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Introduction 

Several at tempts have been made during the last 100 years to develop for complex 

numbers an algorithm having the properties tha t  the regular continued fraction algorithm 

is known to possess in the real case, due to results of Euler, Lagrange, Legendre, Gauss, 

Galois, Serret, Markoff, and Hurwitz. 

The most significant of such previous at tempts are those of A. Hurwitz [18], J.  Hur- 

witz [20], A. Aurie [1], L. R. Ford [12], J.  W. S. Cassels, W. Ledermann, K. Mahler [5], 

W. g. Leveque [22, 23], G. Poitou [28], and A. L. Schmidt [33]. However, it is a common 

feature of all these approaches tha t  only very few of the nice properties of regular continued 

fractions are carried over. 

I t  is the purpose of the present p a p e ~  develop in the Gaussian case two new kinds 

of: algorithm, regular dtai~ts a~ad dually regular chains, based on the concepts of lYarey set8 

and dual Farey sets to be presented in chapter 1. As is pointed out, Farey sets appear to 

be a natural extension of the well-known circles and mesh triangles of L. R. Ford [13]. For  

this chapter we presuppose some knowledge of Farey triangles (sections 2-5 of [33]). 

I t  is shown in chapter 2 tha t  the representation of complex irrational numbers ~ by  

regular and dually regular ehains--ch ~ and oh* ~--is essentially unique, and tha t  the 

theorem of Serret about equivalence extends in a natural way. Also every fair approximant 

p/q (with p, q E Z[i]) of ~ will appear as a convergent of ch ~ and of ell* $, thus extending 

a theOrem of Legendre. 

The classical theQrem~ of Euler, Lagrange, and Galois about  l~riodic and purely 

periodic regular continued fractions are extended in chapter 3 and used to  give an effective 

solution of the complex Pellian equation. 

Chapter 4 is devoted to a study of ch G0 and ch* ~0 for ~0 =�89 + i ~ ) ,  where ~ E R ~ Q ,  

and of the corresponding C:regular and C-dually regular continued fractions ~ (4.2) and (4.2*) 

of a0- These continued fractions, though sharing a l so  the more subtle properties of regular 

continued fractions (an intrinsic characterization of convergents, a theory of C-approxima- 

tion constants <2  and an ergodic theory in complete analogy with the corresponding 
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theorems for regular~ continued fractions by Legendre, Markoff-Hurwitz and C. Ryll- 

Nardzewski), seem, somehow, to have escaped earlier notice. 

In  chapter 5 the theory of C-minimum of real binary quadratic forms and the corre- 

sponding theory of C-approximation constants is treated in complete analogy with the 

exposition by J. W. S.  Cassels [4] on the Markoff chain. 

In  a separate paper I shall deduce the properties of the C-minimal forms gh or h~ 

of chapter 5, by putting these in 1-1 eorrespondance to Markoff-symbols representing 

periods of even or odd lengths, respectively. 

Chapter 6 contains first of all a reduction theory of complex binary quadratic forms 

similar to tha t  of C. F. Gauss [16] for real indefinite binary quadratic forms. Apparently 

the only reduction theory of complex binary quadratic forms existing is the rather crude 

one contained in the famous paper of P. G. L. Dirichlet [10] on what is now known as 

"Dirichlet fields". 

An important  application of this reduction theory is the complete determination--in 

Theorem 6.6--of all complex binary quadratic forms (P with V]D]//x <2,  where D and/z  

denote the discriminant and minimum of (I). 

Also chapter 6 contains the complete determination--in Theorem 6.7--of all complex 

irrationals ~ with approximation constant C(~) < 2. 

Contributors to the early development of these theorems are L, R .  Ford [13] and 

O. Perron [25, 26], who both determined the first minimum. Later J. W. S. Cassels [3] and 

A. L. Schmidt [33] proved the isolation of the first minimum, and J. W. S. Cassels [3] also 

indicated the forms G, G of Theorem 6.6. Very recently L. Ya. Vulakh [36] determined the 

minimum of the forms GA of Theorem 6.6 (in an equivalent form), and gave also a brief 

indication of a proof of the symmetric case of that  theorem, without, however, being explicit 

about the isolation technique involved. 

