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Introduction

Several attempts have been made during the last 100 years to develop for complex
numbers an algorithm having the properties that the regular continued fraction algorithm
is known to possess in the real case, due to results of Euler, Lagrange, Legendre, Gauss,
(Galois, Serret, Markoff, and Hurwitz.

The most significant of such previous attempts are those of A. Hurwitz [18], J. Hur-
witz [20], A. Auric [1], L. R. Ford [12], J. W. S. Cassels, W. Ledermann, K. Mahler [5],
W. J. Leveque [22, 23], G. Poitou [28], and A. L. Schmidt [33]. However, it is a common
feature of all these approaches that only very few of the nice properties of regular continued
fractions are carried over.

It is the purpose of the present paperto develop in the Gaussian case two new kinds
of algorithm, regular chains and dually regular chains, based on the ‘concepts of Farey sets
and dual Farey sets to be presénted in chapter 1. As is pointed out, Farey sets appear to
be a natural extension of the well-known circles and mesh triangles of L. R. Ford [13]. For
this chapter we presuppose some knowledge of Farey triangles (sections 2-5 of [33]).

It is shown in chapter 2 that the representation of complex irrational numbers £ by
regular and dually regular chains—ch & and ch* {—is essentially unique, and that the
theorem of Serret about equivalence extends in a natural way. Also every fair approximant
plq (with p, g€ Z[<]) of & will appear as a convergent of ch £ and of ch* £, thus extending
a theorem of Legendre.

The classical thearems of Euler, Lagrange, and Galois about periodic and purély
periodic regular continued fractions are extended in chapter 3 and used to give an effective
solution of the complex Peilian equation.

Chapter 4 is devoted to a study of ch &, and ch* & for £, =1(1 +{ay), where o €ER\Q,
and of the corresponding C regular and C-dually regular continued fractions (4.2) and (4.2%)
of «,. These continued fractions, though. sharing also the more subtle properties of regular
continued fractions (an intrinsic characterization of convergents, a theory of C-approxima-

tion constants <2 and an ergodic theory in complete analogy with the corresponding
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theorems for regular: continued fractions by Legendre, Markoff-Hurwitz and C. Ryll-
Nardzewski), seem, somehow, to have escaped earlier notice.

In chapter 5 the theory of C-minimum of real binary quadratic forms and the corre-
sponding theory of C-approximation constants is treated in complete analogy with the
exposition by J. W.'S. Cassels [4] on the Markoff chain.

In a separate paper I shall deduce the properties of the C-minimal forms g, or %,
of chapter 5, by putting these in 1-1 correspondance to Markoff-symbols representing
periods of even or odd lengths, respectively.

Chapter 6 contains first of all a reduction theory of complex binary quadratic forms
similar to that of C. F. Gauss [16] for real indefinite binary quadratic forms. Apparently
the only reduction theory of complex binary quadratic forms existing is the rather crude
one contained in the famous paper of P. G. L. Dirichlet [10] on what is now known as
“Dirichlet fields”.

An important application of this reduction theory is the complete determination-—in
Theorem 6.6—of all complex binary quadratic forms @ with Vm Ju <2, where D and y
denote the discriminant and minimum of ®.

Also chapter 6 contains the complete determination—in Theorem 6.7—of all complex
irrationals & with approximation constant C(&) <2.

Contributors to the early development of these theorems are L. R. Ford [13] and
O. Perron [25, 26], who both determined the first minimum. Later J. W. S. Cassels [3] and
A. L. Schmidt [33] proved the isolation of the first minimum, and J. W. S. Cassels [3] also
indicated the forms @, @ of Theorem 6.6. Very recently L. Ya. Vulakh [36] determined the
minimum of the forms G4 of Theorem 6.6 (in an equivalent form), and gave also a brief
indication of a proof of the symmetric case of that theorem, without, however, being explicit
about the isolation technique involved.

In a separate paper I shall use the machinery of chapter 6 also to study the minimum
of complex ternary and quaternary quadratic forms.

Also I announce a forthcoming paper on ‘‘Hurwitzian chains”, including (for a, b €N)

chexp[l/(a—b)]=V, VY 2E, , V3" +e-1p . Cl%-0,
ch exp [1/(~ib)]= V, V3" 02 CR| %,
which extend the classical formula of Euler (cf. [27]),
exp[l/a]=[1, 2an+a— 1,115

Finally I announce & paper on the approximation of complex numbers by numbers
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from the field Q(}'—11). By combining the methods of the present paper with those of
[33], I shall prove that the set of approximation constants has

((1 588 626 +30 690)/1 085)/1 205 821)1/2 =1.4682 ...

as the smallest limit point. There are infinitely many approximation constants below this
point, the four smallest being

1 1085 1/36860
EVB’ V2, 509 ' ¥ 17099’

Chapter 1

Farey sets
1.1. Some basic notation
Let
J={z=z+iy|ly=0} U {oo},
Tt ={z=x+iy|0<x<l,y>(r—a)/2} U {o}.
The sets J, J* and their subdivisions into
IJ=V,U¥,UV;UEUEUEUC,
J*=WI UV UV U CH

are shown in Fig. 1, Fig. 1*, respectively. All regions are bounded by straight lines or
circles with radii 1/2 (or part thereof), and are supposed to be closed; €Y, &,, &, UI.
The matrices V,, V,, Vs, Ey, E,, E,, C, S, I are defined as follows,

1 1 0 1= i
V"(o 1)’ V2=(~i 1)’ V"‘—(—i 1+1‘)’
1 0 1 —1+4i i 0

El”(l—i @')’ E?'"(o i)’ E‘“’—(o 1)’

1 —1+4 0o -1 1 0
0"(1—5 z) S"(l —1)’ I‘(o 1)'

For any invertible Matrix M,
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83 £2

Fig. 1

Fig. 1*

with elements in €, let m denote the corresponding homographic map

az+ b
cz+d

m: 2 >

Finally
w2z
denotes complex conjugation of C. For any subset § of C we write also S instead of #(S).
For any matrix M we write M for the complex conjugate of M.
We collect in the following lemma a number of simple relations between the matrices,
maps and regions introduced above. Here and further on we use the convention that the

index j ranges through {1, 2, 3}, and accordingly j+1 has to be reduced modulo 3.
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LemMma 1.1.
i $=1I,
(i) V,.1=8V,8"%E,,,=8ES1,0=8087",
(i) det V,;=1,det B;=4,det C= —1,
(iv) V;i'=V,E'=E,0"=-C,
(v) vjl=xowox, ejl=x0e0x, c'=x0cou,
(i) B=v(), E=¢T*),C=c(T¥),
(vii) Y =0,(I*), C*=c(J),
(viii)  Y,3=8(Y)), Ea=8(E,), C=5(C),
(ix) Vii1=s(W]), C*=3s(C*).

Proof. Obvious by inspection. Notice that s is the non-euclidean rotation to an angle
27[3 around %(1 +il/§) if J is considered as the non-euclidean plane in the Poincaré model.

A homographic map m: z>(az+b})/(cz +d) is called unimodular if a, b, ¢, d €Z[%] (the
ring of Gaussian integers), and det m =ad —bc€ U = {+1, +1}. Notice that the determinant
of a unimodular map is defined only as an element in the quotient group U/ U? consisting
of the two elements {+1}, {+4}. A unimodular map m is called properly unimodular if
det m={+1}, and improperly unimodular if det m={+1}.

As usual &, v €C are called eguivalent if there exists a unimodular map m with vy =m(&).
Also &, v €C are called properly (improperly) equivalent if there exists a properly (improperly)
unimodular map m with % =m(&). Obviously each equivalence class of complex numbers
consists of either one or two proper equivalence classes.

An immediate consequence of these definitions and Lemma 1.1 (iii) (vi) (vii) is that
every boundary point occurring in Fig. 1 is properly equivalent to a real number, and that
every boundary point occurring in Fig. 1* is improperly equivalent to a real number.

L2, Farey sets

Let G denote the group of all unimodular maps. To any m €G we associate a Farey set
F(m) as follows,

(1) if m is properly unimodular, we define

m(J)



DIOPHANTINE APPROXIMATION OF COMPLEX NUMBERS 7

where we make the unique choice between the two sets m(J), m(J) such that'F(m) becomes

either a circular dise or a halfplane of the form

{z=x+iy|y>by}, by€L; (1.1)
(2) if m is improperly unimodular, we define
G
m(J*)
where the upper possibility is chosen if 7(J) is a circular dise or a halfplane of the form
{z=x+iy|x<ay}, ay=0, -1, -2, ... (1.2)
or
{e=w+iy|r>0a4},0=1,2,3, .., (1.3)

while the lower possibility is chosen if m(J) is a circular disc or a halfplane of the form
(1.2) or (1.3).

It is easily shown that by (1), (2), the Farey set F(m) is well-defined for allm € G, and we
say that F(m) is of circular (triangular) type, respectively. Notice that in Fig. 1 the sets
J, U, are Farey sets of circular type, while the sets £;, C are Farey sets of triangular type.

Let F be the set of all Farey sets, i.e.

F={F(m)|meqG}.
A consequence of a previous remark about the boundary points of Fig. 1, Fig. 1* is that
any z€0F, where FE€JF, is properly equivalent to a real number.

For any FEJF, say F=F(m), we define

o(F)=((N(c) +N(d) + N(c+d))* —2(N*(c) + N*(d) -+ N*(c+d))}',
where m: z+>(az +b)/(cz +d) and N is the Gaussian norm. Apparently o( F') depends not only
upon. F but also upon m. It is a matter of simple trigonometry however, to show that
1/o(F) is the radius of the circle m(R), which is the circumscribed circle of F' (notice that
o(F) —0<>m(R) is & line). We shall prove later in this chapter that
o(F)€2N,={0,2,4, ...} forall FEF.

The following lemma describes an important relation between Farey sets and Farey
triangles (cf. [33] for the definition of a Farey triangle FT and N(FT)).,

LeEMMA 1.2. For any FE€JF, where F is assumed to be of circular type though not a half
plane (i.e. F is a circular disc), either

(i) there is precisely one acute angled Farey triangle FT, (say) inscribed in F,
or

(i) there is no acute angled Farey triangle inscribed in F, but in return precisely two right
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angled  Farey triangles FT,, FT, (say) both inscribed in F; the Farey triangles FT,
and FT, are congruent, in particular N(FT,)=N(FT,).

Proof. Let F=F(m) (say), and assume without restriction that F=m(J); otherwise
we could replace the map m: zi>(az-+b)/(cz+d) by zr>(bz+a)/(dz+c). The assumption
means that the points afe, b/d, (a+b)/(c +d) define & positive cyclic ordering of 0F. Equi-
valently the assumption means that —d/c€C\ J.

Since FT(a/c, bld, (a+b)/(¢c+d)) is a Farey triangle inscribed in F, it follows that an
arbitrary Farey triangle F7T = FT(p,/q,, Pa/ds, (P1+P2)/{q1 +¢,)) inscribed in F with p/g,,
P2/, (P1+D25)/(9, +¢,) defining a positive cyclic ordering of 6F is given by

(P1 Pz) - (“ b) (7'1 7'2)
71 9 ¢ d/\s1 s
where 7y,75,8,,8,€Z, 7,8 — 738, = 1.

Consequently

N —81(—(;) + 7y

whence —g,/q, €0\ J, since —d[cEC\ T and s,r, —s,7,=1.

Since FT is similar to the triangle with vertices 0, 1, —¢,/q,, it follows that FT' has
all its angles <z/2 if and only if —g,/g; € T*\{0, 1, =}

However, the set 5*\{0, 1,00} consists of three copies of the fundamental domain
(six copies of its boundary) of the modular group I' consisting of all maps @: zi>(ryz+7,)/
(8124 85), where 7y, 1y, 8;, 8, €Z, 7,8, — 138, =1, and operating on the set 0\ J. Since each FT
inscribed in F occurs for three different ¢’s, corresponding to the cyclic permutations
of the three vertices of F T, the result follows readily.

For any Farey set F we define its norm N(F), as follows,

(1a) if ¥ is a halfplane of the form (1.1), we put N(F)=2;

(1b) if F is a circular disc, we put N(¥)=N(FT,) or N(F)=N(FT,)=N(FT,),
depending on whether case (i) or case (ii) of Lemma 1.2 oceurs;

(2a) if F=F(m) (say) is of triangular type, and m(J) is a halfplane of either of the
forms (1.2), (1.3), we put N(F)=2;

(2b) if F is of triangular type, but not of the form (2a), the three vertices of F are the
vertices of a Farey triangle F7, and we put N(F)=N(FT).
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Example. N(J)=N(Vy) =N(E,) =N(E;) =2, N(¥,) =N(U;) =N(&,) =N(C) =4.

1.3. A generating procedure of Farey sets

We consider the set

Fo={F(m,)|M,=T,T, ... T,}, n€N,,
where
To=V¥, by€Z; T, V,,
T,€{V,,E,C} ifdet T T;...T, ;==1,
T,e{V, 0} ifdet T, T,..7T, ,=+i,

for 1<y <n.

Thus F, is the set of all halfplanes (1.1), and F, consists of W,, V;, &, &, &, C and
all their translates by by?, b, €Z.
It follows easily by induction on » that

F(m,)=m,(J) if det m,~{+1}, (1.4)
F(m,)=m,(J*) if det m,={+i}. (1.5)

Also every Farey set of circular type F(m,)=m,(J)€F, is divided into seven Farey
sets in F,,, (cf. Fig. 2), three of which are of circular type, namely F(m,0v;)=(m,o0v;)(J)=
m,(Y,), while four are of triangular type, namely F(m,o0e;)=(m,0e,)(J*)=m,(E;) and
F(m,0c) =(m,0c)(J*) =m,(C). Similarly every Farey set]of triangular type F(m,)=
m(J*)€F, is divided into four Farey setsin F,, (ef. Fig. 2*), three of which are of triang-
ular type, namely F(m,0v;)=(m,0v,)(J*)=m,(V}), while one is of circular type, namely
F(m,oc¢)=(m,oc)(J)=m,(C*). Of course Fig. 1 is a special case of Fig. 2; however Fig. 1*,
though similar to Fig. 2*, is not a special case of Fig. 2*, since J* is not a Farey set.

It follows easily by induction that each parallel strip {z =2 +iy|b, <y <b,+1}, b,€XZ,
is tessellated into Farey sets from F,, n>1, and indeed into 2-5""! Farey sets of circular
type, and 4-5"* Farey sets of triangular type.

In Fig. 2, Fig. 2%, the Farey set F(m,ov,) lies at vertex number §, and F(m,o¢;) lies at

edge number §, while F(m,oc) lies centrally; this explains the use of the symbols V;, E;, C.

LeMMa 1.3. Let F(m,) be an arbitrary Farey set in F,, n >0, and put (cf. the short-hand
notation in Fig. 2, Fig. 2%, where the points p,/q;, p;|q; are represented simply by 7, §')
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3

Fig. 2
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P P ‘P3)=M(1 0 1)
(ql % 93 "o 1 1)’

P Ps 1 0 1)
o4 W 7 s/ )
(q1 92 qs) " (0 11

N;=N(qy), N; =N(9;), N=N,+N,+N,,
N'=N1+Ny+N;, N® =N?4+ N2+ N2

Also put

(1) In the subdivisions of F(m,) the following norm relations are valid,
N,+Ni=N,+N;=Ny+N,
N’ =2N +-3(N? —2N®)12,
(i) If det m,={+1}, n =1, then FT(p,/q;, P2/qs, Ps/q5) is acute angled or right angled.
(iii) N(F(m,)) =N =N(FT(p,/9,, P2/, Ps/ds))-
(iv) If det m,={+1}, then (cf. Fig. 2)
min (N(F(m,0v,), N(F(m,oe,), N(F(m,0c))) > N(F(m,)),
with equality if and only if N(F(m,))=2.
(iv*) If det m, ={ 11}, then (cf. Fig. 2*)
min (N(F(m,ov,), N(F(m,oc))) > N(F(m,)),
with equality if and only if N(F(m,))=2.
™) 7- 03,

where the union is a disjoint one.

Proof. The norm relations of (i} are simply the norm relations (36), (65) of [33].

11

We prove (ii) by induction on n. If det m;={+1} we must have M, =73 V, or

M;=V%V, it follows easily that FT(p,/q,, Ps/qs Ps/qs) is right angled. If det m, , =

{£1}, either
(a) det m,={+1} and m,,, =m,ov, (cf. Fig. 2),
or
(b) det m, ={+¢} and m,,, =m,oc (cf. Fig. 2*).
Case (a). Suppose without restriction that

N, <N,<N,<N,+N,,
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the last inequality being the inductive assumption. Then by the norm relations of (i),
Ni=N;>Ns,
Ny=N+ (N*—-2N®}—N,>N—-N,=N,+N,>N,,
N3<Ng+ N, Ni< N3+ N, N1 <N+ Ny;

however this proves the assertion (cf. Fig. 2).

Case (b). Suppose without restriction that Ni=max N;. Then by the norm relations of
(1),
Ni=N4(N2—2N®)12_ N, <N +2(N2—-2N®)12 1 N,
=(N+(N2—2N®)2_N,) +(N + (N2 —2N®)1/2 _N,) =N, + N3,

thus proving the inductive step.

The truth of (iii) follows now immediately from the very definition of N(F(m,)),
(1.4), (1.5) and (ii).

(iv) and (iv*) are proved by straightforward applications of the norm relations of (i).

Finally, (v), which essentially tells that any F€JF is contained in some F,, n>0, is
proved by an easy induction on N(F).

In view of the disjoint decomposition in Lemma 1.3 (v) any F€JF lies in a unique

Fn, n=0. We call n the order of F and write accordingly n=ord F.

LeMMA 1.4. Let FE€F be an arbitrary Farey set. Then
(i) N(F)€{2,4,6,..}=2N,
(ii) o(F)€{0,2,4,..}=2N,,
(iii) diam F <4(N(F))-12 4f N(F)>2.

Proof. Properties (i), (ii) are proved simultaneously by induction on ord F, starting with
ord F=0, where N(F)=2 and g(F)=0. Assume for the inductive step that F =F(m,)€F,
satisfies conditions (i), (ii), then we have to show the validity of (i), (ii) also for each of
the seven (or four) Farey sets F(m,ot,,,) in the subdivision of F = F(m,,).

