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1. Introduction

In order to study the current commutation relations of quantum field theory, Araki
and Woods [2] and Araki [1] introduced the notion of current groups and factorisable
representations of such groups. Araki and Woods [2] and Streater [5] established that
such representations admit a natural imbedding in a symmetric Fock space exp H over a
Hilbert space H. If G is a locally compact group, then a suitable space of Borel functions
on a Borel space with values in G is made into a group under pointwise multiplication.
This is called a current group of G. Araki [1] established that the factorisable representa-
tions of the current group are based on certain cocycle valued measures. In this paper we
show the existence of a measure on the Borel space over which the current group is con-
structed, relative to which a cocycle valued density exists. This yields a certain natural
topology for the current grdup under which the factorisable representation is continuous.

In order to take into account all the cocycles of first order in the construction of fac-
torisable representations it turns out that projective representations should also be con-
sidered. Finally, the Araki-Woods imbedding is explicitly constructed in terms of the co-
cycles. At this stage it may be worth remarking that our methods differ very much from

that of Araki and Woods. We rely more on measure theory and not at all on lattice theory.

2. Araki funetions

Throughout this paper H with or without suffixes will always stand for a complex
separable Hilbert space with inner product ¢, ->. Let @ be a fixed locally compact second
countable group with identity element e. By a representation of G in H we shall always

mean a continuous homomorphism of @ into the group U(H) of unitary operators on H

(1) The present research was done at the University of Manchester, England.



54 K. R. PARTHASARATHY AND K. SCHMIDT

with the weak (or equivalently strong) operator topology. R, € and J will always stand
for the additive group of real numbers, the additive group of complex numbers and the
multiplicative group of complex numbers of modulus unity.

We recall a few definitions from [4].

Defination 2.1. A continuous function s: GxG@—R is called an additive multiplier

if the following conditions hold:

(1) s(e, g) =s(g, ) =0 for all g€G
(2) 5(91> 92) +8(92-1, 91—1) =0 forall g, 9,€G
(3) 8(9192 95) +(91, 92) = 5(91, 9295) + (g2, 7a)-

An additive multiplier is called #rivial if there exists a measurable function a: G~ R, such

that
s(g, h) = algh) —a(g) —a(k) for all g, hEG.

Two additive multipliers are called equivalent if their difference is trivial.

Definition 2.2. Let X be any set. A function K: X x X—+C is called a positive definite
kernel if, for every positive integer n and every choice of elements z,, ,, ..., &, in X and

complex numbers a,, @, ..., @,,

> a,@ K(x, 2,)>0. 2.1)
i

K is said to be conditionally positive definite if (2.1) holds whenever X;a;=0. A continuous
function ¢: @—C is called positive definite if the kernel K(g, h) =¢(gh™1) is positive definite
on G'x G and ¢(e)=1. If s is an additive multiplier on G x G, then ¢ is said to be condi-
tionally s-positive definite if ¢(e)=0 and the kernel K(g, k)=d(gh1)+is(g, b1) is condi-
tionally positive definite. In the special case when s=0, we say that ¢ is conditionally
positive definite.

In order to study factorisable projective representations of current groups, we have
to make a detailed analysis of additive multiplier valued measures and conditionally posi-
tive definite function valued measures. To this end we introduce the following definitions
inspired by the work of Araki [1].

Deﬁnitibn 2.3. Let (T, §) be a standard Borel space. A function 8: §XGFxG—>R is
called an Araki muliiplier if the following conditions hold:

(1) for every fixed (g,, g5) EG x G, S(-, ¢, ¢») 18 a totally finite signed measure on §;
(2) for every fixed 4 €, the function S(4, -, ) is an additive multiplier on G x G.
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For a given Araki multiplier S, a function ¢: § x G—C is called an Araki S-function
if the foliowing conditions hold:

(1) for every fixed g€, 4(-, ¢) is a totally finite complex valued measure on §;
(2) for every fixed A€ S, #(4,-) is a conditionally S(4, -, - )-positive definite function
on G.

If §=0, an Araki S-function will be simply called an Araki function.

We choose and fix a standard Borel space (7', §) and a pair (S, ¢) of an Araki multi-
plier and an Araki S-function. We now define a kernel K, on the space (§ x G) x (§ X G)
by the equation

K4(A,9; B, h) =$(AN B, gh~')~$(AN B, g) —$(4 N B, k1) +iS(A N B, g, h~')  (2.2)
for all 4, BES and g, h€G. We shall analyse the properties of ¢ by studying the kernel K ;.

LemMma 2.1. The kernel Ky defined by (2.2) is positive definite in the space (§ x &) x
(§xG).

