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Let K 1 ... . .  K~ be compact subsets of complex N-space C N, each the locus of a smooth 

(continuously di/ferentiable) curve. Let  K = K  x U ... 0 Kn. 

For any  compact set Y in C ~ define its polynomial convex hull ~z as 

{p E C~: I/(p) l <~ maXr [/[ for all polynomials/},  

and say tha t  Y is polynomially convex whenever Y = ~. 

Let  X be a polynomially convex set in C N. 

THEOI~EM. 

A. K U X - ( K U X) is a (possibly empty) onc-dimensional analytic subset of C ~ -  ( K U X).  

]3. Every continuous function on K U X which is uniformly approximable on X by poly- 

nomials is uniformly approximable on K U X by rational/unctions. 

C. I /  K is simply-connected and disjoint from X or, more generally, if the map 

T/I(K O X; Z) -~HI(X; Z) induced by X c K U X is in~ective then K U X is polynomiaUy 

o o n v e x .  

Comments (Technical) 

1. N may  be infinite, but  n is finite. 

2. A closed subset V of an open subset U of C N is a one-dimensional analytic subset of 

U if and only if a neighborhood of each point in V can be covered by finitely many  sets 

of the form ap(A) where A is an open disk in the plane and each (I) : A -~ V is a non-constant 

analytic mapping, i.e., for each complex coordinate zj on C N, z~o(I) is analytic on A. 

3. ~ is the spectrum of the algebra of all uniform limits of polynomials on Y [18]. 

4. In  par t  ]3, if K U X is polynomially convex then the rational functions may  be 

taken to be polynomials [18]. 

(x) This work was supported in part by N.S.F. grant GU-976. 
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A~ APPLICATIOI~I :  I/ :~ is a /amily o/ smooth complex-valued /unctions on a closed 

interval I such that/or every pair x :~ y in I there is an / s ~ with ](x) ~=/(y) then every con- 

tinnous /unction on I is a uni/orm limit o/ polynomial combinations o/members o/ ~. 

Proo/. This follows directly from parts C, B and Comment 4 if we view the members 

of :~ as the coordinates of a smooth injection I - * C  ~, set K = t h e  image of I and let X be 

empty. 

Comment8  (Historical)  

We are paving the path pioneered by John Wermer in [15], [16] and [17]. He proved 

the theorem for K a single non-singular real analytic arc or simple closed curve, X empty 

and h r finite. He also constructed examples [14], [17] to show that  without some smoothness 

restriction on K parts A, B and C can all be false, even for K an arc, X empty and h r finite. 

Next, Erre t t  Bishop in [1] and Halsey Royden in [10], each emphasizing a different 

aspect of Wermer's approach, went further and settled the ease of a general real analytic 

K and empty X. 

Then, in [2], Bishop developed a completely new approach as part  of an at tack on the 

general problem of determining the extent  of analytic structure on the spectrum of an 

algebra of analytic functions. In  this way he redid the real analytic case (with X empty), 

but  by methods which he knew could also be used to settle the general smooth case. He 

invented a theory of interpolating semi-norms with which he exposed and exploited the 

local nature of the problem. 

We do not interpolate semi-norms; but  the local character of our theorem is implied 

by the presence of the extra set X. Our information about K U X is only local, smoothness 

on K. The smoothness is used, with Sard's Lemma [12] to get certain polynomials which 

project the part  of K U X lying over some sector in C a locally one-one onto a finite disjoint 

union of smooth non-singular arcs (Lemmas 1-4). Then, by our variation (Lemmas 5--9} 

on Bishop's argument from pp. 496-497 of [2], we produce some strategically located analytic 

disks near K in K U X - (K U X). This uses 

(i) The Local Maximum Modulus Principle (L.M.M.P.). I /  T c  ~ c  C N and a is the 

topo gi al boundary o /T  in r then Tc u (Tn r}, and 

(ii) (The) Maximality Theorem. The uni/orm closure o/ the polynomials on a closed disk 

in C 1 is maximal among all uni/ormly closed algebras o/continuous/unctions on that disk 

which satis/y the maximum modulus principle with respect to the boundary. 

(The L.M.M.P. was proved by Hugo Bossi [9]; there is a relatively short proof from 

first principles in [6]. Generalizations of this mauimality theorem were proved by Walter 
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Rudin in [10] and by  Wermer. There are two very short proofs oI Wermer 's  result on 

pp. 93-94 of [8].} 

Finally, to get from these isolated analytic disks to analyticity everywhere on 

K U X - (K U X) we use ideas of Royden from his elegant and illuminating t reatment  of the 

real analytic case in [10]. In  particular, we adapt  to our local situation his way of using an 

analytic kernel to "cross over edges" [10, pp. 39-41], and with tha t  plus his criterion 

(Lemma 10 and [10, p. 25]) for a linear functional on an algebra to be a linear combination 

of homomorphisms we get an explicit parameterization of the analytic structure on 

K U X -  (K U X). This is accomplished in Lemmas 10 and 11. 