With the notation of Lemma 1.3 we know that N(F)=N=0 (mod 2), o(F)=
(N2 —2N®)12=0 (mod 2) (that g(F) is integral follows from the second norm relation of

Lemma 1.3(i)), hence by the norm relations
N,+N;=N+(N?—2N®)12=0 (mod 2),

which proves the inductive step as regards (i) (cf. Fig. 2, Fig. 2*). The inductive step con-

cerning (ii) follows when applying the second norm relation to F(m,o¢f,,).
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In the proof of (ili) we use again the notation of Lemma 1.3 with F=F(m,) and
FT =FT(p,/g1, P2/9 Ps/qs). In case det m,={+1} it follows from Lemma 1.3 (ii) that

diam F <2/3Y2 diam FT,
in case det m,={+14} we have simply (also when FT is obtuse angled)
diam F=diam F7T.

In order to estimate diam F7T we may assume without restriction that N, >N,>N,, and
then

diam FT = | py/qs — ps/qs| < |D1/a1 — Da/22| + | P1/0: —D3/85]
— (N, ;)2 1 (N, N,V <2NT V2 <2(N[3)-H2,

Altogether, this proves inequality (iii).
Finally, I want to point out that the circles and mesh triangles of L. R. Ford [14] are

special Farey sets, as described in the following

Lemma 1.5. (i) The circles of Ford are precisely the Farey sets F(m,), where either n=0
and My=V,;(j=2,3) orn=1land M,=E;T,.. T, ,CwithTy, ... T, .€{V,, V:}, G, k, 1)
being any permutation of (1, 2, 3).

(ii) The mesh triangles of Ford are precisely the Farey sets F(m,), where n=>1 and
M, =ET,..T,with T, .., T, €{V,, Vi}, (4, k, 1) being any permutation of (1, 2, 3).

The proof of Lemma 1.5 follows readily by the well-known interrelation between

Farey fractions and regular continued fractions.

1.4. Dual Farey sets
To any unimodular map m we associate a dual Farey set F*(m) as follows,
(1) if m is properly unimodular, we define
m(J*) if Fim)=m
¥ m) = { mi%"; if Fzm; = mii%,
(2) if m is improperly unimodular, we define

m(J) it Fm)=m(T*)

Frm) = { m(T) if Fim)=m(T5).
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Further we let F* denote the set of all dual Farey sets, which are contained in the parallel
strip

{z=z+1y|0<z<1}.

The following result is easily deduced from Lemma 1.3 (v).

LeMMA 1.6. The set F* can be described as
- U,
where the union is a disjoint one, and
Fr={F*m,)|M,=T,T, ... T,}, n>0,
where
To=V3, by€Z; T, %=V,
T,€{V, C} ifdet T,T,..T, ;=+1,
T,e{V, E, C} ifdet T,T,..T, ;=41
for 1<v<n.
Obviously the full content of sections 1.2 and 1.3 carry over to dual Farey sets. Notice

in particular that J*, Wi, U5, Us are dual Farey sets of triangular type, while C* is a dual

Farey set of circular type.

Chapter 2

Regular and dually regular chains
2.1. Representation of complex numbers
DEriNiTION 2.1. 4 regular chain is an tnfinite product
7.7,..7T, ..,
where
Ty=VY, by€Z; T,+V,,

and

T,€{V; B, C} ifdetT,T,..T, ,=+1,

T,€{V, C} if det TyTy... T\ y==+i
for n=1, with the additional resiriction that no ng€N, j€{1, 2, 3}, exist, such that T,=V,

for all n>n,,.
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DEeFINITION 2.1*. A dually regular chain is an infinite product
T7,7,..7, ..,
where
To=V3i, by€Z; T, V,,

and

T,€{V,,C} ifdet TyT,.. T, ,=+1,

T.€{V; E;,C} ifdet TyT,..T, ,=+i
for n=1, with the additional restriction that no n €N, j€{1, 2, 3}, exist, such that T,=V,
for all n>2n,.

In connection with these definitions-we introduce some standard notation (valid in both

cases),

M,=T,T,..T,

PV P P\ g (101
@’ ¢ ¢/ T\ 1 1)
(n)

. P12+ P

My 2H>—s o

91 z+¢qa

(n)

For a regular chain we put F,=F(m,), and we call the sequence F,, n€N,, a regular
chain of Farey sets.
For a dually regular chain we put Fj=F*(m,), and we call the sequence F}, n €N, a

dually regular chain of dual Farey sets.

THEOREM 2.1. For any regular chain
T,Ty..T,..

we have

and

where EECN\ Q(z). Further
Hm pfV/gi™=¢  for j=1,2,3
n—>00

THEOREM 2.1*. For any dually regular.chain

ToTy ... T, ...



16 ASMUS L. SCHMIDT

we have
FioFf>...oF>...,

and
ﬂ@oF: ={¢&},
where £€{z=z+iy|0<x<1}\ Q(:). Further

lim p{”/gi™ =& for j=1,2,3.
n—>w

Proof. From section 1.3 follows immediately that the sequence F,, n >0, is a decreasing
sequence of Farey sets, and since each ¥, is a compact set-on the Riemann sphere. it follows
that

NF,+2.

n=0
By definition a regular chain is not of the form
VI BT, (k=2, 3),
where the arrow denotes periodicity. Let n,EN be the smallest integer such that
ToTy.. T+ VP E VY (k=2,3),
then clearly
N(Fo)=N(F,)=...=N(Fn_1)=2<N(F,)=4.
Using Lemma 1.3 (iv) (iv*) we find that
4=N(F,)<N(Fn+1)<ews

and hence by Lemma 1.4 (i) (iii)

lim diam F,=0.

n—»o0
Altogether this proves Theorem 2.1, except for the assertion that £€C\ Q(¢). Notice that
¢ &0 for n>n,.

It is a simple geometric fact (cf. [33], Lemma 3), using Lemma 1.3 (ii) in case
det m,={+1}, that

3
Foc UB@P™; (217, a=n
j=1
where
B(zy; 1) ={2€C| |z —2o| <7}.
Hence it follows that the inequality
|&—piPlg| <(V2|gm %)

is satisfied for infinitely many pairs (7, »), €{1, 2, 3}, n >n,.
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However, the restriction put on a regular chain not to be periodic with period V,
clearly has the effect that this inequality has infinitely many different solutions p{™ /¢§™;
hence by a standard argument & €C\ Q(¢)

Theorem 2.1* follows immediately from Theorem 2.1 by the very definition of F*(m,)
in section 1.4.

In connection with Theorems 2.1, 2.1* we introduce some further notation.
First of all we say that the regular (dually regular) chain 7T, ... T, ... represents & or

converges to £, and we indicate this in writing
E=[T,1,..7,..1
Further for any regular (dually regular) chain 7', 7', ... T, ... we notice that
T,7T,1 T ...s nEN,,
is either a regular chain or a dually regular chain; in either case we put
=T, Tpiq...]1, nEN,, 2.1)

which we call the n’th complete quotient of the given regular (dually regular) chain. It follows
from Theorems 2.1, 2.1%, (1.4), (1.5), Lemma 1.3 (ii) and the proof of Lemma 1.2, that for
all n €Ny,

Sn = tn(£n+1): (2'2)
£,11€7, —q(”)/q(")EI—T; it det M,=+1, (2.3)
£, €T, —q‘"’/q‘"’ if det M,= +1. (2.4)
Using (2.2) repeatedly we get

&= &= my(€ns1), nENy, (2.5)

whence for # > n, (to secure that ¢\ =0),
&~ PV = — en(@i(” Ena + ) 7, (2.6)
&y~ P57195° = &0 Enga (B Enpa + 7)Y, (2.7)
— 51487 = ea(Enga— 1) (@57(@1 Ena + 687)) 1 (2.8)

where

en=p{" ¢t — pt " €{ £ 1, £i}.

Taking absolute values we obtain the following approximation formulae (for » > n,),

i = |Epga + gEV/a5"), 2.9)
V= |§n+1+q§"’/ (n)I’ (2.10)
o8” = | (nr = 171+ /g8, (2.11)

2 — 752903 Acta mathematica 134, Imprimé le 30 Juillet 1975
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where we have put for abbreviation

" =(|g"llg)” &~ p"1)7".

TrEOREM 2.2. For any £€C not properly equivalent to a real number, there ts precisely
one regular chain ch & representing &. For any £EC\ Q(¢), which is properly equivalent to a
real number, there are precisely two reqular chains ch, &, ch, & representing &.

TEEOREM 2.2*. For any E€{z=x+iy|0<x <1} not improperly equivalent to a real
number, there i3 precisely one dually regular chain ch* £ representing &. For any £ € {z=x +1iy|
0<x <1}, which is improperly equivalent to a real number, there are precisely two dually
regular chains ch} &, chy & representing &. For any £ ECN\Q(5) with Re §€{0, 1} there is pre-
cisely one dually regular chain ch* £ representing &.

Proof. In case £€C is not properly equivalent to a real number, and hence £¢0F for
any F€JF, it follows from the results in section 1.3 that for any n €N, there is a unique
F,e3, with £€F,. Put F,=F(t,ot,0 ... ot,), n€N,, then it is obvious that 7, T, ... T, ...
is a well-defined regular chain representing &, and clearly also the only one.

In case x €ER\Q it follows from the results in section 1.3 that for any »n €N, there is a
unique FP with € PP < J, and a unique FP with « € F® = J; of course F P =x(FP) = FO,
Put FP = F(t{Pot{o ... ot) for n€EN,, k€{1, 2}, then it is obvious that T¢"T{ ... TP ...
(k=1, 2) are well-defined regular chains representing e, and clearly also the only ones.

Let a=[ay, a,, a,, ...] (regular continued fraction), then it is a simple matter to show
that

chya=E, Vi® 'V, V31V Ve Vi... if a<O, (2.12)
chya=E, V3 1Vveveve.. ifl0<a<l, (2.13)
chya=E, Vi Ve Vi Ve V.. if a>1, (2.14)
and that
chya=VilE, Vi* 'V, VP 1V Vi ve... if <0, (2.15)
chya= VIOV Ve Ve Ve, if O<a<l, (2.16)
chya=Vi' B, VP VS VEVE VL. if a>1. (2.17)

Now let £€C\ Q(7) be properly equivalent to a real number, say & =m(z), where m is
properly unimodular and n €R\ Q. By Lemma 1.3 (v) there is a smallest integer 7, €N, such
that £€0F for some FEF,,.
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In case 1,=0, then & =a+1by with «a ER\Q, by €Z, and clearly
chy &= V¥ch,a, chy &= Vi chya. (2.18)

In case ny>1, then F,, €F,, is uniquely determined by requiring that & € ¥, , and that
F.,, be of circular type. Let F, = F(t,0¢,0 ... of, )= F(m,,) be its standard representation
(cf. section 1.3). Then Z=m,(«) with x€R\Q, and we put A;=m,(]0,1[), 4d,=
Mny(]1, 00[), Ag=my,(]— 2,0}, and ch; a=U,U, U, ... (given by (2.12), (2.13), (2.14)).
Clearly
chy &¢=T,T,.. T, , U U, U, ... 2.19)

is a regular chain representing &. Also it is easily verified that there is precisely one other
regular chain ch, & representing £, namely
ehy E=To T, ... Tpus T MUY MUY AT) ..., (2.20)
where A is the permutation
1 (Vl V, Vs E, E, E 0)
‘\v, Vs Vo E, E; E, CJ
and
vV, if €4, and 7,=C
To=1E, if £€A, and T,=V,({i+k).
C it ted, and T, =V,
This proves the second part of Theorem 2.2.

The proof of Theorem 2.2* is easily derived from Theorem 2.2.

2.2. Equivalence

The relationship between regular (dually regular) chains for two numbers &, n €C\ Q(?)

({z=2+1y|0<x<1}\Q()) that are equivalent (cf. section 1.1) is described in the following
theorems.

TEEOREM 2.3. & n€CN\Q(i) are properly equivalent if and only if &, » have regular
chains of the form

h =TTy e T, Ty Tory oo Tyon oo
ch n= UO U1 vee Uh U’H—l Uh+2 aee Uh+n ‘e
with

(i) det tyot,0 ... ot ,=det ugou, o... ou,
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and
(i) Uppn=8"T,, .87, n€N,
where j€{1, 2, 3} ts a fiwed integer.
THEOREM 2.3% &, n€{z=x+iy|0<a<1}\Q(:) are properly equivalent if and only if
&, m have dually regular chains of the form
ch* =TT, ... T, T, Tora oo Ty ooy
ch* 7] = Uo Ul “ee Uh U’H—l Uh+2 vee Uh+" vee
with conditions (i), (ii) of Theorem 2.3 satisfied.
THEOREM 2.4. £EC\Q(), n€{z=2+1iy|0<z<1}\Q(i) are improperly equivalent if
and only if & n have chains of the form
ché="T,T,..T, T, Tyis... Tyir ...,
ch*n=U,U,.. U U Upis... Upyyy ...
with
det tgot,0 ... of,={+¢} det uou 0 ... ou,
and satisfying condition (ii) of Theorem 2.3.
Proof. We restrict ourselves to Theorem 2.3, since the two other theorems are proved

similarly.

Suppose first that &, n have regular chains satisfying conditions (i), (ii). Then by (2.5)
E=1t40t,0 ... 0t,(E,.1),
N =%gOU O ... OUp(Npiy),
and by condition (ii),
M1 =8(€g41)-
Hence
N =UgO%,0 ... ou,0s’0(tgot 0 ... ot )"Y(E);

by condition (i) and since det s = { + 1}, this shows that £, v are properly equivalent.
Conversely, suppose that & n€C\Q(¢) are properly equivalent, say vn=m(§), where
m: zi->(az +b)(cz +d)™ is properly unimodular, and let

ché=T,T, .. T, ..

be a regular chain representing £. Put ¥, = F(t,0t,0 ... ot,), then it follows that m(F,) is
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a Farey set of the same type as F, and containg v, provided —d/c¢F,. However,
this condition is certainly satisfied for all n>n, (say), since --dfc+£€0\Q(s), and

lim diam F,=0.

Case 1. We assume there exists a g > n, such that F', (and hence also m(F,)) is of triangular
type. Let m(F,) = F(usou,o ... ow,) be the representation of section 1.3, then in particular

det tyot,0 ... of,=det uyou,0 ... ouy (={+14}). Also we put

(g) g)g) (@) 1 0 1
(p‘ P p3)=T0T1...T,( )

@ 011
P PP Py 10 1)
o g o) =Ul 0o )

Since m maps 0F, onto om(F,) with preservation of orientation, it follows by (1.5) that
P lgP) PO

for k€{1, 2, 3} with some fixed j€{1, 2, 3}; of course k+j has to be reduced modulo 3.
Now define U, n, €N, by condition (ii), then clearly U, U, ... Uy U1 Upiao.. Upsn .. i

a regular chain representing .

Case 2. We assume for all n >n, that F, (and hence also m(F,)) is of circular type,
whence in particular T,€{V,} for all n>n,. Let u, be the maximal angle of FT(p{"/¢i",
P57 ]g8Y, p§)gs”?), then /3 <u, <z/2 by Lemma 1.3 (ii).

In case u, does not converge to #/2 for n— oo, we proceed as in case 1 using the con-
formal mapping property of m together with Lemma 1.2 (i) and Lemma 1.3 (ii).

In case u, converges to 7z/2 for n— o, it is a simple consequence of the norm relations
of Lemma 1.3 (i) that there exists a fixed (n;, k) with n, >ny, k€{l, 2, 3}, such that
T, €{V,V,y, Vsi\{V}} forall n >n,. Hence £ EOF*(t,0t,0 ... ot,,),and since F*(t,0t,0 ... ot,)

is a dual Farey set of triangular type, the proof is completed as in case 1.

2.3. Approximation theorems

For any £€CN\Q() ({z=z+1y|0<x<1}\Q(/)) we shall call a reduced fraction p/q
with p, q€Z[:], ¢+0, a convergent (dual convergent) of & if plg=pi™[g;™ for some
n€N,, j€{1, 2, 3} corresponding to any regular (dually regular) chain of &.

As in {33] we define the approximation constant of a EeC\ Q) as

C(§)=lim sup (|q||g&~p|),
the lim sup being taken over all p, ¢€Z[¢], ¢ =+0.
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TrrEOREM 2.5. Let £€C\Q(3) ({z=2+iy|0<z<1}\Q(i)); then any irreducible frac-
tion plq with p, g€Z[3), ¢+ 0, and satisfying

-2 <
q]  A+1/V2)|qf

18 a convergent (dual convergent) of &.
Proof. The proof of Theorem 3 of [33] applies with some obvious changes.

TEEOREM 2.6. Let £€CN\Q() ({r=z+1y|0<z<1}\Q(i) have the regular (dually
regular) chain TyT, T, ...; then (with the notation of section 2.1)
C(&) =lim sup (|¢||gi” € — 2§ )7,

the lim sup being taken over all (n, j)ENy x {1, 2, 3}.

Proof. The result follows readily from Theorem 2.5, since
1+1/V2<V3<0(%),

the last inequality being a consequence of a theorem of Ford [13].

THEOREM 2.7. Suppose £EC\ Q(3) is represented by a purely periodic regular (dually
regular) chain,

E=[ToT,;... Tyl
(¢f. chapter 3). Then

C&=V|D|/p,
where D and p are determined by

(“ b)—TT T
c d = 0 1~ k—1s

HX,Y)=cX?+(d—a) XY —-bY?
D= (d—a)®-+ 4bc,
p=min|{(p/g")],
the minimum being taken over all (I,7)€{0, 1, ..., k—1} x {1, 2, 3}.

Proof. Obviously & = (a& +b)/(c& +d) is a root of f(x, 1)=0, and hence
f(X, Y)=e(X-¢Y)(X —£'Y). (2.21)
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By the pure periodicity
(" lgi ") = (ad — be)™ f(p°[af"),

in particular

| F(f* "0 lgl )| = | f( 0 /gsP)] (2.22)
for n€Ny, 0<I<k-1.
Consequently by (2.21) and (2.22),

A+ni)| [ LA+ 1K) o (k) —1=|0”P§Hnm/qgl+"k)_5,‘
(l% ”91 &—p; l) 'ﬂpy)/q;t)l

_lelle=¢1__VID]
(1P le)] 1Pl
This proves Theorem 2.7 in view of Theorem 2.6,
By Theorem 2.7 it is a finite procedure to calculate C(£) for any £€C\ Q(¢) having a
periodic regular (dually regular) chain. We shall give three examples of this.

for n—> oo,

Example 2.1. (Ford [13].) §=3(1 +iV§) has the (unique) regular and dually regular
chain
ch£=ch*&=C.
It follows that
HX, ¥)=(1—i)(X2~ XY + ¥2), D=6i, u=V2,

hence

C&)=V3=V1—1/1=1.7320....

