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1. In~oduef ion  

In  order to study the current commutation relations of quantum field theory, Araki 

and Woods [2] and Araki [1] introduced the notion of current groups and factorisable 

representations of such groups. Araki and Woods [2] and Streater [5] estabhshed that  

such representations admit a natural imbedding in a symmetric Fock space exp H over a 

Itflbert space H. If  G is a locally compact group, then a suitable space of Borel functions 

on a Borel space with values in G is made into a group under pointwise multiphcation. 

This is called a current group of G. Araki [1] established that  the factorisable representa- 

tions of the current group are based on certain coeycle valued measures. In  this paper we 

show the existence of a measure on the Borel space over which the current group is con- 

structed, relative to which a coeycle valued density exists. This yields a certain natural 

topology for the current group under which the faetorisable representation is continuous. 

In  order to take into account all the coeycles of first order in the construction of fae, 

torisable representations it turns out that  projective representations should also be con- 

sidered. Finally, the Araki-Woods imbedding is expheitly constructed in terms of the co- 

cycles. At this stage it may  be worth remarking that our methods differ very much from 

that  of Araki and Woods. We rely more on measure theory and not at all on lattice theory. 

2. Araki  functions 

Throughout this paper H with or without suffixes will always stand for a complex 

separable Hilbert space with inner product <., �9 >. Let G be a fixed locally compact second 

countable group with identity element e. By a representation of G in H we shall always 

mean a continuous homomorphism of G into the group ~/(H) of unitary operators on H 

(1) The present research was done at the University of Manchester, England. 



54 K .  R .  P A R T H A S A R A T H Y  A N D  K .  S C H M I D T  

with the weak (or equivalently strong) operator topology. R, C and ff will always stand 

for the additive group of real numbers, the additive group of complex numbers and the 

multiplicative group of complex numbers of modulus unity. 

We recall a few definitions from [4]. 

De]inition 2.1. A continuous function 8: G • G ~ R  is called an additive multiplier 

if the following conditions hold: 

(1) s(e, g) =s(g, e) = 0  for all gEG 

(2) s(gl, g2) +s(gff', g~-l) = 0 for all gl, g2 EG 

(3) s(glg ~, g3) +8(91, g~) = s(gl, g~ga) + s(g~, ga)- 

An additive multiplier is called trivial if there exists a measurable function a: G ~  R, such 

tha t  
s(g, h) = a (gh) -a (g) -a (h )  for all g, hEG. 

Two additive multipliers are called equivalent if their difference is trivial. 

De]inition 2.2. Let X be any set. A function K: X • X-~C is called a positive de/inite 

kernel if, for every positive integer n and every choice of elements xl, x~ ..... x n in X and 

complex numbers a l ,  a.z, . . . ,  a n ,  

a~dj K(x,, xj) >~ O. (2.1) 

K is said to be conditionally positive definite if (2.1) holds whenever E~a~ =0.  A continuous 

function r G-+C is called positive de/inite if the kernel K(g, h)=r -1) is positive definite 

on G • G and r  1. I f  s is an additive multiplier on G • G, then r is said to be condi- 

tionally a-positive de/inite if r  and the kernel K(g, h)=r -1) +is(g, h -1) is condi- 

tionally positive definite. In  the special case when 8--0, we say tha t  r is conditionally 

positive de/inite. 

In  order to s tudy factorisable projective representations of current groups, we have 

to make a detailed analysis of additive multiplier valued measures and conditionally posi- 

t ive definite function valued measures. To this end we introduce the following definitions 

inspired by  the work of Araki [1]. 

Definition 2.3. Let  (T, $) be a standard Borel space. A function S: $ • G • G ~ R  is 

called an Araki multiplier if the following conditions hold: 

(1) for every fixed (gi, gs) EG x G, S( . ,  gl, gs) is a totally finite signed measure on $; 

(2) for every fixed A E S, the function S(A, . , .  ) is an additive multiplier on G • G. 
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For a given Araki multiplier S, a function r S x G-->C is called an Araki S-/unction 

if the following conditions hold: 

(1) for every fixed g EG, 6 ( ' ,  g) is a totally finite complex valued measure on S; 

(2) for every fixed A E $, r  ) is a conditionally S(A , . , .  )-positive definite function 

on G. 

I f  S - 0 ,  an Araki S-function will be simply called an Araki/unction. 

We choose and fix a standard Borel space (T, S) and a pair (S, r of an Araki multi- 

plier and an Araki S-function. We now define a kernel Kr on the space (S x G) x (S • G) 

by  the equation 

K r 1 6 2  gh-~) -r  g ) - r  h-1)+iS(ANB,  g,h -~) (2.2) 

for all A, B E S and g, h E G. We shall analyse the properties of ~ by studying the kernel Kr 

LEM~A 2.1. The kernel Kr defined by (2.2) is positive definite in the space ($ • G) • 

(SxG). 

Proo/. Let  A1, A 2 ..... A~ E S, gl, g2, �9 .... g~ EG and al, as . . . .  , a~ be n complex numbers. 

Let  B1, B 2 ..... B~ be the atoms of the ring generated by  A1, A S .. . .  , A~. Let  

I if BkcA~ 

g(i, k) = 0, otherwise, i = 1, 2 . . . . .  n, k--  1, 2 . . . . .  m. 