In  a separate paper I shall use the machinery of chapter 6 also to s tudy the minimum 

of complex ternary and quaternary quadratic forms. 

Also I announce a forthcoming paper on "Hurwitzian chains", including (for a, b EN) 

ch exp [1/(a - ib ~lJJ -.- Va V2bn+O-2E~ n+2 --nY2an+a-1 Vn+2 C] ~=0, 

T72bn+ lg--2 [ ~ [  oo ch exp [1/( - ib)] = Va v~ t~ t ~=o, 

which extend the classical formula of Euler (el. [27]), 

exp [l/a] = [1,2an + a oo - 1, 1In=0. 

Finally I announce a paper on the approximation of complex numbers by  numbers 
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from the field Q(~-~-- 1T). By  combining the methods of the present paper with those of 

[33], I shall prove that  the set of approximation constants has 

((1 588 626 + 30 690]/1 085)/1 205 821) 1/2 = 1.4682... 

as the smallest limit point. There are infinitely many approximation constants below this 

point, the four smallest being 

~]/~, ]/~, | / 1 0 8 5  ~ 8 6 0  
r-~-V' i~o~" 

1.1. Some basic notation 

Let 

Chapter 1 

Farey sets 

a ={~==+iyly>0} u {~}, 
:~* ={===+iyl0<x<l, y>~(x-~=)-=} u {~}. 

The sets ~, :/* and their subdivisions into 

,~='~lU "'~2 U "~3 U ,l~lU 82U 83U C, 

3" = ~*  u '~* u ' ~  u c* ,  

are shown in Fig. 1, Fig. 1", respectively. All regions are bounded by  straight lines or 

circles with radii 1/2 (or part  thereof}, and are supposed to be closed; oo E~01, ~ ,  83, ~ .  

The matrices V1, V=, Va, El, E=, E a, C, S, I are defined as follows, 

1 - 1  S =  
C =  1 - i  i ' 

For any invertible Matrix M, 

' - i  l + i  ' 
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~3 

i 1 + i  

0 1 

E2 

Fig. 1 

C* 1 + i  

Fig. 1" 

with elements in {3, let m denote the corresponding homographic map 

Finally 

a z +  b 
~rI'g ; Z l - - -~  - -  

c z +  d" 

~: zt--->5 

denotes complex conjugation of C. For any subset $ of (~ we write also $ instead of ~(S). 

For any matrix M we write M for the complex conjugate of M. 

We collect in the following lemma a number of simple relations between the matrices, 

maps and regions introduced above. Here and further on we use the convention that  the 

index j ranges through {1, 2, 3}, and accordingly ?" + 1 has to be reduced modulo 3. 



6 ASMUS L. SCHMIDT 

LEMMA 1.1. 

(i) 

(ii) 

(ili) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

Vj+,= SVjS -I, Ej+I= SEjS -I, C = SCS -~, 

det V~ = 1, det Ej = i, det C = - i, 

V ;  1 = V2, E~ -1 = E l ,  C -1  = - C ,  

~j  = V,(3), s  = ej(3*), C = C(3"), 

Y?  = vj(3*),  C* = c(Y), 

~J+l = 8(~,), ~J+l--- s(g,) ,  C = s(C), 

~j+~ = s(~, ), C* = s(C*). 

Proof. Obvious by inspection. Notice that  s is the non-euclidean rotation to an angle 

2x/3 around ~(1 +iV3) if :~ is considered as the non-euclidean plane in the Poincar$ model. 

A homographic map m: z~-->(az§ +d) is called unimodular if a, b, c, deg[ i ]  (the 

ring of Gaussian integers), and det m = a d -  bc E ~/= ( • 1, • i). Notice that  the determinant 

of a unimodnlar map is defined only as an element in the quotient group ~ / ~ 2  consisting 

of the two elements ( •  ( •  A unimodular map m is called properly unimoduIar if 

det m= {• 1}, and improperly unimodular if det m = { • i }. 

As usual ~, DEC are called equivalent if there exists a unimodular map m with ~ =m(~). 

