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0. Introduction

Let Y be a complex unital Banach algebra with dual space A’. The numerical range of
an element a of U, V(, a), is defined by

VU, a) = {f(a): €U, f1)=1=||f|}

and is a compact convex subset of the complex field C. The numerical radius of a, v(a), is
then defined by
v(@) =max {|1|: A€V, a)}.

Wherever possible we shall follow the notation of Bonsall and Duncan [6] to which we refer
the reader for a systematic account of the theory of numerical ranges. In this paper we shall
consider several problems of the following nature. Suppose that the numerical range
V(3 a) is restricted in size and shape. What conditions are then implied on the algebra
generated by 1 and a; for example, how large can ||a"]| be? Several results are known in

this area. For example, if v(a) =1, then
laf<nt (4} m=1,2,3,..)
n b 2 b
and these inequalities are best possible; see Bollobas [3], 4], Browder [8], Crabb [9], [10].
In particular, the power inequality
v@")<v(@)* (rn=1,2,3,...)

which is known to hold in B*-algebras, does not hold for arbitrary Banach algebras. On the
other hand, if V (¥, a) is a subset of the real field R, i.e. if a is Hermitian, then

e(@) =v(a) = o]
8%t — 722008
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where p(a) is the spectral radius of a (see Browder [8], Sinclair [13]), so that in this case
v(@") =v(@)"* (n=1,2,3,...).

In §1 we consider the restriction
V¥, a) =K

where K is an arbitrary compact convex subset of C. Since Sp (¥, a)= K, we then have
G{a) €A whenever G is analytic on a neighbourhood of K. We give upper bounds for
[[G@)] and V(¥, G(a)), and these upper bounds are all attained in a single extremal
Banach algebra A(K). This result had previously been obtained by Bollobas [4], but we
present a different construction of the algebra A(K). In fact, the algebra A(K) consists of
all complex functions f on K of the form

)= [aud) eeR)

where y is a regular Borel measure on €. The dual space of A(K) is identified with the space
of entire functions with a certain majorant. This sets up a correspondence between certain
extremal problems in the theory of numerical ranges and the study of entire functions
with a given majorant.

The case when K is a closed interval in R, i.e. the case of Hermitian elements, is
considered in more detail in §2. Let A be Hermitian with ||| =1. For functions of the
form e p(t), where p is a polynomial and e™* p(—1)=e™ p(1), we show that e p(t) =
3% ¢, e implies exp (toch) p(h) =X %, ¢, exp (2mink). This result is not available by
simple functional calculus arguments. We deduce that o(p(h)) =||p(h)|| for certain poly-
nomials, thus generalizing a result of Sinclair [13]. The support functionals f at cos o+
th sin a (e¢==nsm) are shown to have the interesting property that f(A") is constant for n
even and for n» odd. Finally we give a partial description of the maximal case of V(¥, A2)
subject to V(, h)=[—1, 1] and also V{3, B)<[0, 1].

In §3 the results of §1 are generalized to the case of joint numerical ranges and are
applied in particular to the study of normal elements. An element % of 9 is said to be
normal if it is of the form u=~h+ik where %, k are commuting Hermitian elements. For
such elements, V(3, u) is the convex hull of the spectrum of «, so that v(u) =p(u). Crabb [11]
gave an example with |[u] = V2 o(u). We give a formula for

k, = max {||w"|| :0(%) = 1, u normal}

in terms of functions of exponential type. We show that k;, =2 and also that there is M >0
with k&, > Mn?,
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In the final section we consider the extremal problem subject to the condition v=p, or
equivalently the numerical range of each element is the convex hull of the spectrum. This
condition forces I to be a function algebra under an equivalent norm; in fact o <|| - || <%ep
and these inequalities are best possible.

We are grateful to Professor J. G. Clunie for helpful correspondence concerning several
of the problems considered in this paper.

The first and third authors acknowledge the support of the Science Research Council
for a research fellowship and research studentship respectively.

1. The Banach algebra A(K)

Let U be a complex unital Banach algebra and let a € Y. Given a non-empty compact
convex subset K of C we wish to study the extremal properties of elements a €9 with
VU, a)= K. Let B be the closed subalgebra of A generated by a and 1. Then

V(B a) =V (¥, a)

(see e.g. [6] Theorem 2.4). We may therefore restrict our attention to singly generated
Banach algebras. As usual, we shall denote the numerical range more briefly by V(a).

Since
V(ra)=rV{a) (r=0)

we shall further suppose for convenience that
sup {|z[: 2€K} =1.