Proof. Let Ay, A,, ..., 4, €S, 91, 95, ..., 5, €G and a,, a,, ..., @, be n complex numbers.
Let B,, B,, ..., B,, be the atoms of the ring generated by 4,, 4,, ..., 4,. Let

6.1 1 if B,c A,
% =
0, otherwise, 1=1,2,...,n, k=1,2,...,m

Then equation (2.2) and an easy computation show that

Z a’ia‘l K¢(Ais gi5 AJ’ gi kzl {i ]Z=1az Z("’ k ajx(7> k) [¢(Bk’ 9: gl ) ¢(Bk’ gi) »
~$(By, 9 ") +i8(Br, 9 97 )]} (2:3)

Since ¢ is an Araki S-function, for every fixed B€§, the kernel ¢(B, gh™?) is conditionally
S8(B, -, -)-positive definite on G x G. Hence by corollary 1 to Lemma 2.2 of [4], the kernel
&(B, gh™") —¢(B, 9) ~H(B, k1) +i8(B, g, b1) is positive definite on G xG. This shows
that every term within the curly brackets in (2.3) is non-negative. Hence K is positive

definite. This completes the proof of the lemma.

Lremma 2.2. Let ¢ be an Araki S-function. Then there exists a Hilbert space H spanned
by vectors Y (4, g, h), A€S, g, h€Q such that the inner product {-, - satisfies the equation
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<Y (4,91 1), Y(B,ga, ho)> = (A N B, hi' gy g2  hs) — (A N B, hi'g1957)
- ¢4 N B, 9192 hy) + #(4 n B, 9:192") +i[S(4 n B, bl 919375 hs) (2.4)
- S(-A N Bs glg2_13 hz)]

fOT all A,B ES, glsgz,klshzeG'

Proof. By Lemma 2.1 and Kolmogorov’s theorem on stochastic processes, we can
consider K, as the covariance function of a certain complex Gaussian stochastic process
%(A4,9) with mean zero and “time variable” (4,9)€ES x (. In the standard notation of

probability theory,
EX(4,9)=0 forall A€S, hEG,

EX(A,9)X(B,h)=K4(A, g, B,h) forall 4, BES, and g,h€G.

We now write Y(d,q, b)=X(A4, bg)—X(4, g9). (2.5)

A straightforward computation now shows that E Y (4, gy, A;) m is precisely the
right hand side of (2.4). If H is defined as the expected mean square completion of the
linear span of the random variables Y(4, g, k), A€S, g, h€G, and the inner product is de-
fined by covariance, H becomes a Hilbert space. The separability of H is an immediate
consequence of the fact that § is countably generated, ¢ is second countable and ¢ is an
Araki S-function. This completes the proof of the lemma.

Given an Araki S-function, we construct the Hilbert space H according to Lemma 2.2
and denote by H(A4) the closed linear span of all the elements Y(4, g, h) as g and A vary
over G. Let P(A) be the projection onto the subspace H(A4). With these notations we have

the following lemma:

LeMMA 2.3. The map A—P(4) is a projection valued measure on (T, §). Further
PAYY(B,g,h)=Y(ANB,g,k) for A,BES, g, h€G. (2.6)

Proof. Formula (2.4) implies that Y (4, gy, ;) and Y (B, g,, h,) are orthogonal as soon
as A and B are disjoint. Hence H(A) and H(B) are orthogonal whenever 4 and B are
disjoint. Since ¢ is an Araki S-function, (2.4) also implies that for a sequence of disjoint
sets 4;, 4,, ..., €S,

[
” Y( UiAb g: h) - igjl Y(Ab g’ h)"2= 0'

This implies that H(|J;4,)= ®,H(4,). Hence P(-) is a projection valued measure. Since
Y(B,g,h)=Y(BNnA,g,h)+Y(BnA" g, k) where A’ is the complement of 4, (2.6) is

proved. This completes the proof of the lemma.
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In the Hilbert space H defined by Lemma 2.2, we define the map U, for g€@ by

the equation
U Y(4,9,h) =Y(4, 997", ) (2.9)

for all A€, g,, 9, R€G. Formula (2.4) implies that U, is a well defined isometry on the
set of all elements Y(4, g, 2), 4€S, g, R€G. Hence U, can be extended to an isometry on
H. Since the range of U, is everywhere dense it follows that U, is a unitary operator for
every g;. Further U, U, =U,, ,, for all g;, g,€G. Since ¢ is an Araki S-function, the map
g—U, is weakly continuous and hence a unitary representation. Further, (2.6) and (2.7)
imply that

U,PA)Y(B,g,h)=Y(An B,g9:,k)=P(A) U, Y(B,g,h). (2.8)

We shall write PA)U,P(A)=U(4,g9) forallg€@, A€S. (2.9)

Equations (2.8) and (2.9) imply that U, and P(4) commute for all §€G and A € §. Further
U(4, g) vanishes on H(A4') and restricted to the subspace H(A4) yields a unitary represen-
tation for the group G. We also observe that U(T, g) = U,. Further

U(4,9,)Y(B,g,h)= Y(A 0 B,gg: %, k). (2.10)

‘We now write oA, h)y=Y(4,e, k). (2.11)
Then (2.5), (2.10) and (2.11) imply that

U(4, 9)6(A, k) =0(4, gh)—5(4, h). (2.12)

In other words on the subspace H(4), the map g—~U(4,g) is a representation and
g—>06(4, g) is a cocycle of the first order for that representation. In this context we refer
to [1] and [4]. Further §(4, g) satisfies the equation