Also ~, ~ E C are called properly (imlaroperly) equivalent if there exists a properly {improperly) 

unimodnlar map m with ~1 =m(~). Obviously each equivalence class of complex numbers 

consists of either one or two proper equivalence classes. 

An immediate consequence of these definitions and Lemma 1.1 (iii) (vi) (vii) is that  

every boundary point occurring in Fig. 1 is properly equivalent to a real number, and that  

every boundary point occurring in Fig. 1" is improperly equivalent to a real number. 

1.2. Farey sets 

Let  G denote the group of all unimodular maps. To any m E G we associate a Farey set 
F(m) as follows, 

(1) if m is properly unimodular, we define 

(re(Y)' 
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where we make the unique choice between the two sets m(~), m(:~)such that~2,(m)becomes 

either a circular disc or a halfplane of the form 

{ =x+iyly> b0}, b0ez; (1.1) 

(2) if m is improperly unimodular, we define 

tin(Y*)'  

where the upper possibil i ty is chosen if  m(~) is a circular disc or a halfplane of ~he form 

{ =x+iylx<ao}, % = 0 ,  - 1 ,  - 2  .... (1.2) 
o r  

{z=x+iylz~ao}, a 0 = l  , 2, 3, ..., (1.3) 

while the lower possibility is chosen if m(~) is a circular disc or a halfplane of the form 

(1.2) or (1.3).  

I t  is easily shown that  by (1), (2), the Farey set F(m) is well-defined for all m E G, and we 

say that  F(m) is of circular (triangular) type, respectively. Notice that  in Fig. 1 the sets 

y, ~j  are Farey sets of circular type, while the sets Ej, C are Farey sets of triangular type. 

Let  :~ be the set of all Farey sets, i.e. 

:~={2,(m)[mEG). 
A consequence of a previous remark about the  boundary points of Fig. 1, Fig. 1" is tha t  

any z E02,, where F fi~, is properly equivalent to a real number. 

For  any 2, e :~, say F = 2,(m), we define 

#(2,) = ((N(c) +N(d) +N(c  +d)) ~ -2(N~(c) + N'(d) +N~(c +d))) 1/2, 

where m: z ~->(az + b)/(cz + d) and N is the Gaussian norm. Apparently Q(2,) depends not only 

u p o n  2, but  also upon m. I t  is a matter  of simple trigonometry however, to show that  

1/~(F) is the radius of the circle re(R), which is the circumscribed circle of 2, (notice tha t  

q(F) = 0 ~ m ( R )  is a line). We shall prove later in this chapter tha t  

e(F)e2No={0,  2, 4 .... } for all 2 ,e~ .  

The following lemma describes an important  relation between Farey sets and Farey 

triangles (cf. [33] for the definition of a Farey triangle 2,T and /Y(FT) ) .  

LEMMA 1.2. 2,or any 2, E:~, where 2, is assumed to be o/circular type though not a half 

plane (i.e. 2' is a circular disc), either 

(i) there is precisely one acute angled Farey triangle F T  o (say) inscribed in 2,, 

o r  

(ii) there is no acute angled Farey triangle inscribed in iv, but in return precisely two right 
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angled Farey triangles FTi, FT  2 (say) both inscribed in F; the Farey triangles FT 1 
and FTg. are congruent, in laarticular N(FTi)=N(FT~). 

Proo[. Let  F=F(m) (say), and  assume wi thout  restriction t h a t  F=m(3); otherwise 

we could replace the  m a p  m: z~+(az+b)/(cz+d) by  zF-->(bz+a)/(dz+c). The assumption 

means t h a t  the  points  a/c, b/d, (a + b)/(c + d) define a positive cyclic ordering of ~F. Equi-  

valent ly  the  assumpt ion means  t h a t  - d / c  E C~Y. 
Since FT(a/c, b/d, (a+b)/(c§ is a Fa rey  triangle inscribed in F ,  it follows t h a t  an 

a rb i t ra ry  Fa rey  tr iangle FT =.FT(pi/qi, pJq~, (Pi § § inscribed in P with P~/qi, 
P2/q2, (Pi +P2)/(ql +q~) defining a positive cyclic ordering of a F  is given by  

where ri, r2, si, s 2 E Z, r i s 2 - r 2 s 1 = 1. 