The main cases of interest occur when K is the closed unit dise, a semi-disc, or a line seg-
ment. The case when K is a singleton is trivial and we shall therefore suppose that K has
at least two points. When K has interior we shall suppose without loss that 0 € int K; when
K has no interior we shall suppose without loss that [0, 1] K<[—1, 1].

Given a €9 let &, denote the exponenential group

€, = {exp (da): A€C}.

The norm on €, completely determines the compact convex set V(a) since
max Re V(e”a) = sup % log |[exp (r¢®a)|| (AER)
r>0

(see e.g. [6] Theorem 3.4). Let
w(re®) = exp (r max Re (¢¥K)) (r>0, 0€R).
Note that V{g)< K if and only if
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llexp (Aa)]| < (1) (A€C). 1)
The function w has the property

oA +u) <o) o(p) (4, peC). (2)
In fact, let
u(z) =2z (z€K)
and note that
w(2) = |lexp (Au)||, (AE€C)

where || « ||, denotes the supremum norm for bounded functions on K.

The extremal case in (1) occurs when

llexp (Aa)|| = w(d) (A€C) (3)

and then we have K =co Sp(a), the convex hull of the spectrum of a, since
max Re Sp (e?a) =inf % log |lexp (re®a)||
>0

(see e.g. [6] Theorem 3.8). Since U is generated by a, the maximum principle actually
gives Sp(a) = K. Under the Gelfand representation we have d=u, and 9l is a subalgebra of
the algebra A(K) of all continuous functions on K that are analytic on the interior of K.
For such algebras we wish to construct the maximal norm such that (3) holds (the minimal
porm is clearly || - || ). It is clear that we wish the algebra 9 to be generated by the exponen-
tial group ©,. The linear span of €, is an algebra, but it does not contain the element u.
In fact, the algebra of absolutely convergent series of exponentials contains the element
u and gives the required extremal Banach algebra. For the purposes of exposition we shall
adopt a slightly different approach to the definition of the extremal algebra. We are
indebted to Dr 8. Kaijser for the suggestion and also for pointing out to us Theorem 1.9.

We write M(C) for the Banach space of (finite) complex regular Borel measures on C,
and M«(C) for the weighted space

M) ={u€M(C): ||l =fwd|ﬂ|< ool
Given € M“(0) let f, be defined on K by
o= [du) GeE)

We say that u represents f,. Clearly f,€ A(K)
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Definition 1.1. A(K)={f,: u€M(C)}. For € A(K), we define
[If]l = int {flu]|: s represents f}.
ProrositioN 1.2. (A(K), || -||) is @ complex unital Banach algebra such that
@) Ifllo<lfll  €AK)),
(i) Jlexp (Au)|| = |lexp (Au)]| (A€C).

Proof. Let f(z) = [ ¢** du(2) (€ K). Then

11 < 1o el = D

This gives (i). The trivial representation gives
leI <lle*]lo  (2€€)

and hence (ii). It is straightforward to verify that || - || is an algebra norm on 4(K) (use (2)).
Let f,€A(K) with Z||f,|| <cc. Let u, represent f, with

[l ttall < [|fal] +27".
Let f(z) =Zf.(2) (z€EK).

Clearly 2u, represents f, so that 4(K) is complete, as required.

THEOREM 1.3. The Banach algebra A(K) is generated by u, and hence its maximal ideal

space can be identified with K.

. 1 L1 a4
Proof. Since = o Y
where I' is the unit circle, we have u € A(K). Since each f€ A(K) can be approximated by
exponentials it follows that « generates 4(K). Hence the maximal ideal space of A(K) may
be identified with Sp (u) =K.

CorROLLARY 14. Let f€A(K) and let G be analytic on a neighbourhood of f(K). Then
Gof € A(K). In particular 1/f€ A(K) provided f(z) +0 (z€EK).

Definition 1.5. E(K)={¢$: ¢ entire, ||¢||=sup {|#(1)|/w(4): A€C} < oo}. Clearly E(K)
is a Banach space.
Given f€A(K), f represented by u, and ¢ € E(K) let
= f¢ dy. (4)

9 — 722908 Acta mathematica. 128. Imprimé le 22 Décembre 1971.
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LemMaA 1.6. The above pairing (4) is well-defined.
Proof. Let {e* du(i) = 0 (z€ K). We must show ¢ du =0.