P(B)&(4, g) =8(AN B, g). (2.13)

For any measure g on (7', §} and any finite or countable cardinal », we shall denote
by Ly(u, n) the direct sum of » copies of the Hilbert space Ly(u). In the notation of direct

integrals of Hilbert spaces, we may write
Ly(pt, n) = fcn dp

where C" is the = dimensional complex Hilbert space if x is finite and the space of square
summable sequences if » is infinite. If now we apply the Hahn-Hellinger theorem for the

_projection valued measure P(4), we may assume that
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H= o fcndﬂn
n=00,1,2...

where u, are mutually orthogonal measures with disjoint supports B, such that Zu, is a
totally finite measure and P(4) is simply multiplication by the indicator function X, of
the set A. Since U, and P(4) commute for all €@ and A € §, we may by a standard ap-
plication of a result of Von Neumann and Fubini’s Theorem assume that U, restricted to
JCrdu, is multiplication by an n-dimensional matrix V,(f, g), t€T and for every fixed ¢
and n, g— V,(t, ¢g) is an n-dimensional unitary representation of ¢. A similar application
of Fubini’s theorem and an argument similar to the one in the proof of Theorem 3.1 in [4]
yield the equation 8(d, g) =2, [ 4 6,(t, 9)du, where ,(t, g) is a continuous cocyecle for the
representation g—V,(t, g). We now write u=2, u,, H,=C", V(t, g)=V,(, g) whenever ¢
belongs to the support B, of u,. Then we have in the notation of direct sum of Hilbert

spaces,

U(d,g)= fm) V(t,g) duc),
5(A’ g) = fo(t) 6“: g) d/,t(t),

P4)= fXA(t) L du(t),

where I, is the identity operator in H,. Further 5(t, g) is a cocycle for V (i, g). We can now

summarise all our discussion in the form of a theorem.

THEOREM 2.1. Let G be a locally compact second countable group and (T, §) a standard
Borel space. Let further (8, ¢) be a pair consisting of an Araki multiplier S on § x G x G and
an Araki S-function ¢ on §x G. Then there exists a complex separable Hilbert space H, a
projection valued measure A—P(A) on S, a continuous unitary representation g— U, of G in

H and a continuous function g—05(q) on G with values in H satisfying the following condations:
(8) U,y 6(h)=0(gh) —d(g) for all g, LEG;
(b) The subspaces H(A)=P(A)(H) are invariant under all the U ,;
(c) For every AES, g, by, hy€G,
(P(A) U, 8(hy), 8(ho)> = (A, hi* g™ hy) — (A, B g ™) — (A, g7 hy)
+ (A, g7 +ilS(A kit g7 hy) = 8(4, 971 Byl (2.14)
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Further the Hilbert space H can be written as a direct integral | H,du(t) of Hilbert spaces H,
with respect to a totally finite measure u on S, where the family {H,, t€T} satisfies the follow-
ing:

(a') For every t, there exists a unitary representation g — V(. g) of G in H, such that
Uy=[V(t, g)du(t);

(b") The projection valued measure A—P(A) is given by

P(4)= f 1) T,dutt)

where 1, is the identity operator in H,;

(¢') For every t, there exists a continuous map g->8(t, g) from @ into H, such that

V(t, 9)0(t, ) =6(t, gh)—0d(t, g) forallg, hEG (2.15)
and og)= f&(t, g)du(t) for all geq.

The measure u satisfying (a’), (b), (¢') and (a), (b), (c) is determined uniquely upto
equivalence. The map t—(V (1, ), $(t, ) is determined upto unitary equivalence a.e.(u).

Conversely given a totally finite measure u and o triplet (H,, V(¢,-), 0(t, - )} for every t such
that (2.15) is fulfilled and the direct integrals § H,du(t), § V(¢,)du(t) and § 6, -)du(t) are
well defined, there exists a pair (S, §) consisting of an Araki multiplier S and an Araki S-
function ¢ such that the triple (U,, P(4), 8) defined by (a'), (b"), (¢’) satisfies (a), (b) and (c).

If 8, &' is another poir satisfying the same properties then S'(4,-,)—8(4,-,") is a
trivial additive multiplier for every fixed A€ S and Re $=Re ¢'.

Proof. The only part that remains to be proved is the converse. This follows by

a straightforward calculation if we put ¢(4, g)=—31(P(A4)d(g), 6(g)> and S(4,g, h)=

Im (P(A4)6(g~1), 5(h)y and observe that Im {6(¢, g~1), 8(¢, b)) is an additive multiplier for
every t€T. (See [4], Theorem 2.1). This completes the proof of the theorem.

In the case §=0, the statement of Theorem 2.1 is considerably simplified and something

more can be said about an Araki function. In fact we have the following theorem.

