits of rational functions also annihilates c. This will be done if we can show that
any such u is supported on {Re{ <}}. But K is a finite union of smooth curves and g is a
polynomial, so g(K) has zero planar measure and, hence, f(z—&)1du(z) =0 for almost all
¢ with Re{>}. Therefore, by Fubini’s Theorem, for almost all open disks A< {Re{ >4},
if §=the boundary of A then

o[ ae f (e ) duz) = fdu(z) . fa -2y lde = f 2al2) dute),

2
where X, is the characteristic function of A. It follows that £ =0 on {Rel>}}.

Hence ¢ is a uniform limit of rational functions on g(K U X) and, hence, f=cog is a
continuous real-valued function on KU X, with f(¢)+ f(p), which is a uniform limit of
rational functions.

That settles part B.
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@
LeMMal. If p¢ K U X there is a polynomial f such that f(p) =0¢ K U X) and Ref< —1
on X.

Proof. By part B with X empty every continuous function on X is a uniform limit
of rational functions. Hence ([17] [12]) for p¢ K there is a polynomial ¢ with ¢g(p) =0¢g(K).

If also p¢ X then, since X = X, there is a polynomial & such that k(p) =0 and Reh < —1
on X. By compactness there is an ¢>0 such that Re(h~1g)<—1 on X for all |1} <e.
Since k/g is smooth on K, (h[g) (K) omits some complex number A with |4] <e¢. Then, setting
f=h—A2g, we have f(p)=0¢f(KU X) and Ref< —1 on X.

Deduction of part C from part A and Lemma 1

Consider any p¢ K U X and choose an f as in Lemma 1. Then f is a continuous invertible
function on K U X with a continuous logarithm on X. But, for any Y, IVP(Y; Z) is iso-
morphic to the group of all continuous invertible complex-valued functions on ¥ modulo
those with continuous logarithms. Therefore, since I§1(K UX; %) »fl‘(X; Z) is injective,
there is a continuous branch of log(f) on all of K U X. However, by part A, m —(KVUX)
is a one-dimensional analytic subset of C¥ — (K U X); so by the argument principle (see,
for instance, (13, p. 271]) f has no zeros on m —(K U X). Hence any such p is not in
M; so KU X is polynomially convex.

Proof of part A
LrmMma 2. Let p¢ KUX and let f be a polynomial as in Lemma 1. Then there exist

numbers ¢, r and s, with —1<e<0 and ~}m<r<s<fx such that if
S={(€C':r<Arg({—~e)<s}
and J=fY8)N K then 0€S and J=J,U...UJ, where the J; are disjoint arcs such that

Arg(f —&) maps the closure of each J, in K one-one onto [r, s, each f(J ) is a non-singular arc,
and any two are either disjoint or identical.

Proof. Let I be the closed unit interval. We shall repeatedly use the simple consequence
of Sard’s Lemma [12] that if E is a closed totally disconnected subset of I and ¢ is a smooth
real-valued function on I then ¢(F) is also totally disconnected.

Let ¢,: I - C" smoothly with ¢,(I) =K. Define

I,={teI:Re f(pi(t)) >0}
AL~ [—§m, §n] by A(t)=Arg (f(e:(t)))
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and V=V, U...UV,, where V, is the set of critical values of A;. Then V is compact and
totally disconnected, so we can choose an interval [a, b], with a<b, in [—in, ]~ V.
Then {t€1,:4,t)€[a, b]} is a finite union of disjoint closed intervals I(3, 1), ..., I(s, k(7))
on each of which A, is non-singular and maps one-one onto [a, b]. By the Chain Rule ¢;
and fog, are also non-singular and one-one on each I(z, ).

Relabel the pairs (I(1, 1), @y), ..., (I, k(1)), @), ... (L(», 1}, @,), ..., (L(n, k(n)), @,) as
1, @1)s s Iy @)-

Define K;=g;(I;), F;=f(K;), and K'=K;U...UK,,. Then

K'={x€K:Argf(x)€[a, b]},

each K| is a compact arc in OV, and each F, is a compact arc in the plane.