Note. Throughout this paper  the elements of commutat ive Banach algebra theory are 

used freely, often without comment. For a general reference we have [18]. 

Proof  o f  part B 

(A special ease was done in [7]0 

By the theory of antisymmetric sets (see [4]) it suffices to prove tha t  if p E K - X  
then for each q ~= p in K U X there is a real-valued/, with/(q)  :6/(p), which is uniformly 

approximable by rational functions on K O X. 

Since X is polynomially convex there is a polynomial g such that  g(p)= 1 and Reg  ~<0 

on X U (q~. Let c be a real-valued continuous function on g(K O X) which is identically 0 

for Re~ ~< �89 and with c(0)= 1. The following argument of Wermer shows tha t  c is a uniform 

limit of rational functions on g(K U X). 

Namely, it suffices to prove that  any measure tu on g(K U X) which annihilates all 

uniform limits of rational functions also annihilates c. This will be done if we can show tha t  

any such ju is supported on {ReSt�89 But K is a finite union of smooth curves and g is a 

polynomial, so g(K) has zero planar measure and, hence, ~(z-$)-ld/~(z) = 0  for almost all 

with Re$ >�89 Therefore, by  Fubini 's Theorem, for almost all open disks A c  {Re~>~}, 

if ~ = the boundary of A then 

1 fZ~(z) d/~(z), -l fodc f(z-O-id.(z)= fd.(z) f ~ 0=2~/ 

where Za is the characteristic function of A. I t  follows tha t  ju=0 on {Re~>�89 

Hence c is a uniform limit of rational functions on g(K U X) and, h e n c e , / = c o g  is a 

continuous real-valued function on K 0 X, with /(q) ~= /(p), which is a uniform limit of 

rational functions. 

That  settles par t  B. 
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(i)  

LW~MA 1. I / p  ~ K  U X there is a polynomial / such that f(p) =0 Ef(K U X)  and Ref  ~< - 1 

on X.  

Proof. B y  par t  B with X empty  every continuous function on K is a uniform limit 

of rational functions. Hence ([17] [12]) for p ~K there is a polynomial g with g(p) ~ 0  Eg(K). 

H also p ~X then, since ,~ = X ,  there is a polynomial h such tha t  h(p) = 0  and Reh < - 1 

on X. By compactness there is an e > 0  such tha t  R e ( h - ~ t g ) < - 1  on X for all ]~t I <e .  

Since h/g is smooth on K, (h/g)(K) omits some complex number  ~ with Izl < ~. Then, setting 

/ = h - ~ g ,  we h a v e / ( p ) = O r  and Re/<~ - 1  on X. 

Deduction of part C from part A and I~mma l 

Consider any p ~K U X and choose an ! as in Lemma 1. Then ] is a continuous invertible 

function on K U X with a continuous logarithm on X. But,  for any Y, /~l (y;  Z) is iso- 

morphic to the group of all continuous invertible complex-valued functions on Y modulo 

those with continuous logarithms. Therefore, since HI{K U X; Z)-~HI(X; Z) is injective, 

there is a continuous branch of log(/) on all of K U X. However, by pad A, K U X - ( K  U X)  

is a one-dimensional analytic subset of C ~ -  (K U X); so by  the argument  principle (see, 

for instance, [13, p. 271]) [ has no zeros on K U X - ( K  U X). Hence any such p is not in 

K U X; so K U X is polynomially convex. 

Pr~)f of part A 

LEMMA 2. Let p~ K U X and let [ be a polynomial as in Lemma 1. Then there exist 

numbers e, r and s, with - 1 < e < 0 and - �89 ~ < r < s < �89 ~ such that i/  

S={~  ECX : r <Arg (~ -~ )  <s} 

and J = f - I ( S )  N K then 0ES and J = J 1 U  ... UJk where the J j  are disjoint arcs such that 

Arg(] - e )  maps the closure of each J j  in K one-one onto [r, s], each ](Jj) is a non-singular arc, 

and any two are either disjoint or identical. 

Proof. Let  I be the closed unit interval. We shall repeatedly use the simple consequence 

of Sard's Lemma [12] tha t  if E is a closed totally disconnected subset of I and ~ is a smooth 

real-valued function on I then ~0(E) is also totally disconnected. 