TuEOREM 2.2. Let G be a locally compact second countable group and (T, S) be a stan-
dard Borel space. Suppose that ¢ is an Araki function on § x G. Then there exist maps y:
T x G0 and & § x G— R such that the following properties are satisfied:

(1) For every fized t€ T, y(t, - ) is a conditionally positive definite continous function on G;

{(2) For every fixed g€Q, v(-, g) is a measurable funciion on T';
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(8) For every fixed A, E(A, ) is a continuous homomorphism of G into the real line;

(4) For every fixed g, &(+, g) is a totally finite countably additive function on S;

(5) For all A€S and g€@, $(4, g)—i&(4, g;)=f,, w(t, g)du(t) for some totally finite
measure U on §;

(6) There exists a family of Hilbert spaces H,, t€T, unitary representations g—V(, g)
of G in H, and cocycles g—68(, g) for the representation V(t,-) such that the Hilbers
space H={ H,du(t) and the direct integrals § V(t,-)du(t) and § 5, -)du(t) are all
defined, and for all $€T, A€S, g4, ¢, €G,

(b, 9192) —p(E, g1) —w(E, g2) = <O(E, g74), 6(t, 92)>s

(7) The measure u is unique upto equivalence and the triple [H,, V(¢, ), 6(t, )] s deter-

mined uplo unitary equivalence for almost all t{u).

Proof. Putting §=0 in (2.14), P(4)d(g) =96(4, g), we obtain from property (c) of Theo-

rem 2.1,

<8(4, g1%), (4, g2)> = P4, g192) —H(A, g1) —H(4, ).

We then construct u, H;, V(t,-) and 6(1, +) according to the same theorem. Then we have

&4,9)= J‘Aa(h g) du(t)

and 3(4,9:92) — $(4,91) — $(4,95) = L <a(t, gi), 8(t, g2)> du(®). (2.16)
Since ¢(4, e) =0 and (4, g-1) =¢(4, g), it follows that

Re ¢(A: g)=— %J\A <6(t’ 7 6(t: 9> dlu(t)

We write o(4, g)=Im ¢(4, g), (2.17)
and x(4,9)= &4, 9)+n(4, 9),

where for each fixed g, &(-, ¢) and (-, g) are the singular and absolutely continuous parts
of «(-, g) with respect to the measure u. Now suppose that ¢, and g, are any two elements
fixed in G- Let C < T be a set such that

&(B, g) — &(B, g2) — §(B, 919,) =0

for all Borel sets B<(, and u(C’)=0. Then by (2.16) and (2.17),
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£(4,9:9:) — E(A4,9,) — E(4,9,) =«(4 N ', g192) —a(d N c, g1)— (4 n C': g2)

= m fAnc: <8(t, 977), O(t. g2 du(t) =0.

In other words £(4, -) is a homomorphism from G into R. Since (4, g) is measurable in
g, it follows that £(4, -) is measurable. Hence it is a continuous homomorphism for every
fixed 4. Now write
$(4, 9) = $(4, 9)~ik(4, 9).
Then qg is also an Araki function which satisfies the equation (2.16) and Re 9; =Re ¢.
Since #(-, g) is absolutely continuous with respect to u, we can construct the Radon-
(-, 9)

Nykodym derivative f(-, g) = du(-)
(-

. Then we have from (2.16) and the uniqueness of the

Radon-Nykodym derivative

Im <6(t’ gfl)’ 6(t’ g2)> = f(t’ 9192) —f(t: gl) —f(t’ 92) a.e. t[‘u]’

for every g,, g, €G. By Theorem 2.1 of [4] we know that the left hand side is an additive
multiplier for every ¢. By applying Fubini’s theorem and using the fact that Haar measur-
able representations are continuous, we can without loss of generality assume that f(z, )
is continuous for every £. Once again applying Theorem 2.1 of [4], we obtain that the func-
tion y(t, g) = —38(t, g), 8(t, g)> +1 f(t, g) satisfies (1), (2) and (6). Further

3(4,9)=Re $(d, g) + in(d, g) = f 9069 dutd),

Hence (5) is also satisfied. Property (7) is already contained in Theorem 2.1. This com-
pletes the proof.

3. Factorisable families of positive definite functions
We start with a few definitions and lemmas.

Definstion 3.1. Let (T, S} be a standard Borel space. A function M: §—C is called
a nmonatomic complex valued multiplicative measure if the following conditions hold:
(1) 0< | M(4)| <1 for all A€S; (2) M(D)=1; (3) M(UR,4,)=]I"M(4,) for any se-
quence {4,} of disjoint sets from §; (4) for every single point set {t}, t€ T, M({t})=1.

Throughout the rest of the paper, by a multiplicative measure we shall always mean
a nonatomic complex valued one. We shall now show that every multiplicative measure is

the exponential of an additive measure.



62 K. R. PARTHASARATHY AND K. SCHMIDT

LrmMA 3.1. Let M be a multiplicative measure on (T, S). Then there exists a unique

nonatomic complex valued totally finite measure m such that
M(4)=expm(d4) forall A€S.

Proof. First of all we observe that for any disjoint sequence 4, from §, the infinite
product [[M(4,) converges to M({J 4,) in whatever order we write the sequence and hence
3, | M(4,)—1| <oo. Let

a(d)= sup |M(B)-1]|.
BCA. Bes
Then « is a monotonic countably subadditive function on §. Let 4, be a sequence in §,
decreasing to a single point set {t}, t€T". Then B;=A,{t} decreases to the empty set ¢.
For every ¢, we choose C;< B, — B, ,, such that

| 1- M(Ci)l = OC(Bi - Bi+l) -27

Then 2B = B < 1= M(C)|+1.