Example 2.2. & =}(1+i(2+V99)/5) has the (unique) regular chain
oh &=V, B,CE, V,C.
It follows by a simple calculation that
f(X, ¥)=2i(5X%2—(5+20) XY +(6+4) Y?), D=396, u=10,

hence

CE)=V4-1/5°=1.9899....

Example 2.3. (Cassels [3].) & =(—1+V—15—12i)/(2+4s), which is a root of the
quadratic form

(1-+2) X2+ XY +(2—1) 72,
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has the (unique) regular chain

ch &= CCE,CV, B, V,CE,CV,E, V,CE,CV,E, Vg

of period 18. Since &, is improperly equivalent to &,, and hence C(&,) =C(£,), we consider
&, which has the purely periodic dually regular chain

ch* &, =CE,CV,E, V,CE;CV,E, V,CE,CV  E; V.
The calculation of C(&,) is much facilitated by the observation that in ch* &,
Tpi6=8T,81 for n€N,,
by Lemma 1.1 (ii). Hence by & slightly modified version of Theorem 2.7 we get

@ b
( J)=OE20V1E1 V1S=(

¢

1+ 9 —7—«6@')
12+3 —11+6i)
X, Y)=(4+0)(3X2—3XY +(2+4) Y?), D=(4+1)%(—~15—12i),
p=__min [f(pPlgP)|= V17 V5,
1<7<8,0<1<6

hence
(o) =C(&) = VID|a=V Va1 =1.9599....
In chapter 6 we shall prove the result that the set of approximation constants <2 is
(VA~T/A*|A=1,5,29,65,...) U {/3Va1}.

The three examples above thus represent the three lowest approximation constants.

Chapter 3
Periodic chains
3.1. Periodic chains
A regular (dually regular) chain
T,7,..T,..
is called periodic with period k>1 if there exists an h> —1 such that
T,=T,u forallnzh+1,

in which case we write the chain as

ToTy ... Ty Trs1Tors - Trpe 3.1)
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The chain (3.1) is called purely periodic if we may take-h= —1. (Notice that in order that
(say) V3OV, V_;be considered as a purely periodic regular (dually regular) chain, we have
to deviate slightly from the notation used so far and thus allowing 7’; to be V).

THEOREM 3.1. 4 periodic regular chain represents a £ €C\Q(7) which is quadratic over
Qi)
TuEOREM 3.1* A periodic dually regular chain representsa £ € {z =z +iy|0 <z <1}\ Q(3)
which is quadratic over Q(3).
Proof. Suppose & has the regular (dually regular) chain (3.1), then by (2.2), (2.5)
£=¢, =mh(§h+1):

Eni1=tn1%0h429 o Obp il Epprcia)

with m,, and ¢,,,0¢,,,0 ... of,,, unimodular. Since &,,,=§&,,;,, by the periodicity, the

result follows immediately.

THEOREM 3.2. Every £€CN\ Q(7) which is quadratic over Q(i) has a periodic regular

chain (two in case & is properly equivalent to a real number).

THEOREM 3.2*. Every E€{z=x+iy|0<x<1}\Q(:) which is quadratic over Q(i) has
a periodic dually regular chain (two in case & is improperly equivalent to a real number and

Re £¢0, 1}).

Proof. Let & be quadratic over Q(¢); then & is a root of a quadratic equation

A2+ Bz+C=0
with 4, B, C€Z[:], and D= B2—4A4C not a square in Z[:]. Hence
fo Bt VD
24’
where we fix VD such that arg VI)E[O,n[. In any case &= §, has the form
VD + P,
So=—F
Q

with Py, @, € Z[7] and Qy| D —P; (in Z[3]), since
D—Pi—=D— B~ —4A4C, Q,—+24.
Let
7,7, .. T, ..

be any regular (dually regular) chain representing &,.
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As the first step of the proof we want to show that any complete quotient &, of the
chain above is of the form

_VD+P,
5 n Q”
with P,, Q,€Z[¢] and Q,| D—P5.
We proceed by induction. Since we know the result to be true for &,, suppose it true

for &, and consider §,,,, which by (2.2) is of the form
nsa =t;1(§'n)

with
a b
r,-(" )ew.5.0;
¢c d
Hence
~dé,+b  —d(VD+P,)+bQ,
bnpr= = ks

=@  o(/D+P,)—aQ,

~ (bc—ad) Q, VD —cd(D — P2)+ Q,((— ad — be) P, + abQ,)
B (D — P2) + Q,(2acP, — a’Q,)

However, since bc —ad =¢ is a unit in Z[:] and @,| D —P%, we have

Pn+l =8_1( —'Cd(D —P%t)/Qn - (a'd + bc)Pn +0’an)’
ni1=E"HeA(D —P37)/[Q, +2acP, —a*Q,)
both lying in Z[i]. That @, ,,| D—P%., does not follow from the unimodularity of 7', but

is easily checked in each of the seven cases T,€{V,, E;, C}, e.g. in case T,=C, we find
that

Pn+1 :( -1 +7’)(D"’P§l)/Qn—3Prn+ (1 +i)Qm
Qnia = —2(D—P3)(Q, — (2+20) P, +1Q,,

and hence
D—P% 1 =Q, ., (—i(D—P3)[Q, +(2—2i)P,—2Q,).

This completes the first step of the proof.

"We shall use a prime (') to indicate taking conjugates in the field extension Q(¢)<
Q(s, VD); in particular
_—Vp+p,

b=
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and hence
D
g 2D, 33)
e v 2QVD
E=1)""— (£ —1) l~m. (3.4)

As the second step of the proof we want to show that the sequence of complete quoti-
ents &, &, ... contains only finitely many different numbers, or equivalently that the two
sequences of Gaussian integers P,, @, (n:>0) are both bounded. By (3.2) and (3.3) this will
follow if we prove the existence of a constant 6 >0 such that

|, —&n] >0, |E:1— &Y >6 for n>0. (3.5)
From the formulae (2.6), (2.7), (2.8) we obtain by conjugating and taking absolute
values,
|&n 1+ a7/91” | = (|g57 %0 — i™/g8™ ), (3.6)
|&75+ a5/ | = (1g87 %] &0 — pE¥/g8” ), (3.7
[(Ens1— 1)1+ g7 /g8" | = (|57 |*| &6 ~ p§V/g8™]) . (3.8)
Since

¢ o> and & —pi”/gf”| > &= Lol +0 for n> oo,

it follows that the expressions in (3.6), (3.7), (3.8) all tend to zero for n— oo; thus to prove
the existence of J to be used in (3.5) it suffices to prove the existence of a constant §; >0
such that

[&nia+ a8V/ay”| > 8y, |E71a+ 01V/aE”| >0 (3.9)

for all n>n, (say).
However, it follows from (3.2), (3.3), (3.4), since @,| D—P% and Q,| D—(P,—@,)?, that

|&n—&nl, |62 =&, (&= D)2~ (En— 1)

are all <2V|D| for n>0. Hence using once more that the expressions in (3.6), (3.7), (3.8)
tend to zero for n— oo, we can find a constant K>2Vr1)| >2 (e.g. K=2)|D| +1), such
that

| Enpr + 452107 ), | Enta + 71g50 s | (B — 1)1+ g8 (3.10)

are all <X for all n>2n,=n,(K).
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We will prove that the inequalities (3.9) are valid with 9, =1/(2K) for all n>n, =n,(K).
More explicitly, the first inequality of (3.9) follows from the second and third inequalities
of (3.10), while the second inequality of (3.9) follows from the first and third inequalities of
(3.10).

In fact, for each n€N,, either (2.3) or (2.4) is valid. Now suppose (to prove the first

inequality of (3.9), say) that for some n >n;,

*)

W]

n n l
[Enry + ¢57/917) <35 <

then we have to obtain a contradiction.

From (*) it follows, independently of whether (2.3) or (2.4) is valid, that £,,, and
—gs”/gi"” are both in the same circular disc B(0; 1/2) or B(1; 1/2); by symmetry we may
as well assume that (2.3) is valid, and that &,,, and —¢t?/¢™ are both in B(0; 1/2).
It follows then from (2.3) and (*), that

—~ g gV =TI Q<< 1/(V§K), 0<u< /4,
so that
|Tm (- g§™/g§™)| = r~* cos u > K.
Hence by (2.3)
|&231+ ¢/gs”| > |Im (£21 + ¢1™/ge™) | > | Tm (— ¢iV/gf™)| > K

contradicting the second inequality of (3.10). This completes the second step of the proof.

The final step of the proof is now an easy one. Since there are only finitely many
different numbers in the sequence &, £,, ..., we can pick five different indices ni, veey T
such that &, =... =£,,. Among these ihdices we can pick three, say n;, n,, ng, such that
det m,,_y =det mn,_y =det m,,_1 (={%1}, {£14}). Then the number &,, =&, =£, has

T Trosr oo TaTagat oor Ty T oo

as regular (dually regular) chains. However, since at most two different regular (dually
regular) chains can represent the same number, two of the three chains above must be
identical. This proves the periodicity.

The proof above of Theorems 3.2, 3.2* follows very closely the classical proof pf
Lagrange for the corresponding theorem about the periodicity of regular continued frac-
tions of (real) quadratic irrationals. The most notable deviation lies in the second step,
and is in fact inavoidable because of the differences in the notions of reducedness (cf. sec-
tion 3.2).
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It is easy to give an alternative proof of Theorems 3.2, 3.2* using the idea of Charves
(cf. [27, pp. 7T1-72]), however, I shall leave the details to the reader.

3.2. Purely periodic chains
DeriNiTIiON 3.1. A number £ €C\Q(2), which 18 quadratic over Q(2) with conjugate
&', is called reduced if
£€J and £ €T,
and is called dually reduced f
EE€J* and £EJ.

TrEOREM3.3. Bvery purely periodic regular (dually regular) chain represents a £ € 0\ Q(%),
which is quadratic over Q(i) and reduced (dually reduced).

Proof. To be specific let
T,7,.. T,

be a purely periodic regular chain. By Theorem 3.1 it follows that [T,7) ... Tk__’1]=
E€CN\ Qi) and is quadratic over Q(i). By the pure periodicity

E=£, forn=0,1,2, ..,

whence, since all complete quotients &, &,, ... are in J by (2.3), (2.4), it follows at once
that £€ J.
Further by the pure periodicity

det myyy_y =(det m,_)2={+1}, n€N,

and hence by (2.3),
— g8 VigErk-be J*  for neN.

Finally, using that the expressions in (3.6) tend to zero for n— o°, we obtain
o= Ehns = lim — g™ VgEri T,
N-200

since J* is a closed set. Thus £ is reduced.

The dual part of Theorem 3.3 is proved similarly.

THROREM 3.4. Bvery £ €C\ Q(2) which is quadratic over Q(2) and reduced (dually reduced)
has a unique purely periodic reqular (dually reqular) chain.

Proof. As the first step of the proof we want to establish the uniqueness.
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By the description of Farey sets in section 1.3, there is no Farey set F of circular type
with 9F N I\{0, 1,00} £@, 8F n J*\{0, 1, %0} +@. Consequently, a & €0\ Q(s), quadratic
over Q(¢) and reduced, cannot be properly equivalent to a real number, since otherwise

there would exist a properly unimodular map m with
£, & €m(R) =0F(m).

Hence in this case the uniqueness follows from Theorem 2.2.

Similarly, the only dual Farey sets F* of circular type with
8F* N I*\{0, 1,00} 0, 0F* N J\{0, 1,0} + D,
are F*(e;), j=1,2, 3. Consequently for any £€C\ Q(:), quadratic over Q(:) and dually

reduced, we must have £ €8J*, and hence the uniqueness follows from Theorem 2.2*, except
for
t€{z=z+iy|0<z<l,y=(x—a?)'2}.

These special § have two different dually regular chains, one of the form
TyT,T, ..., with T, €{V,, V5} forn=>0, (*)
the other of the form
Vi'CE,U,U, ..., with U,€{V,, V5} forn=>3. **

Since chains of the form (**) are never purely periodic, we have shown the uniqueness also
in the dually regular case.

Disregarding dually regular chains of the form (*), every £€C\ Q(¢), quadratic over
Q(¢) and reduced (dually reduced), has a unique regular (dually regular) chain, which by
Theorems 3.2, 3.2* is periodic, say of the form (3.1).

As the second step of the proof we want to show that every complete quotient &,
belonging to the chain (3.1) is also reduced or dually reduced.

To be specific let £ be reduced and (3.1) be its unique regular chain. Then we claim,
that &,(n>1) is reduced if det m,_, ={+1}, and dually reduced if det m,_; = {+i}.

We proceed by induction on n, starting with n =0 with m_, being the identity map of
determinant {+:1}. For the inductive step we must distinguish between two cases according
as det m, ; ={+1} or {+1}.

Case 1. det m,_,={+1}; then §,€J, £, € J* by the inductive assumption. There are
three subcases.
(a) T, =V then det m,={+1}. Of course &,,, € J by (2.3), but also

En o1 =07 (Ey) €07 {(TF) =x0v,0n(T*) = TF < I*

by (2.2) and Lemma 1.1 (v) (vii), bence &, is reduced.
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(b) T, =Ej; then det m, ={+1¢}. Of course £,,, € J* by (2.4), but also
Ernr =6 (En) €67 (T =woe,on(T) = €, T
by (2.2) and Lemma 1.1 (v) (vi), hence £, ,, is dually reduced.
(¢) T',=C; then det m,={+1i}. Of course &, ., € J* by (2.4), but also
Eran=c(E) EcHT) =xocon(TH)=C< T
by (2.2) and Lemma 1.1 (v) (vi), hence &, ,, is dually reduced.

Case 2. det m,_;={=+1}; then &,€J*, &€y by the inductive assumption. The two
subcases (a) T,=V;, (b} T,=C are treated as in case 1.

This completes the second step of the proof.

To finish the proof of Theorem 3.4 suppose that the regular chain (3.1) of & is not
purely periodic, hence 7', # T’ ,(h >0). Then we have to obtain a contradiction. We have
to distinguish between two cases according as det m,={+1} or {+7}.

Case 1. det m;, ={+1}; then &,,,€J, &, HG:I_* by the second step of the proof, and
T,=V;or C by the very definition of a regular chain.

(a) T, =V then det m,_; ={+1}. By the second step of the proof &, is reduced, in
particular &, =v,(£;.,) € J*, and hence &, .1 €v; }(T*) =xov,0%(T*) = VL.

(b) T, =C; then det m,,_, ={+1}. By the second step of the proof £, is dually reduced,
in particular &, =c(&;41)€ J, and hence &4, €c-2(J) =xo0co&(J) = C*.

Using the first step of the proof, we obtain from (a), (b) that 7', is uniquely deter-
mined by the position of &, ;. However, applying the same argument to &, ,,, (also reduced
or dually reduced), we conclude that 7', =T o =Ty since det my .y =det m,={+1}

and &1 =E&x42x+1 bY (3.1). This is the required contradiction.

Case 2. det my, ={+1}; then &, ,, €J*, Epa €9 by the second step of the proof. The three
subcases (3) T),=V}, (b) T,=E,, (¢) T,=0 lead to a contradiction as in case 1.
The dual part of Theorem 3.4 is proved similarly.

3.3. Inverse periods
TrEOREM 3.5. If £€C\ Q) has the purely periodic regular (dually regular) chain
T,7T,...T 4,
then E’ has the purely periodic dually regular (regular) chain

TesTe ... Ty
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Proof. To be specific suppose that & has the purely periodic regular chain
TO Tl P Tk—l'

Then £€ J, &€ J* are the roots of the quadratic equation (with coefficients in Z[%], when
reduced)
z=tyot,0 ... ol _,(2).
Evidently
T 1Ty y... Ty
is then a purely periodic dually regular chain, which represents a number n €€\ Q(7),
quadratic over (¢) and dually reduced. Hence 1€ J*, v’ € J are the roots of the quadratic

equation
Z2=b,_10,_50 ... ofy(2) =(x0tz}10%)0 (xotz1,03)0 ... o(xof5losx)(z)
=xo(t,_,lot,_,"1o ... otg)ox(2),
whence applying ¢,0t,0 ... of,_ 05 on both sides,
Z=t,0t,0 ... of,_,(2).
It follows that 7€ J, 7' € J are also roots of the equation

z=t40t,0 ... of, ,(2).

However, since J N J*= {0, 1}, we must have *q_’ =¢, hence 7 =§—’ , which we had to prove.

The dual part of Theorem 3.5 is proved similarly.

3.4. Special quadratic surds. The Pellian equation

Suppose D €Z[7], where D is not a Gaussian square, and let
chVD=T,T,..T,..
be any regular chain of VD (arg 1/56[0, zt[). With the notation in section 3.1

2°(VD+ Ppy) + P8 Quia
q(,"’(l/f) + P, + q(2n) Qn+1

VD =&y =mp(&ypq) =

whence, using that (1, VI)) is an independent set over Q(?),

p” DgiV\ u (! Pm)
g CO AT Q '
1 Pi n41/
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(p‘z"’ Dq%"’) —u (0 (D—Pin)/Qm)

” P 1 ~Pria
(pgm quo,")) _ (1 P+ (D —Pin)/QnH)
% " "\1 @ni1—Puna )
Finally, taking determinants, we obtain
P2 — D™ =g, Qi1 (3.11)
P — Dgi™ = — &n(D = P11)/Qnya, (3.12)
P = D= — 0D~ (Prys — Qusa)) Qs (8:13)

where

(n)q(2n) _p(zn)q(ln)e{ i 1’ i@}-

g, =det M, =pj

It is an easy consequence of Theorem 2.5 that for any solution (X, Y) € Z[1] x (Z[¢]\ {0})
of the Diophantine equation

X2—DY2=¢, c€U={+1, +i}, (3.14)
either X/¥ or —X/Y is a convergent p{”/¢i™ of V' D. Hence by (3.11), (3.12), (3.13) the
complete solution (X, Y)€Z[¢] x (Z[:]\ {0}) of (3.14) consists of

{e'(2 2", ¢i”) |’ €U, (j, n)ES}, (3.15)
where
S={(1, )| @€ U} U {(2, )| (D —P741)/@nir € U} U {3, )| (D ~(Pry1~Qn11))/@ns1 € U}.