Let  q~: I ~ C N smoothly with ~vt(I) = K t. Define 

I ,  = { t  e / : R e / ( ~ , ( t ) )  1> O} 

A t : I , - - > [ -  �89 �89 by  A, ( t )=Arg  (/(~,(t))) 
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and V =/11 U ... U Vn, where V~ is the set of critical values of Ai. Then V is compact and 

totally disconnected, so we can choose an interval [a, b], with a <b, in [ - �89 �89  V. 

Then {tEI~:A~(t)E[a, b]) is a finite union of disjoint closed intervals I(i, 1) . . . .  , I(i, k(i)) 

on each of which A~ is non-singular and maps one-one onto [a, b]. By the Chain Rule ~ 

and [ o ~  are also non-singular and one-one on each I(i, ~). 

Relabel the pairs (I(1, 1), ~1) ..... (I(1, k(1)), ~1) . . . .  (I(n, 1), ~,) . . . . .  (I(n, k(n)), q~,) as 
�9 , , ~) 

( I 1 ,  qD1), . . . ,  ( I r a ,  . 

Define K~ =~f;(I;), F, =/(K~), and K' =K1 U ... U K~. Then 

K ' = ( x E K  :Arg/(x) E[a, b]}, 

each K~ is a compact arc in C ~, and each F~ is a compact arc in the plane. 

If ~(i, j) is the boundary of K~ ~ K~ in K~ and ~(i, i) is the boundary of (~)-1(~(i, ~)) 

in I~ then ~(~(i, ])) =~(i, i) and, setting ~ = U ~.j~(i, j), K '  - 9  is a disjoint union of open ares. 

Similarly, if fl(i, ~) is the boundary of F~ (1 Fj  in Fi  and b(i, ~) is the boundary of 

(] o~;)-z(fl(i, ~)) in I~, then ](qJ~(b(i, j)))=fl(i, ~) and, setting fl = U,.~ fl(i, ~), (F  z U ... U F ~ ) - f l  

is a disjoint union of open arcs. 

If W = U~.~Arg/o~(5(i, j) O b(i, j))=Arg/(~) OArg(fi) then W is again a compact 

totally disconnected subset of [a, b]; so we can choose another interval [e, d] in [a, b] - W 

(with c <d). 

Let K" = (x E K: Arg ](x) E [c, d]}. Then K" has finitely many components, each of 

which is a compact arc which Arg[ maps one-one onto [c, d], and the images under [ of 

any two components are either disjoint or identical. 

Since /(K) is compact and disjoint from 0, if we choose c<c '<d '<d  then, for e in 

( - 1, 0) close enough to 0, the set (x E K:  c' < Arg ( / -  e) < d')  will be contained in K". If  we 

now choose c' <r<s<d" so that  [r, s] contains no critical value of A r g ( / - e )  then S and J 

(defined as in the statement of Lemma 2) will fulfill the requirements of Lemma 2. 

L~MMA 3. Let / ,  e, r and s be as in Lemma 2. Then there are r<t  <u <s such that, i/ /or 

each j < k  we define "]7 to be (xEgj:t  <Arg(](x) -e)<u) ,  then each J* which is not contained 

in iK 0 X) - J~ can be described in the/ollowing way. 

There is a polynomial /j and an interval [r~, s~] in (- �89 �89 (with rj<sj) such that 

Re/~ < - 1 on X,  0 ,/~(K U X), {x E K:Arg/j(x) E (rj, s j)} is a finite union o/ disjoint arcs, 

the closure o/ each is mapped by Arg/j one-one onto [rj, sj], the images under/j are non-singular 

arcs, any two are either identical or disjoint, A N D  the arc J* is one o[ those components N 

o / (xEK:Arg/ j (x )  E(rj, sj)} /or which the distance/rom/j(Nj) to 0 is maximal. 
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Proo/. I t  will be enough to show that  i~ the assertions of Lemma 3 hold for r <$~ < u z < s 

and for all ~<kl~<k (with J ~ ( 1 ) = { x e g f 4 < A r g ( f ( x ) - e ) < u l }  for all j~</r then, for the 

first j > k  I such that  J~(1)~: (K 0 X) '=J~(l i ,  there are t~<t~<u~<u~, an associated poly- 

nomial/~ and an interval [r~, s~] in ( - �89 �89 with/~, [r~, s~] and 

J~'(2) = {x e J j : $~ < Arg (l(x) - e ) <u~} 

related as in the statement of Lemma 3. 