Case 1. 0€int K. Let A = {z:|2| <6}< K, and let D=int (co {1, A}). Then (0, )= D
and DK< K. Let

Glz) = f¢(zl) du(4) (2€D)

so that @'is analytic on D. Let ¢(4) = > .o ¢, A". We may suppose ||$|| <1, so that |(1)| <e

and hence |¢,| <(e/n)". Therefore
S e Am|<ef (A€0).
n=0

Since w(1)= ¢, it follows by dominated convergence that

G)= > cnz"fl"d,u(l) (lz] < d/e).
n=0
The hypothesis gives fA*du(l)=0 (n=0,1,2,...) and then analytic continuation gives
G(t) =0 (0 <i<1). Finally dominated convergence gives G(1) =0, as required.

Case 2. K<[—1,1]. Let ¢€L*(:R). By Paley-Wiener (see e.g. [12] p. 387) there is
o €L?(K) such that

$(4) =f Mo(t)dt (LEC).

By Fubini f S(A) du(2) = f o(t) f e*du(A)dt=0.

Given arbitrary ¢ € E(K) let

exp (A/n)—1

An (A€C).

$o(4) = (L —1/n) 2)

Then ¢,€L*iR) and dominated convergence now gives | ¢ du =0.
Given ¢ € E(K) let Oy (f) =}, > (fEA(K)).

TueorEM 1.7. The map ¢— Dy is an isometric isomorphism of E(K) onto A(K)'.
Proof. Clearly ®4€A(K) and || @, <||$]|. Since ®4(e**)=¢(2), it follows that

19yl =sup {|D)]|/[le*]: 1€C} = ||

Given ®€A(K)' let ¢(1) = D(e**) (AEC). Then ¢ € E(K) and
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() (fe“‘dlu(l)) = fq)(elu)dlu(i.) = qu' du= 0y (J‘e“dlu(ﬂ.)) .

The proof is complete.
Theorem 1.7. is the tool for the proof of the main theorem in this section; but it is also

of interest that 4(K) is a dual space. We write
C3(C) = {€C(C): |p(4)| f(A) >0 as |A] > oo}

Definition 1.8. Ey(K)=E(K) N Cy(C). Clearly E(K) is a closed subspace of H(K).
Given f€A(K) let F/($) =<}, 6> ($€ By(K)).

THEOREM 1.9. The map f—F, is an isometric isomorphism of A(K) onto E(K)'.

Proof. Clearly F,€ Ey(K) for each f€A(K). Eo(K)is a closed subspace of C3(C). Using
the Riesz representation theorem we obtain Ey(K) ~ M«(C)/Ey(K)*. If pu represents
FeEyK), let f(z)=e¢*du(d) (z€K). It is now sufficient to show that F—f is well-
defined, i.e. u€Ey(K)* implies f=0.

Case 1. 0€int K. For z€int K, A1—>¢** is in Ey(K). Hence u€ Ey(K)* implies f(z)=0
(z€int K) and so f=0,

Case 2. K<[—1,1]. For t€K, A~ (e -1)/i is in E,(K). Hence u€ E,(K)* implies

tA __
fe . Lauin-0 wex

and differentiation gives f = 0.

Remarks 1. Case 1 of Lemma 1.6 may also be proved by using the representation

1

d(A)= o L\ H(w) e* dw

where H is the Borel transform of ¢ and I' a contour containing K.

2. An annihilator argument shows that a dense spanning subset of Ey(K) is given by
the polynomials if 0 € int K and by the functions {A— (e*—1)/A: t€K}if K<[—1, 1].

3. A further annihilator argument shows that each f€ A(K) has a discrete representing
measure. It is then not difficult to show that [|f|| is determined by discrete representing
measures. This relates to [7] Theorem 3. Moreover the norm of polynomials is determined by

representing measures such that { exp (e|1|)d|u|(1) <co.
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4. The action of @, is described more usefully by
21
Qy(f) = Zo 1 $7©0) f7(0) (f a polynomial).
neo !

Our construction of A(K) leads to an alternative proof of the result of Bollobéds [4].
Let (3, p) be an arbitrary complex unital Banach algebra with ¢ € 9 such that V(3 a)< K.
Then Sp(a)< K, and so G(a) € A whenever G is analytic on some neighbourhood of K. This

is the notation for the following theorem.

THEOREM 1.10. (Bollobas).

(i) sup {p(G(a)): VU, a) < K, (U, p) arbitrary} = ||G(u) || = sup {| Fs(G(w))|: € E(K),
ll¢ll =1}.

(i) V(U G(a))= V(A(K), G(w)) = {Fy(G(w)): € E(K), $(0) = ||]| =1}.