Then equation (2.2) and an easy computation show tha t  

n 
t~la, SjK,(A~, g,; Aj, gj) = k=l ~ {t,i=l ~ ai Z(i, k) atZ(], k) [6(Bk, ~i ~;1) _ r ' ~) 

- r g~~) + iS(B k, g~, gig)I}. (2.3) 

Since r is an Araki S-function, for every fixed BE $, the kernel r gh -1) is conditionally 

S(B, . ,  .)-positive definite on G • G. Hence by  corollary 1 to Lemma 2.2 of [4], the kernel 

r gh -1) - r  g) - r  h -1) +iS(B, g, h -1) is positive definite on G • G. This shows 

tha t  every term within the curly brackets in (2.3) is non-negative. Hence Kr is positive 

definite. This completes the proof of the lemma. 

LEM~A 2.2. Let r be an Araki S-/unction. Then there exists a Hilbert space H spanned 

by vectors Y(A, g, h), A e S, g, h e G such that the inner product ( . , . )  satisfies the equation 
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(:Y(A, gl, hi), Y(B, g~, h~)) = r N B, h~ 1 gl g~ h~) - r O B, h~ ~ gl g~l) 

- r O B, g~g~ h2) + r n B, gl g~l) + i [S(A N B, h;lg~ g~l h2 ) (2.4) 

- S(A O B, qlg~ ~, h~)] 

/or all A ,B  E$, gl, g2,hl, h2e G. 

Proo/. By Lemma 2.1 and Kolmogorov's  theorem on stochastic processes, we can 

consider Kr as the eovariance function of a certain complex Gaussian stochastic process 

Z(A, g) with mean zero and " t ime variable" (A, g)E$ • G. In  the standard notation of 

probabil i ty theory, 
EX(A,  g) =0 for all AE$ ,  haG, 

EX(A,  g)X(B, h) =Kr g, B, h) for all A, B e $ ,  and g, hEG. 

We now write Y(A, g, h) = X(A, h-lg) - X ( A ,  g). (2.5) 

A straightforward computation now shows tha t  E Y(A, gl, hi) Y(A, g2, h2) is precisely the 

right hand side of (2.4). I f  H is defined as the expected mean square completion of the 

linear span of the random variables Y(A, g, h), A ~ $, g, heG, and the inner product is de- 

fined by  covariance, H becomes a Hilbert  space. The separability of H is an immediate  

consequence of the fact tha t  $ is countably generated, G is second countable and r is an 

AraM S-function. This completes the proof of the lemma. 

Given an AraM S-function, we construct the Hilbert  space H according to Lemma 2.2 

and denote by  H(A) the closed linear span of all the elements Y(A, g, h) as g and h vary  

over G. Let  P(A) be the projection onto the subspace H(A). With these notations we have 

the following lemma: 

L E P T A  2.3. The map A~P(A)  is a projection valued measure on (T, $). Further 

P(A)Y(B ,g ,h )=  Y(ANB,  g,h) for A, BE$,g,  hEG. (2.6) 

Proo/. Formula (2.4) implies tha t  Y(A, gl, hi) and Y(B, g~, h~) are orthogonal as soon 

as A and B are disjoint. Hence H(A) and H(B) are orthogonal whenever A and B are 

disjoint. Since r is an Araki S-function, (2.4) also implies tha t  for a sequence of disjoint 

sets A1, As ..... E $, 

IIr(U,A,,g,h)- r(A,,g,h)ll =0. 
| ~ 1  

This implies tha t  H( [.J~Ai)= G~H(A~). Hence P ( . ) i s  a projection valued measure. Since 

Y(B, g, h) = Y(B N A, g, h) + Y(B N A', g, h) where A'  is the complement of A, (2.6) is 

proved. This completes the proof of the lamina. 
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In  the Hilbert  space H defined by  Lemma 2.2, we define the map Ug for gEG by  

the equation 
Ug, Y(A, g, h) = Y(A, ggfl, h) (2.7) 

for all A E S, 91, g, h E G. Formula (2.4) implies tha t  Ug 1 is a well defined isometry on the 

set of all elements /z(A, g, h), A E $, g, h GIG. Hence Ug, can be extended to an isometry on 

H.  Since the range of U~, is everywhere dense it  follows tha t  Ugl is a unitary operator for 

every gl. Further  Ug, Ug, = U~, ~, for all gx, g~ E G. Since r is an Araki S-function, the map 

g-+ Ug is weaMy continuous and hence a uni tary representation. Further,  (2.6) and (2.7) 

imply that  

U,, P(A) Y(B, g, h) = Y(A N B, gg~l, h) = P(A) Vg, Y(B, g, h). (2.8) 

We shall write P(A) UgP(A) = U(A, g) for all gEG, A E $. (2.9) 

Equations (2.8) and (2.9) imply tha t  Ug and P(A) commute for all g E G and A E S. Further  

U(A, g) vanishes on H(A') and restricted to the subspace H(A) yields a unitary represen- 

tat ion for the group G. We also observe tha t  U(T, g) = U o. Further  

U(A, gl) Y(B, g, h) = Y(A N B, ggfl, h). (2.10) 

We now write ~(A, h) = Y(A, e, h). (2.11) 

Then (2.5), (2.10) and (2.11) imply tha t  

U(A, g)~(A, h)=5(A, gh)-~(A, h). (2.12) 

In  other words on the subspace H(A), the map g~U(A,  g) is a representation and 

g--->(~(A, g) is a cocycle of the first order for tha t  representation. In  this context we refer 

to [1] and [4]. Fur ther  ~(A, g) satisfies the equation 

P(B)~(A, g) = ~(A ~ B, g). (2.13) 