If (i, j) is the boundary of K;n K; in K; and 4(i, j) is the boundary of (¢:)=X(2(, /)
in I then ;(8(z, j)) =8(, §) and, setting 8= U ;0(5,7), K’ —@1is a disjoint union of open arcs.

Similarly, if §(s, j) is the boundary of F,n F, in F; and b(s, j) is the boundary of
(fogi)"Y(BG, 7)) in I}, then f(g/(B(s, ))) =P, /) and, setting f = U, B, /), (FyU ..U F)—p
is a disjoint union of open arcs.

It W=U,Argfoq; (8(4, ) Ub(s, j)) =Argf(®) U Arg(B) then W is again a compact
totally disconnected subset of [a, b]; so we can choose another interval [¢, d] in [a, b]— W
(with ¢ <d).

Let K*={x€K: Arg f(x)€[c,d]}. Then K” has finitely many components, each of
which is a compact arc which Argf maps one-one onto [c, d], and the images under f of
any two components are either disjoint or identical.

Since f(K) is compact and disjoint from 0, if we choose ¢ <c¢’<d’<d then, for ¢ in
(—1, 0) close enough to 0, the set {x €K :¢’' <Arg(f—¢) <d’'} will be contained in K". If we
now choose ¢’ <r<s<d’ so that [r, s] contains no critical value of Arg(f—¢) then S and J

(defined as in the statement of Lemma 2) will fulfill the requirements of Lemma 2.

LeMMA 3. Let f, ¢, r and s be as in Lemma 2. Then there are r <t <u <s such that, if for
each j<k we define J} to be {w€J;:t <Arg(f(x) —&) <u}, then each J} which is not contained

in (KU X)~J} can be described in the following way.

There is a polynomial f; and an interval [r;, s,] in (—3m, o) (with r;<s;) such that
Ref,< -1 on X, 0¢f(KUX), {x€K:Argf (x)€E(r,, 5,)} s a finite union of disjoint arcs,
the closure of each is mapped by Argf, one-one onto [r,, s,], the images under f; are non-singular
arcs, any two are either identical or disjoint, AND the arc J} is one of those components N
of {x€K :Argf,(x)€(r;, 8;)} for which the distance from f,(N;) to O is maximal.
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Proof. It will be enough to show that if the assertions of Lemma 3 hold for r <{, <u, <s
and for all § <k, <k (with J}(1)={x€J:¢, <Arg(f(x) —&) <u,} for all j<k) then, for the
et e st e,
first j >k, such that J}(1)¢ (K U X)~Jj (1), there are t, <t, <u,<u,, an associated poly-

nomial {; and an interval [r,, 8,] in (— 4=, 4n), with {,, [r,, ;] and
J7(2)={x€J ;:f, < Arg(f(x) —&) <up}

related as in the statement of Lemma 3.
But that this is so follows directly from Lemmas 1 and 2 applied to K and X ;=

(KU X)—J#1) (and any point not in K U X,). These lemmas supply f; and [r;, s;] with
{x€K: Argf,(x)€(r), 8)}<JF(L). If we choose a component N, of {x€K:Argf x)€(r,, s,)}
for which the distance from f,(N,) to 0 is maximal then N is a subarc of J. 7(1). Since f is
one-one on J7(1) there must be ¢, <, <u, <u, with

N,={x€J}(1):t, <Arg(f(x) —&) <u,}.
Then take J7(2)=N,.

LEMMA 4. Let f, ¢, t and u be as in Lemma 3. Let K,=the union of all J} for which
e namarey e e, —m,
Ji<(KUX)—J) and set L=K—K,. Then LUX=KUX.

Proof. L U X =the intersection of all (K U X)—J; for which J}< K. But by assumption
each such (K U X)—J} contains the Silov boundary [18] for the polynomials on KU X,
and, therefore, so does LU X.