To solve equation (3.14) it is not restriction to assume that D =a +1b, a, bEN, (other-
wise replace D by —D, D or — D), and hence that VD =a+if with o> f>0. It is then an
easy consequence of Theorem 3.4, that VB (except for D=1, 141, 1+2¢, 214, 3, 47) has

a unique regular chain of the form
ch VD=V B, Ty Ty... Ty Ty, (3.16)
where k denotes the shortest period with
det ty0t30 ... ot 08, ={+1}.
It follows easily that a fundamental solution of the Pellian equation
X2-DY2=+41, (3.17)
is given by

(@) (pfH°, ¢ii?), 7=1,2, incase k=3l and T,,,=87T,8 for 2<n<2l+1,
3 — 752903 Acta mathematica 134. Imprimé le 30 Juillet 1975
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and otherwise by
(b) (p(1k+1),q(lk+1))-
Also the calculation of (3.16) gives an effective method to decide whether the non-
Pellion equation
X2-DY?%=+1 (3:18)
has solutions, and to determine a fundamental solution if this happens to be the case.
This method of solving equation (3.14) is illustrated by the following examples.
Example 3.1. D=17+2i; ch V7 +21 is of type (a) with b;=0, k=3-13, j=1 and
Ty...T,=V,CV,E,CV,V, Vo, E;V V,V,V,.
Hence a fundamental solution of the Pellian equation is
(p(zu), q(zu‘)') - (p(zn), q(211)) = (17 —63i, 3 —24i),
while the non-Pellian equation has no solutions.
Example 3.2. D="T+3i; ch J/7+3i is of type (a) with by=0, k=316, j=2 and
Ty Tyq=V OV V,V\ Vi E,V,CV E,CE, Vy V, Vs
Hence a fundamental solution of the Pellian equation is
(pglv), q§17)) = (p§13), q(sls)) = (99 — 084,28 — 421;),

while the non-Pellian equation has no solutions.

Example 3.3. D="T+ 4i; since
Ch l 7+ 4:7:= V?Ez VIOEzoEZ Vl Vl Vl

is of type (b) with by=0,k=8, a fundamental solution of the Pellian equation is
(PP, ¢0) = (p0, ¢ = (- T+ 4i, —2+2i),
while the non-Pellian equation has no solutions.

Example 3.4. D=8+ 71; since
h V8- Ti=V By ViCVo Vo Vo Vo Vo By Vo CV B, Vi VLV, V,y

is a type of (b) with by=1,k =16, a fundamental solution of the Pellian equation is
(P, %) = (0, gf1) = (— 13+ 163, ~ 2+ 6i),
while a fundamental solution of the non-Pellian equation is

(19,¢8) = (p5°,¢5) = (-3 -4, = 1).
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Chapter 4
C-regular and C-dually regular continued fractions
4.1. Intreduction
We consider a complex number
§=3(1+ix), *%€R\Q,

lying on the line Re z=1, which is an axis of symmetry of Fig. 1 and Fig. 1*. It follows by
Theorem 2.2 that &, has precisely one regular chain

ché=T,T,7, ..,
and that
T.€{V,, E,,C}, ne€N,.
Hence, collecting powers of ¥, we have

ch &=V U, Vel eVt U, vt ove?..., (4.1)
where @, €%,a,€N,U,, €{E,,C} for nEN.
Put
b= [T Ty o 1= 31+ i),

then the relation &, =1,(&,,,) is equivalent to

2+ 0ty if 7,=V,.
1—- 2 if 7,=E,.
Ay = 1+,
2 .
1+ if T,=0.
T+ o,y ‘

Hence corresponding to formula (4.1) we have

£ 2 2
o= 2aq 1+‘2;|1+|§}l; |2i;|3+l2tl4+ (4.2)
with
+1 if Uy 4=0,
Ean-1 '—{ ~1 i U, ,~B, n€EN,

Similarly, by Theorem 2.2%, &; has precisely one dually regular chain

ch* &=V 1oV, ve-tovety, vt ., (4.1%)
where b,€Z, b, EN, U, €{E,, C} for n€N, and correspondingly
2] 26|, 2| 2|
— 2by— 1+ 2 1 2%
0" Tob, T2k, 2, [28, T (429
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with

+1 if U,,=C,
82n={ T n€N.

~1 if Uy, =K,

A continued fraction (4.2) with a,€Z, a, €N, &,,_,€{—1, +1} for n€N is called C-
regular. Similarly, a continued fraction (4.2*) with by€Z, b,€N, ¢,,€{—1, +1} for n€N is
called C-dually reqular.

By the correspondences (4.1), (4.2) and (4.1*), (4.2*) the following results from Theorems
2.1, 2.1*, 2.2, 2.2%, 3.1, 3.1*, 3.2, 3.2*.

THEOREM 4.1. Any C-regular (C-dually regular) continued fraction converges to some

«€RN\Q.

THEOREM 4.2. Any a €R\Q has precisely one C-regular (C-dually regular) continued

fraction expansion.

THEOREM 4.3. A periodic C-regular (C-dually regular) continued fraction converges to
an o €ERN\Q which is quadratic over Q.

TEEOREM 4.4, Every « ER\ Q which is quadratic over Q has a periodic C-regular (C-

dually regular) continued fraction expansion.

An a€R\ ), quadratic over @ and with conjugate «', is called C-reduced if a>0,
o < —1, and is called C-dually reduced if «>1, o' <0.

A C-regular (C-dually regular) continued fraction (4.2) ((4.2%)) is called purely periodic
if the sequences a,, @, @y, ... and &, &, &;, ... (by, by, bs, ... and &, ¢,, &, ...) are both purely

periodic.
Theorems 3.3, 3.4, 3.5 then specialize as follows.

THEOREM 4.5. An « €R\Q, quadratic over Q, is C-reduced (C-dually reduced) if and
only if the C-regular (C-dually regular) continued fraction of « is purely periodic.

THEOREM 4.6. If x€ER\Q has the purely periodic C-regular continued fraction (4.2)
with

—

Ay, By, Ggy ... = Cgy Ay, uuey Bope g,y

—_

€1, €3, €51 -0 =&,83, ..., 8081,
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then — o (where o 18 the conjugate of a 1n Q(x) over Q) has the purely periodic. C-dually reqular
continued fraction (4.2*) with

—

bl)’ bl’ bz, ver =g, a2k_3, eses ao,

—_—

€9, L4585 -+ = E95,15 €235 ++ 45 &y,

and conversely.

4.2. C-equivalence and C-duality

A (real) unimodular map ¢: t—>(aé +b)(ct +d)-! with a, b, ¢, d€Z, ad —bc = 11, is called
C-unimodular if either a=d =0 (mod 2), b=c=1 (mod 2)ora=d =1 (mod 2),b=c¢=0(mod
2). It is well known that the set I'; of all C-unimodular maps is a group, which is generated
by the maps g f+>t+2, @: $->1-1,

Correspondingly, o, SER U {co} are called C-equivalent (x~ f) if there exists a map
p€T'c with §=gp(a).

Notice that  consists of two C-equivalence classes Qg, Q,, where (for =0, 1)

Q,={p/q|(p, 9) €Z xN, ged (p, ) =1, p+¢=7j (mod 2)}.

For any «€R U {oo}, the C-dual o* of o is defined as o* = (¢ +1)/(x—1).
Notice that (a*)*=a and that o~ pf<o*~g* for all a, SERU {o=}. Notice also that
o~ B if and only if (1 +4a), (1 +148) are properly equivalent, and that «* ~ § if and only if
$(1 +4a), 2(1 +4B) are improperly equivalent.

Now Theorem 2.3 specializes as follows.

THEOREM 4.7. &, BER\Q are C-equivalent if and only if the C-regular continued frac-

tions of a, B are of the form

2€1| 2J 2£3| l2
—20,—14oaly 2L sl 12,
X0 (o0, T T2y [P0y 20y

25, 2| . 28], 2|
=9, — it i St BTt 1 Bl 28
fA=2¢c, 1+|2cl+|?cz+|2c3+|2c4+""

with (for suitable h, kEN)
@on—14n="Cok_14n> E2n_112n =0 142, for all n€EN.

Of course, Theorems 2.3*, 2.4 have similar specializations.
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4.3. C-convergents and C-dual convergents

For any x€R\ Q we write its C-regular continued fraction (4.2) reduced form as

el , 1 &, 1],
a=2ay— 1+ -+ -+t e, 4.3
°" o, 2, " Jay " 24, *3)

and we call the convergents p,/q,, n €N,, of (4.3) the C-convergents of «.
Similarly we write its C-dually regular continued fraction (4.2*) in reduced form as

oc=2bo—1+1| eol (1 el (4.3%)

7t cers
by |26, |b  |2D,

and we call the convergents p}/g%, n €N, of (4.3*) the C-dual convergents of a.
The following result is an immediate consequence of the recursion formulas of con-
tinued fractions.

THEOREM 4.8. For any a€R\Q with C-convergents p,lq, and C-dual convergents
prlar, the following is valid:
(1) Pon/Gons %093 € Qoy Pansr/@antrs Pin+1/a2n1€Q, for n€EN,,
(i) PpGnis— Prp1n= £, ?:Q:H“P:HQ:: 1 for n€N,,
(iii) 1=¢p< 2¢;< §2< 2¢3< ¢4 < 2¢5< ...,
(iii*) 1=gf<gi<gi<gi< ...,
(iv) |90 —po] > lqra—p1| > g —p2] > ...,
(iv*) |5 e —p3| >2|gt a—pI| > |2 @ — pZ| > 2|5 x —p5| > ...

The following theorems generalize classical theorems of Legendre on regular continued

fractions, and can be proved similarly.

THEOREM 4.9. The sequence p,/q,, n€N,, of C-convergents of « €ER\Q is characterized
as the maximal sequence p,/q, satisfying conditions (i), (iii), (iv) of Theorem 4.8.

The sequence p}lqn, nEN,, of C-dual convergents of «€R\Q is characterized as the
maximal sequence pulqn satisfying conditions (i), (iii*), (iv*) of Theorem 4.8.

THEOREM 4.10. Let x€ER\ Q. Any p/g€Q; (j =0, 1) satisfying the inequality
le—plg| <, (6g=3, ¢, =2),

18 a C-convergent of .



DIOPHANTINE APPROXIMATION OF COMPLEX NUMBERS 39
Any plg€Q; (j=0, 1) satisfying the inequality
|e—plg| <(c} g, (e =2, cf=}),

1s a C-dual convergent of o.

4.4. The C-approximation constant
For any x €R\Q we define
(o) = lim s1p (gl —p[)7, (=0, 1),
d() = max (dy(x),§ dy(x)),

and we call d(e) the C-approximation constant of «.
It was proved by W. T. Scott [34], that d,(e) >1 for all x€E R\ Q, and by R. M. Robin.
son [31], that d,(x)>2 for all x€R\ Q. See also L. C. Eggan [11].

The following result is an easy consequence of Theorems 4.8, 4.9.

THEOREM 4.11. For any a €ER\ Q with C-regular continued fraction (4.2) and C-dually

regular continued fraction (4.2*), we have
dy(®) = lim sup d,,, = lim sup ds3,,
dy(«) = lim sup d,,_, = lim sup d3,_1,
where
dy=(@n|ga ot —pa]) " dn=(@nlgn e —p2) 7"

are given by

2| +282n+3|+ 2|

+ ...
2a2n+2 |2a2n+3 |2a’2n+4

2dy, = 203041 + l

20n11 I 2 I 2891 | 283] 2 I
+ + + + ot
|2a2n |2“2n—1 |2a2n—2 |2“2 '2“’1,
285m41] , 2| 283043
dgp_y = 2, + —22t1 2l
-l o |2“'2n+1 |2“2n+2 I2a2n+3
2] 2e0,1], 2| 2¢5] , 2]
+ + + oLy L
'2“2n—1 |2“2n—2 |2“2n—3 |2“2 |2“1’
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2emrs] . 21 2epn14]
2d3, = 2b,, , + A2l by
: ot I 2b2n+2 | 2b2n+3 ' 2b2n+4

2| | 26 2| 2| | 2|
+ + : + ot

(265 ' |205n s |2b2ns |26, " [2b,

2| 2¢. 2|
d*n— =2 2n+3 vea
et b2n * |2b2n+1 * |2b2n+2 * | 2b2n+3 *

269n) 2| 269n_s | 2] 26|

+ + + U St S Rt

| 2b2n—1 ' 2b2n—2 | 2b2n—3 I 2b2 I le

CorRoOLLARY. For any o, FERN\Q,
as f=do(a) =dy(B), dy(x) =d,(B), d(x) =d(B),
ot = B = 2d (o) =dy(B), dy(cr) =2dy(B), d() =d(B).

Ezxample 4.1. It follows from Theorem 4.11 that for

V§=1+2—2|+

|22

y (@n=¢g3y=1 for n€N),

o

we have
do(V3) = V3, dy(V3)=2V3, d(V3) =13.
Example 4.2. It follows from Theorem 4.11 that for

—1+V2=1+ —_2|+|22j,

E (= —€p1=1 for nEN),

we have

do( — 1+ V2) = V3, dy(— 1+ V2) =22, d(—1+V2) = V2.

Example 4.3. 1t follows from Theorem 4.11 and its corollary that for

-1, 1}, =1, 1}, -1/, 1|, -1
T e e e
TR RTTE TR TRTTR

we have
do(e) = o2, dy(e) =2, dy((e+1)/(e—1))=1, dy((e+1)/(e~—1))=rco.

In chapter 5 we shall extend the results of Markoff-Hurwitz by finding all C-approxi-

mation constants <2.
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4.5. Ergodic theory
Let
X,=10,2[\Q, X,=11,3[\Q,

and let X be the disjoint union of X, and X,. A normalized measure y on X is defined by

1
p(10, 2y]) = 2—]@ log (1+%,), forax €X,,

1
w1, z,[) = 5 log x,,- for z,€X,.

log 3
Further let 7: X+ X be given by
2&(z1) | 2' 263(701)' 2| 253(“’1”
=1+ + + o= T(E)=1+—— 4+ eX,,
! |2a1(x1) |2a2(x1) lzaB(xl) (=) 12“2(@'1) I2aa(x1) z
wy=1+ 2 2w, 2] i—>T(x2)=l+2£2(x2)l+ 2| €X,.

|26y(,) | 2by(x,) | 2b4(s) [2by(x;)  |2b5(xs)

A simple computation shows that 7' acts as a measure preserving transformation on

(X, u), ie.

M0, 2,[)) =u(]0, x,f) for all z,€X,,

wT7(L, %)) =u(11, ,f)  for all , € X,.

Further the argument used by C. Ryll-Nardzewski [32] shows that T is an indecompos-
able transformation on (X, u), i.e. any measurable subset £ < X with T-}(E)=F has u-
measure 0 or 1.

Hence by the individual ergodic theorem we get the following analogue of a theorem of
C. Ryll-Nardzewski [32]; also Corollaries 2, 3 represent analogues of well-known results of
P. Lévy and A. Khintchine.

THEOREM 4.12. For any f: X >R, fELNX, u), we have

D R RIS T O 120 3 f{aa) }
lim o 2 AT (x))_210g3{ 01+x1d’”1+Jszd’c2

for almost all x€X (with respect to u).
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COROLLARY 1. For almost all x,€X,, z, €X,, we have

D(En1(%y) = — 1) =p(gn(w;) = — 1) = (log 2)/(log 3),
P(egn_1(%y) =1) =p(€2n(25) =1) = (log 3 —log 2)/(log 3),
where p(c, =c) denotes the frequency of ¢ in the sequence (c,), n€N.
Proof. Apply Theorem 4.12 for f=x, (k=1, 2), where %,, is the indicator function of
A,, and
A4,=10,1{c X,, 4,=]11,2[= X,.
CoROLLARY 2. For almost all x,€X,, ,€X,, and all m €N we have

P(Azn_1(%)) =M) =P(Ag,(Z,) =M) = P(bg,_1 () =)

B 1 (2m + 1)?
= Plan(@) ~m) = S o o G 3y

Proof. Apply Theorem 4.12 for f=% 4 (£=1,2), where

1 1 1
—]1—— l—m—~[U] +—+1~ 1+ [ X,,
2 2
2m+1’ 2m 1

A,=11+ [<SX..

COROLLARY 3. For almost all 2, € X, x,€X,, we have

1}11—3310 (a(x1) ag(@y) ... Gay_ ()}
= },1_210 (aa(Ty) ag(xy) . .. apnla )Y
= A],ng (By(25) ba(s) ... b2N—1(x2))l/N

N 137]-2; (Ba() by(y) . .. Doy

4 log m/log 3
H M) @m 13 :
2Zm—1)(2m+3)

Proof. Apply Theorem 4.12 for f=f,, (k=1, 2), where
fi: wprlog ay(2y), 250,
for 2,0, 2p>log by(x,).

Theorem 4.12 and its corollaries can be refined by the method of C. de Vroedt {35].
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Chapter 5

C-minimum of binary quadratic forms
5.1. Indefinite quadratic forms
Let
f: (@ y) = [z, y) =0+ fry +yy?, «, B, yER,

be a quadratic form with a=0 and discriminant 6 =d(f) =% —4ay >0. The first and second
roots 9,(f) and 9,(f) of f are defined as follows,

9(f)=(—B+V8)/(2%), Ba(f) =(—B—V8)/(2a);
notice that
By(— 1) =Da(f), Dol —1)=Dx(f). (5.1)
In the sequel we shall only consider indefinite forms f with both roots 9,(f), 94(f) ER\Q.

Let I'¢; denote the group of all matrices

M=(a Z), a,b,c,d€Z,ad —bc= +1,
c

with either a=d=0 (mod 2), b5=¢=1 (mod 2) or a=d =1 (mod 2), b=¢=0 (mod 2).
Two forms f, g are called C-equivalent (f ~ g) if there exists a matrix M €I'c withg(z,y) =
flax + by, cx+dy); notice that (with the notation of section 4.2)

1= g=>98,(f)~9.(g), 9:(f) ~ F:(9). (5.2)
For any form f the C-dual form f* is defined by f*(z, y) =3f(x+y, € —y); notice that
H(FF) =), 9a(f*) =B (5.3)
Using the special notation (for j=0, 1)
Z} = {(=, y) €Z2\{(0, 0)} |ged (x, y) =1, z+y=j (mod 2)},
we define
w=nl)= ot i@ gl G=0.1),

v=y(f) = min (vo(f), 211(f)),

and we call »(f) the C-minimum of f.
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Lemma 5.1. Suppose that f~ g, A€R. Then

(@) () =1 f*~g"

(i) (A)*=A4f*, Af~ g,
(iii) 0(f*) =0(f), 8(f) =d(g), &(Af) =A*(f),
(iv) »,(f) = |A]v,(F), v(Af) = |A|»(f)

(v) v()=v49), v(/) =¥(9),
(vi) 9o(f) =2v1(f*), 2v,(f) =wo(f*), »(f) =2(f*).
Proof. (i)-(iv) are obvious; (v) follows from the fact that for M €I'¢, (z, y)->(ax + by,

¢z +dy) maps ZF onto Z2, (=0, 1). Similarly (vi) follows from the fact that (z, y)->(x +y,
x —y) maps Z3 onto 2Z7 and Z?2 onto Z3.