But  that  this is so follows directly from Lemmas 1 and 2 applied to K and Xj = 

iKU X ) - J ? ( l i  (and any point not in K U Xj). These lemmas supp ly / j  and It#, sj] with 

(xEK:Arg/j(x)E(rj,  s,)}cJ~(1). If we choose a component Nj of {xEK:Arg/j(x)E(rj,  sj)} 

for which the distance from/j(Nj)  to 0 is maximal then N~ is a subare of J~(I). Since [ is 

one-one on J~(1) there must be t l< t s<us<u  I with 

Nj = {xeJ~(1):t2 <Arg (/(x) - e )  <u2}. 
Then take J~(2)=Nj.  

L~MMA 4. Le~ [, e, t and u be as in Lemma 3. Let Ko=the union o/all  J~ /or which 

J ~ c ( K  O X ) - J ~  and se~ L = K - K  o. Then LO X = K  O X.  

Proo/. L U X =the  intersection of all (K tJ X) - J ~  for which J ~  K 0. But  by assumption 

each such (K g X ) - J ~  contains the ~ilov boundary [18] for the polynomials on K U X, 

and, therefore, so does L U X. 

(II) 

LEMI~A 5. Let Y be compacs in C N and h a polynomial. I/) .E~, the boundary o I the un- 

bounded component o[ C I - h ( Y ) ,  and M = ( m e  f :h(m)=~} then M = M  fl Y. 

Proo/. I t  suffices to show that  M is a maximum set in ~" (see, for instance [13, p. 287]); 

hence, since ~ h ( # ) ,  tha t  A is a peak point for some uniform limit of polynomials on ~. 

But  for any such ~ in C 1 the uniform closure of the polynomials is a Dirichlet algebra on 

[5]. Therefore, by the Bishop-de  Leeuw characterization of peak points [3] every 

E~ is a peak point. 

Note. For our purpose we need Lemma 5 only when ~ lies on a smooth non-singular are 

which is open in ~. Here is a more direct argument for tha t  case. 

There is a closed disk A o centered about a point ~0* ~ and a wedge 

wo = {~ ~ c 1: I ~ g  (r  - Arg (4-g0) l < ~0} 
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such that  $=  A o -  Wo. Let  R be the extended Riemann map of A o -  W o onto the closed unit 

disk, with ~(2)=1,  Then, for r ~ l ,  the maps R~ defined by  

~($) = ~((~- ;~o)/r + ~o) 

are each analytic on a neighborhood of A o - W o and converge uniformly to ~ on Ao - Wo. 

Since every function analytic about the polynomially convex set A o -- W o is a uniform limit  

of polynomials [18], so is 1 + ~ which peaks a t  ~. 

LEMMA 6. Let Y be a compact set and q a point in C N. Let a and "ia be ]inite complex Borel 

measures on Y such that ~ gda=g(q) and ~ gd#=O ]or all polynomials g. I /  V is an open 

subset o] Y such that q (~ Y - V  then a lv*/alv .  

Proo]. Let W = Y - V and let h be a polynomial such tha t  h(q) = 1 and [ h I < �89 on W. 

Hence, a I v~=/~ I v. 

LEMMA 7. Let Y be a compact set in C N and h a polynomial such that h(Y) is a simple 

closed curve in C 1. I / there is a non-empty open subarc Z o / h ( Y )  such that h is one.one on 

V=h-I(Z)  D Y then /or any ql, q2 e I? with h(ql)=h(q~)=~oqh(Y) it must be that ql=q2. 

Proo]. C I - ( h ( Y ) - Z )  is connected so $ o q h ( Y i : Z  and, hence, q , ~ Y - V ~  Let v~ be a 

representing measure [18] for q~ on Y. That  is, v~ is a finite positive Borel measure on Y 

such tha t  ~ gdv~ =g(qi) for every polynomial g. Hence, if we define measures v~ on h(Y) 

by  v*(E)=v~(h-l(E)) then ff jdv~ =J(~0) for every polynomial j on C I. But  such positive 

representing measures on a simple closed curve in the plane are, for a given ~o, unique [18]. 

Therefore, v~ --v*2, and since h is one-one over Z, it follows tha t  vii V =v~Jv" 

I f  qlW=q~ there is a polynomial /o  with/o(ql) =1 and ]o(q2)=O. Then, setting a=/o.Vl 

and # =/o.vg. we arrive immediately a t  a contradiction to Lemma 6. So ql = q~. 

LEMMA 8. Let Y, h and Z be as in Lemma 7 and let U be the bounded component of 

CI - h( Y). I/there is any q e s such that h(q) e U then h maps h-l( U) fl ~ one.one onto U, and 

]or every polynomial g, g o h -1 is analytic on U. 