()
LeMMaA 5. Let Y be compact in CV and h a polynomial. If A€0, the boundary of the un-

bounded component of C1—h(Y), and M ={m€ ¥ :h(m)=1} then M=MNY.

Proof. It suffices to show that M is a maximum set in ¥ (see, for instance [13, p. 2871);
hence, since §> k(Y), that A is a peak point for some uniform limit of polynomials on o.
But for any such 8 in C! the uniform closure of the polynomials is a Dirichlet algebra on
0 [5]. Therefore, by the Bishop—de Leeuw characterization of peak points [3] every
A€0 is a peak point.

Note. For our purpose we need Lemma 5 only when 4 lies on a smooth non-singular arc
which is open in 8. Here is a more direct argument for that case.
There is a closed disk A, centered about a point 4, 4 and a wedge

Wo={CeCt:|Arg( —4) — Arg(A—4y) | <&}
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such that < Ay~ W,. Let R be the extended Riemann map of Ay~ W onto the closed unit
disk, with R(4)=1. Then, for 71, the maps R, defined by

RAL)=R((C —Ag)fr+ 1)

are each analytic on a neighborhood of A,— W, and converge uniformly to B on Ay— W,.
Since every function analytic about the polynomially convex set Ay — W, is a uniform limit
of polynomials [18], so is 1 + R which peaks at 4.

LEMMA 6. Let Y be a compact set and q a point in C¥. Let ¢ and u be finite complex Borel
measures on Y such that § gdo=g(q) and § gdu=0 for all polynomials g. If V is an open

subset of Y such that q¢Y —V then o|,+uly-

Proof. Let W=Y —V and let b be a polynomial such that h(g)=1 and || <} on W.

Then fh”da=f k”do'~f hde—1
14 Y w

and J‘ h"d,u,=f h"d,u-—f R du—>0.
v Y w
Hence, o] y==u| .

LeEMMA 7. Let Y be a compact set in C¥ and k a polynomial such that h(Y) is a simple
closed curve wn CV. If there is a non-empty open subarc Z of M(Y) such that h is one-one on
V=hYZ)NTY then for any q,, ¢:€ T with h(g,) =h(gs) =L, &h(Y) it must be that q,=g,.

— ——

Proof. O —(h(Y)~Z) is connected so {,¢h(Y)~Z and, hence, ¢;¢6Y — V. Let v, be a
representing measure [18] for ¢; on Y. That is, », is a finite positive Borel measure on Y
such that [ gdv,=g(q;) for every polynomial g. Hence, if we define measures »; on h(Y)
by v (E)=vh*(E)) then § jdv}=3j({,) for every polynomial j on C'. But such positive
representing measures on a simple closed curve in the plane are, for a given {,, unique [18].
Therefore, »; =2, and since h is one-one over Z, it follows that vy =y .

If ¢, ¢, there is a polynomial f, with fy(q;) =1 and f,(¢z) =0. Then, setting o =f,-»,
and y =f,-v, we arrive immediately at a contradiction to Lemma 6. So ¢, =¢,.

LEMMA 8. Let Y, h and Z be as 1n Lemma 7 and let U be the bounded component of
C —h(Y). If there is any q€ Y such that h(g) € U then h maps k=2(U) N ¥ one-one onto U, and
for every polynomial g, goh is analytic on U.

Proof. The boundary of h(¥) in C! is contained in h(Y), so either A(¥)=h(Y) or
W Y)—h(Y)="U. In the latter case, choose for each {,€ U a closed disk Ay= U, centered at
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¢y, and with boundary &,. Then, by the L.M.M.P. (page 186) applied to A~1(A,) N ¥ and its
boundary in ¥ —Y (which is A1(8,) N ¥) it follows that Ay={goh1|,,:g polynomial} is
an algebra of continuous functions on A, whose Silov boundary is the circle 8,. Also, U,
contains the identity function {=hokh-1; so by the Maximality Theorem (page 186) every
goh~' in 9, is analytic on the interior of A,.