Consequently 

q2  

ql 

8 2 - -  ~ - -  r 2 

whence - q~/qt E C \ : 1 ,  since - d/c E C \ 3 and  s 2 r 1 - s i r 2 = 1. 

Since FT is similar to  the  triangle with vertices 0, 1, -q2/ql, it follows tha t  FT has 

all its angles ~<~r/2 ff and only  ff -q~/qle Y*\(O, 1, oo}. 
However,  the set ~*~{0 ,  1, oo} consists of three copies of the  fundamenta l  domain 

(six copies of its boundary)  of the  modular  group F consisting of all maps  q: z~-->(riz+r2)/ 
(s i z + s~ ), where ri, r2, sl, s 2 fi Z, r i s~ - r e s a = 1, and operat ing on the set C ~ y. Since each F T 

inscribed in F occurs for three different ~'s, corresponding to the  cyclic permutat ions  

of the three vertices of FT, the  result  follows readily. 

For  a ny  Fa rey  set F we define its norm N(F) ,  as follows, 

(la) if F is a halfplane of the  form (1.1), we pu t  N(F)=2; 

(lb) if F is a circular disc, we pu t  N(F)=N(FTo) or N(F)=N(FT1)=N(FT2), 
depending on whether  case (i) or  case (if) of L e m m a  1.2 occurs; 

(2a) if F= F(m) (say) is of t r iangular  type,  and m(:l) is a halfplane of either of the  

forms (1.2), (1.3), we pu t  N(F)=2; 

(2b) if F is of t r iangular  type,  bu t  no t  of the  form (2a), the  three vertices of F are the  

vertices of a Farey  triangle FT, and  we put  N(F)=N(FT). 
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Example. N ( Y) = N ( ~91) = 1V ( 83) = N(83) = 2, N ( ~92) = N ('|93) = N ( E1) = N ( C ) = 4. 

1.3. i generating procedure of Farey sets 

We consider the set 

where 

~ = {F(m~) IM ~ = T O T 1 ... T,}, n 6510, 

To= V~ ~ b06Z; TI ~ V1, 

T~ 6 { Vj, E j, C} if det T o T1... Tv_ 1 = + 1, 

T~ 6 { V j, C} if det T O T1... T~_ 1 = + i, 

for 1 <v <n.  

Thus ~0 is the set of all halfplanes (1.1), and :~1 consists of ~ ,  ~9 a, El, E2, E3, C and 

all their translates by boA, b o 6 Z. 

I t  follows easily by induction on n that  

F(mn)=mn(Y) if det m ~ = { + l } ,  (1.4) 

F(mn) =m~(~J*) i f  det m~ = (+ i} .  (1.5) 

Also every Farey set of circular type F(mn)=m~(:/)Eff~ is divided into seven Farey 

sets in Yn+l (el. Fig. 2), three of which are of circular type, namely F(mnovj) = (m~ovs) (3) = 

m,(~gj), while four are of triangular type, namely F(m~oej)=(mnoej)(Y*)=m~(Ej) and 

F(m=oc)=(mnoc)(y*)=mn(C). Similarly every Farey se t ]o f  triangular type F (m , )=  

m=(:I*) E:~ is divided into four Farey sets in :~n+l (cf. Fig. 2"), three of which are of triang- 

ular type, namely F(m=ovj)= (m~ovj)(3*)---m=(~9~), while one is of circular type, namely 

F(m~oc) = (m,,oc)(3)=ran(C*). Of course Fig. 1 is a special case of Fig. 2; however Fig. 1", 

though similar to Fig. 2*, is not a special case of Fig. 2*, since :/* is not a Farey set. 

I t  follows easily by induction that  each parallel strip {z = x + iy I b0 < Y < b0 + 1 }, b0 E Z, 

is tessellated into Farey sets from 7~, n >~ 1, and indeed into 2- 5 ~-1 Farey sets of circular 

type, and 4.5 n-1 Farey sets of triangular type. 

In  Fig. 2, Fig. 2*, the Farey set F(mnovr lies at vertex number ], and F(m=oes) lies at 

edge number ], while F(m=oc) lies centrally; this explains the use of the symbols Vj, Ej, C. 