Proo]. The boundary of h(~') in C 1 is contained in h(Y), so either h(]?)=h(Y) or 

h(:~} - h ( Y )  = U. In  the latter case, choose for each ~o E U a closed disk Aoc U, centered a t  
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~o, and with boundary ~0. Then, by  the L.M.M.P. (page 186) applied to h-l(Ao) n I? and its 

boundary in ~ - Y  (which is h-~(~o)fl ~) it  follows that  2o={goh-~la,:g polynomial} is 

an algebra of continuous functions on A 0 whose ~ilov boundary is the circle ~o- Also, ~o 

contains the identity function ~=hoh-1; so by the Maximality Theorem (page 186)every 

g oh -~ in 9~ o is analytic on the interior of ~o- 

L ~ M M A 9. Le~ f, e, t, u and L be as in Lemmas 1-4. For each ~ e C a w/th t < Arg (~ - e) < u 

there is a closed disk A(~) centered at ~ such that if a(~)=the boundary of A(~), D(~) = 

f-I(A(~)) N (L U X), (~(~) =f-l(~(~)) n ( i  U X), DI(~  ) = the union o/ all com~ments of D(~) 
which meet L 0 X ,  Da(~) = D(~) - DI(~), and 5t(~) = 5(~) fl Di(~), i = 1, 2, then DI(~) and 

D~_(~) are open and closed in D(~), Dg(~)=~(~) and Dl(~)--(~l(~)0L) is a one-dimensional 

analytic subset of f-I(A(~)) - (f-l(O(~)) 0 L). 

Proof. By Lemma 2 there are at most finitely many qs  U X for which f(q) =~ and they 

all lie in L. Thus, each such q lies on one of the J~ =hr(q) for which there is a polynomial 

fy as in Lemma 3. Since, by the description of J~ in that  lemma, fj(N(q)) is a smooth non- 

singular arc which is an open subset of the boundary of the unbounded component of 

C 1 - f y (L  0 X),  Lemma 5 applies, so that  

fTl(fy(N(q))) fl (L 0 X)=  L. 

Also, by Lemma 3, N(q) is open in/71 (fy(/V(q))) N L; so, ff A. is a small enough open disk 

about fj(q), then that  component D,  o f / ; I (A, )  • (L U X) which contains q is open in L U X 

and meets L U X in an are N,(q) of N(q). If ~, is the boundary of A, in C 1 and 6, is the 

boundary of D,  in L O~'~ then [y(~,)=a. and, by the L.M.M.P., D,  is open in ~, U 1V*(q). 

Therefore, by Lemmas 7 and 8 with Y =6,  O N,(q), h =] j  and Z =]y(N,(q)), either D, =N,(q) 

or D, - N , ( q )  is an analytic disk. In either case {q} is a connected component of the set of 

zeros of ] - / (q )  in L U X; so if Aq is a small enough open disk about/(q) =~ then the compo- 

nent Dq of ]-l(Aq) ~ (L U~'X) containing q is an open subset of D,.  Therefore Dq is open in 

L O X. If D ,=N, (q )  then DqcL;  otherwise D q - L  is an open subset of D , - N , ( q ) ,  and 

so is itself a one-dimensional analytic subset of f - l (Aq)-L.  

Let A(~) be a closed disk centered at ~ which is contained in the finite intersection of 

the Aq. Then (with the notation of the statement of Lemma 9) DI(~ ) and D~(~) are open 

and closed in D(~), and DI(~) is the finite union of those components of D(~) which contain 

such q that  [(q)=~. Hence, DI(~) -  (~1(~) 0 L) is an open subset of the union of the D q - L ,  
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each of which is a one-dimensional analytic subset of ]-a(Aq)-L; so it  itself is a (possibly 

empty) one-dimensional analytic subset of ]-l(A(r L). Also, D(r is poly- 

nomiaUy convex, so by the L.M.M.P. D2(r ) =~z(t)- 

(III) 

Definition. Let 2 be a complex commutative algebra with unit, U an open subset of 

Ca, and s  2 • U-~ Ca linear on ~ and analytic on U. Then s is an analytic linear functional; 

and it is an analytic character of order d provided there is a discrete subset E c  U such that  

for each ~ E U - E there are d distinct algebra homomorphisms gj(t) and d non.zero complex 

numbers cj(~) so that,  for all gG9~, 
d 

s t) = ~ cj(O. ~j(~) (g). 
t=1 

Note. This representation is unique. 

L~MMA 10. ( Royden' s Criterion). Let U be connected and let s • U -> C a be an analytic 

linear functional. 