LeMMA 9. Let f, ¢, &, w and L be as in Lemmas 1-4. For each [ € CY with t <Arg({ —¢)<u
there is a closed disk A(C) centered ai { such that if &(0)=the boundary of A(L), D({)=

FHAQ) 0 (LU X), 8(C)=f2@(C) N (LU X), Dy(l)= the union of all components of D({)
which meet LU X, Dy(l)=D(l)~Dy(l), and 6,0)=0(L)N D(l), i=1,2, then Dy(() and

Di(l) are open and closed in D(L), Dy(t)=04(C) and Dy(£)—~(8,(¢) UL) is a one-dimensional
analytic subset of f~1(A(D)) — (F2(0(2)) U L).

Proof. By Lemma 2 there are at most finitely many ¢ €L U X for which f(g) ={ and they
all lie in L. Thus, each such ¢ lies on one of the J; = N(q) for which there is a polynomial
f; as in Lemma 3. Since, by the description of J in that lemma, f,(N(q)) is a smooth non-
singular arc which is an open subset of the boundary of the unbounded component of
Ct— LV X), Lemma 5 applies, so that

71 N(@)) N (LU X)=L.

Also, by Lemma 3, N(g) is open in £ (f,(N(q))) N L; so, if A« is a small enough open disk

A, ———
about f,(g), then that component D, of f;1{A,) N (LU X) which contains ¢ is open in LU X
and meets LU X in an arc N,(q) of N{g). If 8, is the boundary of A, in C* and J, is the

e, P,
boundary of D, in LU X then f,(8:)<0. and, by the LM.M.P., D, is open in d, U N.(q).
Therefore, by Lemmas 7 and 8 with ¥ =4, U N(g), h=f, and Z =f,(N.(q)), either D, = N,(q)
or D, —N,(q) is an analytic disk. In either case {¢} is a connected component of the set of

zeros of f—f(g) in LV X; so if A, is a small enough open disk about f(q) = then the compo-

——

nent D, of f-1(A,) N (LU X) containing ¢ is an open subset of D,. Therefore D, is open in

Z—JE. If D,=N,(g) then D,=L; otherwise D,—L is an open subset of D,—N,(g), and
so is itself a one-dimensional analytic subset of f~1(A,) ~L.

Let A() be a closed disk centered at ¢ which is contained in the finite intersection of
the A,. Then (with the notation of the statement of Lemma 9) D;({) and D,(() are open
and closed in D({), and D,({) is the finite union of those components of D({) which contain
such q that f(g) =C. Hence, D,(Z)—(6,({) U L) is an open subset of the union of the D,— L,
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each of which is a one-dimensional analytic subset of f~1(A,) —L; so it itself is a (possibly
empty) one-dimensional analytic subset of f~Y(A())—(/42(f))UL). Also, D({) is poly-

nomially convex, so by the LM.M.P. Dy({) =:§;(E).

(IIE)

Definition. Let U be a complex commutative algebra with unit, U an open subset of
1, and £: A X U - (* linear on Y and analytic on U. Then £ is an analytic linear functional;
and it is an analytic character of order d provided there is a discrete subset E< U such that
for each £ € U — E there are d distinct algebra homomorphisms 7,({) and ¢ non-zero complex

numbers ¢;({) so that, for all g€,
d

L(g, )= Zl (&) - i) (9).

j=

Note. This representation is unique.

Lemma 10. (Royden’s Criterion). Let U be connected and let £: X U — C* be an analytic
linear functional.

1. L is an analytic character of order d if and only if

(1) for all e>d and all pairs of e-tuples (ay, ..., %), (By, --s Be) 0f members of U,
det (L(a:f;, £))=0on U, and

(ii) there exist xy, ..., Xy, Yq» s Yo and b in U such that, if we let

Py(A)=det (L(x: (b~ )y, L)),

then for some y€ U the polynomial Py, has d distinct roots.