LV.lVIMA 1.3. Let F(m,)  be an arbitrary Farey set in ~n, n >~0, and put  (c/. the short-hand 

notation in Fig. 2, Fig. 2", where the points pj/qj, p~/q~ are represented simply by ], j') 



10 ASMUS L. SCHMIDT 

3 

F(m.ov.) 

FCm.,,o e~) 

2 ! 

F(m~ oc) 

F(m.oe~)  

l '  

F(m,, o v2) 

.F(m. o e3) 

:Fig. '2 

3 

p 

S ~' ~ 

/ \ mAI~) 
/ P ( m .  o v3) \ 

: X ~ ~ 1 7 6  ~ 

% / 
\ / 

% 
P 

Fig .  2* 



Also put 

D I O P H A N T I I ~ E  A P P R O X I M A T I O N  O F  C O M P L E X  N U M B E R S  

(,oO:) Pa ~ M~ 
qx q2 q3 1 ' 

q~ q~! 1 " 

N~ = N(qj), Ni  = ~V(ql), N =,Vl + ~V~ + N3, 

N, ~ T ' . N ' . a T '  N(2) N ~ + N  2 .N2  
~ - t v  1-1- 2 "I- "~'~ 3 ~ ~ 3- ' ;" 3" 

(i) I n  the subdivisions o /F (m. )  the ]ollowing norm relations are valid, 

N N . . . . . . . .  N '  

N '  = 2N + 3 ( N  ~ - 2N(2)) 1/2. 

(ii) I / d e t  m. = { _  1 ), n ~> 1, then FT(pl/ql,  PJq2, P3/q3) is acute angled or right angled. 

(iii) N(F(m.))  = N = N(FT(px/qx, P2/%, P3/q3)). 

(iv) I / d e t  m . = { _ l } ,  then (el. Fig. 2) 

rain (N(F(m,  ovj)), N( F(m,  oej)), N( F(mn oe)) ) >~ N(F(mn)), 

with equality i /and  only i / N ( F ( m , ) ) = 2 .  

(iv*) I / d e t  m~ = ( •  then (el. Fig. 2*) 

min (N(F(m~ ovj)), N(F(mnoc))) >~ N( F(m~)), 

with equality if and only i] N(F(m~))=2.  

(v) ~ = U ., 
n = 0  

where the union is a disjoint one. 

11 

o r  

(b) det  m , = { •  and m~+l=m, oc (of. Fig. 2*). 

Case (a). Suppose wi thout  restr ict ion tha t  

N 1 ~ N 2 ~ N 3 ~ N 1 + N~, 

Proo/. The norm relations of (i) are simply the  norm relations (36), (65) of [33]. 

We prove (ii) by  induct ion on n. If  det  m l = ( _ _ l }  we must  have M I = V ~  ~ V2 or 

M1 = V[ ~ V3; it  follows easily tha t  FT(pl/ql,  P2/q2, P3]q3) is r ight angled. I f  de t  mn+l = 

( • 1 }, either 

(a) det  r a n = { _  1) and mn+l =mnovj (ef. Fig. 2), 
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the last inequali ty being the inductive assumption.  Then by  the norm relations of (i), 

N1 ~ ' ' ' N2 >~ N s ,  

N~ = N + (N ~ - -  2N(2)) �89 - N a >~ N - N 3 = N 1 + N 2 ~> N 3, 

N, .<-- ,  , , , , ~ 218 + N1, Na ~< N8 + N2, N1 ~< N2 + Nn; 

however  this proves the assertion (el. Fig. 2). 

Case (b). Suppose wi thout  restriction t h a t  N'x = max N~. Then by  the norm relations of 

(i), 

N~ = N + ( N  2 - 2N(2)) I/~ - N  1 ~< N + 2(N 2 - 2N(U)) 1/2 + N 1 

= (N + (N 2 - 2N(~)) 1/2 - N2) + (N + (N 2 - 2N(2)) 1/~ - Na) = N~ + N~, 

thus  proving the inductive step. 

The t ru th  of (iii) follows now immediate ly  from the very  definition of N(F(m,)), 

(1.4), (1.5) and (ii). 