Proof. Let f€, ||f] =1 and let (1) =f(e**) (A1€C). Then ¢ € E(K) and [|@y]| <1. Let
P be a polynomial. Given any contour I' containing K define u, by dup()=(1/A} P(1/A) dA.
Then

HP(a) =1 ( fr & duy (z)) - f 1) dp ()= frrﬁ(l) dup (1) = Dy(Pa).

The continuity of the functional calculus gives f(G(a)) = @4 (G(«)) and so p(F(a)) < [|G(w)-
Theorem 1.7 gives the formula for ||G(x)||. Restrict the above to f with f(1)=1 to get
VU, G(a))< V(A(K), G(u)). For the final formula note that ®,(1)=¢(0).

CorOLLARY 1.11. (Bollobas [3], Browder [8], Crabb [10]). Let K ={z: |z| <1}.
i) sup {p(a"): v(a)= 1} = ||u,| = n! (e/n)"
(11) Given v(a)= 1, VU, a”) < V(A(K), u™) = {z: |2] <c,}
where ¢, =sup {|$7(0)]: ¢€E(K), $0) = ||¢]| =1}
Proof. Given v(a)=1 we have p(a™) <n! (e/n)". Let ¢(3)=(eA/n)* (A€C). Then |u"||>
|$™(0)| =n! (e/n)", and this gives (i). For ¢ €E(K) with $(0)=]¢| =1, 0€R, let yp(d)=
$(Ae”). Then y € B(K), v(0)=||y|| =1, and (ii) now follows.

For the case K ={z:|z| <1} it is not difficult to obtain the following information

about the functions in A(K) in terms of their Taylor expansions. Let
f(2)= Z anzn, Iz| < 1, Zn*lan| < oo,
n=0

Then f€A(K). On the other hand there exists g€ A(K) such that g(z)=2;205,2" and
Ent|b,| diverges.
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Consider now the general case with 0 € int K. Given @ analytic on a neighbourhood of
K we have Q(u) € A(K). For any representation G(z) = { ¢** du(1) we have G(a)= [ ** du(A).
To see this let 0<t<1,I'=¢"10K. Then

Gta)= —2% fr‘ Gtz) (z—a) L dz= fz—l-m fr e*(z—a) 'dzdu(l) = fe““ du(2).

Now let £—>1. This technique does not apply when K <[ —1, 1]; the Hermitian case requires

the finer technique of the next section.

2. Some properties of Hermitian elements

Let U be a complex unital Banach algebra. Let H denote the set of Hermitian elements
of U, ie. the set of elements with real numerical range. When H is closed under squaring,
H +{H is a B*-algebra with H as the set of self-adjoint elements (see e.g. [6] §6) and then
many properties of H follow from the well developed theory of B*-algebras. On the other
hand there are many examples when H is not closed under squaring (see e.g. [4], [6], [8])
and then the techniques of B*-algebras are not available to give results about Hermitian

elements. For example the proof of Sinclair’s theorem that
o(h) =|h]| (heH)

seems to depend on Bernstein’s theorem on entire functions of exponential type (though
under an elementary disguise in [5]). We prove here some results in similar vein.

We give first a method for deriving expressions for polynomials in 4 in terms of the
linear span of {e"*: t€R}. To be precise, if & is Hermitian with ||2|| =1, and p is a polyno-
mial with |p(1)| =|p(—1)|, choose x€R such that ™ p(—1)=e" p(1). If the Fourier

series for ' p(t) on (—1, 1) is %, ¢, '™, then

p(h) = 3 ¢, oxp (12— ) if).

The results show that for a large class of polynomials p(k), the spectral radius of p(h) already
coincides with the norm of p(h) in the extremal Banach algebra 4] —1, 1]. For these poly-
nomials we obtain an explicit representation in A[ —1, 1] (by discrete measures) in which
the norm is attained. Such a representation is a special case of the concept of minimal
extrapolation as introduced by Beurling [1].

We give first the proof for a linear polynomial; the argument may be extended to deal
with an arbitrary polynomial p as above. The method is similar to Sinclair’s proof [13]
that ||k +al| =po(k +«). We write Z for the set of all integers.
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THEEOREM 2.1. Let h€H with ||h|| <1, and let x ER~\Z. Then

cos o+ ih sin g =sin® o 3 ’(i; exp ((nm+ o) th). 1)
ne? {'IWZ+0()

Proof. Suppose first that ||h]| <1. Let g € %" with ||g|j =1, and let
f(z) = glexp (izh)) (2€0).
Then f is entire with |f(z)| <e'* (z€C), |f(x)| <1 (z€R). Note that
g(cos o +ih sin a) = f(0) cos a+f'(0) sin «.
We now apply the theory of Boas [2] § 11.2 with
L) = Hz) cos 2+ /(2) sin «
A(t) = cos a+it sin a.