LemMA 5.2. Suppose that fla,c)=oa >0, (a, c) EZ]. Then there exist b, d€Z with
(¢ §) €Tg, such that

flax + by, cx +dy) =o' 22 +B'zy +y' 42,
and

Proof. Analogous to that of Lemma 1, chapter II of [4].

LeEMMA 5.3. Let 9 be any of the (irrational) roots of f. Then

A, d(@)<V2(y(f))~L

B. d(@) =0"2(»(f)) ! if o, B,y€Q;
in this case f attains its C-minimum, i.e. Yz, y)€ZL§ with |f(x, y)| =v(f) v =, y) €23 with
|1, 9)| =3 (-

C. If, in addition to B, f has the following property,

(*) [z, y) €Z5 with f(z, y)=v(f) V(2. y) € L] with f(x, y)=}v(f)]
A (=, y) € Z§ with f(2, y) = —w(f) V Iz, y) € L3 with f(x, y) = —o(f)],

then either

|#—plg| <@(@) g™ for infinitely many p|q€Qq,

or

| —p/g| <(2d(D)g®)! for infinitely many pq€Q,.
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Proof. Analogous to that of Lemmnia 4, chapter II of [4]; notice that our d(¢), as defined
in section 4.4, corresponds to Cassels’ (»(9))~1.

TueorEM 5.1, (Isolation theorem.) Suppose that f(x, y) = ax? + Sy +yy*, with o, B, €Q
and trrational roots, satisfies condition (*) of Lemma 5.3 C. Then there exist v’ <v(f) and 4> 0,
depending only on o, B,y such that

v(g) <’
for-all forms g, not proportional to f, and of the shape
9(x, y)=o'a*+f 2y +y'y*
with
|a—o'| <ey, |B—F'| <eo [y 7| <&

Proof. Analogous to that of Theorem I, chapter II of [4].

5.2. A diophantine equation
We consider the following system of equations

Ty + %y =2y, Yy, 2%, %y =Y} + 45, (5.4)

first studied by L. Ya. Vulakh [36] in the equivalent form
Yi+ys+22% =4y, y, . (5.5)

A solution (x, %y ¥y, ¥a) =(Ay, Ay; My, M) EN? of (5.4) is called singular if Aj=A,; or
M,=M,. A solution (A, Ay M,, M,) is said to have height h=A,;+ A, Two solutions
(A, Ag; M, M), (A¥, A¥; Mf, MJ) are considered to be egual if {A;, A;}={Af, A},
{M,, M} = {Mf, M7}. Two different solutions (A, Ay; M;, M), (AL, AJ; Mi, M) are called
neighbours if {A;, A} 0 {AT, AZ}+=D A {M,, ML} n {Mi, M3} + Q.

The following lemmas are easily proved.

LemMMA 5.4. There is precisely one singular solution, namely (1, 1; 1, 1); this solution
has precisely one neighbouring solution (1, 5; 1, 3).

LEMMA 5.5. Every non-singular solution (A, Agy; M, M,) with (say) Ay <A, M; <M,,
has precisely four different neighbouring solutions
(Ai9 AU; Mj! Mij): ”:, je{ls 2}9
where

A=A 8M] —1)— (A, +Ap), My;=4A,M,—-M,,
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with k€ {1, 2}\ {j}. The corresponding heights h= A, + Ay, hiy= A+ Ay, satisfy the inequali-

ties
hll<h<hi1" (L 7) + (1’ 1)

The following result is now obvious by Lemmas 5.4, 5.5.

THEOREM 5.2. The complete solution EN* of (5.4) is obtained from the singular solution
(1, 1; 1, 1) by successive adjunction of neighbouring solutions of bigger heights. For any solution
(A Ag; My, M), we have
ged (Ay, Ag) =ged (M, M) =1.
The tree of solutions of (5.4) is thus of the form
(1,1;1,1)

|
(1,5;1,3)
!

| | !
(1,65;3,11) (5,349; 3, 59) (5,29;1,17)
| |

T T H‘l

I
{A}={1, 5, 29, 65, 169, 349, 901, 985, 4 549, 11 521, ... },
{M}={1, 3,11, 17, 41, 59, 99, 153, 339, 571, 577, ...}.

Following an idea of G. Frobenius [15], we associate to any non-singular solution
(Ay, Ay My, M) of (5.4) with A, <A, M, <M, a quintuple (¢; ;, ly; m;, m,) as follows,
(1,5;1,3) =~ (+10,2;1, 1);

if
(Ap, Ay M, M) = (&; 1, Ly; my, my),
then for (¢, §) =(1, 2), (2, 1), (2, 2),
(Ay, Ay My, M) = (g4 sy Uiy my, myg),
where

€19 =Ey1 =&, &= —§&,
Ly=(Aym;—eyM,;)/M;,
myy= (Ml +e;My)/A,.

By induction with respect to the tree of solutions we obtain easily
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LeEmMA 5.6. Let (A, Ay; My, My) with Ay <Ay, M, <M, be any non-singular solution
of (5.4), and (&; 1, ly; my, m,) its associated quintuple. Then e¢=+1 and 1}, 1l,, m;, m, are

positive integers satisfying
(1) A ly— Ayl =2e M3,
(i) Aym, —M,l, =e(4A, M, —M,),
(iti) A;mg—M,l, =eM,,
(iv) Agm; —M,l, =eM,,
(v) Agmy—M,l, = —eM,,
(vi) Mymy,—Mym, = —2¢A,,
(vii) E+1=0 (mod A,;), (:=1,2),
(viii) mf +2=0 (mod M,), (i=1,2),
(ix) 1,=0 (mod 2), m,=1 (mod 2), (=1, 2),
(x) 0<L;<A,, 0sm,<M,, (:=1,2).

COROLLARY. Any A s of the form A =2 +y? with x even and y odd; any M is of the
form M=a%+2y* with x odd.

5.3. A chain of C-minimal forms

For any non-singular solution (A;, Ay My, M), A, <A, M, <M,, of (5.4) with asso-

ciated quintuple (¢; {;, Iy; m,, m,), we put
A= +D] Ay p=(mi +2)M;, (=1, 2); (5.6)

notice that 1, u;EN by Lemma 5.6 (vii) (viii). We define quadratic forms g, Ay (A=A,
M=M,) by

Agalz, y)=Aa2+ (4A -2 zy + (A —41) 92,
Mhy{z, y) =Max? + (4M —2m) xy + (1 — 4m) y2.
Notice that by (5.6) we have the following discriminants,
O0(Aga)=16A2%2—4, 6(Mhy)=16M2—-8; (6.7)

hence gy, hy are indefinite binary quadratic forms with rational coefficients and irrational

roots. Notice also that by Lemma 5.6 (x), the forms g,, ky satisfy the reduction condition
in Lemma 5.2,
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Identically
A2gp(@, y) =@y, 2), MPhu(z, y) =pu(y, w), (5.8)
where
PalY, 2) =y +4Ayz+ 2%, yuly, w) =24° + 4Myw +0?, (5.9)
and
z=Ax—~ly, w=Mr—my. (5.10)

By the chain of forms g, by we shall understand a tree of quadruples (ga,, ga,; bu,,
hy,) corresponding to the tree of solutions (A;, Ay M,, M) of (5.4). The simplest forms

occurring in this chain are

lg,=(1,4,1), 1k, =(1,2, —1),
595=(5, 16, —7), 3hy=(3, 10, —3),
29¢,4 = (29, 92, —43), 11h,, =(11, 38, —11),
65g,5 = (65, 224, —67), 17hy; = (17, 54, —25),
3499549 =(349, 1 124, —491), 59hg, = (59, 190, —83).

LeMMA 5.7, For any non-singular solution (A, Agy; My, My), A, <A, M, <M,, of (5.4)
with associated quintuple (e; 1, ly; my, m,), we have
() gaillss Ag) =ga,(la—4A,, Ay) =1 for any e,

(iia) ga,(mg, My) =ga,(m; —4M;, M) = -2 ife=+1,

(iib) ga,(my,—4My, My) =ga,(my, M) = -2 ife= -1,

(iii) Ay, (mg, My) =hyy,(my —4M,, M) =2 for any e,
(iva) hw,(ly, Ay)=—1, by, (m, —4M;, M) = -2 ife=+1,
(ivh) hy{ly—4Ay, A))=—1, by (my, M))=—-2 ife=—1.
Proof. Analogous to that of Lemma 8, chapter II of [4].

CoROLLARY. Let f(x, y) = 2% + Bry +yy? and suppose that | satisfies some of the following
inequalities,
(1) (I Ap) =1, f(ly—4A,, A =1,

(iia) f(my, My) < —2, f(m, —4M,, M) < -2,

(iib) f(my—4M,, My) < —2, f(m,, M) < 2,

(ii) f(my, M) >2, f(my —4M,, M,) >2,
(iva) f(ly, A)) < —1, f(m, —4M,, M,) < -2,
{ivb) f(I, —4A,, A))< 1, f(m,, M) < —2.
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Then the following holds,

f=ga, incasee= 11 and f satisfies (i), (iia),
f=9a, tn case ¢=—1 and f satisfies (i), (iib),
f=hu, 0 casee= +1 and f satisfies (iii), (iva),

f=hy, in casee=—1 and | satisfies (iii), (ivb).

Proof. Analogous to that of Lemma 8, Corollary, chapter II of [4].

LeMMA 5.8. For any form ga, we have gh~ —ga; for any form hy, we have by~ —hy.

Proof. Using Lemmas 5.1, 5.6, 5.7, the proof is analogous to that of Lemma 9, chapter
II of [4].

CoroLLARY. For any form ga, we have (91(ga))* ~Ds(ga); for any form hy, we have
B1(Pag) = Dy(bag).

Proof. This follows from Lemma 5.8 together with (5.1), (6.2), (5.3).

Lemwma 5.9. For any forms ga, by, we have

lga(z, ¥)| =2 for all (x, y)EZS,
lgate, 9)| =1 for all (x, y) €23,
|P(, y)| =2 for all (z, y) EZS,
|hu(, ¥)| =1 for all (x, y)EZ3.

Proof. Analogous to that of Lemma 10, chapter II of [4].

CoROLLARY 1. For any forms g, hy, we have
”o(gA) =2s vl(gA) =1, 'V(gA) =2’

vollag) =2, vy (hn) =1, v(h) =2.

CoroLLARY 2. All forms gp, hyy satisfy condition (*) of Lemma 5.3 C, hence Lemma 5.3 C
and Theorem 5.1 can be applied.

Proof. Both corollaries follow from Lemmas 5.7, 5.9.
4— 752903 Acta mathematica 134, Imprimé le 30 Juillet 1975
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LEMMA 5.10. Let f(z, y) =22 + Bry +yy?; then (with the notation of Lemma 5.7, Corollary)
(1a) 6(f) =16 —4/A3=0(ga,) if e=+1 and (iia) kolds,

(1b) 6(/)>16 —4/A3=08(ga,) if e=—1 and (iib) holds,

(28) 6(f) >16 —8/Mj =0(hy,) if e=+1 and (iva) holds,

(2b) 8(f)>16 —8/ME =0(hy,) if £=—1 and (ivb) holds.

Proof. Analogous to that of Lemma 11, chapter IT of [4].

LemMMA 5.11. Let f(x, y) =2 + By +yy®; then
O(f)=16+4/AF if f(Ip, Ag)< —1, fll;—4Ay, Ap)< —1,
8(f)>16+8/MZ if f(my, M) < —2, f(my —4M,, My) < —2.

Proof. Analogous to that of Lemma 12, chapter II of [4].

LeMMA 5.12. Let f(x, y) =22+ fry +yy?, where 2<f<4 and 0<§(f)=p§%—4y <16.
Suppose that

|fz, 9)| =2 for all (x,y)EZE,
V@, y)| =1 for all (x, y) €Z].

Then f is either a gp or @ hy,.

Proof. We shall use Cassels’ notation,
P(z, y): f(x, y) >0, N(z, y): f(x, y)<O0.

If P(—1,1), then 1-f+y>2, a contradiction to 2<f<4 and f2—4y>0. Hence
N(-1,1),ie.1-4+y<—2o0r

p=y+3. (5.11)

If P(0, 1), then y =1, which together with (5.11) gives §>4. Sinoe 2<f<4, we must
have f=4 and consequently y =1; hence f=(1, 4, 1)=g,.
In the sequel we assume that f+g,, hence N(0, 1), i.e.

y<—1. (5.12)

If P(—3,1), then 9—3f+y>2, which together with (5.12) gives 8 <2. Since 2<f <4,
we must have f=2 and consequently y = —1; hence f=(1, 2, —1)=h,.
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In the sequel we assume that f4g,, &,, hence
N(©,1) and N(-3,1). (6.13)

The proof now follows by induction. Let (A;, Ay M,, M,), A, <Ay, M; <M,, be any
non-singular solution of (5.4) with associated quintuple (¢, 1,, l,; m,, m,), and suppose that

we have
N, Ay) and N(m, —4M;, M,) in casee=+1, (5.14a)
N(l,—4A,, A,) and N(m;, M;) in casee=—1. (5.14 b)

Notice that the inductive hypothesis for the solution (1, 5; 1, 3) of (5.4), which has e= +1,
is precisely (5.13), and thus is satisfied if f=g,, A,.

From the inductive hypothesis for (A;, A,; M;, M,) we want to deduce that f=gx, or
hy, or to prove the inductive hypothesis for at least one of the three neighbouring solutions
of (A;, Ay; M, My,) of bigger height. By Lemma 5.5 these solutions are of the form

(Ay, —; My, —) with quintuple (g 1, —; m,, —),
(Ag, —; M;, —) with quintuple (& L, —; m,;, —),
(A2, - M2’ _) with quintuple (—8; l2> —; My, —)'

If P(my, M,) and P(m,—4M,, M,), then f=hy, by Lemma 5.7, Corollary, since either
(iii) (iva) or (iii) (ivb) are valid.
Otherwise, either N(m,, M,) or N(m,—4M,, M,), in which case we distinguish between

four subcases:

(1) e=+1 and N(m,, M,). If P(l,, A,) and P(l,—4A,, A,), then =gy, by Lemma 5.7,
Corollary, since (i) (iia) are valid. Otherwise either N(l,, A,) or N(l, —4A,, Az)i in case
N(l,, A,) the inductive hypothesis (5.14a) is satisfied for (A,, —; M,, —), in case N(l; —4A,,
A,) the inductive hypothesis (5.14b) is satisfied for (A, —; My, —).

(2) e= +1 and N(m,—4M,, M,). Then the inductive hypothesis (5.14a) is satisfied for
(A, =3 M, —).

(3) e=—1 and N(m,y, M,). Then the inductive hypothesis (5.14b) is satisfied for
(A, =3 M, —).

(4) = —1 and N(m,—4M,, M,). If P(l,, A,)and P(l,—4A,, A,), then f=g,, by Lemma
5.7, Corollary, since (i) (iib) are valid. Otherwise either N(l,, A,) or N(l,—4A,, A,); in case
N(l,, A,) the inductive hypothesis (5.14a) is satisfied for (A,, —; M,, —), in case N(I,—4A,,
A,) the inductive hypothesis (5.14b) is satisfied for (A,, —; M, —).

Consequently, if f were not a g, or a hy, it would have to satisfy either (5.14a) or
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(5.14b) for an infinite sequence (A, AY; M{”, M{’), r€N, with heights A" — oo for r— oo,
It would then follow from Lemma 5.10 ((2a) or (2b) apply) that

o(f)>16 —8/MJ”? for r€EN.

However, since MJ’— oo for r— oo, this would imply that (f) >16, a contradiction. This

proves the lemma.

LEMMA 5.13. There are 2% different forms

f(x, y) =2+ Py +yy?  with
2<B<4, d(f) =2 —4y =16, »(f) =2.

Proof. Analogous to that of Lemma 14, chapter IT of [4].

5.4. The main theorem on the C-minimum of forms

THEOREM 5.3. Let f(x, y) =ox?+ fxy +yy?, 4(f) >0.
A If
Vo(hin(f) <2, (5.15)

then f is C-equivalent to a multiple of some g or hu.
B. Conversely (5.15) holds for all forms C-equivalent to a multiple of some ga or hy;
specifically
Volga)in(ga) = V& —1/A>, V() /v(hy) = V4 — 2/M.
C. There are 2% forms f, none of which are C-equivalent to a multiple of any other, such

that
Vahi(h =2.
Proof. Part B follows by Lemma 5.1, (5.7) and Lemma 5.9, Corollary 1.
Part C follows from Lemma 5.13, since any C-equivalence class of forms is denumer-

able.

To prove part A we notice, that by Lemma 5.1 we may as well assume that
0<4(f)<16, »(f)=2, (5.16)

hence by the definition of C-minimum either ,(f) =1 or »(f) =2.

Case 1. »,(f)=1. Then for any £>0, there are (a, ¢) € Z} such that

L=v(H<|fl@, c)| =’ <L+e.
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Hence by Lemma 5.2 we have
T =, ,9), (6.17)
where
1</ <l4e, 2o <f <4, (f)=6f).

If &'=1, then f is some g,, hy by Lemma 5.12, and the conclusion follows from (5.17).

Otherwise we can find an infinite sequence of forms
fn = (‘xm ﬂn’ Vn), n€N,
with
lim o, =1, 2a, <f,<4a,, &(f,) =0(f),

each f, being C-equivalent to +f. By a simple compactness argument, we may as well
assume that

ﬂnéﬂm 77»—)70 fOI‘ n—> oo,

Then
f0= (1, /30, 7/0)
has
2<By<4, o{fy)=0(f).
Further since
we have

[folz, y)| 21 for all (x, y) €ZE,
[folz, )| 22 for all (z, y) EZ;.

Hence by Lemma 5.12, f, is some g,, hy. However, by Lemma 5.9, Corollary 2, we may
apply Theorem 5.1 to fo(=ga or hy), and consequently for some sufficiently large n,

fr=afo(=aga or ahy). Since also f~ 4 f,, this proves A in this case.