2. If, for some non-empty open subset Uy= U, Liyxu, ts an analytic character of order
d, then also C is an analytic character of order d on A x U,

3. If C is an analylic character of order d then there is a discrete subset E,< U such that
about each point of U — B, there is a disk A, analytic functions c;: A~ C*—{0} and functions
75 A —>the set of algebra homomorphisms of U, §=1, ..., d such that, for each [, 7y(L), -..,74(L)
are distinct, for each g€N, {—m,(C)(g) is analytic, and L(g, £)=2F-1¢,) 7)8)(g)-

Proof. (Following Royden [10]). The function det(L(e;8;, £)) is analytic on U, so
if it vanishes on an open set it vanishes identically. Therefore, 2. is an immediate conse-
quence of 1.

If C is an analytic character of order d then (i) holds because (£(«, 8, £)) is a product
of (e Xd) and (d X e) matrices, and (ii) can be satisfied by selecting £,€ U — K and zy, ..., x,€U
such that 77,(Cy) (x;) =9,;, and then setting y,=z; and h=27_, -2,
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Now suppose L is an analytic linear functional which satisfies (i) and (ii). Let [J({)=
the discriminant of Pg(4). Then [] is analytic on U and [J({,)+0. Therefore E,~=
{C€U:[1(L)=0} is a discrete subset of U. The leading coefficient of P,(A) which is
+det (L(x;y,, £)) has no zeros on U — E, so there is an inverse matrix (a,/{)) whose entries
are also analytic on U—E,;. Let

d
wf(é’)=j§1au(€)-x,, i=1,...,d.

Then z,({) is analytic on U —E, and the matrix (L(z({)ky,, {)) is diagonalizable—its d
distinct eigenvalues are 1,((), ..., 44(C), the d distinet roots of P(4). Let (a;,({)) be a matrix
with inverse (f,,(£)) such that (o, (0))- (L(2 (L) hyy, L)) {B1,(0)) is diagonal. Then define func-
tions

d d
X,($) =j§1 () () and Y ({) =IZII3U(C) ‘Y5

By a direct computation, using (i), (see [10, p. 26]) the mapping g~ (L(X({)gY (), {))
is an algebra homomorphism of ¥ into the algebra of d X d matrices. Since ¥ is commuta-
tive and (L(X(0)AY(0), ) is diagonal it follows that each (L(X,({)gY (), {)) is also
diagonal. By another computation (see [10, pp. 26-27)) if we detine algebra homomorphisms
a,(0): A>C by 7=(l)g)=L(XA)gY (L), ¢) and non-zero complex numbers ¢,() =
CX A0, 0) LY (0, £) then £(g, £)=Si-1640) ) (@) Also my(E), ..., ma(L) are distinet,
because {m,(C) (h), ..., L) (B)} = {44(L), ..., A({)}. This completes part 1. To complete
part 3 we need only show that about each {; € U — E, there is a disk A on which we can choose
o;() to be analytic.

This can be done as follows. Firstly (by the Cauchy formula for the inverse of an
analytic function) on a disk A, about {; in U~ E; the d distinet roots 4,((), ..., A4(C) of
P(4) can be parameterized as analytic functions. If, for each 4.({) we let () be that as-
sociated eigenvector of (L(z,({) hy,, £)) whose first non-zero coordinate is 1 then, by Cramer’s
Rule, on a possibly smaller disk A about {, each coordinate of v,({) is analytic. Hence,
the associated matrix («,,({)) which diagonalizes (L(x,({)hy;, {)) will have its entries ana-
Iytic on A.

That settles part 3.

LeMMA 11. Let Y be compact in CF and h a polynomial such that h(¥) —h(Y) is con-
nected, Let Yo =hYh(Y))n Y. If there is an open disk A,< W Y)—~1(Y) such that -3 (A)n Y
is @ one-dimensional analytic subset of h~Y(A,) then ¥ — Y, is a one-dimensional analytic
subset of OV —~ ¥,
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Proof. There is an open disk A< A, for which 2-}(A) N ¥ is a disjoint union of finitely
many disks D;, ..., D, on each of which k is one-one with analytic inverse.