(iv) and (iv*) are proved by  s t ra ightforward applications of the norm relations of (i). 

Finally, (v), which essentially tells t h a t  any  F E :~ is contained in some :~,, n >~0, is 

proved b y  an easy induct ion on N(F). 

I n  view of the  disjoint decomposit ion in Lemma 1.3 (v) any  F E :~ lies in a unique 

~ , ,  n >~ 0. We call n the  order of F and write accordingly n = ord F .  

Lv.M~.~ 1.4. Let FE:~ be an arbitrary Farey set. Then 

(i) N(F)f i{2 ,  4, 6 .. . .  }=2N,  

(ii) @(F)e{0, 2, 4 .. . .  }=2N0, 

(iii) diam F<4(N(F))  -1/2 i / N ( F ) > 2 .  

Proo/. Propert ies (i), (ii) are proved simultaneously by  induct ion on ord F ,  s tar t ing with 

ord F = 0, where N ( F )  = 2 and ~(F) = 0. Assume for the inductive step t h a t  F = F(mn) E ~n 

satisfies conditions (i), (ii), then  we have to  show the val idi ty  of (i), (ii) also for each of 

the  seven (or four) Fa rey  sets F(mnot,+O in the subdivision of F = F(mn). 

With  the nota t ion  of L e m m a  1.3 we know tha t  N(F)=N==-O (mod 2), ~ ( F ) =  

(N 2 -2N(2)) l/~= 0 (rood 2) ( that  Q(F) is integral follows from the second norm relation of 

L e m m a  1.3(i)), hence by  the norm relations 

Nj  + N~ = N + (N 2 - 2N(~)) 1/2 = 0 (mod 2), 

which proves the inductive step as regards (i) (of. Fig. 2, Fig. 2*). The inductive step con- 

cerning (ii) follows when applying the  second norm relation to  F(m,o t,+x). 
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In the proof of (iii) we use again the notation of Lemma 1.3 with F = F ( m . )  and 

FT=FT(p l /q l ,  P2/q,,P3/qa). In case det m ~ = { +  1} it follows from Lemma 1.3 (ii) tha t  

diam F ~< 2/3 x/* diana F T ;  

in ease det mn = { + i} we have simply (also when F T  is obtuse angled) 

diam F = d i a m  FT.  

In  order to estimate diam F T  we may assume without restriction tha t  N 1 ~>N~ >~N 3, and 

then 

diam F T  = [p~/q~-pa/q3[ < [Pl/ql -P2/q~ [ + IPl/ql -Pa/q3 [ 

= (N1~T2)- l /2  -]- (~V1.N3) -1/2 ~ 2N~  -1/2 ~ 2 ( N / 3 )  -1/2. 

Altogether, this proves inequality (iii). 

Finally, I want to point out that  the circles and mesh triangles of L. R. Ford [14] are 

special Farey sets, as described in the following 

L~MMA 1.5. (i) The circles o[ Ford are precisely the Farey sets F(m,), where either n =0 

and Mo= Vj ( i=2,  3) or n>>.l and M n = E j T  1 ... Tn_IC with T x ..... Tn_xe{V k, V~}, (], k, l) 

being any permutation o/(1, 2, 3). 

(ii) The mesh triangles o/ Ford are precisely the Farey sets F(mn), where n >11 and 

M~= EjT1 ... Tn with T 1 ... .  T~ e ( Vk, Vz}, (], k, l) being any permutation o/(1, 2, 3). 

The proof of Lemma 1.5 follows readily by the well-known interrelation between 

Farey fractions and regular continued fractions. 

1.4. Dual Farey sets 

To any unimodular map m we associate a dual Farey set F*(m) as follows, 

(1) if m is properly unimodular, we define 

Ira(Y*) if F (m)=  re(Y) 

F*(m) = I m(~-*) if F(m) = m(~); 

(2) if m is improperly unimodular, we define 

re(Y) if F(m)=m(Y*) 

F*(m)=  re(Y) ifF(m)=m(Y*--). 
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Further  we let :~* denote the set of all dual Farey sets, which are contained in the parallel 

strip 

{ z=x+iY iO<~x<- l } .  