1. s is an analytic character o] order d if and only i/ 

(i) for all e>d and all pairs of e-tuples (~1 .... ,o~), (~l,...,fle) of members o/ 2 ,  

det(s  ~))=0 on U, and 

(ii) there exist xl, ..., xa, Yl ..... Ya and h in ~ such that, if we let 

Pr = d e t ( s  s, t)), 

then for some to E U the polynomial Pc, has d distinct roots. 

2. If, /or some non-empty open subset UoC U, F~l~x v, is an analytic character o/order 

d, then also s is an analytic character of order d on 2 • U. 

3. I / I~  is an analytic character of order d then there is a discrete subset E 1C U such that 

about each point o / U -  E 1 there is a disk A, analytic functions cj:A-* Ca-  {0} and/,unctions 

~FA-+the set o/algebra homomorphisms o / ~ ,  ]=1 ,  ..., d such that, for each ~, ~l(t), ...,za(t) 

are distinct, for each 9e~ ,  t-->zj(~)(g) is analytic, and s ~)=~lCj (~) '~ j ( t ) (g ) .  

Proof. (Following Royden [10]). The function det(E(a~flj, ~)) is analytic on U, so 

if it vanishes on an open set it vanishes identically. Therefore, 2. is an immediate conse- 

quence of 1. 

If  s is an analytic character of order d then (i) holds because (s t)) is a product 

of (e • d) and (d • e) matrices, and (if) can be satisfied by selecting t0 E U -  E and xl, ..., xa 6 2 

such that  ~*(~o)(xj)=8~j, and then setting yj =xj  and h = ~ - 1  j.xj.  
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Now suppose ~: is an analytic linear functional which satisfies (i) and (ii). Let  [ ] (~)=  

the discriminant oi Pr Then [ ]  is analytic on U and [~(~0)~=0. Therefore E~= 

{ ~ U : [ ~ ( $ ) = 0 }  is a discrete subset of U. The leading coefficient of P~(2) which is 

det (E(x~yl, $)) has no zeros on U -  Ex so there is an inverse matrix (a~(~)) whose entries 

are also analytic on U - E ~ .  Let  

d 
x~(~) = ~ a~t(~)- x~, i = 1 . . . . .  d. 

t = 1  

Then x~(~) is analytic on U - E ~  and the matrix (E,(x,(~)hy~, $)) is diagonalizable--its d 

distinct eigenvalues are )~1(~), -.., ~(~), the d distinct roots of P~(~). Let  (a~(~)) be a matrix 

with inverse (fl~(~)) such that  (g~(~)). (s $))(fl~(~)) is diagonal. Then define func- 

tions 

X,(r = ~ a,,(C).x,(~) and Y,(~) = ~.fl,,(r .y,. 
t ~ I  t = 1  

By a direct computation, using (i), (see [10, p. 26]) the mapping g-~(s ~)) 

is an algebra homomorphism of 9~ into the algebra of d • d matrices. Since 9~ is commuta- 

tive and (s ~)) is diagonal it  follows that  each (s ~)) is also 

diagonal. By another computation (see [10, pp. 26-27]) if we define algebra homomorphisms 

~j(~):~[-~C 1 by r~j(~)(g)=l~(X~(~)gYj(~),~) and non-zero complex numbers cj(~) = 

I:(X~(~), ~).s ~) then s ~)--~. lcj(~) '~j(~)(g).  Also nl(~) , ..., ~(~) are distinct, 

because (~l(~)(h) ..... ~d(~)(h)}=(21(~), ..., ~e(~)}. This completes part  I. To complete 

part 3 we need only show that  about each ~ ~ U - E 1 there is a disk A on which we can choose 

a,~(~) to be analytic. 

This can be done as follows. Firstly (by the Cauchy formula for the inverse of an 

analytic function) on a disk A 1 about ~1 in U - E  1 the d distinct roots ~1(~), .-., ~t~(~) of 

P~(2) can  be parameterized as analytic functions. If, for each ~t~(~) we let v,(~) be that  as- 

sociated eigenvector of (~:(x,(~)hy~, ~)) whose first non-zero coordinate is 1 then, by Cramer's 

Rule, on a possibly smaller disk A about ~1 each coordinate of v~(~) is analytic. Hence, 

the associated matrix (a,~(~)) which diagonalizes (F~(x,(~)hy~, ~)) will have its entries ana- 

lytic on A. 

That  settles part  3. 