For  any  measure/x on (T, $) and any  finite or countable cardinal n, we shall denote 

by  L2(Iz, n) the direct sum of n copies of the Hilbert  space L2(#). In  the notation of direct 

integrals of Hilbert  spaces, we may  write 

L~(~, n) = f c  ~ d~ 

where C ~ is the n dimensional complex Hilbert  space if n is finite and the space of square 

summable sequences if n is infinite. I f  now we apply the Hahn-Hellinger theorem for the 

projection valued measure P(A), we m a y  assume that  
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H = | I C ~ d # ~  
nffi o o , l . e  . . .  J 

w h e r e / ~  are mutual ly  orthogonal measures with disjoint supports B~ such tha t  Z#~ is a 

totally finite measure and P(A) is simply multiplication by  the indicator function g~ of 

the set A. Since Ug and P(A) commute for all gEG and A E S, we may  by  a standard ap- 

plication of a result of Von Neumann and Fubini 's Theorem assume tha t  Ug restricted to 

~C~d/~n is multiplication by  an n-dimensional matr ix  Vn(t, g), t E T  and for every fixed t 

and n, g ~  V~(t, g) is an n-dimensional uni tary representation of G. A similar application 

of Fubini 's theorem and an argument  similar to the one in the proof of Theorem 3.1 in [4] 

yield the equation ~(A, g) =]~, ~A ~(t ,  g)d/~n where ~(t ,  g) is a continuous cocycle for the 

representation g-+V~(t, g). We now write #=E~/~ . ,  H t = C  ~, V(t, g) = V~(t, g) whenever t 

belongs to the support  B~ of ~un. Then we have in the notation of direct sum of t I i lbert  

spaces, 

H = rHode<t), 

U(A, g) = fZA(t) V(t, g) d#(t), 

5(A, g) = f )~a(t) 8(t, g) d#(t), 

P(A)  = f gA(t) It d#(t), 

where I t  is the identi ty operator in Hr. Further  5(t, g) is a eocycle for V(t, g). We can now 

summarise all our discussion in the form of a theorem. 

T ~ O R E M  2.1. Let G be a locally compact second countable group and ( T, S) a standard 

Borel space. Let/urther (S, r be a pair consisting o /an  Aralci multiplier S on S • G • G and 

an Aralci S-/unction ~ on S • G. Then there exists a complex separable Hilbert space H, a 

projection valued measure A->P(A ) on $, a continuous unitary representation g-> Ug o/ G in 

H and a continuous/unction q-->~(g) on G with values in H satis/ying the following conditions: 

(a) Ug(~(h)=~(gh)-~(g) /or all g, bEG; 

(b) The subspaces H(A )=P(A  ) (H) are invariant under all the Ug; 

(c) For every A E S, g, hi, h2 E G, 

(P(A  ) Ug (~(hl), (~(h2)} = r h; 1 g-l h2) - r  -1) - r g-~ he) 

+ r g-~) + i[S(A, h~lg -z, he) - S(A, g-l, he)]" (2.14) 
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Further the Hilbert space H can be written as a direct integral ~ Htd#(t ) o/Hilbert spaces H t 

with respect to a totally finite measure # on S, where the/amily {Ht, t E T)  satisfies the/ollow- 

ing: 

(a') For every t, there exists a unitary representation g ~ V(t, g) o/ G in H t such that 

Ug=~V(t, g)d#(t); 

(b') The projection valued measure A-*P(A) is given by 

P(A) = fzA(t)Itd#(t)  

where I t is the identity operator in Ht; 

(c') For every t, there exists a continuaws map g-~e}(t, g)/rom G into H t such that 

V(t, g)6(t, h) =~(t, gh)-~(t, g) for all g, bEG (2.15) 

and 5(g) = f ~(t, g)d#(t) for all gEG. 

The measure lu satis/ying (a'), (b'), (c') and (a), (b), (c) is determined uniquely upto 

equivalence. The map t ~ ( V (t, . ), r )) is determined upto unitary equivalence a.e.(#). 

Conversely given a totally finite measure ~ and a triplet (Ht, V(t, " ), ~(t, . ))/or every t such 

that (2.15) is/ulfiUed and the direct integrals ~ gtd/~(t), ~ V(t, . )d/~(t) and ~ ~(t, . )d/~(t) are 

well defined, there exists a pair (S, r consisting o /an  AraI~i multiplier S and an Araki S- 

/unction r such that the triple (U~, P(A), 8) defined by (a'), (b'), (c') satisfies (a), (b) and (c). 

I / S ' ,  r is another pair satisfying the same properties then S ' (A , . ,  . ) - S ( A , . ,  .) is a 

trivial additive multiplier/or every fixed A e S and Re r = Re r 

Proo/. The only part  that  remains to be proved is the converse. This follows by  

a straightforward calculation if we put  r g)=-�89 8(g)) and S(A, g, h)=  

Im (P(A)(~(g-1), e}(h)) and observe that  Im (8(t, g-l), ~(t, h)) is an additive multiplier for 

every t E T. (See [4], Theorem 2.1). This completes the proof of the theorem. 

In the case S = 0, the statement of Theorem 2.1 is considerably simplified and something 

more can be said about an Araki function. In fact we have the following theorem. 

T~EORWM 2.2. Let G be a locally compact second countable group and (T, S) be a stan- 

dard Borel space. Suppose that r is an Araki /unction on S • G. Then there exist maps ~: 

T • G~C and 4: S • G--->R such that the/ollowing properties are satisfied: 

(1) For every fixed tE T, ~(t, . ) is a conditionally positive definite continous /unction on G; 

(2) For every fixed gEG, ~(.,  g) is a measurable/unction on T; 
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(3) .For every fixed A, ~(A, . ) is a continuous homomorphism o/ G into the real line; 

(4) _For every fixed g, ~(., g) is a totally finite countably additive/unction on $; 

(5) _For all A ES and gEG, r g) - i~(A ,  g)=SA y~(t, g)d/~(t) /or some totally finite 

measure/~ on S; 

(6) There exists a /ami ly  o/ Hilbert spaces H~, t E T, unitary representations g--* V(t, g) 

o/ G in Ht and cocycles g--->~(t, g) /or the representation V(t, .) such that the Hilbert 

space g = ~  Htd#(t ) and the direct integrals ~ V(t, .)d#(t) and ~(~(t,.)d#(t)are all 

defined, and/or all t E T, A E S, gl, g~ E G, 

~,(t, gigs) -~,( t ,  g~) -y , ( t ,  g2) = (,~(t, g-l) ,  (~(t, g~)); 

(7) The measure # is unique upto equivalence and the triple [Ht, V(t,. ), (5(t,.)] is deter. 

mined upto unitary equivalence/or almost all t(/~). 