Since the C;’s are disjoint the right hand side of the above inequality is finite and there-

fore
lim o(4,) = lim «(B,) < lim kz a(Be— Bis) < lim > |1—M(Cy)|+2- "1 =0.
n—>o0 n—>00 n>0 k=n n-—>00 Kk=n

Thus a(A,) decreases to zero whenever A4, decreases to a single point set. Since (7', §)
is standard we may assume without loss of generality that T is the closed unit interval with
its usual Borel structure. By the discussion above it follows that for every t€T, there
exists a neighbourhood N(¢) of ¢ such that o(N(f)) <}. Using the compactness of 7', we can
select a finite number of neighbourhoods N,, N,, ..., N, such that they cover T and a{N;)
<} for all 5. We write E;=N,— Uj-1 N, and define m by

m(A4)= ‘2 log M(A N E)

where log stands for the principal branch of the logarithm. Clearly m is a measure satis-
fying the conditions of the lemma. The total finiteness of m follows from the fact that the

E s cover T. The uniqueness of m is obvious. This completes the proof of the lemma.

Lemma 3.2. Let X be an arbitrary topological space and K: § x X x X € have the
following properties:
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(1) K(-, z, y) is a multiplicative measure on § for every x,y€X;
(2) K(4, -, ) is a continuous positive definite kernel on X x X for every A€ §.

Then there exists a unique function K': § x X x X —C satisfying the following properties:

(1) K'(-, z,y) s a totally finite nonatomic complex valued measure on § for every x,y€X;

(2) K'(4,-,-) ts a conditionally positive definite kernel on X x X whose real part is
continuous;

(3) K(4, z, y)=exp K'(4, z,y) for all AE€S, z, y€X.

Proof. For every fixed z,4€X, we construct K’ according to Lemma 3.1 so that (1)
and (3') are fulfilled. To prove conditional positive definiteness we consider any r points
%y, oy ..., T, in X and a Borel set 4 in 7. Now choose a sequence of finite measurable par-
titions {4, 1 <k<n} of 4 such that, for all 1 <z, j<r,

lim sup Var K'(4,, %, 2)=0

n—>00 1<k n

where Var stands for variation. Since |¢*—1—z| <322 for all |2] <1, we have

n n
lim |K'(4, x,, z,) — 2 (Ao iy 2) = 11| < lim - 3 [K' (A, @3 25) = B Ay 710 25) +1]

n—>co Nn-—>00

<8 Var K'(4, %, ;) lim sup |K'(4,,, z,;%,)|=0.
( I n»>w0 k i

Properfy (2) of K implies that for all constants a,,a,, ..., @, such that Xi_;a;=0,
2 G K(Ay, ¢, 2,)—1120. Hence 3, ,a,d;K' (4,2, 2;)>0. In other words
K'(4,-,") is conditionally positive definite. Since Re K'(4, «, y)=log | K(4, x, y)]|, it is

automatically continuous. This concludes the proof of the lemma.

Lemma 3.3. Let X be any topological space and K: X x X—~C be a positive definite
kernel such that Re K is continuous. Then K is continuous.

Proof. Let Z(z), x€X be a complex Gaussian stochastic process with mean zero and

covariance function K(z, y). Then

B Z(z)Z(y) = K(z, y).
We have E|Z(x)—Z(y)|? = K (x, z)+ K(y, y) —2 Re K(z, y).

Since K(x, 2) is real for all «, the right side of the above equation is continuous by hypo-
thesis. This implies that Z(x) is mean square continuous in x. Hence K is continuous. This

completes the proof of the lemma.
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We now go back to the group G and recall a definition from [4].

Definition 3.2. A measurable function ¢: G x G— T is called a multiplier if

(1) ole, g9) =0o(g,e) =1 for all g€QG,

(2) 0(91, 9295) (93, 93) = (9192, 95) 0(91, g2) for all gy, g5, g€ G-
A function @: G—C is called o-positive definite for a multiplier ¢ if (1) ®(e) =1; (2) the ker-
nel K(g, h)=®(gh1)a(g, h-1) is positive definite on G x G.

Definition 3.3. A family (o(4,-,-), ®(4,,-)), A€S of multipliers o(4,-,-) on G x G
and o(4, -, -)-positive definite functions ®(4,-) on G is said to be factorisable if (1) for

every g,h€G, o(-, ¢, k) and ®(-,g) are multiplicative measures on §; (é) o(d, g, k)=
a(4,h™, g71) for all A€S, g, REG.

THEOREM 3.1. Let G be a locally compact second countable group and (T, S) be a stan-
dard Borel space. Let {o(4, -, "), ®(4, -), A€ §} be a factorisable family of multipliers o(4, -, -)
on GxG and o(4, -, )-positive definite functions ®(4,-) on G. Then there exists a map
o: S X G~ such that x(A4,-) is a Borel function on G for every A€ S, «(-, g) s a multvplica-

tive measure for every g€Q and
D(A4, ghyo(4, g, hya(A4, g)a(A, h) =exp [$(4, gh) +i8(4, g, k)] for all AES, g, REG, (3.1)
where S is an Araki multiplier and ¢ is an Araki S-function. If 0=1, we can choose x=1
and S=0.
Proof. We consider the function
K(A, g, h) =04, ghY)o(4, g, k).