Let 4, be the restriction of & to D;. Let {, be the center of A and let Ay=A;<A be'two
different concentric disks about {,, with positively oriented boundaries 0, and interiors
AY, i=1,2. Let 4 be the open annulus A?—A,.

Let £, €R(Y)—(A(Y)UA,). We will show that there is an open disk A(f;) about ,
such that A-YA(5,)) N ¥ is a one-dimensional analytic subset of A~1(A((y))-

For any such (, there is a simple closed curve I" with {; € -I'c (YY) —h(Y) and such
that I'N A, is a diameter. Let  be a closed segment in I' N A and set A, =A} —T', where
T, is the closure of I'~y in C*. Then A, is an open dense connected subset of AJ.

Define B=h3I)n Y, B,=h Y [N T and 8,=h;2(y), j=1, ..., d.

If €'~ and gys +-» o are distinet points of Y such that h(g,) =, then, by the
L.M.M.P., each ¢,€ B — B. Hence there are positive representing measures u; on B (vanishing
on points) with {zgdu;=g(g,) for all uniform limits of polynomials on B.

Let o= 27 1, py =5, and v;= uls. Define measures »; on p by »(T) =,(k; {(T))
for T'<y; and then define analytic functions y, on C'—y by

L L
w5 | S5 ore.

Let 9 be the algebra of all uniform limits of polynomials on ¥,
Define analytic linear functionals:

AU (A=) C" by Mig,u)=(w=t) 3 ) 8057 w),

O,: Ax(C*~|a: )~ C* by O‘(g,é')=fa‘—7%(g_;? du, 1=1,2,

h_
D:UAXC -T,)~C" by D(g,C)=f hé*gdm
By

Q:UX(C*—T)—~>C* by Q(g,é)=fhh—_§*ydﬂ-
B

Then there are the following relations.
(Ry) 01— 0;=2mN onAXA4

Ry Q=D+0, onAx(4-T)
(Ry) Q=0 onAx(Cr-T.
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(R,) and (R,) are by the Cauchy Integral Formula. As for (R,), if { ¢TI, then 1 [(h—=0)is a
uniform limit of polynomials on B, so

R0 ) Il PN
Q.0 Zl ha)—¢ 9(g)) = 0.

Therefore, P+ O, is an analytic linear functional on A x A, whose restriction to
A x (A, N (A4-T))

is 271t M, which is evidently an analytic character of some order d,<d. Hence, by part 2.
of Lemma 10, D+ O, is an analytic character of order d, on A x A,.

But, on Ax (An('~T)), Q= D + Oy —2ni N which is evidently an analytic character
of some order dy<d,. Therefore, again by part 2 of Lemma 10, Q is an analytic character
of order dy<d on U x(I'-T).

Now we shall show that e<d. For by (ii) of part 1, Lemma 10 applied to £(g,{)=
Q(9, £+) = 25-19(q;) (where g, ..., q, are distinct) there exist x,, ..., Z,, Yy, ..., ¥, and gy in
A and A, in C* such that det(Q(zigs—2s)y; {4))+0. However, if e>d- then setting
o; =29+ —A+) and §;=y; we would have, by (i) applied to Q on ['—T, that det (cx; B, £+) =0.
Therefore e <d. :

This means that for any ¢ €h(¥)—h(Y) there are at most d points ¢(;) in ¥ such that
Mq(8))=C.