.Proo/. Putting S =0  in (2.14), P(A)(~(g) =~(A, g), we obtain from property (c) of Theo- 

rem 2.1, 
(6(A, g;~), 6(A, g~)) = r glg2) - r  gl) - r  g~). 

We then construct/~, Ht, V(t, �9 ) and (5(t, �9 ) according to the same theorem. Then we have 

~(A, g) = ~ ( t ,  g) d~(t) 
JA 

and r (A, gl g2) - r (A, gl) - r g2) = fA <(~(t, g~-l), (~(t, g2)> d~(t). (2.16) 

Since r e)=0 and r g-l) =r g), it follows that  

r g) = - � 8 9  r g), ~(t, g)~ d~(t). Re 
J A  

We write o~(A, g) = Im r g), (2.17) 

and ~(A, g) = $(A, g) +v(A, g), 

where for each fixed g, ~(-, g) and ~(-, g) are the singular and absolutely continuous parts 

of a( . ,  g) with respect to the measure/~. Now suppose that  g~ and g~ are any two elements 

fixed in G. Let  C c T be a set such that  

~(B, gl) - ~(B, g~) -- ~(B, glg~) = 0 

for all Borel sets B c  C, and ~u(C')=0. Then by (2.16) and (2.17), 
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$(A,gl 9'2)- ~(A,g~)-  ~(A, g2)= ~(A N C', ~1 ~2)- ~(A N C', g~) -  ~(A A C' t g2) 

= Im JAfnc, <&(t, gi-1), &(t~ g2)> d/~(t) = 0. 

In  other words ~(A,. ) is a homomorphism from G into R. Since ~](A, g) is measurable in 

g, it follows tha t  ~(A, �9 ) is measurable. Hence it is ~ continuous homomorphism for every 

fixed A. Now write 

r g) = r g)-i~(A, g). 

Then ~ is also an Araki function which satisfies the equation (2.16) and Re ~ = R e  ~. 

Since ~1(', g) is absolutely continuous with respect to/~, we can construct the Radon- 

, ,  , dr(' ,  g) 
Nykodym de r iva t ive / t ' ,  g )=  ~ ~) �9 Then we have from (2.16) and the uniqueness of the 

Radon-Nykodym derivative 

I m  <~(t, g~l), (~(t, g2)> =/( t ,  g ig2)- / ( t ,  g l ) - / ( t ,  g2) a.e. t[#], 

for every gl, g2 E G. By Theorem 2.1 of [4] we know tha t  the left hand side is an additive 

multiplier for every t. By  applying Fubini 's theorem and using the fact tha t  Haar  measur.  

able representations are continuous, we can without loss of generality assume tha t  fit,.) 
is continuous for every t. Once again applying Theorem 2.1 of [4], we obtain tha t  the rune. 

tion ~(t, g) = -�89 g), (~(t, g)> +i[(t, g) satisfies (1), (2) and (6). Further  

(A, 9) = Re ~(A, g) + iTl( A, g) = f ,4v2(t, g) d#(t). 

Hence (5) is also satisfied. Proper ty  (7) is already contained in Theorem 2.1. This com- 

pletes the proof. 

3. Factorisable families of  positive definite functions 

We star t  with a few definitions and lemmas. 

Definition 3.1. Let  (T, $) be a standard Bore1 space. A function M: S-+C is called 

a nonatomic complex valued multiplicative measure if the following conditions hold: 

(1) 0 <  ]M(A)[ ~<1 for all AES; (2) M ( O ) = I ;  (3) M(U~=IA~)=X-I~M(A~) for any se- 

quence {An} of disjoint sets from $; (4) for every single point set {t}, t E T, M({t})= 1. 

Throughout the rest of the paper, by  a multiplicative measure we shall always mean 

a nonatomic complex valued one. We shall now show that  every multiplieative measure is 

the exponential of an additive measure. 
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L~M~A 3.1. Let M be a multiplicative measure on (T, S). Then there exists a unique 

nonatomic complex valued totally/inite measure m such that 

M(A) = exp m(A) for all A E S. 

Proo/. First of all we observe tha t  for any disjoint sequence A= from S, the infinite 

product riM(An) converges to M(UAn)  in whatever order we write the sequence and hence 

Z = I M(A~) - 11 < oo. Let  
~(A)= sup [ M ( B ) -  11. 

BCA.  Be$ 

Then ~ is a monotonic countably subadditive function on S. Let  A n be a sequence in S, 

decreasing to a single point set {t}, tE T. Then B~=A~-{ t}  decreases to the empty  set r 

For  every i, we choose C~= Bt-B~+ 1 such tha t  

] 1 - M ( C ~ )  [ /> a ( B ~  - B ~ + I )  - 2 - ~ .  

Then 
oo oo 

, ~ I ~ ( B , -  B,+I) ~< ,=~1[ 1 - M(C,)I + 1. 