Recall that the function exp (—iat) A(t) has the absolutely convergent Fourier series on

(—1, 1) given by
L g (=1
e e o)

5 eXp (inmt)= > ¢, exp (inmt).
nef

Thus, when f is of the form

fz)= f oxp (i2t) du(?) (2)

where y is of bounded variation, Theorem 11.2.6 of [2] gives

f(x) cos a+ f'(x) sin o0 = chnf(x+oc+mz) (x€R). . (3)

ne

For arbitrary f consider first f; defined by

sin dz

hR =37 1) (€0)

for 0<<d<<1—||A)]. Then f; has an integral representation as in (2) so that (3) holds with f

replaced by f;. Since
sin 0z

ox

<1 (z€R),

> Jen| < o and
neZ

we may then let  — 0 to obtain (3) for arbitrary f. Put x=0 to give
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g(cos o+ ik sin «) Z c, g(exp ((nm+ o) 1h)).

Since g€’ is arbitrary (of norm 1) we deduce that

(_ n

cos o+ th sin x =sin® o« > —— o exp ((ng + ) ih)).

neZ (na+ o
Since the above series converges absolutely, the case ||k| =1 follows by a routine continuity

argument.

The case =% in (1) gives the explicit representation of A in the closed convex hull of
exp (¢H) which was also obtained by F. F. Bonsall.

In a similar way we can derive the following theorem.

TaEOREM 2.2. Let h€H with ||b]| <1, and let x ER\ #Z.

(a) h='8‘2§ (=1 )nzsm((n-l— ) mh).

7T a0 (2n4+1)
1 42 (-1
(b) A* g+?n§1 pean s nath.
3(—1)"sina

¢) cos o+ A% sin o= — {(nm+ o) sin a+ 2 (nm+ &) cos & — 2 sin «
1
nez (nm+a)

x exp {(nm + «) th).
COROLLARY 2.3. Let h€H with ||h|| =1.
(i) (Sinclair [13]) ||cos a+4h sin af| =1 (x€R).
(i) ||cos a+ih? sin «f| =1 (x€R, [x—Fn| <xz/9).
(iii) ||B2—t|| =1 —t =p(h2—1) (0<t<}).
Proof. (i) Put =1 in (a) and we see that the sum of the moduli of the coefficients is
one. Hence ||cos a+ih sin | <1. Also, since (k) =||A|| =1, we have
||cos o+ ik sin || >p(cos o+ ik sin o) =1.
(ii) For |a—% | <m/9, n€Z, we have
(nor + )? sin o +2(ngw + «) cos o« —2 sin o = 0.
Now argue as in (i), using (¢) above.
(iii) For 0 <t <1, we deduce from (b) above that
-t <i—t+5 S 21

=1—¢=o(h?—1).

<
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THEEOREM 2.4. Let h€ H with ||h|| =1, let « €ER\rZ, and let f €N’ with f(cos o +1h sin o) =
1=||f|l, Then there exists c€[—1, 1] such that

f(hn)_{—isinoc—lrccosoc ifn=1,3,5,...

cosq—icsing ifn=0,2,4,....

Proof. Using the representation for cos o+ 4k sin « from Theorem 2.1, we deduce that
flexp((nm+ o) th))=(—1)" (R €Z). Let

F(2) = f(exp((nz+«) th)) —cos nz  (z€C).

Then F(z)=0 (z€Z), and | F(z)| <M ™! for some constant M. Hence by Liouville,

F(z)=a sin 5z (2 €C) for some constant a. Then
flexp((nz + &) ih)) =cos 7z +a sin mz
and since |f(exp((wz+ ) ih))| <1 (zER), we must have a =ic where c€[ —1, 1]. Therefore
f(exp (zth)) = cos (z — o) +1 ¢ sin(z — ).
The proof is completed by comparing coefficients of 2" in this last equation.
COROLLARY 2.5. Let h€H, f€W with
) =1 = ) = 4, 1) = 1.
Then f is multiplicative on the algebra generated by 1 and h.