Then K satisfies all the conditions of Lemma 3.2. Hence there exists a function K'(4, g, k)
satisfying the properties of Lemma 3.2. In particular,

D4, gh V) o(4, g, k1) =exp K'(4, g, k). (3.2)
We now put (4, g) = | (4, 9)| /D4, g),
$(4, 9) =Re K'(4, g, ),
S(4,g9,k)=Im[K'(4,¢, h7Y)—K'(4, g,e)—~K'(4, e, h~1)].

A straightforward computation shows that the identity (3.1) holds good. By property
(2) of Lemma 3.2, ¢(A, g) is continuous in g¢. Since K'(4, g, k) is conditionally positive
definite for fixed 4, K'(4, g, h)—-K'(4, g, ) —K'(4, e, b} is positive definite (cf. Lemma
2.2 in [4]). Since its real part is continuous it follows from Lemma 3.3 that S(4, g, ) is
continuous in g and k. Further (3.2) implies that
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(4, 9) (4, h)

exp iS(4,9,h)= (A, gh)

o(d,g,k) for all A€S,q,RhEG.

§ is an additive measure in 4. The right hand side of the above equation is a multiplica-
tive measure in 4 and multiplier in g, . The uniqueness of the logarithmic measure in
Lemma 3.1 implies that S is an Araki multiplier.

If =1, the function ®(4, gh?) itself satisfies the conditions of Lemma 3.2 and (3.2)
becomes ®(4, gh~')=exp K'(4, g, k). The uniqueness of the logarithm in Lemma 3.1
implies the existence of a function $(4, g) such that K'(4,g,h) = $(4, gh~1) where ¢ is
conditionally positive definite for every A. Further the real part of ¢ is continuous for
every fixed 4. Hence by Lemma 2.2 in [4] and Lemma 3.3, ¢(4, gh~1) —d(4, 9) — (4, 1)
is continuous as a function of g and % for fixed 4. If we take a continuous function
f(g) which vanishes outside a compact set and whose integral over ¢ with respect to a
right invariant Haar measure is unity, it follows that [ [¢(4, gh~1) —¢(4, g) —$(4, b))
f(h)dh is continuous in g. Since [ ¢(4, h~1)f(h)dh is constant and [ $(4, gh~)f(h)dh=
J#(4, 1Y) f(hg)dh is continuous in g it follows that (4, g) is continuous in g for every
AE€S. This completes the proof of the theorem.

4. Factorisable representations of current groups

Let H be a complex separable Hilbert space and U(H) be the group of all unitary ope-
rators with the weak (or equivalently strong) operator topology. Let & be a locally compact
second countable group. A Borel mapping g— W, from & into U(H) is called a multiplier

representation with multiplier o if
WoWo=0(91, 92) W919s,  forall gy, 9,€G, W= 1,

where I is the identity operator in H. W is an ordinary representation if ¢=1. A triplet
(W, %, 6) where W is a multiplier representation with multiplier ¢ and « is a unit vector
in H is called a cyclic multiplier representation if the vectors {W,xr, g€G} span H. Two
multiplier representations W and W in Hilbert spaces H® and H!® respectively are
said to be projectively equivalent if there exists a unitary isomorphism U: H® —H? and
a Borel function a: G— J such that U WOU-1=a(g) WP, If a=1 we shall say that W@
and W® are unifarily equivalent. Two cyclic multiplier representations (W®, x;, o;) and
(W, x,, 5,) are said to be projectively (unitarily) equivalent, if W and W2 are pro-

jectively (unitarily) equivalent and the vectors z; and z, correspond under the equivalence.

Definition 4.1. Let (WW, x,, 0,), =1, 2 be two cyclic multiplier representations act-
ing in Hilbert spaces H;, ¢ =1, 2 respectively. Their convolution denoted by (WX, x;, o7)*
5722908 Acta mathematica 128, Imprimé le 21 Décembre 1971.
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(W2, x,, 05) is the multiplier representation W)@ W® restricted to the ecyclic subspace
generated by 2, ®x, in H; ® H,. The multiplier of the convolution is clearly oy 0,.

Remark. For any cyclic multiplier representation (W, z, o) of , the function (W, z, z)
is called its expectation value. Then it is clear that (W, x, x> is g-positive definite. The ex-
pectation value of the convolution of two eyclic multiplier representations is the product

of the expectation values of the individual multiplier representations.