Since the C~ 's are disjoint the right hand side of the above inequality is finite and there- 

fore 

lim ~(An) = lira ~(B~) ~< lim ~ ~(Bk-- Bk+l) ~< lira ~ [ 1 -- M(Ck) I + 2 -"+1 = 0. 
n--~OO n-~O0 n--I*OO k m n  n--~oo ICon 

Thus ~(An) decreases to zero whenever A~ decreases to a single point set. Since (T, S) 

is standard we may  assume without loss of generality tha t  T is the closed unit interval with 

its usual Borel structure. By the discussion above it follows tha t  for every t E T, there 

exists a neighbourhood N(t) of t such tha t  o~(N(t))<�89 Using the compactness of T, we can 

select a finite number  of neighbourhoods N1, N2 ..... Nk such tha t  they cover T and ~(N~) 

<�89 for all i. We write Ei=--N~ ~-1 - LIj=I Nj  and define m by  

k 

re(A) = ~ log M(A N E,) 
t - 1  

where log stands for the principal branch of the logarithm. Clearly m is a measure satis- 

fying the conditions of the lemma. The total  finiteness of m follows from the fact  tha t  the 

E~'s cover T. The uniqueness of m is obvious. This completes the proof of the lemma. 

LEMMA 3.2, Let X be an arbitrary topological space and K: S •  have the 

]ollowing properties: 



: F A C T O R I S A B L E  R E P R E S E N T A T I O N S  O F  C U R R E N T  G R O U F S  63 

(1) K( - ,  x, y) is a multiplicative measure on $/or  every x, y E X; 

(2) K(A, . , .  ) is a continuous positive definite kernel on X • X / o r  every A E $. 

Then there exists a unique ]unction K'  : S • X • X ~C satis]ying the ]ollowing properties: 

(1') K'( . ,  x, y) is a totally finite nonatomic complex valued measure on $/or every x, y E X ; 

(2') K'(A, . , .  ) is a conditionally positive definite kernel on X • X whose real part is 

continuous; 

(3') K(A, x, y) = e x p  K'(A, x, y) /or  all A s  x, y e X .  

Proo]. For  every  fixed x, yEX,  we construct  K' according to L e m m a  3.1 so t h a t  (1') 

and  (3') are ftilfilled. To prove  condit ional posit ive definiteness we consider any  r points  

x 1, x 2 . . . . .  xr in X and a Borel set A in T. Now choose a sequence of finite measurable  par-  

t i t ions (A~k, 1 < k < n }  of A such tha t ,  for all 1 < i ,  j < r ,  

l im sup Var K ' ( A . k  , x,, xj) = 0 

where Var  s tands  for  variat ion.  Since l e z -  1 - x I < 3x~ for  all Ix I < 1, we have  

l i m l K ' ( A , x ,  x j ) -  [K(A~k,x~,xr lira [K'(An~,x~,xj)-K(Ank, x~,xj)+l I 
n--~ ~r k = l  n - - ~  ~1 

~< 3 Var  K'(A,  x,, xj) t im sup ]K'(A~k, x, x~)] = 0. 

P rope r ty  (2) of K implies t h a t  for all constants  ax, a~ . . . . .  ar such t h a t  ZI=I a~=O, 

•t.j.k a~5~[K(Ank, x~, xj) - 1]/> 0. Hence  Y'k. j at 5~ K '  (A, x~, xj)/> 0. I n  other  words 

K '  (A, . , .  ) is condit ionally posit ive definite. Since R e  K'(A, x, y ) =  log I K(A,  x, y)] ,  i t  is 

au tomat ica l ly  continuous. This concludes the  proof  of the  lemma.  

L:~MMA 3.3. Let X be any topological space and K: X • X ~ C  be a positive definite 

kernel such that Re K is continuous. Then K is continuous. 

Proo/. Le t  Z(x), x E X be a complex Gaussian stochast ic  process wi th  m e a n  zero and  

eovariance funct ion K(x, y). Then  

E Z(x)Z(y) = K(x, y). 

We have  E [Z(x) -Z(y )  12 = K(x, x) + K(y, y) - 2 Re  K(x, y). 

Since K(x, x) is real for all x, the  r ight  side of the  above  equat ion  is cont inuous b y  hypo-  

thesis. This implies t h a t  Z(x) is mean  square continuous in x. Hence  K is continuous. This  

completes  the  proof  of the  lemma.  
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We now go back to the group G and recall a definition from [4]. 

Definition 3.2. A measurable function a: G • G-~ • is called a multiplier if 

(1) a(e, g) =a(g, e) = 1 for all gEG, 

(2) a(gl, g~g3) a(g2, g3) ~(l(glg2, ga) (l(gl, gg.) for all gl, g~, g3 E G. 

A function (I): G-+C is called (~-positive definite for a multiplier a if (1) (I)(e) = 1; (2) the ker- 

nel K(g, h)=aP(gh-1)a(g, h -1) is positive definite on G • G. 

Definition 3.3. A family (a(A, -,-), (I)(A, -,- )), A E S of multipliers a(A, - , .  ) on G • G 

and a(A,. ,-)-posit ive definite functions (I)(A,.) on G is said to be factorisable if (1) for 

every g, hEG, (~(., g, h) and ap(., g) are multiplicative measures on S; {2) a(A, g, h )=  

5(A, h-l, g-l) for all AES,  g, bEG. 

TH~ORV.~I 3.1. Let G be a locally compact second countable group and (T, S) be a stan- 

dard Borel space. Let (a(A, . , .  ), ap(A, . ), A e S) be a/actorisable/amily o/ multipliers (~(A, . , .  ) 

on G • G and (I(A,., .)-positive definite /unctions ap(A,. ) on G. Then there exists a map 

o~: S • G---> ff such that ~(A,. ) is a Borel /unction on G/or every A E S, ~( ", g) is a multiplica. 

rive measure/or every g E G and 

ap(A, gh)~(A, g, h)o~(A, g)a(A, h) = e x p  [r gh)+iS(A, g, h)] /or all A e $ ,  g, beG, (3.1) 

where S is an Aralci multiplier and r is an Aralci S-/unction. I /a- - - l ,  we can choose ~--1 

and S---O. 