The above theorem was also obtained by B. Bollobds; the corollary by A. M. Sinclair

(private communication).
THEOREM 2.6. Let h€ H with ||k| =1. Then

(i) V(h?*)< {z: Rez>0, [z —}| <3},

4 1]¢
1 . ) 2 L—p — — . .
(ii) sup {|t|:tER, it € V(R?)} . } < .336

Proof, Let f€ U, f(1) =1=||f||. Then
Re f(cos th) <1 (t€R)

and so 1—12 Re f(R?) +4(t) <1 (tER)

where ¢(t) =0(t*) as t—>0. Therefore Re f(h%) >0. By Corollary 2.3 (iii) we have ||h2—}|| =3

and so
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_ |10) 3] = | Fh2—3)| <.
This proves part (i).

Suppose now that f(%2)€4R. By considering the inequality
| f(cos th)| <1 (tER)
for small ¢, we deduce that
| /(B?)|*< —% Re f(h).

The method of Theorem 2.2 may be used to establish that

4 __E 2 <i__i
h 2(1 = h <E7 15
Since Re f(k%) =0, we now have
4 1
- H<—5——.
Re!(h) 752 15
4 1
Therefore I f(hz) |2 < g;z—z - 4—5

and the proof is complete.
Given A€ H with ||&|| =1, Theorem 1.10 shows that the maximal case of V(A?) is given

by
V ={¢"(0): ¢ entire, $(0) = 1, |$(z)| <e™*?! (z€0)}.
Bollobis [4] shows that V> {z:|z—1| <}}. We also have V o {it: t€[ —}, 4]}. To see this
let ¢ be defined by
é(z) =1+ ti(cosh }z—1)—L(cosh{z 1)

Use the Phragmen-Lindelof principle to get |$(z)| <e!®®?, and note that ¢"(0) = + /8.

The above results give an approximate description of V(kh?) in the extremal algebra
A([—1, 1]). Note also that in the extremal algebra A([—1, 1]) we have

2 2 e 2
e[z == st (s>0), where M = sup f e dx|.
M a,beR|[Jb
1
To see this let é(2) =f ete " dt (2€0).
-1

Then ¢ €E([—1,1]) and ®y(e*"')=2. By Phragmen-Lindelof
1 . a-zzsst
f et~ dt| = sup ™4 ’f e dx
-1 (

zeR —1-z/25)st
and so ||e*"*|| >2s/M. In particular the extremal norm on A([ —1, 1]) is not equivalent to

< Mst

ll¢) = sup

the supremum norm since [|e**||,=1.
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Now consider the extremal problem for V (k%) subject to the restriction V (k) =[0, 1]. It
is easy to see that the maximal set for V(h?) again has non-empty interior, and also [[¢*"*|| >
s*/M in A([0, 1]). However we have the following result which contrasts with the situation

for arbitrary Hermitian elements.
THEOREM 2.7. Let k be a positive Hermitian element. Then
V(k?) n {R<={0}.

Proof. We may suppose V(k)< [0, 2]. Let A=k —1 and then V(h)<[~1, 1]. Let f(1) =
1=||f}l and suppose f(k?) =ia with e €R. Then

ia =142 f(h) +(B?).

Note that b= —1—2 f(h)€R and f(h?) =b+ia. We have |f(exp ith)| <1 (t€R) and so
tz
1+ itf(h) ~ (b +ia) §+0(t3) <1.

Consideration of the above for small £ gives
f(R)?*<b = —1-2 f(h)

and so f(h)= —1. By Theorem 2.4 we now have f(h?)=1 and so f(k%) =0.

3. The Banach algebra A(Z)

In this section we generalize the results of §1 by considering extremal problems in
which several elements are involved. In this case we impose a condition on the joint numeri-
cal range of several elements. Let 9 be a complex unital Banach algebraandlet ay, ..., a,€ .

Recall that the joint numerical range of ay, ..., a,, V(U; a,, ..., @,) is defined by

V@I: a’1> et a’n) = {(f(a1)3 mres f(an)): fED(S‘)L 1)}

so that V(; ay, ...,a,) is a compact convex subset of C". (For €3, DI, x)={feA"
fixy=1=||f||}.) For brevity we write a=(ay, ..., a,) and

VA a)={f(a): fED(, 1}}.
Given A=(4,, .., 4,), 2=(2, ..., 2,) EC" we write
AMa=XAa+...+Aa,

Az=Az+...+ 4,2,
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Let 2 be a compact convex subset of C" and let || - ||, denote the supremum norm for

bounded functions on E. Let

6@ =2 (&= (2. 7))
and let w(A) = Jlexp (A-u)||l, (AECH).
The method of § 1 generalizes to give
V(A a)cE<|lexp (A-a)|| <w(X) (AECH).

Let 4(E) be the set of all f: E—C such that

f(z)=fexp (A -z) du(N) wherefwd|ﬂ| < oo

and let ||f|| be the infimum of | o d|u| over all such representations.