LE~MA 11. Let Y be compact in C ~ and h a polyn(mdal such that h( ~ ) - h (  Y) is con- 

nected, Let Yo=h-l(h( Y) ) 0 ~. I/there is an open disk A .~  h(l~) -h (  Y) such that h-1( A,) N 

is a one-dimensional analytic subset of h-l(A.) then ~ - Y o  is a one-dimensional analytic 

subset o/ C ~ -  Yo. 
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Proo/. There is an open disk A c A ,  for which h-a(A) fl 17 is a disjoint union of finitely 

many disks D t . . . .  , Da on each of which h is one-one with analytic inverse. 

Let  hj be the restriction of h to Dj. Let  Co be the center of A and let Azc A1EA be two  

different concentric disks about C0, with positively oriented boundaries 0~ and interiors 

A ~ i=l ,  2. Let A be the open annulus A~ 

Let ClEh(~Z)-(h(Y)U Aa). We will show that  there is an open disk A(C 0 about Ct 

such that  h-l(A(Cl) ) ~ ~ is a one-dimensional analytic subset of h-a(A(C0). 

For  any such ~1 there is a simple closed curve F with Q E I 5 - F c h ( l P ) - h ( Y )  and such 

that  P N A t is a diameter. Let  7 be a closed segment in F N A ~ and set Av =A ~ - F ,  where 

F,  is the closure of F - 7  in Ca. Then Av is an open dense connected subset of A ~ 

Define B=h-a(F)  F) 17, B,  =h- l (F , )  n /7  and flj=h~-a(y), j = l ,  ..., d. 

If C, E I ~ - F  and qt ..... q~ are distinct points of Y such that  h(q()=C, then, by the 

L.M.M.P., each q( ~ ~ -  B. Hence there are positive representing measures~u~ on B (vanishing 

on points) with ~gd#~ =g(q~) for all uniform limits of polynomials on ~.  

Let/~ = ~=1/~,  /~, = ~u I~,, and r~ =/~ ]~. Define measures ~ on 7 by  ~ (T)  = u~(h~l(T)) 
for T c 7; and then define analytic functions y)~ on C a - 7 by 

1 fr 1 d~(z). 

Let ~.I be the algebra of all uniform limits of polynomials on ~'. 

Define analytic linear funetionals: 

d 

7l : 91 • (A - ~)-~ @ by }i(g, u) = (u - ~,)" ~ ~j(u) �9 g(h;l(u)), 

O,:~•  I ) ~ o  ~ by o,(~,r ~g'~)du,  ~=~,~, 
30, u -  

p : 9 ~ •  ~ by p < g , ~ ) = f  h - e .  

[" h - r  
Q : g z x ( C ' - F ) - + C  1 by Q(g'r galls. 

Then there are the following relations. 

(R 0 Oa-O~=2ziTl onO.IxA 

(R2) Q=~)+02 on2fx(A-F) 

(Rs) Q =o on ~/• (0 x-I~). 
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(R1) and (R~) are by the Cauchy Integral Formula. As for (Rs) , ff ~ r ,  then 1/ (h-~)  is a 

uniform limit of polynomials on J~, so 

O(g,  h(q,) - , = ,  h ( q , ) "  g(q') = 0.  

Therefore, D + 01 is an analytic linear functional on 9~ • A~ whose restriction to 

x n (a -P)) 

is 2~i~ ,  which is evidently an analytic character of some order dl<~d. Hence, by part  2. 

of Lemma 10, ~) + 01 is an analytic character of order d 1 on ~ • A r. 

But,  on 2 • (A fi ( ~ - r ) ) ,  Q = ~)§ O 1 - 2 ~ i ~  which is evidently an analytic character 

of some order d~ ~ d 1. Therefore, again by part  2 of Lemma 10, 0 is an analytic character 

of order d~<d on 2 • (F - F ) .  

Now we shall show that  e~<d. For  by (ii) of part  1, Lemma 10 applied to s ~)= 

0(g,  ~,)= ~ l g ( q ~ )  (where ql ..... qe are distinct) there exist x 1 . . . . .  Xe, Yl . . . .  , Ye and g, in 

2 and 2, in C a such that  d e t ( O ( x t ( g , - ~ , ) y j , $ , ) ) * O .  However, if e>d:  then setting 

a~ = xi(g, - 2 , )  and fli = Y~ we would have, by  (i) applied to 0 on F - F ,  that  det (attic, ~*) = 0. 

Therefore e ~< d. 

This means that  for any ~ E h ( ] ? ) - h ( Y )  there are at most d points q(~) in 17 such that  

h(q(~)) =~. 

Next let the point ~, from the previous discussion be chosen to lie in A N 1 ~ - I  ~ and 

choose qj = h-l(~,) for j = 1 ..... d. In this case 0 must be an analytic character on ~I • (I ~ - F )  

of order precisely d. Let  E 1 be the discrete subset of 1 ~ - F  given by part  3 of Lemma 10. 