Proo/. We consider the function 

K(A, g, h) = (I)(A, gh-~)a(A, g, h-~). 

Then K satisfies all the conditions of Lemma 3.2. Hence there exists a function K'(A, g, h) 

satisfying the properties of Lemma 3.2. In  particular, 

ag(A, gh-1)a(A, g, h -1) = exp K'(A,  g, h). (3.2) 

We now put ~(A, g) = [ (I)(A, g)]/ap(A, g), 

r g) = Re K'(A, g, e), 

S(A, g, h) = Im [K'(A, g, h -~) - K ' ( A ,  g, e) - K ' ( A ,  e, h-~)]. 

A straightforward computation shows that  the identity (3.1) holds good. By property 

(2') of Lemma 3.2, r g) is continuous in g. Since K'(A, g, h) is conditionally positive 

definite for fixed A, K'(A, g, h ) - K ' ( A ,  g, e ) - K ' ( A ,  e, h) is positive definite (cf. Lemma 

2.2 in [4]). Since its real part  is continuous it follows from Lemma 3.3 that  S(A, g, h) is 

continuous in g and h. Further (3.2) implies that  
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exp iS(A, g, h) = a(A, g) ~(A, h) a(A, g, h) 
~(A, gh) 

for all A ES, g, hEG. 

S is an additive measure in A. The right hand side of the above equation is a multiplica- 

t i re  measure in A and multiplier in g, h. The uniqueness of the logarithmic measure in 

Lemma 3.1 implies tha t  S is an Araki multiplier. 

If  a-= 1, the function r gh -1) itself satisfies the conditions of Lemma 3.2 and (3.2) 

becomes (I)(A, gh-1)=exp K'(A, g, h). The uniqueness of the logarithm in Lemma 3.1 

implies the existence of a function r  such tha t  K'(A,g,h)=r gh -1) where r is 

conditionally positive definite for every A. Fur ther  the real par t  of r is continuous for 

every fixed A. Hence by  Lemma 2.2 in [4] and Lemma 3.3, r gh -1) - r  - r  -a) 

is continuous as a function of g and h for fixed A. If  we take a continuous function 

](g) which vanishes outside a compact set and whose integral over G with respect to a 

right invariant  Haar  measure is unity, it follows tha t  ~ [r gh -1) - r  g) - r  h-l)] 

](h)dh is continuous in g. Since ~ r h-~)/(h)dh is constant and ~ r gh-~)/(h)dh = 
~r h-1)/(hg)dh is continuous in g it follows tha t  r g) is continuous in g for every 

A E $. This completes the proof of the theorem. 

4. Factorisable representations of current groups 

Let H be a complex separable Hilbert  space and ~(H)  be the group of all uni tary ope- 

rators with the weak (or equivalently strong) operator topology. Let  G be a locally compact 

second countable group. A Borel mapping g-> Wg from (7 into ~ (H)  is called a multiplier 
representation with multiplier (x if 

Wg, Wg, = (T(gl, g2) W~1~2, for all  ~1, g2 e(7, W e = / ,  

where I is the identi ty operator in H. W is an ordinary representation if q ~ 1. A triplet 

(W, x, a) where W is a multiplier representation with multiplier a and x is a unit  vector 

in H is called a cyclic multiplier representation if the vectors {Wox, gEG} span H. Two 

multiplier representations W (1) and W (~) in Hilbert  spaces H (1) and H (~) respectively are 

said r be pro]eetively equivalent if there exists a uni tary isomorphism U: H (1)-~H (2~ and 

a Borel function a: G-+ff such tha t  U W(gl)U-l=a(g)W(g ~). I f  a = l  we shall say tha t  W (1) 

and W (~) are unitarily equivalent. Two cyclic multiplier representations (W (1), xl, al) and 

(W(2), xs, q2) are said to be projectively (unitarily) equivalent, if W (1) and W (s) are pro- 

jectively (unitarily) equivalent and the vectors x 1 and x 2 correspond under the equivalence. 

De/inition 4.1. Let  (W (~, x~, ~) ,  i = l ,  2 be two cyclic multiplier representations act- 

ing in Hilbert  spaces H~, i = I,  2 respectively. Their convolution denoted by  (W (1), x a, 01)* 

5--722908 Acta mathematica 128. Imprim6 le 21 Ddcombro 1971. 
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(W (2), x2, a~) is the multiplier representation W(1)(~ W (2} restricted to the cyclic subspace 

generated by x l |  2 in H I |  2. The multiplier of the convolution is clearly ala~. 

Remark. f o r  any cyclic multiplier representation (W, x, a) of G, the function < W~ x, x)  

is called its expectation value. Then it is clear that  < W~ x, x)  is a-positive definite. The ex- 

pectation value of the convolution of two cyclic multiplier representations is the product 

of the expectation values of the individual multiplier representations. 

De/inition 4.2. Let (T, S) be a standard Borel space and for every A G$, let (W A, XA, 

(A, "," )) be a cyclic multiplier representation of G. The family {W A, xA, (~(A, . , .  ), A E $} 

is said to be ]actorisable if 

(1) for every sequence {A~} of sets in $ descending to a single point set, 

lim < W~ ~ xA~, xA~) = 1, 

lim a(A~, g, h) = 1 

uniformly on the compact sets of G and G • G respectively; 

(2) for every A E S and any finite measurable partition of A into sets A 1, A 2 ..... A k, 

the cyclic representations (W A, XA, a(A, ", ")) and (W A1, xA, , a(A1,., .))* ... *(W ~-, 

xA,, a(A~, . , .  )) are unitarily equivalent. 