Let B(Z) be the set of entire functions ¢inn-variablessuch that ||¢|| =sup {|$(X)|/w(A):
A€C"} <co. Then, as in §1, A(E) is a complex unital commutative Banach algebra, the
polynomials are dense in 4(Z) and the maximal ideal space may be identified with the
joint speetrum of u,, ..., u,, i.e. E. Moreover, E(E) is the dual of 4(Z) under the natural

pairing. We state informally the generalization of Theorem 1.10.

THEOREM 3.1. A(E) is the extremal Banach algebra subject to
VaLa)<EB, aqja,=a,a; (j, k=1, ..., n).
Remark. The mutual commuting of the elements is required to give
exp(A-a) exp(w-a) = eXp(A + @) - a).

The simplest case occurs when = is a direct product, say E =K, Xx K, x... x K, where

each K is compact convex in C. In this case it is easy to show that
o(A) =w1(A) 04(4y) ... 0, (4,)
where w; is determined by K as in § 1. Given f€A(E) of the form
Hz) = f1(21) fa(22) - . falzy)
where f,€(A(K,), || - I|.), r=1, ..., n, it is straightforward to verify that

WA= NAllallzella - - [1Falla-

Moreover the linear span of such functions is dense in 4(E). In other words this case gives a
rather trivial generalization of the one variable case; in fact A(E) is the projective tensor
product of the A(K,).
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For a non-trivial application of Theorem 3.1, recall that x €9 is normal if z =k + ik where
h, k are Hermitian and hk=kh. For such elements it is known that V(x)=co Sp(z) and
[lz]l <20(x) (see [6] Theorem 5.14). When all the powers of k and k are Hermitian it follows
from the Vidav.Palmer theorem (see e.g. [6] Theorem 5.9) that o(z)=|jz||. For general
Banach algebras, Crabb [11] gave an example of a normal element x with g(z) =1, ||z|| = 53
We show below that

max {||z||:  normal, p(x) =1} = 2.
More generally, we consider the evaluation of

k, = max {|j«"||:  normal, o(x) = 1}. (1)
It is easy to see that the problem corresponds to an application of Theorem 3.1 in the case

H={(s,1t): s teR, s2+2<1}.
We then have

(A, A,) =sup {exp (s Re A, +t Re A,): 5, tER, s2+£2<1} =exp ({Re 4,)2 + (Re 4,)2}}).

For the rest of this section, w will have the above definition. We wish to evaluate

sup {

LemMma 3.2. Let ¢ be an entire function of 2 variables such that

() [, w)|<exp (J2] + |u]) (4, u€0),
(i) [$(4 @) <1 (2, pEiR),
(iii) |4 cos @ —u sin 6, A sin O +p cos 0) | = |$(4, u)| (4, p€C, OER).

w2 +s 2) s0.0): sere) Iot-1).

Then [$(2, p)| <o(d, u) (4, u€C).
Proof. Given u€iR we have
[, w)| <e e (A€C), |é(A u)| <1 (A€R)
and so the Phragmen-Lindel6f principle gives
|4, w)| <exp ([Rel|) (A€C).
Given arbitrary 4, 4 €C, choose 6 €ER such that A sin 6 + 4 cos 0 €iR. Then

[$(4, w)| = |$(A cos 6 —p sin §, A sin 6+ cos 6) | <exp (|Re (4 cos 0 —u sin 6)|) <w(4, u).
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TaEOREM 3.3. Let k, be as in (1), let
&, ={g€eE([-1,1]: "g" =1,9(0)=¢'(0) = ... =gV (0) =0}

and let B,_; be the real subspace of A([—1, 11) conststing of the real polymonials in u of degree
at most n—1. Then

k, = 2" sup {|g"™(0)]: g€6,} = 2" dist (v, B,_,).

Proof. Let &, be the set of functions g€®, of the form

N8

g(z)= > ¢,2""*" (z€C).

r=0

Note by Bernstein’s theorem that |¢,|<1/(n+27)! (r=0,1,2,...). Given g€, define
$o(=9) on C* by 3
H(A, u) = rgoc, (A—u)" " (A +ip).

Then 4 is entire and |$(4, u)| <exp (|A|+]|ul|). Given s,{€R let y=(s*+#*)* and then
| $(is, it)| = |rgoc,(iy)"+2’| <l

Also (A cos 6 —p sin 6, A sin 0+ p cos 0) = e~ $(4, u)

and so Lemma 3.2 gives |$(4, u)| <o(4, u).
Given ¢ € E(Z), ||| =1, let yys(=1y) be defined on €2 by

2m

wid, ) =% j €0 (4 cos 0 — wsin 8, 4 sin 6 + x cos 6) d6.