The following result is easily deduced from Lemma 1.3 (v). 

LEMMA 1.6. The set :~* can be described as 

n = 0  

where the union is a disjoint one, and 

Y~ = { F*(m~) I M ~ =  To T ~ ... T , } ,  n >_-O, 

where 

T o = V ~  ~ boEZ; T,:4: V1, 

T~ e { Vs, C} i / d e t  T O T~... T~_~ = _-4-1, 

T~ E { Vs, Es, C} i / d e t  T O T 1 ... Tv,~ = • i 

]or 1 ~ <~n. 

Obviously the full content of sections 1.2 and 1.3 carry over to dual Farey  sets. Notice 

in particular tha t  Y*, ~ ,  ~ ,  ~ are dual Farey  sets of triangular type, while C* is a dual 

Farey  set of circular type. 

2.1. 

where 

and 

Chapter 2 

Regular and dually regular chains 

Representation of complex numbers 

DEFINITION 2.1. A regular chain is an in/inite product 

T O T 1 ... T~ ..., 

To=V~ ~ boEZ; TI~= V 1, 

T n E (Vs, Es, C} i / d e t  T o T1... Tn_ 1 = __+ 1, 

Tn E { V s, C} i] d e t  T o T1... Tn_l = _ i 

/or n >il, with the additional restriction that no n0EN, jE{1, 2, 3}, exist, such that T ~ = V  s 

[or all n ~ n o. 



where 

and 
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D E F I N I T I O N  2.1". A dually regular chain is an in/inite product 

To Ta . . .  T n . . . ,  

To=V~ ~ boEZ; T 1 4  V1, 
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c a s e s ) ~  

we have 

and 

where ~EC~Q(i ) .  Further 

Mn = To T1...  Tn, 

\qi") q(~) q(3 ~)] 1 ' 
( n )  • ~ ( n )  }_~ py" z_~ 1"2 

m~: z q(1 ~) z + q~n). 

For  a regular chain we pu t  F ,  = F(m~), and we call the sequence Fn, n ENo, a regular 

chain o/ Farey sets. 

For  a dually regular chain we put  F*=F*(m~), and we call the sequence F*,  hEN0, a 

dually regular chain o/dual Farey sets. 

THEOREM 2.1. For any regular chain 

T o T , . . . T n . . .  

F O D ~ I D  ... D F n ~  ..., 

O0 

r ~ 0  

lim p~")lq~")= $ /or i = 1, 2, 3 
n ~  

THEOREM 2.1". For any dually regular~ chain 

To T1...  Tn. . .  

TnE{Vj, C} ~/det ToT 1 ... Tn_l= •  

Tn E ( Vj, E j, C) i / d e t  T o T1.. .  T~_I = •  

/or n>~l, with the additional restriction that no noEN, jE{1, 2, 3), exist, such that Tn= Vj 

/or all n >~ no. 

In  connection with these definitions we  introduce some s tandard  notat ion (valid in bo th  
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we have 

and 

A S M U S  L ,  S C H M I D T  

~:~F*=... =F*~ .... 

oo 

n F*. = {~} ,  
n = 0  

lim p~n)/q~)= ~ /or i = 1,2, 3. 
n--~oo 

Proo/.  From section 1.3 follows immediately that  the sequence F~, n >/0, is a decreasing 

sequence of Farey sets, and since each F .  is a compact set on the Riemann sphere, it follows 

that  
ao 

n~O 

By definition a regular chain is not of the form 

v~,.z~ v~, (k=2, s), 

where the arrow denotes periodicity. Let  n o EN be the smallest integer such that  

To T~... T,. ~: V~'Ek VP -~, (k = 2, 3), 
then clearly 

N(Fo)  = N(F~)  . . . . .  N (F , . _~ )  = 2 < N ( F , , )  = 4. 

Using Lemma 1.3 (iv) (iv*) we find that  

4 = N ( F ~ . )  <N(F,o+~)  < ..., 

and hence by Lemma 1.4 (i) (iii) 

lim diam F~ = 0. 
n-I*o0 

Altogether this proves Theorem 2.1, except for the assertion that  ~ E C \~ ( i ) .  Notice that  
q( n ) :+: --0 for n>~%. 