L]~MMA 4.1. Let (T, S) be a standard Borel space, G be connected and ( W  A, xA, (~(A, . , .  ), 

A e S} be a ]aetorisable ]amily o/ cyclic multiplier representations o/ G. Then there exists 

another ]actorisable ]amily (~V A, ~A, 8(A,. ,  .), A E$}, such that (1) /or each A, (W A, :cA, 

( r (A, . ,  .)) and (~A, XA, #(A, ", ")) are pro]ectively equivalent, (2) the ]unctions ~(A,  g)= 

<~V~ &A, ~A) are ~(A, . , .  )-positive de/inite /or every A, and (3) the ]amily (#(A, ., .), ~P(A, . ), 

A e $} is ]aetorisable in the sense o] De]inition 3.3. I] a ~- I, then we can put W A = ~V A. Con- 

versely, every ]actorisable ]amily (a (A, . ,  .), r  .), A e S} yields a ]actorisable ]amily 

( W  A, XA, a(A, ", "), A e $} by the equation ~P(A, g) = A < W~ xA, ~A>. 

Proo]. Suppose ( W A, XA, a(A, ", .), A e$} is factorisable. Let r  g)=<W~xA, x.4). 

By the argument of Lemma 5.6 in [4], ](I)(A,. )12 is positive definite and continuous for 

every A. We shall now prove that  ~P(A, g) does not vanish at any point. First of all we note 

tha t  
r  = r  U A', g) = r  g)Cb(A', g) 

Thus, to prove our claim it is enough to show that  (I)(T, g) does not vanish anywhere. 

] (I)(T, g)]2 is continuous and positive definite. The set N = {g: (I)(T, g) :~0} is an open sub- 
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set of G. Let  gl, g2 be any two points in N. Then by Lemma 3.1 the multiplicative meas- 

ures qb(A, gi), i = 1, 2 are exponentials of non atomic additive measures. I-Ience there exists 

a sequence of finite measurable partitions {A~k, 1 <~lc <~n} of T such that  

lim sup sup [1 - [O(A~k, g~)]] = 0. 
n--> oo i = 1 , 2  k 

Hence lim ~ [l-]O(A~k,g,)]2]<oo, i=1,2. (4.1) 
n-->oo k = 1 

The positive definiteness and non-negativity of l qb(A, g)12 for every A and Lemma 3.6 in 

[3] imply that 

1 - ]O(A,  gl g2)12 < 2 [(1 - ]O(A,  gl)]2) + (1 - ]O(A,  g2)12)] 

for every A. Now (4.1) implies 

lim ~ (1 - [r gig2)[2) < co. 
~--)oo k = 1  

Hence ] (I)(T, gl g2)[2 = lira kI~ ] OeA~k, gl g2)12 =~ 0. 
n-->oo 

This shows that  N is an open subgroup of G and hence N is closed. Since G is connected, 

N = G. This proves the claim. We now put 

Changing a(A, . ,  �9 ) accordingly into ~(A, . , .  ) and putting 2A =xA, we get another factoris- 

able family {l~ A, 2A, ~(A,.,  .)}, which, by the Remark after Definition 4.1, satisfies all 

the required properties. For a-= 1 the result is obvious. The converse follows from the one 

to one correspondence between a-positive definite functions and cyclic multiplier repre- 

sentations with multiplier a (up to unitary equivalence). This completes the proof of the 

lemma. 

COROLLARY 4.1. Let {W A, XA, a(A, ", ,), A E S} be a/actorisable/amily o/ cyclic mul. 

tiplier representations o / a  connected locally compact second countable group G. Then there 

exists another /actorisable /amily {~V A, ~A, ~(A, ",. ), A 6 S} such that (1) /or each A, (W A, 

XA, a(A, ., . )) and (~F A, xa, ~(A, ., �9 )) are pro]ectively equivalent; (2) there exists an Araki 

multiplier S(A, . , .  ) and an Araki S-/unction r  ) such that 

A A < Wg XA, ~A) = exp r g) 

~(A, g, h) = exp iS(A, g, h) 
/or all A E S, g, h E G. 
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Proo[. Define I~ rA and xA as in Lemma 4.1. An application of Theorem 3.I gives the 

result. 

Consider the standard Borel space (T, $) and the group G. Let F(T, G) be the group 

of all measurable maps 7: T-*G which take only finitely many values. F(T, G) is con- 

sidered as a group under pointwise multiplication with identity & We shall call it the 

weak current group of G over T. For any A E S, we shall denote by F(A, G) the subgroup 

o f  all maps ~ which are equal to e outside A. For any measurable partition A1, A2, ..., An 
of A, F(A, G) =1-~ F(A,, G) in the sense of direct products. We further define a homo- 

morphism ~ra: F(T, G).-~F(A, G) by the equation 

(zray)(t) =),(t) if tEA, 

= e  otherwise. 

Finally we introduce the functions X A, A E S, g E G by 

r ' ( t )  = g if tEA, 

=e if tEA. 

Then any function 7 E F(T,  G) can be written as a product n A~ YL=IZg, where {As, 1 <~i<<.n) 
is a measurable partition of T. 

Suppose (W ~, xa, a(A, . , . ) ,  A E $) is a faetorisable family of representations of G. 