1]

Then y is entire and |y(4, u)| <w(4, u). A routine calculation shows that y =¢, for some

g EF-

If @ =u, +tu, in A(Z) then
Dy(a") =Dy (a™) = 2" g™ (0).

Theorem 3.1 now gives k,=2" sup {|g™(0)|: g€F.}.
Given g €@, let h(z) =1{g(2) + (—1)"g( —2)}. Then A€, and |A™(0) = |¢*(0)|. This proves
the first part of the theorem.

Let §,={9€6,: g(R)cR}. Given g€®, let h(z)=1{g(z)+ g(2)} and we see that
ku=2" sup {|g™ (0)]: €5,

Finally note that @, (") =2" ®,(»") and use Theorem 1.10.
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COROLLARY 3.4.

() by = 2.
(ii) There is M >0 such that k,>Mn* (n=1,2,3,...).

Proof. (i) Take g=sinh. In fact, using Theorem 2.4, one can show that g gives the
unique functional @ on A(E) with ®(a)=2, ||®|| =1. (ii) Take g(z) =4 ,(iz), where J,, is the
usual Bessel function. Since sup {|J,(z)|: >0} is of order n~%, the result follows.

It is easy to see, from Montel’s theorem, that k, is attained at some member of &,,; but
it is not attained by J, (nor by the slightly better functions z—>(iz)¥J,,_;(iz)). Note that the
power inequality fails for some normal elements.

Finally we give a partial solution to a related problem.

THEOREM 3.5.
max {||«||: » normal, g(u) =1, Re u, Im u positive} <3(1 + V3).

Proof. Let w be normal with g(u)=1, Reu, Imu positive. Then V(u)< {z:|z| <1,
Re 2>0, Im 20}, and for the extremal case we may assume equality. Let e~ ™* u=p +ig

with p, ¢ Hermitian.

11
Th Vip)=[0,1], V(Q)=|-—~, —
en (p)=10,1], Vi(g) [ l@l@]
and so llell =1lp + égll < flo — 41| + llig + 3| =3 (1 + V3)

by Sinelair [13].

4. Complex Banach algebras with v=p

Let 9 be a complex unital Banach algebra with v =g. By [6] Theorem 4.7, % is commu-

tative and g is an algebra norm with ¢ <|| - || <e . In fact, a sharper estimate holds.

TrEoREM 4.1. Let U be a complex unital Banach algebra with v=p. Then ||a| <} eo(a)

(@ €N).

Proof. Let a € U with g(a) <1 and let I" be the unit circle. Then

2 1 (za+1) dz
< gz

e 2m Jp za—1) 2%

Note that Re <0 for A€Sp((za+1) (z2a—1)-1), |2 =1. Since v=p we have [lexp (z)|| =
o(exp (x)) (x€ ). Therefore 2¢-1 ||a|| <1 and the proof is complete.
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Let K be as in §1 and recall that A(K) is the algebra of continuous functions on K
that are analytic on the interior of K. Any norm on A4(K) with v=p gives V(f)=co Sp(f).
The Vidav-Palmer theorem shows that when K <[ —1, 1], v=p if and only if the norm is the

spectral norm; this latter assertion fails if K has interior. Define || - || on 4(K) by

“f“ =inf {Zlcnlg(gn) fZch Ins gne exp /I(K)}

TurorEM 4.2. (A(K), |- ||) s the extremal singly generated complex unital Banach
algebra with V(u)< K, v=gp.

Proof. Straightforward by the methods of § 1.
PrOPOSITION 4.3. When K is the closed unit disc, ||u| =%e.

Proof. Let ®(f) =f(0) (f€ A(K)), so that ® € A(K)’, ®(u)=1. It is enough to show that

[Pl <2e2, or equivalently,

Jexp (f(0)) (0)] <2e¢ (exp f) (fEA(K)).

Let g =f—(0), so that g€ A(K), g(0)=0. A classical exercise gives |9’(0)| <2 when Re g<1

and so
l9'(0)] <2e~! exp (sup Re g) (g€ A(K), g(0) = 0).

The result follows.

When K has interior, the Riemann mapping theorem gives a 7€ A(K) which is a
home omorphism onto the closed unit dise A. This induces an isometric isomorphism
between A(K) and 4(A) and gives p(z) =1, ||z} =} e in (A(K), || - |))-
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