Next let the point £, from the previous discussion be chosen to lie in A N I'~T and
choose ¢,=h~1({,) for §=1, ..., d. In this case Q must be an analytic character on Y x (f -T)
of order precisely d. Let E, be the discrete subset of r-r given by part 3 of Lemma 10.
Then about any point of r— (T'U E,) there is a disk A on which Q has the local analytic
representation Q(g, £) = >%,¢,(C) 7,(L)(g) as in part 3. Since ¥ is the spectrum of U (see
Technical Comment 3) each 7,({) is a point of ¥ with 7,(8)(g) =g(7;(0)). Moreover, by the
formula for Q, we have Q(h-g, {)=C- Q(g, ¢) for all { and g. If we apply this for any g
(depending on j and ) such that g(7,(£)) =8y/c;(¢) we find that h(z;(£)) =C. Bubtm,(0), ...,74(0)
are distinct and there are at most d points in ¥ above £. Hence h~{A) N ¥ =7, (A) U ... U, (A)
a disjoint union of d analytic disks.

Now if {, ¢ E, we are done. Otherwise, let A({;) be an open disk about {; containing
no other point of E,UR(Y). If V is any connected component of h~Y{A({;) —{{,}) then
h:V—A(L)—{¢;} is, for some d’' < d, a d’-sheeted regular analytic covering, and all the
locally defined branches b of the inverse of this mapping are analytic continuations of one
another. Therefore, if A(d’, {,) is the disk about {; whose radius is the d'th root of the radius
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of A(Z;) then any locally defined branch b(( —£,)*) on A(d', ;) —{{,} has a single-valued
analytic continuation @ mapping A(d’, {;)—{{,} onto V. For each coordinate Z; on C,
the bounded analytic function Z;0® extends analytically over A(d’, {;) giving the coordi-
nates of an analytic extension ® of @ where (i)(A(d’, Z))=vVu &D(Zl) is the closure of V in
EYA())N ¥. There are at most d such ¥, so the union U((,) of their closures in
RYA(Ly)) N Y is a one-dimensional analytic subset of A~Y{(A((,)).

Let Py, ..., Pa, (dy <d) be those points in U((,) with k(p,) =C,. Let ¢€ ¥ with k(g)=¢;.
If g = any p, there is a polynomial f, with f,(¢) =1 and all f,(p,) =0. Then {m€ ¥':|fx(m)]| <}
is a neighborhood of {p,, ..., p;,} in ¥ and for & a small enough circle about ¢, in A(,)
it will contain §=A-(d)n Y. But, by the LM.M.P., g€ §; while f.(¢)=1>max,|f.|-

Hence every ¢g€Y with h(g)={, equals some p;; so h-{A(l) N Y=U({,) is a one-
dimensional analytic subset of A-1(A({;)), and we are done with Lemma 11.

Conclusion of the proof of part A

Let the point p of Lemma 2 be in 1?()71 —(K U X),let f, ¢, t, w and L be as in Lemmas
1-4 and set §,={(€C":t<Arg({—¢)<u}. Define J, as the set of all {€ §, for which there
is an open disk A about ¢ such that f~}(A)n (m—(L U X)) is a (possibly empty) one-
dimensional analytic subset of f1(A)—(L U X).

We shall show that J,=S§,. Firstly, 7, is evidently open in §,. Next, {J, is not empty,
because any (€S, with [{|>max;yx|f| belongs to J,. So it remains to prove that
T, is closed in §,,.

If £ is in the closure of J,in §, and A({) is a disk about { as in Lemma 9 then J, N A({)
must contain an open disk A. By Lemma 9, f~1(A) N Dy({) is open in

FYAYN (LU X —(L VU X))

——

and so is a one-dimensional analytic subset of f~1(A). Also, by Lemma 9, D,({)=0d,({); so
by Lemma 11, Dy() —d,(C) is a one-dimensional analytic subset of O ~§,(C). This together
with the description of D,(£) —(d,({) U L) in Lemma 9 implies that { € .

Hence T, is closed in §,; so J,=S§,.

Therefore, for each p€KUX—(KUX), f(S,)N(LUX)—(LUX) is a one-dimen-

———
sional analytic subset of f~1(§,) —(L U X) and is a neighborhood of p in KU X —(K U X).
This completes the proof of part A.

13 — 662945 Acta mathematica. 115. Imprimé le 11 mars 1966.
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