Definition 4.2. Let (T, S) be a standard Borel space and for every 4 €S, let (W4, x,
o(4,-,)) be a cyclic multiplier representation of G. The family {W4,z,,5(4,,"), A€S}

is said to be factorisable if
(1) for every sequence {4,} of sets in § descending to a single point set,
Lm Wiy, xs >=1,
lim g(4,,9,h)=1

uniformly on the compact sets of G and G x G respectively;
(2) for every A€S and any finite measurable partition of A into sets Ay, 4,, ..., 4,
the cyclic representations (W4, z,, 6(4, -,-)) and (W, 2, 6(dy, -, )% ... %(W4n,

Zan, 6(4,, ", ")) are unitarily equivalent.

Lemma 4.1, Let (T, §) be a standard Borel space, G be connected and {W4, x,, a(4, -, ),
AE€S} be a factorisable family of cyclic multiplier representations of G. Then there exists
another factorisable family {ﬁ”‘, £4,6(4,-,-), AE€S}, such that (1) for each 4, (W4, x,,
o4, -,)) and (ﬁf‘, £4,8(4,-, ) are projectively equivalent, (2) the functions (’I\)(A, g)=
<fV{} £4, &0 are 6(4, -, - )-positive definite for every A, and (3) the family {5(4, -, ), D4, "),
A €S} is factorisable in the sense of Definition 3.3. If 0=1, then we can pus W= 4. Con-
versely, every factorisable family {o(4,-,-), ®(4,-), A€S} yields. a factorisable family
{W4,24,0(4,-,-), AES} by the equation ®(A, g) = Wiy, x,>.

Proof. Suppose {W*4, x4, 0(4,-,-), AES} is factorisable. Let ®(A4, g)=<(Wix,, z,>.
By the argument of Lemma 5.6 in [4], |®(4,-)|? is positive definite and continuous for
every A. We shall now prove that ®(4, ¢g) does not vanish at any point. First of all we note

that

Thus, to prove our claim it is enough to show that ®(T, g) does not vanish anywhere.

| (T, g)|? is continuous and positive definite. The set N ={g: ®(T, g) =0} is an open sub-
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set of G. Let ¢y, g, be any two points in N. Then by Lemma 3.1 the multiplicative meas-

ures (4, g,), =1, 2 are exponentijals of non atomic additive measures. Hence there exists

a sequence of finite measurable partitions {4,,, 1 <k <n} of T such that

lim sup sup [1 - |(D(Ank: gz) l] =0.
k

n—>o00 i=1,2

Hence lim > [1— |04y, g)F]< o0, i=1,2. (4.1)

n—o0 k=1

The positive definiteness and non-negativity of {®(4, g)|* for every 4 and Lemma 3.6 in
[3] imply that
1-|0(4, 1 9)F <2[(1 — | (4, ) ') + 1 = | (4, 9) )]

for every A. Now (4.1) implies

lim z (I—I(D(Ank,glg2)|2)< oo,

n->0 k=1

Henece ,(I)(T, 9192),2=n1_if£ I;Ilq)(Ank: 9192)'2*&

This shows that IV is an open subgroup of ¢ and hence & is closed. Since G is connected,

N =(. This proves the claim. We now put

AA — ,(foA,ZAM

4
s TR s

Changing ¢(4, -, -) accordingly into (4, -, -) and putting £, =z,, we get another factoris-
able family {V’I\’A, £4, 6(4,-,-)}, which, by the Remark after Definition 4.1, satisfies all
the required properties. For ¢=1 the result is obvious. The converse follows from the one
to one correspondence between o-positive definite functions and eyclic multiplier repre-
sentations with multiplier ¢ (up to unitary equivalence). This completes the proof of the

lemma,

COROLLARY 4.1, Let {W*, x4, 0(4,-,"), A€S} be a factorisable family of cyclic mul-
tiplier representations of a connected locally compact second countable group G. Then there
exists another factorisable family {WA, £y,0(4,-,-), AES} such that (1) for each A, (W4,

24 06(A,-,)) and (ﬁ"“, £4,6(4,,+)) are projectively equivalent; (2) there exists an Araki
multiplier 8(4,-,-) and an Araki S-function (A4, ) such that

(WE % 484> =exp $(4,9)

6(A, g,h) =exp @S(Auq, k)
for all A€S, g,h€QG.
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Proof. Define W4 and ¢ 4 a8 in Lemma 4.1. An application of Theorem 3.1 gives the
result.

Consider the standard Borel space (7', §) and the group G. Let F(T, G) be the group
of all measurable maps y: T-@ which take only finitely many values. F(7', @) is con-
sidered as a group under pointwise multiplication with identity é&. We shall call it the
weak current group of G over 7. For any A €S, we shall denote by F(4, &) the subgroup
of all maps ¢ which are equal to e outside 4. For any measurable partition 4, 4,, ..., 4,
of 4, F(4, G)=]1¢ F(A4,, G) in the sense of direct products. We further define a homo-
morphism n,: F(T, G)~ F(A, G) by the equation

(mayp)(t)=y(t) ift€A,
=e otherwise.

Finally we introduce the functions 4, A€§, g€@G by

yit)y=g ift€A,
=¢ iftEA.