Case: 2. vy(f) =2.- Then by Lemma 5.1,
vi(f*) =1, »(f*)=2, 0<4(f") =4(f) <16,
and hence by case 1, we have f*~ag, or ahy; also a = +1, since

vi(aga) =vy(ahy) = |a|
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by Lemma 5.1 and Lemma 5.9, Corollary 1. Finally

201(F) =vo(f*) =vo( £ ga) =¥o( £ Pm) =2,

and thus also »,(f) =1, and hence f belongs to case 1 also. This ends the proof of part A.

5.5. The main theorem on the C-approximation constant

THEOREM 5.4. Let ER\Q.
A If

d(d) <2, (5.18)
then 4 is C-equivalent to a root in some gy or hy.

B. Conversely (5.18) holds if 9 is C-equivalent to a root in some g or hy; specifically
dB)=VE=1/A%  when gr(@.1)=0,
d(®)=Vi—2/M®, when hy(d,1)=0.
For any ga, we have (0,(ga))* ~ 9a(9A); for any by, we have B(ha) ~ F5(hy).
C. There are 2% different C-equivalence classes of irrationals 9, such that d(9)=2.

Proof. To prove part A notice that since d(#) =max (dy(9), 3d,(3)), either do(#) =d(F) <2
or d,(9)=2d(¥) <4.
Case 1. d,(9) =2d(9) <4. We consider the form
fa, 3)=24(9) w(B ).
By the definition of d(#): Ve >0 1Y = Y(e) >0, such that
[fx, y)| >2—¢ forall (z,y)€ZF with |§z—y| <Ye),
[Hz, y)| >1—¢ forall (x,y)€Z} with |dz—y| <Ye).
Further, since d,(#) =2d(3), there is a sequence (a,, c,) €Z] such that
[{(@n, c)| > 1, @, o0, |Pa,—c,| >0 for n— oo,
It is now clear that the proof of Theorem III, chapter II of [4] carries over with obvious

modifications; this gives the conclusion in case 1.

Case 2. dy(#) =d(9) <2. Then by Theorem 4.11, Corollary,
d,(9*) =2dy(9) =2d(3) =2d(9*) <4,
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hence by case 1, #*~’, where ¢ is a root of some g, or ky. But then by Theorem 4.11,
Corollary, Lemma 5.1, Lemma 5.3 B, Lemma 5.9, Corollary,
dy(9) =2d(F*) = 2dy(9') = 2d(D") = 2d(9*) = 2d(D),

and thus 9 belongs to case 1 also. This ends the proof of part A.
Part B follows directly from Theorem 5.3 B, Lemma 3 B and Lemma 5.8, Corollary.

Proof of C. By Theorem 5.3 C together with Lemma 5.3 A, there are 2% different C-
equivalence classes of irrationals # such that d(#) <2. By Theorem 5.4 A there are only
enumerably many different C-equivalence classes of irrationals & such that d(#) < 2.

5.6. Other methods

Instead of the proof of Theorems 5.3, 5.4 given above, which follows closely the proof
of J. W. S. Cassels [4] for the Markoff chain, we could have extended either (1) the proof of
A. Markoff [24] as presented by L. E. Dickson [9] or (2) the proof of C. G. Lekkerkerker
[21].

The extension of Markoff’s method is based on the formula for d(#) in Theorem 4.11,
and a similar formula for »(f) obtained by developing a theory of C-reduced and C-dually
reduced quadratic forms.

Lekkerkerker’s method is extended as follows: For any basis (e,, e;) of R? over R, let
L=L(e;, &) = {6, +2,0,| 2y, 2, €Z},

L;=Ly(e,, 8,) = {"7191 + 0, I (2, @) € Z?}’ (=0, 1).
For

So={(81, &)| |&18] <1}
L is called C-admissible for §, if
Len So=Ly 0 17133.,=®.
For example
LQ/V2,1/V2), (—1+1/V2,1+1/V2)) with det L=1V2,
L((1/V2,1/V2), (- V3/2, V3/2)) with det L=13,
are both C-admissible for S,.

Essentially all C-admissible L’s for §, of det L <2 are constructed by the procedure of
Lekkerkerker, however using the matrices

1 3 3 1 11
0’-_: ,_D== ,A=
o (1 1) ’ (1 1) Do (1 3)’
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which satisfy the relations

CoDy= ﬁo KC,, ﬁo Cy=Co KDy, Ooﬁo =D, Co’

(T L)

A=D,CyD,C 4”12 19)
—0000_(5 g )

where

For example

B-D 02—2(7 ”)
ST g 5)

and hence we have the following associated forms,
feo=(1,1=1, =3)=(1,0, —=3)~g,,
fro=1,1-3, —=1)=(1, =2, —1)~h,,
fa =(5,8-12, —19)=(5, —4, —19)= 5¢;,
fz =(3,5—7, —11)=(3, -2, —11)= 3h,.
I shall confine myself with this hint of the extension of Lekkerkerker’s method.

Also recent work of H. Cohn [6], [7] and M. Hall {17] on the Markoff chain have

extensions to the present situation.

Chapter 6

Complex binary quadratic forms
6.1. Reduction theory
We consider binary quadratic forms ® =(4, B, C): (?— C, given by
®: (X, V)>AX2+- BXY +CY?,
where 4, B, C'€C satisfy the following condition,
A+0, D=B2—-44C+0, & 1EC\Q(). (6.1)

Here £, 4 are the roots of @, i.e. of ®(z, 1)=0.
For any complex unimodular matrix M, we let M: (X, Y)r>(aX +bY,cX-+dY) be
the corresponding linear map, and (as usual) m be the corresponding homographic map.
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Notice that if © satisfies (6.1), then also any ¥ equivalent to @, i.e. of the form V' = ®o If

where M is unimodular. In fact, this follows from the formulae,

Dy = (det M)? Dy == + Dy, (6.2)
Sy =m " (€g), nw=m""(no) (6.3)
A1F=(D((Z,C), O\F_(D(b, d), A\F+B\F+qu=q)(a+b,0+d) (64)

Notice also that an integral form (4, B, C), i.e. a form with 4, B, C€Z[i], satisfies
(6.1) precisely when D =B?—4AC is not a square in Z[i]..

DEFINITION 6.1. 4 binary quadratic form satisfying (6.1) is called reduced if (with

suitable notation)
E ej an’d )7 e j*;
and is called dually reduced if (with suitable notation)
£€TJ* and 7j€J.
Notice that if (4, B, €) is reduced (dually reduced), then (4, B, ) is dually reduced
(reduced), (C, B, A) is dually reduced (reduced) and (0, B, 4) is reduced (dually reduced).
Notice also that if @ is reduced (dually reduced), then A0, 1€ C\ {0}, is reduced (dually
reduced) and ®oS, ®oS-1 are both reduced {dually reduced), the last statement being a

consequence of Lemma 1.1 (viii) (ix).

TueoreM 6.1. Suppose that ®=(A4, B, C) salisfying (6.1) represents primitively o
number A’ with

0< |4’} <V[D|/2.
Then there exists @ form @' =(4’, B', O"), which is equivalent to ®, and such that @' is either
reduced or dually reduced.

Proof. By a suitable choice between the two values of 1/5 and Vj) we can make sure
that either

(2) arg (VDJA') Elm/4, 3m/4]
or
(b) arg (V — DjA’)€[n/4, 37/4].
By assumption there exist a,, ¢, €Z[:] with ged (ay, ¢,)=1 and ®(ay, ¢;)=A4’. Then

determine by, d,€Z[7], such that a,dy—bycy=1 in case (a) and ayd,—byc, =% in case (b),

and put

M~<% b") M M(l k) kEZ[i
0 o do’ i 00\1, fz].
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In either case the forms

O, =PoM,, keZfs),
are equivalent to @, and ®@,(1, 0) =D(a,, c,) =A'; hence we need only prove that @, is
reduced or dually reduced for a suitable k€ Z[¢].

However, the roots &, v, (suitably enumerated) of @, satisfy the following relations,

E=&y—k, mp=mo—k forall k€ZL[i], (6.5)
& —p= Vﬁ/A’ in case (a) for all k€ Z[:], (6.6 a)
& —n=V —DJA’ in case (b) for all k€Z[:]. (6.6 b)

Hence it follows from (6.6a), (6.6b) that

arg (& —ny) €[n/4, 3n/4] for all kEZ[:]. (6.7)
Also, it follows from (6.6a), (6.6b) and the assumption of the theorem, that

|&—mne] =V2 for all kEZ[:]. (6.8)
By (6.5) we choose k€Z[¢], such that
7. €[0, 1] x [0, —7].
It
7. E[0, 1] x [—% —i] < J*,

then by (6.7), (6.8), £, € J, and @, is reduced. If

1 €[0, 1] x [o,—%] =5
then by the same argument, either @, or ®,_, or @, is dually reduced.

CoroLLARY Every form @ satisfying (6.1) is equivalent to a reduced form and also
equivalent to a dually reduced form.

Proof. The result follows from Theorem 6.1 together with a well-known result of
O. Perron [26], that every form satisfying (6.1) will represent primitively (in the Gaussian
case) a number A’ with 0<|4’| < VW7 and finally the remark, that if (4, B, C) is
reduced (dually reduced), then (C, B, A), which is equivalent to (4, B, C), is dually reduced
(reduced).

THEOREM 6.2. Suppose that (A, B, C) is reduced (dually reduced) form satisfying (6.1).
Then at least one of the following inequalities is satisfied,

|AC| <4|D|, |A(A+B+C)|<4|D|, |C(A+B+0)|<4|D|.



DIOPHANTINE APPROXIMATION OF COMPLEX NUMBERS 59

Proof. Assuming that (A4, B, C) is reduced (otherwise we consider (C, B, 4)), and that
|AC| >4|D| and |A(4+B+0C)|>4|D|, *)

we have to derive a contradiction.

Since
B:—D=4AC, (B+24)*—~D=44(A+B+(),
it follows from (*) that
|B|>V15V|D| and |B+24|=>V15V[D|. (**)
Also (with a suitable determination of VD)
§=(—B+VD)/(24)€T, n=(-B-VD)/24)€T*,

and hence at least one of the following cases occur,

(a) arg £€[0, ] and arg n€[—x/2, —n/4),

(b) arg (6 —1)€[0,x] and arg (n—1)€[—3xn/4, —n/2].

However, for

§_1=—2V1_)
i B+VD
we get by (**)
& ‘ 2 1
-—11< < —=
‘n Vis—1 V2’

hence

arg % €]1—n/4, /A,
contradicting (a),
Similarly, for
_ -2VD
B+24+VD

we get by (**)

’n—l ‘ Vis—1 V2
hence
arg ((§—1)/(n—1)) €] —n/4, m/4],
contradicting (b).
This proves the theorem.
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COROLLARY. For any given D€ZL[i], where D is not a Gaussian square, there are only

finitely many integral forms with discriminant D which are either reduced or dually reduced.

In analogy with a well-known procedure of C. F. Gauss [16] (cf. also L. E. Dickson

[8]), we associate to any form @, with roots &;, vy, Which is

(a) reduced with £,€ J and #,€ J*,
or

(b) dually reduced with £,€ J* and 7, € J,

a double chain of forms

s Dy, Dy, By, Dy, D, .. (6.9)

In fact, let
ch&,=T,T,..; ch*7=T_,T_, ..., (6.10a)
ch* =TT, ..; chj,=T_,T , .., (6.10b)

respectively. [If &;, v, are not equivalent to real numbers, the chains in (6.10a), (6.10b) are
uniquely determined by Theorems 2.2, 2.2*. Also, if @, is integral, the chains in (6.10a),
(6.10b) become uniquely determined by requiring these to be purely periodic by Theorem
3.4. In any case we require that T+ Vi'.] Then we define ®@,, n € Z, recursively by

D, =D, 0T, neZ. (6.11)
By (6.11) the roots of ®, and @, are related as follows,
Enr1=ta"(En), Mnar =1’ (0a) =x0L,0(x,),
and hence
&n=tal&ns1)s Tngr =ta(7n), n€L. (6.12)
By (6.10a), (6.10b), (6.12) it follows that
E. =T, Ty ..), n=[T0 1Tpy..], n€EL (6.13)

By the very definition of (T',) it follows, that one of the chainsin (6.13) is regular and
the other is dually regular. Consequently, each @, n€Z, is either reduced or dually reduced.

Notice that in case @, is reduced (dually reduced) and integral, the two-way infinite
sequence (T,) defined by (6.10a) or (6.10b) is periodic by Theorem 3.5.

The actual calculation of a double chain of forms is facilitated by the following table:
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P (4, B, C)

oS (0, -B—-2C, A+B+0)
®oS1 (4+B+0, ~24—B, 4)
®oV, (A4,2A+B, —A+iB+0)
®oV, (4-iB—0,B-2iC,0)

®oV, (—2id—(1+i)B—C, (2+2)A+3B+(2-2)C, —A+(—1+i)B+2i0)

®oB, (A+(1—4)B—2iC,iB+(2+2i)C, —C)
®of, (4,(—2+20)4+iB, —2%A—-(1+i)B—C)
q)O‘E:*l (—A7 iB: C)

®ol  (A+(1-i)B—2iC, (- 2+20)4 + 3B+ (2+20)C, —2i4—(1+4)B-0C)

We shall illustrate the computation of double chains of forms in the following examples,

which correspond to Examples 2.1, 2.2, 2.3.

Example 6.1. The integral form
Q,=(1, -1, 1)
is both reduced and dually reduced with
ch & =ch* £,=C.
Sinece
O, =Pyol =(~i, i, —1) = —i®,,
we have
¢, =(—0)"D,, n€Z.
Ezample 6.2. The integral form
Dy=(5, ~5—21, 6 +1)

is both reduced and dually reduced with

ch &=V,E,CE, V,C, ch*¢,=CE,CE,CC.
Thus precisely two double chains pass through ®,=Y,, namely (®,), where

O, =Py V,=(5, —5+8i, 3—41),
O, =D, 0, =(7i, 6 —7i, —3+4i),
Oy=Py0l=(7, —7+6i,4—3i),
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®,=P,0F, =(5t, 8 — 51, —4+3i),
@, =DoV,=(5i, —2-—54, 1 +6i),
Oy =Dy0 0 =(5, —5—2i, 6+i) =D,
D, .=, for all n€Z;
and (¥',), where

¥, =Wol =(—9i, 6 +9i, —3—4i),

Y, =¥, 0F, =(7, —7—8i, 3+41),

Y, =¥,00 =(—7i, 8 +7i, —4—3i),

¥, =V, 0F, =(9, —9—6i, 4+3i),

Y. ~¥,00 =(—51, 2 +5i, —1—6i),

Y=W00=(~5,5+2i, —6=1)= -,

V,.e=—-V, foraln€Z.

Example 6.3. The integral form
O=(1+2¢1,2-1)

is not reduced but dually reduced. However, the form

®y=PoC =(—33, 3i, 1 —2i)

is both reduced and dually reduced with

ch&=V,E,V,CE,CV,E, V,CE,CV,E, V,CE;C,

ch* & =CE,CV,E,V,CE,CV,E, V,CE,CV,E, V.
Thus precisely two double chains pass through ®,=Y;, namely (®,), where

O, =PoV,=(2—i, —4+1, 1 -2i),

GOy=P,0E,=(2—14, —3+2i, 2+1)

Oy =0V, =(2 414, —1—-2i, 241),

O, = 0,00 =(1 —4i, 2+5i, —1—2i),

O, =008, =(4+i, —3—41i,1+2i),

Gy =D,00 =(—3i, 34, 1 —2i) =P, 051,
®,,s=D,05-1 forall n€Z;
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and (¥",), where
Y, =Wyl =(—1-2i,3+4i, —4—1),
Y, =W, 0B, =(—1-2i, 2+5i, 1 —41),
Y, =W,00 =(—-2—-i,1+2i, —2—1),
Y, =WV, =(—2—4,3-2i, —2—1),
Y. =W,0F, =(1-2i, —4+1, 2—1i),
Ye=Ws0V,=(1-2i, 3i, —3i)=¥,05,
¥,e=¥,081 forall n€Z.

6.2. Minimum of quadratic forms
Let ® =(4, B, C) be a complex quadratic form. Then
p(@)=inf |D(X, Y)],

the infimum being taken over all (X, Y)€Z[:]2\{(0, 0)}, is called the minimum of ®.

If @ does not satisfy (6.1), it is obvious that u(®)=0.

If @ satisfies (6.1), then by Theorem 6.1, Corollary, we may associate (in several ways)
to @ a double chain of forms (®,), each ®, being equivalent to ®, and thus a two-way
infinite produect

1Nr,=..1r_,1_,7,7,7, ...,
satisfying the following two conditions,
(i) T,€{V,, E,;, 0} for each n€Z,
(ii) if for n, <n, we have
T,=E,,T,=E;, andT,+8E, (j=1,2,8), forn,<n<n,,
then
card {(n€Z|n,<n<n,, T,=C}=1 (mod 2).

A two-way infinite product []7, satisfying conditions (i), (ii) is called a regular double

chain.

Conversely, for any regular double chain []7, and any d €€\ {0}, we may define for
n€Z,

E =TT, .1,
ﬁn:[Tn—l Tn—2 ]’
Q,(X, Y)=¢,d(&—n,) UX - &, Y)(X -9, ¥),
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where
_ [det TyT,...T,, if n>0
" l(det T Ty T_(p)™t if n<O.

Then it is easily seen, that (®,) is a double chain of forms with discriminant (®,) =d?, and
[17, is thus a regular double chain associated to ®,.

For any regular double chain [[7', we define

K=K([IT:)=sup {|&:~a|, [0 =], (6= D = (g — D71 ).