For  any two elements ~t, 72 E F(T, G) we write 

(~(~/1, ~2) = YI a(A, n B.  g,, h i )  
1.t 

m .Q "r-rn B~, where 71 = YI~=I Xg,, ~'~ = 1 lj~l Znj- Then it is easy to verify that  ~ is a multiplier for the 

group F(T,  G). If  now we define 

n 

~r(r) = 1-I < w~,, xA,, xA,} 

whenever 7-1-~=1 ~ , ,  then ~F is a d-positive definite function on F(T, G). Hence there 

exists a cyclic multiplier representation (fir, ~, ~) for the group F(T, G). Further  IIV has 

the property 
<Wx~,~>=<W~xA, XA> for all AeSjgeG. 

This leads us to the following natural definition: 

De/initiou 4.3. Let  F(T, G) be the weak current group of G over T. A cyclic multiplier 

representation (fir, ~, #) is said to be [actorisable if the maps g o  W~ where W~ = firZ~ 
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and the functions a(A, g, h) =e(Z#, ~ )  have the property that  (W A, ~, a(A, . , .  )) is a fac- 

torisable family of representations of G. 

With this definition and Theorem 3.1 we now have the following theorem. 

THEO~E~ 4.1. Let G be a connected, locally compact and second countable group. Let 

( T, $) be a standard Borel space and let F( T, G) the weak current group o/ G over T. Let 

(W, ~, ~) be a/actorisable cyclic multiplier representation o / F ( T ,  G) in a complex separable 

Hilbert space H. Then there exists a pro]ectively equivalent/actorisable representation (]~z, 

~', #') such that/or every A 6 S, g, h6G 

*'rrt A ~ !  I n%h x ,  ~'> a (A, g, h) = exp [r gh) + iS(A, g, h)] (4.2) 

where W'g A = w%., (; (A,g,h)=e'(X2,X~), 

S is an Araki multiplier and r is an Araki S-/unction. 

Conversely, given an Araki multiplier S and an Araki S-/unction r one can construct a 

/actorisable representation ( ~V', ~.', (7') o/ F(T, G) satis/ying the above equations. For the con. 

verse to hold, G need not be connected. 

I /  (?=1, we can replace projective equivalence by unitary equivalence, choose (7'---1, 

S =--0 and r to be an Araki/unction. 

Remark 1. The above theorem together with Theorems 2.1 and 2,2 gives a complete 

description of all faetorisable multiplier representations of weak current groups when G 

is connected. 

Remark 2. If  we consider the Araki multiplier S and the Araki S-function r satisfying 

(4.2) and use Theorem 2.1 we obtain a measure ~u on (T, S), representations V ~ of G in 

Hilbert spaces H~ and cocycles ~(t,.) connected with the pair (S, r If we write for any 

76F(T ,  G), 
f ,  

A(~) = {~(t, ~(t)), tc T) e jH~d~(t), 

U(A, g) = f Z~(t)V(t, g) d~(t), 

n 

u~ = II  U(A,, g,), 
i = l  

whenever 9, = lq~=x a~ Zg~, we obtain 

U~, A(m) = A(rx r~) - A(~I). 

In  other words y -~ Uv is a unitary (ordinary) representation of F(T ,  G) and A is a eoeyclo 
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lor this representation. This cocycle determines the factorisable representation of F(T,  G) 

associated with the pair (A, r 

Remark 3. The identification 7~A(~),  where A is the cocycle described in Remark 2, 
defines a metric d in F(T,  G) by the equation 

d(~, ~2)= [ f  Ho(t, ~(t))-O(t, y2(t))Ha dtt(t)] �89 

We call the completion of F(T, G) under this metric t h e / u l l  current group of G over T 

and denote it by F(T,  G). I t  is clear that  the factorisable representation of F(T, G) as- 

sociated with A extends uniquely to a continuous representation of F(T,  G). Then the 

extended map y-~A(7) is a continuous cocycle on F(T, G). 

Remark 4. Suppose (VV, ~, ~) is a factorisable representation of F(T, G) and (S, r 

the associated pair of Araki multiplier and Araki S-function. 
n A~ For any 7 =l-L=1 g~,, where {A, 1 <~i<~n} is a parti t ion of T, we define 

A r  = 5 4( ,, g,). 
t = l  

m A 
I f  Yl  = l~i=l ~g ,  

T, we define 

]"In ~B~t and 72= 1 lj=a~hj where {A~, 1 <i<~m} and (B~, 1 <]~<n} are partitions of 

~(~21, ~22) = ~ S(A, A Bj, g,, hi). 
f,t 

Let  A be the cocycle defined in Remark 2. r is a conditionally S-positive definite function 

on $'(T, G). r S and A have natural extensions to the complete current group. Let  H = 

H t dla(t ) be the Hilbert  space where the representation y -~ Uv and the cocycle A are de- 

fined. We construct the symmetric Fock space exp H over H. We write 

x(y) = [exp r exp A(r-a ). 

By Theorem 2.1 and the definition of A, 

Then 

(A(n ) ,  A(r~)) = r (r~ ~ r , )  - r ( r ;  ~ ) - r (~',) + i s ( r~  ~, r~). 

(Z(rl)  , X(r2) ~ = exp ~ (r l  r ;  1) ~- iS(r1, ~2;1) �9 

We define the map 
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This is an  isometry on the set {x(?), 7 E F(T ,  G)}. Hence it can be extended to  a un i t a ry  

operator  on the closed linear s p a n / ~  of this set. Then,  

w~, w~, = exp [ -  ~5(~1, 7~)] % ,  ~,, 

<W~x(g), x(g)} = exp r 

where ~ is the  ident i ty  element of F ( T ,  G). I f  we change the  inner p roduc t  in H to  its con- 

jugate, we  get  a factorisable multiplier representat ion associated with the pair  (S, r 

This is the Araki-Woods imbedding theorem (cf. [2] and [5]). 
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