Then any function y € F(T, G) can be written as a product [ i y5¢ where {4,, 1<i<n}
is a measurable partition of 7'

Suppose {W4, x4, 0(4,-,*), AES} is a factorisable family of representations of G.
For any two elements y,, v, € F(T, G) we write

6('}’1: 72) =H O'(Ai N B, 91 k])

where y; =TT x5s va=111a xﬁ; Then it is easy to verify that & is a multiplier for the
group F(T, ). If now we define

¥(y)=

P

< Wg;‘ xAp xA;>

whenever y =[], xﬁ:, then W is a §-positive definite function on F(T, (). Hence there

exists a cyclic multiplier representation (I/f/', Z, &) for the group F(7T, &). Further W has

the property .
(W, %, &) ={W§xax,> forall A€S,9€G.
(4

This leads us to the following natural definition:

Definition 4.3. Let F(T, Q) be the weak current group of G over T. A cyclic multiplier
representation (W, %, §) is said to be factorisable if the maps g— W where W; = W A
7
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and the functions o(4, g, k) =6(y5, x4) have the property that (W4, &, o(4, -, )) is a fac-
torisable family of representations of G.

With this definition and Theorem 3.1 we now have the following theorem.

TureoreEM 4.1. Let G be o connected, locally compact and second countable group. Let
(T, S) be a standard Borel space and let F(T, Q) the weak current group of G over T. Let
(W, %, &) be a factorisable cyclic multiplier representation of F(T, G) in a complex separable
Hilbert space H. Then there exists a projectively equivalent factorisable representation (W’,
&', 8") such that for every A€S, g, h€G

(W@, &) o'(4,9,h) =exp [$(4, gh) +i8(4,9, k)] (4.2)
where Wit =W,a, o(A4,9,0)=504,14),
7

8 is an Araki multiplier and ¢ is an Araki S-function.

Conversely, given an Araki multiplier S and an Araki S-function ¢ one can construct a
factorisable representation (W’, Z',6) of F(T, Q) satisfying the above equations. For the con-
verse to hold, G need not be connected.

If 6=1, we can replace projective equivalence by unitary equivalence, choose &' =1,
S8=0 and ¢ to be an Araki function.

Remark 1. The above theorem together with Theorems 2.1 and 2.2 gives a complete
description of all factorisable multiplier representations of weak current groups when ¢

is connected.

Remark 2. 1f we consider the Araki multiplier S and the Araki S-function ¢ satisfying
(4.2) and use Theorem 2.1 we obtain a measure x4 on (7, §), representations V* of G in
Hilbert spaces H, and cocycles 8(f, -) connected with the pair (8, ¢). If we write for any
y€F(T, G),

A(y)={d(t, y(t)), tET}€ fH sdu(t),

U4, g) - f La®)V (0, 9) dult),

n
Uy = I—_Il U4, 9:),
whenever y =[], xZ¢, we obtain

Uy: A('}’z) = A('}’l 7’2) - A('}ﬁ)-

In other words y — U, is a unitary (ordinary) representation of F(T, G) and A is a cocycle
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for this representation. This cocyele determines the factorisable representation of F(T', &)
associated with the pair (4, ¢).

Remark 3. The identification y—A(y), where A is the cocycle described in Remark 2,
defines a metric d in F(T, ) by the equation

¥
d(ys, ya) = U“a(t, Ya(t)) — 88, vo() [ dﬂ(t)] .

We call the completion of F(T, &) under this metric the full current group of G over T
and denote it by I'(7, G). It is clear that the factorisable representation of F(7T', G) as-
sociated with A extends uniquely to a continuous representation of I'(7, @). Then the

extended map y—A(y) is a continuous cocycle on I'(7, G).

Remark 4. Suppose (ﬁ/, %, 6) is a factorisable representation of F(T, () and (8, ¢)
the associated pair of Araki multiplier and Araki S-function.
For any y =[], %5, where {4,,1<i<n} is a partition of T, we define

3= S $(4o ).

If p,=1T1%5; and y,=[T1 247 where {4,,1<i<m} and (B, 1 <j<n} are partitions of

T, we define

~

S(y1s y2) = ;’:S(Ai N By, g:, by).

Let A be the cocycle defined in Remark 2. gZ is a conditionally S-positive definite function
on F(T, G). q;, S and A have natural extensions to the complete current group. Let H =
§ H,du(t) be the Hilbert space where the representation y - U, and the cocycle A are de-

fined. We construct the symmetric Fock space exp H over H. We write
a(y) = [exp $(y)] exp A(y~).
By Theorem 2.1 and the definition of A,
Ao, Mya> = (i ya) = ¢ () = $(ya) + 8T ).
Then Cayy), @) =exp $lyr ") +i8(yy, pi")-

‘We define the map
W, :2(y) > z(ypi?) exp iS(y, yiY).
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This is an isometry on the set {z(y), y € F(T, G)}. Hence it can be extended to a unitary
operator on the closed linear span H of this set. Then,

W, W, =exp[— i‘§(7’1’ Y2 IWov,

(W, %(8), (8)> = exp $(y),

where ¢ is the identity element of F(T, G). If we change the inner product in I to its con-
jugate, we get a factorisable multiplier representation associated with the pair (S, ¢).
This is the Araki-Woods imbedding theorem (cf. [2] and [5]).
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