Then about any point of 1 ~ - (F U El) there is a disk A on which 0 has the local analytic 

representation O(g, ~)= ~lcj(~) 'zr j(~)(g)  as in part  3. Since lf" is the spectrum of ~ (see 

Technical Comment 3) each ~j(~) is a point of 1~ with gj(~)(g)=g(:~(~)). Moreover, by the 

formula for Q, we have O(h'g,  ~) =~" O(g, ~) for all $ and g. If  we apply this for any g 

(depending on j and $) such that  g(g~(~)) = 5~#%(~) we find that  h(~(~)) = ~. But  ~1(~) ..... gd(~) 

are distinct and there are at mos$ d points in Y above ~. Hence h-~(A) fi ~ =~I(A) U ... 0 ~a(A) 

a disjoint union of d analytic disks. 

Now if ~ ~ E~ we are done. Otherwise, let A(~I) be an open disk about Q containing 

no other point of E~Uh(Y) .  If V is any connected component of h - l ( A ( ~ ) - { ~ } ) t h e n  

h : V - ~ A ( ~ ) - { ~ }  is, for some d ' <  d, a d'-sheeted regular analytic covering, and all the 

locally defined branches b of the inverse of this mapping are analytic continuations of one 

another. Therefore, if A(d', ~1) is the disk about $~ whose radius is the d'th root of the radius 
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of A(~I) then any locally defined branch b((~-$1) d') on A(d', ~1) --{~1} has a single-valued 

analytic continuation (I) mapping A(d', ~1)- (St} onto V. For each coordinate Z 1 on C N, 

the bounded analytic function ZjoCI) extends analytically over A(d', ~1) giving the coordi- 

nates of an analytic extension ~ of �9 where ~)(A(d', ~1)) = V U (])(~1) is the closure of V in 

h-i(A(~l) ) N s There are at most d such V, so the union U($1) of their closures in 

h _ l ( i ( ~ l ) )  ~ ~r i s  a one-dimensional analytic subset of h - i ( A ( ~ l )  ). 

Let Pl ..... p~, (d~<~d) be those points in U($~) with h(p~)=St Let qE ~" with h(q)=~. 

If q:~ any p~ there is a polynomial/ ,  with/.(q) =1 and all/.(p~) =0. Then {mE/?: I/.(m)[ <~ 

is a neighborhood of {PI . . . . .  pd~} in ~ and for 8 a small enough circle about ~1 in A(~) 

it will contain 5=h-~(8)N ]7. But, by the L.M.M.P., qE~; wh i l e / , (q )= l>max~[ / . [ .  

Hence every qE 1~ with h(q)=~ equals some p~; so h-i(A(~)N 1~= U(~) is a one- 

dimensional analytic subset of h-~(A($1)), and we are done with Lemma 11. 

Conclusion of the proof of part A 

Let the point p of Lemma 2 be in K 0 X -  (K 0 X), le t / ,  e, t, u and L be as in Lemmas 

1-4 and set ST = {~ E C1:t < Arg ( ~ - e ) <  u}. Define ff~ as the set of all ~ E ST for which there 

is an open disk A about $ such tha t / - l (A)  N (L U X -  (L U X)) is a (possibly empty) one- 

dimensional analytic subset o f / - I ( A ) -  (L U X). 

We shall show that  ffv = ST. Firstly, ff~ is evidently open in ST. Next, Jp is not empty, 

because any ~E S~ with [$[ > maxr. u x[/[ belongs to ff~. So it remains to prove that  

ff~ is closed in ST. 

If ~ is in the closure of ff~ in ST and A(~) is a disk about ~ as in Lemma 9 then ffp N A(~) 

must contain an open disk A. By Lemma 9, /-I(A) N D~(~) is open in 

/-~(A) n (L U X -  (L u X)) 

and so is a one-dimensional analytic subset of/-I(A). Also, by Lemma 9, D~(~)=(~2(~); so 

by Lemma 11, D,(~) -5~(~) is a one-dimensional analytic subset of CN--82(~). This together 

with the description of DI(~) - (~1($) U L) in Lemma 9 implies that  ~ E ff~. 

Hence ~Tr is closed in ST; so ~ = ST. 

Therefore, for each p EK U X -  (K U X), /-l(Sp) N (L 0 X) - (L U X) is a one-dimen- 

sional analytic subset of / -1(S~)-(L U X) and is a neighborhood of p in K U X - ( K  U X). 

This completes the proof of part A. 

13 - 662945 Acta mathematica. 115. Imprlm6 le 11 mars 1966. 
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