Also we define a congruence relation in the set of regular double chains by putting
[17,=110.,
if
U,=n(Tyn) forall n€Z,
where ¢: Z— Z is of one of the forms (with a fixed k€Z),
o:n—>n+k ora:n—>—n+k,
and : {V;, E;, C}~>{V,, E;, C} is of the form
7: Vi=>Vag, B> Ezg, CC,

where 7 is a permutation of {1, 2, 3}.
It is easily verified, that = is an equivalence relation in the set of regular double

chains, and that the set
{lgn—ylnlﬁ |£;1—"];1l! I(En_ 1)—1—("]71—‘ ]')—ll lnez}
appearing in the definition of K([]7',) is invariant under =. Consequently

M7, =110, K{1T,) =K([1V.). (6.14)

THEOREM 6.3. Suppose that ® is a form satisfying (6.1) with discriminant D and
minimum u, and that T[T, is a reqular double chain associated to ®. Then

A. VD[ [u=>K(IT,).
B. If, in addition, ® is proportional to an integral form, then
V|D|ju=K(IIT,).
Proof. The double chain (®,) defined above by
DX, ¥)=£,d(&n—0a) HX £ YYX 7, ¥),
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where |¢,| =1 and d?=D, has each ®, equivalent to ®. Consequently for each n€Z, we
have
um= M((I)n) < min (lq)n(l’o)l ’ lq)n(o’ l)i’ |(Dn(1: l)l)

=V Dmin (| &~ 5l % [&2* =927 | (A = &) = (L =) 7).
This proves part A.
The proof of part B is essentially identical to that of Theorem 2.7,

CoroLLARY. If (®,) with ®,=(4,, B,, C,) is a periodic double chain of forms satis
fying (6.1), then
w(@g)=min (|4,|, |Cp|, | 4n+ B, +Cy)), (6.15)

where it suffices to extend the minimum over a period.

Example 6.4. Using formula (6.15) for the forms ®, occurring-in Examples 6.1, 6.2,
6.3. we obtain.

u((1, —1,1)) =1, V|D|/u=V3=11320...,
(5, ~5+2i,6+1)=5, V[D|/u=V4—5"2=1.9899 ...,

w((1+2i,1,2—i)=V5, VD|/u=V3Va1=1.9599....

A main problem about the minimum of complex binary quadratic forms is that of
determining all forms @ with Vm fn<2.

We shall solve this problem in two steps, using Theorem 6.3:

1°. In section 6.3 we describe rather precisely those regular double chains I17',, which
have K(IIT,)<2.

2°. In section 6.4 we solve the remaining problems by means of Theorem 5.3.

6.3. Regular double ehains [1 T, with K< 2
Throughout this section we deduce restrictions on a regular double chain IIT, in
order to satisfy the condition K <2, by the following two arguments:
(I T,T,,, .. is a regular chain and T',_, T',_; ... is a dually regular chain, then by
Theorems 2.1, 2.1%,
E=[T,Tp1q . JEF(T, T,y ... Thiny)s

ﬁn=[T‘n—-1 Tn—Z ] e1;‘*(1171—1 e Tn—k):
5—752903 Acta mathematica 134, Imprimé le 31 Juillet 1975
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for all A, kEN,. [Notice, that we write F(T, ... T,,,_,) instead of F(t,0 ... of,,, ,), ete.].
However, since

|&n—na] <K <2,
we must have

d(F(Tn Tn+1 Tn+h—1)y FT(Tn-l Tn—k)) <2

for all b, k€N,; here d denotes the euclidean distance between the two sets involved.

Similarly, if 7', T,,, ... is a dually regular chain and T, ,7T,_, ... is a regular chain,

then we must have
UF(Tpy . To)y PHT, Ty oo Tana)) <2
for all 4, kEN,,.

(2) If, by argument (1), we have excluded a produet U, ... U, U, U, ;... Uy
from appearing as a subproduct in II7,, then by (6.14) any product congruent to
Upg - UpqUpUpyy .. Upypy, ie. obtained by applying a permutation z: {V,, E,, O}~
{V;, E,, C} induced by a permutation 7 of {1, 2,3}, and possibly a reversion, is also
excluded as a subproduct of I17',.

We shall often refer to an application of argument (2) by the phrase: “using con-
gruence ...”.

The first four lemmas will deal with V-subproducts i.e. subproducts of II7", consisting
only of V/'s. By the very definition of a regular double chain, a maximal V-subproduct, if

finite, will be of the form

UV Vs ViU, (6.16)

with U,, U,€{E,, C}, and either U, =C or U,=C.

LevMmaA 6.1. The regular double chain TIT, contains, modulo congruence, only the
following V-subproducts,

Vi, ViV, V1V, V.
Proof. Using congruence, we get the result concerning V-subproducts of length 2 from
d(F(V,V,), FI)=2.

Using this result and congruence, we obtain the result concerning V-subproducts of
length 3 by excluding V, V, ¥, as a subproduct. Hence assume that V, V, V, is a subproduct
of [IT,, and assume, using congruence, that the maximal V-subproduct containing V, V, V,
is either of the form (6.16) with U, =C or is infinite to the left. Since

AF(V,V,Vy), F(V,T)>2 for T=V,, V,, C,
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and V3V, has already been cx:luded, it follows that II17, either contains a subproduct
congruent to CV, V, V, or a subproduct congruent to 71 V,, the arrow indicating periodicity

to the left. However, since
AF(V, V, V,, F¥(C)) >2,
d([(Vy VoL [V, Vi) =V5>2,

both possibilities are exciuded. This proves the result concerning V-subproducts of length 3.
Finally, if {IT, contains a V-subproduct of length >4, then by the same argument as
above, either IIT, contains a subproduct congruent to CV, V,V, ¥, or.a subproduct con-

gruent to V, V, V5. However, since

APV, V,V, Vo), F¥(0) >2,

Y S
UV, Ve Vah [Va Vo Vi) =V20>2,
both alternatives are impossible. This excludes the existence of a V-subproduct of length
=4,

LEMMA 6.2. The regular double chain 11T, contains no V-subproduct of length 3.

Proof. Using congruence, we need only by Lemma 6.1 exclude CV, ¥V, VU, U, with
U,€{B,, C}, as a subproduct of [17,. However, this follows from

A(F(VLO)N\F(V,CV3), FXV5V,0))>2,
d(F(V,V,Ey), F¥(V,0))>2,
d(F(V,V,V,E,), F¥C))>2,
UF(V, By V)N\F(V, B,V V3), FX(V, V,0))>2,
A(F(V,E, V), F{(V,V,0))>2,
d(F(V VB, V,), F*(V,0))>2,
d(F(V,V,E,C), F*(V,())>2,
which excludes U,=C, U,=FE,, U,=E, U,U,=E,V,, U,U,—E,V,, U Uy=E,V,,
U,U,=E,C, respectively.

LeMMA 6.3, The regular double chain I1T, contains no V-subproduct of length 2.
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Proof. Using congruence, we need only by Lemma 6.2 exclude CV, V,U,U, U, ... with
U,€{E,, C},as:asubproduct of I17,. Since
dF(V, V. E,y), F¥(C)) =2,
dFV,O)NF(V,CVE), F*(V,C))>2,
dF(V,V,E V), FH(C)) >2,
dF(V, B, V)\F(V, B, V, V), FA(V;0))>2,
dF(V, By Vo) \F(V, B, Vo V3), F*(V,0))>2,
d(F(V, V,E,CU), F¥C))>2 for UE{V,, V,, E,, C},
d(F(V,E,CVy), F(V,0))>2,
d(F(V,E,CE)\F(V, E,CE, V}), F*(V,0))>2,
dF (V1 B,CE)\F(V, E,CE, VY, F*(V,C))>2,
we can exclude U,=E, U,=C, U,U,=E,V,, U,U;=E,V,, U, U, =E;V; U, U, U=
E,;CU with U€{V,, Vy, E,, 0}, Uy U, Uy=E; CV,, U,U,Uy=E,CE,, U, U,U,=E;CE,,
respectively. Consequently U, = E, is the only possibility.
Since
d(F(V,E,U), FXV,C)) for UE{V,, V,, C},
we can exclude U,€{V,, V,, C). Consequently U, U,=E, V, is the only possibility.
Now U, =V, contradicts Lemma 6.1. Further U,=V, implies Uy;=C by Lemma 6.2
and the definition of a regular double chain, hence U, U, U, U,=E, V,V,0C=CV,V,E,,
which was excluded above. Similarly, U;=V, implies U, =C, however, this is also impos-

sible, since

UF (VLB Vo V)N\F(V BV, V3 VE), FXV,50))>2.

Consequently U, U,U,=E, V,C is the only possibility.

Since

d(F(V, E,V,V,0), FXCU)>2 for UE{V,, Vs, E,, E,, C},
dF (VLB V,0V,), FH(V0)>2,

we can exclude U,€{Vy, V,, E,, E,, C}, U,=V,, respectively. Consequently U, U, U3 U, =
E,V3CE, is the only possibility.

Since

d(F(V,E,V,CE,U), F{(V,0))>2 for UE{V,, V,, C},

we can exclude Uy;€{V,, V;, C}. Consequently U, U, U;U,U;=E,V,CE,V, is the only
possibility.
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If Ug=7V,, then CE,V,V,C would be a subproduct of IIT,, however, this possibility
has already been excluded in course of the proof. Consequently U,U,U,U,U,Ug=
E,V,CE,V,C is the only possibility. However, this is also excluded since

d(F(V,E,OVs), F*(0))>2.

This proves Lemma 6.3.

Lemma 6.4. The regular double chain I1T, contains V; only in the following combina-

tions,

CV,E,C, CE,V,C, CV,E,V,C.

Proof. Using congruence, we need only by Lemma 6.3 consider subproducts of 117,
of the form ... Wy W, W, 0V, U, U, Uj; ..., where U,€{E,, C}. Since
dF(V,C), FH0) =2,

we may assume, using congruence, that either (a) U,=E, or (b) U, =E,.

Case (a), U,=E,. Since
d(F(V,E,V,), F*C))=2,
d(F(V,E,V,), F*(C))>2,
either (aa) U,=C or (ab) U,=V,.

Subcase (aa), U, Uy=E,C. Since

d(F(V,E,CU), F*C))>2 for UE{V,, Vy, E,, E,, C},

ad(F(V,), F*(CEy)) =2,

we must have U, =E,.

Suppose that U, =V, then U;=C by Lemma 6.3 and the definition of a regular double
chain. However, U, U, U, U, U;=E,CE,V,C=CV,E,CE, was excluded above, hence
U+ V,, and since

d(F(V,E,CE,V,C), F*(C))>2 for j€{1, 3},

also U, ¢{V,, V3}. Consequently U,=C.

Since

d(F(E,CE,C), F¥(V,))>2,

this leads to a contradiction; thus subcase (aa) is excluded. We use this fact tacitly in the

sequel.
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Subcase (ab), U, U,=E,V,. Then Uy=C by Lemma 6.3. Since
d(F(V,E,V,0), FNCW,)>2 for W,€{V,, E,, C},
A(F(V,), FHCV, By) =2,

we can exclude W, €{V;, E,, C}, W,=1,, respectively. Consequently either {aba) W,=E,
or (abb) W, =7V, or (abe) W, =E,.

Subcase (aba), W, CV, U, UyUs=E,CV,E,V3C. Then either W,=Cor WyW,=CV,
by Lemma 6.3 and the exclusion of subcase (aa). By symmetry U,€{E,, V,, E,}, and
in case Uy= E,, either U;=C or U ;Uz=V,C.

Since

d(F(V,E,V,C), F*(CE,V,())>2,
we can exclude W, W, W,=CV, E,, and hence by symmetry also U,U;Ug=E,V,C. Since

AF(V, B, V,0U, U, Ug), FNCE,C))>2

for U,=V,, U, U,=E,C, U,U,Us=E,V,C, U, U;=E,C, we can exclude W,W,=CE,,
and hence by symmetry also U, U= E,C. Thus subcase (aba) is excluded, and necessarily
U,€{V,, E,}.

Subcase (abb), W,CV,U,U,Us=V,CV, E,V,C. Since
d(F(V,E,V,C), FXCV,E,)>2,
d(F(V,E,V,CU,U,Us), F{CV,E,V,C))>2
for U,=V,, U, U;=E,C, U, U,Us=E,V,C, and
d(F(V,C), F¥(0))=2,

the only possibility remaining is W,=E;, and consequently W, W;=CV.,.
Since

_ 21
K(CV,E, V,CV,E,V,CV,E, V)= VE >2,
we may assume, using congruence and U,€{V;, E,}, that U,~=E, and consequently
Us=0C or UsUg=V,C. However, this leads to a contradiction, since
d(F(V4E,V,CV,E,V,0), F{CE, U Ug))>2

for U;=Cand Uz Ug=V,C. Thus subcase (abb) is excluded, and by symmetry also U,=V,

is excluded.
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Subcase (abe), W,CV, U, U, U, U,=E,CV,E,V,CE,. Then W,=C or W, W,=CV,
and U;=C or U;Uy=V,C. However, all four combinations are impossible, since
AF (V3 BV, CE W, Wy), FY(CE, U Ug) >2
in all four cases. This excludes subcase (abc).

Consequently subcase (ab) is excluded, and thus case (a) is excluded.

Case (b), U, =E,. Then by Lemma 6.3 and the exclusion of subcase (aa), we conclude
that either U,=C or U,U;=V,C. This completes the proof of Lemma 6.4.

LeEmMMaA 6.5. The regular double chain 11T, contains E; only in the following combina-
tions,

CE,C, CV,E,C, CE,V,0, OV,E,V,C.

Proof. The result is an immediate consequence of Lemma 6.4 and the definition of a
regular double chain.

LeMwma 6.6. The regular double chain IIT, contains CV;E;V ;C as a subproduct only if
either

[17,=CV,E,V,CE,CV,E, V,CE,CV,E, V,CE,

or

[17,=CV,E, V,CE,CV,E, V,CE,CV,E, V,CE,.

Conversely, for each of these reqular double chains

K=K({I1T,)~V3V/31=1.9509....
Proof. Using congruence, we may assume that 17, contains the subproduct
e WyW, W OV B, V,C0U, U, U, .... Since
d(F(V,E, V,C), F¥CX))>2 for X€{V,, V,, B, O},
d(F(V,E,V,C), FXCV, Ey)) =2,
we conclude that U,, W,€{E,, E,}. Since also
d(F(E,V,CE,C)U F(E,V,CE,V,C), F*(V,CE,C) U FYV,CE, V,C))>2,
we conclude by Lemma 6.5 that U, & W,. Hence, using congruence, we may assume that
U,=E, W,=E,.

Using Lemma 6.5, we obtain from

d(F(V,E,V,CE,C)U F(V,E,V,CE,V,0), FCE,V,C))>2,
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that W, V,; by symmetry, also U, = V,. Hence by Lemma 6.5, it folows that U, = W,=C.
Since
d(F(V,), F*(CEy) =2,
d(F(C?), FHCE,CV4E,V,C))>2,
d(F(E,OV,Ey), F*(CV, B, V,0))>2,

d(F(E,CE,C)U F(E,CE, V,0), FXCV,E,V,())>2,

d(F(E,CV,E,V,C), F¥(CE,C)U F*CE,V,())>2,

d(F(E4CV,E,V,C), FF(CE,C) U FXCE,V,())>2,
we canexclude Uy=V,, U, =C, U,=V,, Uy=Ey, U;=E,, Uy= E,, respectively, by Lemmas
6.4, 6.5. Consequently U;=V,, and hence by Lemma 6.4, either U, Uy=E;Cor U, UyUs=

E,V,C. However, since

d(F(V,E,C), F*(CE,CV,E,V,())>2,
we can exclude the first of these possibilities, and hence U, U, Ug=E,V,C.

Repeating the argument used above in both directions, we conclude that necessarily

N7,=CV,E, V,CE,CV,E, V,CE,CV,E, V,CE,.

By (6.14), Theorem 6.3 B and Examples 6.3, 6.4, this yields the result.

LrMMA 6.7. The regular double chain T, contains CorCasa subproduct only if
I17,=C. Conversely
K=K(()=V3=1.7320 ...

Proof. That K (6’) =V3 follows from Theorem 6.3 B and Examples 6.1, 6.4. Hence
assuming by congruence, that 117, =C U,U,U, ... with U,€{V,, E,}, we have to reach a
contradiction.

By Lemmas 6.4, 6.5, 6.6, either (a) U, U, =E,Cor (b) U, U, U;=E,V,Cor (c) U, U, U,
=V, E,C.

Case (a). This possibility is excluded at once by

d(F(CY, F*(CE,C))>2.
Case (b). Since K (‘C-'-E’1 VIE) =2, we may assume, that
OU,U,U, ... =CE, V,C*X, X, X, ...,

where X, =+ C. By the definition of a regular double chain together with Lemmas 6.4, 6.5, it
follows that £ =2m —1, m€N.
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However,
A((C), F¥(CE, V,C*"'X, X, X)) > d([C), [CE, V, 0)) =2

for X;=V,, X, X,=E,C, X, X, X, =E,V,C, X; X,=E,C, X, X, X,=E; V,C, and hence by
Lemmas 6.4, 6.5, 6.6, we have X,'¢{V; E,, E;}.

Similarly

d([V,B,C], F*(C*" X, X, X)) >d((V, E, T}, [C]) =2

for X, X, X;=V,E,C, X, X, X;=V,E,C, X,=E,, and hence by Lemmas 6.4, 6.5, 6.6, we
have X, ¢{V,, V,, E}.

This excludes case (b).

Case (c). This possibility is excluded similarly to case (b).
From Lemmas 6.4, 6.5, 6.6, 6.7 and the definition of a regular double chain we obtain

the following structure theorem.

THEOREM 6.4. Suppose that the reqular double chain I1T, with K(I1T,) <2 vs different

from C and from

OV,E,V,CE,CV,E,V,CE,CV,E, V,CE,

and

OV,E, V,CE,CV,E, V;CE,CV,E, VsCE,.
Then 11T, is of the form
e CEMSATED | D OO @ cemet
where m, €N for all r€Z and TY ... TY) for each r€Z is one of the nine products,
E, V,E, E,V, withj€{l,2,3).

Lemma 6.8. The reqular double chain I1T, contains
C2l—lEv‘02rr.~l
J
as a subproduct only if (I, m)€{(1, 1), (2, 1), (1, 2)}.

Proof. Using congruence, we may assume that [ >m and j=1. Then I >3 is excluded

by
d(F(C*~%), FNCE,C))=d(F(C%), F*CE,C))>2,

and (I, m) =(2, 2) is excluded by
d(F(0?), F{CE,C3))>2,
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Lemma 6.9. The regular double chain 11T, contains C3E,C or CE;C? as a subproduct
only in the following combinations,
E,C*E,CE, or E,CE,C3E,.

Proof. Using congruence, we get the result from Theorem 6.4 and Lemma 6.8, since

d(F(C?), FXCE,0X,X,X,))>2,

d(F(C*X,X,X,), F{CE,())>2,

are both satisfied for X, =V, X, X, = E,C (k=2, 3), X, X, X, = B, V,,C (k=2,3), X, X, X,
=V E,C (k=2,3).

LEMMA 6.10. The regular double chain I1T, does not contain any of the following products
as a subproduct,

CE,CE.V,C, CV,E.CEC (j+k).
Proof. Using congruence, we obtain the result from

d(F(E,V,C), FCE,C))>2.

LEMMA 6.11. The regular double chain I1 T, does not contain any of the following products
as a subproduct,

CE,CV,E,C, CE.,V.CE,C (j=k).

Proof. Using congruence, we need only exclude CE,CV, E,CX, X, X; as a subproduct.

However, since
d(F(E,CX,X,X,), F*(V,CE,C))>2
for X, X, X, =V, E,C(k=1,2,8), X, X,=E,C (k=1,2), X, X, X;,=E,V,.C (k=1,2), X, =
C, we conclude by Theorem 6.4 that X, = E,. Consequently, by Theorem 6.4 and Lemma
6.10 only X, X;=V,C remains as a possibility. However, using congruence, we can exclude
this by
d(F(E,V,C), F{CE, V,C))>2.

LEMMA 6.12. The regular double chain 11T, does not contain any of the following products
as a subproduct,

CE,CE,C (j=k).

Proof. Using congruence, we need only exclude W, W,W,CE,CE,CU,U, U, as a sub-

product. Since

d(F(E,CU,U,Uy), F{CE,C))>2
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for U, U, U; =V, E,.C (k=1,2,3), U,Uy=E,C (k=1,2), U,U,Us3=E,V,C (k=1, 2), and
U,=C is excluded by Lemmas 6.8, 6.9, we conclude by Theorem 6.4 that U, =FE;; ana-
logously W, =E,. Since also

d(F(E,CE,V,C), FNCE,CE,C)U F*(CE,CE,V,C))>2,

it follows by Theorem 6.4 that only U,=C and analogously W,=C remains as a possi-
bility.
Repeating the argument in both directions, we find that 117", = (j‘-El CE, OE; is the

only possibility left. However, this is also excluded, since
4
K(CE,CE,CEy)=V17>2.
LeMMA 6.13. The regular double chain I T, does not contain any of the following products
as a subproduct,
E, 0Py, V,C*"'E, (meEN).

Proof. Using congruence, we need only by Theorem 6.4 exclude E,C**'V E, C*!
X, X, X, with X, = as a subproduct.

It is easily proved by means of Lemma 6.16 below that in order to have

d(F(V, B0 X, X, X,), F(C*™ " Ey)) <2,
we must have X, +E,, X; X, X4V, E,C (k=2, 3) and s<m. By Theorem 6.4 we must
have X, ¢{E,, V,, V,}.
For 1 <s<m it follows similarly that in order to have
d(F(C* X, X, X,), F{(CE, V,C*" ' Ey) <2,
we must have X, ==V, X, X, X, + K, V,C (k=2, 3). By Theorem 6.4 we must have X, ¢{V,,
E,, B} in this case.
For s=1 it follows from
d(F(V,), F{CE)=2,

that X, =+ V,, and hence necessarily X;=FE, (k=2, 3). By Lemma 6.10, it follows that
X,+C, and consequently by Theorem 6.4 we must have X; X, X;=E. V,C (k=2,3).
However, this possibility is excluded by

d(F(E,V,0), F*CE,V,C))>2 for k€{2, 3}.

LeMMa 6.14. The regular double chain 11T, does not contain any of the following products

as a subproduct,

V,E,C*" YE.V, (j=*Fk).
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Proof. Using congruence, we need only by Theorem 6.4 exclude
CV,E,C**E,V,C*'X X, X,

with X, 4 C as a subproduct.
It is easily proved by means of Lemma 6.16 below that in order to have

d(F(C" 2B, V,0), FHOE, V, 07 X, X, X)) <2,
wemust have X, = V,, X, X, X, + E, V,.C (k=2, 3), and further X, X, X, =V, E,C(k=2, 3)
in case s=>m—1,
Similarly, in order to have
d(F(V,E,C*"1E,V,0), F{C* X, X,X,)) <2,
we must have X, X, X;+ V, E,C (k=2, 3) in case s<m—1.
Finally, X, == E; by Lemma 6.13, and X, X,+ E,C (k=2, 3) by Lemmas 6.8, 6.9,
6.12.
Now the result follows by Theorem 6.4.

LeEMMmA 6.15. The regular double chain I1T,, does not contain any of the following products
as a subproduct,
E,V,C*" VB (j*E).

Proof. Using congruence, we need only by Theorem 6.4 exclude
CE,V,C* 'V, E,C*'X,X,X,
with X, + C as a subproduct.
It is easily proved by means of Lemma 6.16 below that in order to have

A F(V, B, 0> X, X, X,), F—"‘(Cﬂm_1 V. E,()) <2,
we must have X, + K, X, X, X,+V, E,C (k=2,3). Since X;+V, by Lemma 6.13, it
follows by Theorem 6.4 that either X, X, =E,C (k=2,3) or X, X, X;=E, V,C (k=2, 3).
However, the first possibility is excluded by Lemmas 6.8, 6.9, 6.10, and the second
possibility is excluded by Lemma 6.14.

LEMMA 6.16. For reN we have

o ( 1 ——l+i)’_ 1 (g)*-2(§ar+i<éar+ar_l> -,

a l_/l_é 2 a, - %“r + i(%ar + “T—l)/ ’

11— i
where
a,=(1+V3)—(1-V3y.

Proof. Since ay41 =20, + 20,1, we obtain the formula by induction on r.

LEMMA 6 17. K(V,E,CV,E,C) >2 for all r€N.
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Proof. A computation of V, E,C"V,E,C" by means of Lemma 6.16 shows that the
regular double chain 'I_’l E.CV, Esé; is associated to the quadratic form

O=(—1% af -+ o, oyt 0‘12‘—1 - i(5ag + 6ot 0ty + 2“?—1)7
-3l —o 0,y —al g +i(60F+ 4o, o, _y),
_|_3 2 _ A2 2 2 2 2
Soy —o 0o,y — o7y —i(Bof + Bor, g + 2067 _1)).

Hence by further computations,

9 2
D= D(@)— (—15 24132 o, + 50&_2) _g.4mL

O(—1;1) = 4o + 6o, o,y + 2024 +i(§ ol + 3o, o,y +A2_4),
D—4N(®(—1,i))=9.4".

Consequently it follows by Theorem 6.3 B, since y =u(®) < |®(—1,7)], that

G OV D _ 9-4
KV B, OV, B, 0 > VN@(_U»— ]/4+ s

LEMMA 6.18. The regular double chain 11T, does not contain any of the following products
as a subproduct,

V,E,C*" 1V, B, E,V,C*"E,V, (j+k).

Proof. Using congruence, we need only by Theorem 6.4 exclude
CV,E,C*" 'V, E,C¥ X, X, X,
with X, + C as a subproduct.
It is easily proved by means of Lemma 6.16 that in order to have

d(F(C*2X,X,X,), F*(CE, V,C* ' E,V,C)) <2,

we must have X, V,, X, X,+ E,C (k=2,3), X; X, X, + E,V,C (k=2, 3); hence by Theo-
rem 6.4, X, ¢{V,, E,, H,}.
Similarly, in order to have
d(F(B,V,C*" 1 E, V,C), FH(C*1Y,Y,Y,) <2,

we must have Y 4V, Y,Y,+E,C (=1,2), Y,Y,¥,+E,V,C (j=1, 2), and further
s<m in case Y,Y,Y,=V,E C. Using congruence, we conclude by Theorem 6.4 that
X,¢{V,, By, E,}, and that s<m in case X, X, X, =V, E,C.
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Repeating the argument above, we see that there exists a number [EN, I<m, such
that
[7,= .. LG 7, B

However, this possibility is excluded by Lemma 6.17.
Combining Theorem 6.4 and Lemmas 6.8, 6.9, 6.10, 6.11, 6.12, 6.14, 6.15, 6.18, we

obtain the following important improvement of Theorem 6.4.

THEOREM 6.5. Suppose that the regular double chain ILT, satisfies the preliminary
restrictions of Theorem 6.4. Then 11T, is congruent to
LGB ApED | pCD gRrelp® P OBt
where m, €N for all r€Z and T ... TT) for each r€Z is one of the three products

E, V,E, E,V,.

6.4. The main theorem on the minimum of quadratic forms

THEOREM 6.6. Let ®=(4, B, C) be a complex quadratic form with discriminant
D =D(®) +0 and minimum yu=u(D).
A If
VID|ju<2, (6.17)
then @ is equivalent to a multiple of either
G=(—31,3i, 1-20), G=(3i, —3¢, 1 +24)
or some G4, where
GA(X, Y)=9A2X -1, 14Y),
the forms g being the C-minimal forms of chapter 5.
B. Conversely (6.17) holds for all forms equivalent to a multiple of G, G or some Gy;
specifically
VID@)] /@) = V DG (@) = V 4V,
VID(GA) | /i(Ga)=Va— A2

C. There are 2% forms ®, none of which are equivalent to a multiple of any other, such

that

VI D@)] (@) =2.

Proof. To prove part A we notice, that ® must have both roots inequivalent to real
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numbers, since otherwise V]_D—l Jn= V5 by the Markoff-Hurwitz approximation theorem.
Let I17, by any regular double chain associated to @. By Theorem 6.3 A, we must have

K(MT,)<V|D|ju<2,

and hence by Theorems 6.4, 6.5 either

L NIT,=CV,E,V,CE,CV,E, V,CE,CV,E, V,0F,,
N7,=CV,E,V,CE,CV4E,V,CE,CV,E,V,CE,

or

II.T17,=T11U,, where U,€{V,, E,, C} for all n€Z.

Case 1. (The asymmetric case.) It follows by Example 6.3 that @ is equivalent to a
multiple of G, G, respectively. Notice that @, G are inequivalent, since D(G)=15+12i =

+ D(@) = + (15 —12i).

Case 1I. (The symmetric case.) Then @ is equivalent to a form, where the roots &, %
satisfy Re £=Ren =3 (cf. chapter 4), hence ® is equivalent to a multiple of a form F,
where

FX,Y)=f2X-Y,:iY), (6.18)

where f=(2, 8, 7) is a real form with §(f) >0 and having irrational roots. Notice that F also
satisfies (6.17), and that D(F)= —44(f).

If f is not C-equivalent to a multiple of some ¢, or Ay, then V;S?f)_/v(f) >2 by Theorem
5.3 A, hence either there exists (2, ¥,) € Z3, such that

V8 |1z, y0) | >V [D(E)][(F) = 2VS(f)/ (),
of there exists (z,,) €Z3, such that

Vo(hi|2f(@s, yy)| > VIDE)| /() = 2V8()/ u(F).

Consequently, either

H(F) >2| f(zo, o) | = | H(1 +8) 2, (1 + ) )| = IF(M (1 ’“’5)3/0)

1+¢

’

or
,u(F)>4lf(x1, I‘/1)| = lf(Qxl’ 2y1)| = IF(xl'—iyl’ —2i3/1)|>

in contradiction to the definition of u(F), since (ix, +y,)/(1 +4) €Z[4].

Suppose that f= chy, (c=0), where (A, Ag; My, M,) is any non-singular solution of
equation (5.4) with A; <A, M;<M,, and associated quintuple (¢;,, I ; m,, m,). Then
F~cHy,, where Hy,(X, Y)=hy,(2X - Y, ¢Y).
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It follows-easily by Lemma 5.6, that in case ¢ =1, we have
| My Ha (B(A, — 1+ 1), Ay)| = A V16ME —8.

Also, it follows by Lemma 5.6 (vii) (ix), that A, and 1,4 have a common divisor g (in
Z[4]) with N(g)=A,, in particular (A, —1+1,7)/o € Z[¢]; however, since N((A, —1+1;%)/p)
=(A;-2A, +1+B)A,=A~2+4=1-2+1=0 (mod4) by Lemma 5.6 (vii), also
(A —1+19)/(20) €Z[1].

Consequently, for M=M, and ¢=1, we have

w(MH,y) < V16M* - 8. (6.19)
In case M=M, and ¢ = —1, we can prove (6.19) similarly, using that
M, Hae (AL~ 1+ (= 44,)8). Aq)| = A,V 16ME -8,
Finally, (6.19) is valid for M =1, since
H(X, Y)=h(2X-Y,1Y)=2(1 —a)((1 +4) X2 —2XY + Y?).
Using (5.7) and (6.19), we see that in case f~ chy (and hence F ~ cHy), we have
VID(F)|/u(F) = V| D(MH ;)| | ps(MHys) = 2V 8(Mhp)/ o(MHyy) > 2.

This completes the proof of part A,

Part B. It follows from Example 6.4 that

VID@|/u(@ = VD@ u() =V Val.

Also it follows from (5.7) that

VID(AGL)| = 2V3(Aga) = 4AVE— A2,
hence to prove B we need only show that
WAAGL) =A. (6.20)
By Lemma 5.6, the form
JAGA(X, ¥) = AX®— (A —i2A — ) XY + (A — )4 + I —i(A —1/2)) ¥?
=A(X — (1 +10,(ga)) T)(X — J(1+id4(ga)) ¥)

has coefficients in Z[¢], and it follows easily from Theorem 5.3 B by considering the two
cases Re (X/Y)=1 and Re (X/Y)= 1 separately, that

3} DEAG,)| = A2 =} <N(u(3AGL) <A*=N(FAG,(1, 0)).

This yields (6.20), since N(u(}AG,))€Z.
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Part C follows similarly from Theorem 5.3 C by considering forms F, where F(X, ¥) =
f(2X —7Y,:Y), and f is any form with Vé(f)/»(f) =2.

6.5. The main theorem on the approximation constant

THEOREM 6.7. Let £€C\ Q().
A If
(&) <2, (6.21)
then & is equivalent to a root of either G, G or some G.

B. Conwersely if & is equivalent to a root of G or G, then

o@ -V,
and if & 18 equivalent to a root of Gy, then
C@E)=Va-A"2
C. There are 2% different equivalence classes of £ such that C(£) =2.

Remark. Since no isolation theorem (like Theorem I, chapter II of [4] or Theorem 5.1)
is available for complex forms, Theorem 6.7 cannot be deduced from Theorem 6.6 (cf. the
proofs of Theorem III, chapter IT of [4] or Theorem 5.4).

Proof. Suppose £€C\ Q(z) with C(£) <2. Then ¢ is inequivalent to a real number, since
otherwise C(&)> V5 by the theorem of Hurwitz ([19]). Hence by Theorem 2.2, £ =§, has
a unique regular chain

ché=1T7,..T, ...
Also by Theorem 2.6
O(£) =lim sup ¢;™,
where ¢ for 1 <j<3 is given by (2.9), (2.10), (2.11).
By putting
Crpr=— 95" lgi"™,
we may rewrite the ¢/’ as follows,
¢V = lfn.,.l ~ 8 [, 8= |&x51— Zﬁ}rll, oV = '(5n+1 =)~ (us— DY

From

(
p{"

(n)
P2
ToTy...Th= (q(ln) q(zn))

6 — 752903 Acta mathematica 134, Imprimé le 30 Juillet 1975
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we get by taking inverses and using Lemma 1.1 (iv), that

(7) (n)
72 — Dz ———
(*9(1") e )=i£,,T,,...T1T0.
Consequently for any k, kEN(k < n), we have

FTy . Ty if g,= 21
=[Tpi1Trsz---1€ )
S = M lusa o] {F*(T,,+, o Toyn) i &= i

F(T,..T,,) if e=*i
Lppr= —glgiM € _(_ n k) 1 E,= Tt .
F¥T,..T, ) i g,=*1
Because of the resemblance between the formulae for
c(7,T,...7,...) and K(IIT)),
it is obvious, that the content of section 6.3 can be modified to yield the following result:
If C(§)<2, then either

L ch&=T,... T,OV,E,V,0E,CV,E,V,CE,CV,E, V,CE,

ch&=T,... T,CV,E,V,0B,C V4B, V,CE,CV,E,V,CEs,
or

IL §~n=[U,U, ... U,..], where U,€{V,, E,, C} for all nEN,.

Case 1. (The asymmetric case.) By Example 6.3 and Theorems 2.2, 2.4, £ is necessarily
equivalent to a root of either @ or G. Conversely if £ is equivalent to a root of either G or G,

then by Theorem 2.7 and Theorem 6.6, we have
C&) = Vvl

Case II. (The symmetric case.) Then (ef. chapter 4) necessarily § ~ 3(1 +-ia), where
x€R\ Q. For convenience we put

Cy(3(1 +3x)) =lim sup (|q| |31 +i)g—p|)Y,

the lim sup being extended over all p, € Z[i] (g +0) with Re (p/g) =1.
Similarly we put

Ca(3(1 +1a)) =lim sup (|| {41 +s)q—p|),

the lim sup being extended over all p, ¢ €Z[¢] (¢ 0) with Re (p/q) =+ }.
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We claim that for any « €R\Q, we have
C1(3(1 + ) =d(a), (6.22)
where d(x) is the C-approximation constant of «, and
Cy(3(Y +e0)) <2. (6.23)

Suppose first that z/p €Q, (cf. section 4.2), then

3(1 +i(w/o)) = (o +73)/(20),

where

N(o +7i) =n2+02=2 (mod 4), N(2p) =2 202
By putting p =(g +ne)/(1 —4) and ¢ =p(1 +1), we obtain, since ged (7, p) =1, that

P, 9€Z[3], ged (p, ) =1, (1 +i(z/0)) = plg.
Also
(lal 30 +ia)g—p|) 7 =([e] |ag ~x ).
Suppose next that z/g €Q,, then
1 +4(n/o)) = (o +7i)/(20),
where
N(p+ni)=n2+0*=1 (mod 4), N(20) =40°

By putting p =g + 77 and g =2p, we obtain, since ged (7, p) =1, that

P, q€Z[5), ged (p, 9) =1, }(1 +(n/0)) = plg.
Also
(gl 3 +im)g—p ) =3(|e| [ag—=n|)2.
Altogether this proves (6.22).

If Re(p/g)==% and p, ¢€Z[i], then obviously p/g=a+ib with , b€Q, and |a—}| >
1/(2|q|?). This proves (6.23).

It follows by (6.22) that if £ ~ 3(1 +ie) has C(£) <2, then necessarily d(a) <2. By Theo-
rem 5.4 A, o must be a root of some g4 or hy, hence (1 +4x) must be a root of some Gy
or Hy. What remains to be proved of parts A and B follows thus by Theorems 2.6 and 6.6.

It follows from (6.22), (6.23) and Theorem 5.4 C that O(3(1 ++x)) =2 for any « with
d(e) =2. This proves part C.
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