I t  is a simple geometric fact (cf. [33], Lemma 3), using Lemma 1.3 (ii)in case 

det m n = { + 1 }, that  
8 

.F, ~ U B(p~n)/q~"); (]/2[ q~")[~)-l), n ~ no, 
t=1  

where 

B(zo; r)={z~Cl [z-z.I <r}. 
Hence it  follows that  the inequality 

I t -pi") /qi")  I < ( ~  ]qi")[ ~) -I  
is satisfied for infinitely many pairs (j, n), ~" E {1, 2, 3}, n >~ n 0. 
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However,  the  restrict ion pu t  on a regular chain not  to  be periodic with period Vj 

clearly has the effect t ha t  this inequal i ty  has infinitely m a n y  different  solutions p~n)/q~n); 

hence by  a s tandard  argument  2 E (3~Q(i). 

Theorem 2.1" follows immediate ly  from Theorem 2.1 by  t he  very  definit ion of $'*(mn) 

in section 1.4. 

In  connection with Theorems2.1 ,  2.1" we introduce some fur ther  notat ion.  

First  of all we say t ha t  the  regular (dually regular) chain T O T t ... T n ... represents 2 or 

converges to ~, and we indicate this in writing 

2=[TOT1 ... T ,  ...]. 

Fur the r  for any  regular (dually regular) chain T O T 1 ... Tn. . .  we notice t ha t  

T ,  T,+I T,+~ .... n ~ 1~ 0, 

is either a regular chain or a dual ly regular chain; in ei ther case we pu t  

~, = [T ,  T,+ 1 ...], n ~ N  o, (2.1) 

which we call the n' th complete quotient of the given regular (dually regular) chain. I t  follows 

from Theorems 2.1, 2.1", (1.4), (1.5), Lemma  1.3 (ii) and the  proof of Lemma  1.2, t ha t  for  

all hEN0, 

~e n = t~(~.+l), (2.2) 

2n+lEy ' _.(~)/.(~)~'I,~2/~1 ~. ,  if det  M . =  +1,_ (2.3) 

~ + t E : I * ,  _q~,O/q(,,)fiy if de t  M . =  _+i. (2A) 

Using (2.2) repeatedly we get 

2 = 2o = mn(~,+l),  n E No, (2.5) 

whence for n >~ n o (to secure t ha t  q~")# 0), 

2 o -  Pln)/q(1 " )= - e,(qi")(ql ") 2,+1 + q(,)))-l, (2.6) 

~ ( n ) l . ( n ) _  8 ~ t~ ( n ) t~ ( n )  ~ .{...(n)~-X (2.7) 

(n) ( n ) _  e - ( 2 . 8 )  2 o - - P 3  / q a  - -  . ( 2n+ l  1) I"<")/"("): a .A, )~-x  
where 

ea = P(1 ") q(2 ") - p(2 n) ql n) E { +_ 1, __+ i}. 

Taking absolute values we obtain the  following approximat ion  formulae (for n/> no) , 

cl ") = ] 2,~+x + q~")/qi")], (2.9) 

c~ =)= 127~1+t + qi"'/q~")[, (2.10) 

c~ ">= I (2,+1 - 1) -1 + qi")/qi")l, (2.11) 

2 - 752903 A c t a  m a t h e m a t i c a  134. Imprim5 le 30 Juillet 1975 
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where  we have  pu t  for  abbrev ia t ion  

T ~ x o ~  2.2. For any ~ E C not properly equivalent to a real number, there is precisely 

one regular chain eh ~ representing ~. For any ~ EC~Q(i ) ,  which is properly equivalent to a 

real number, there are precisely two regular chains ch~ ~, ch z ~ representing ~. 

T ~ o ~  2.2*. For any ~ E { z = x + i y [ O < x < l }  not improperly equivalent to a real 

number, there is precisely one dually regulaz chain eh* ~ representing ~. For any ~ E {z = x + iy I 

0 < x < l ) ,  wldvh is improperly equivalent to a real number, there are precisely two dually 

regular chains eh~ ~, ch~ ~ representing ~. For any ~ E C\Q( i )  with Re ~ E {0, 1} there ispre- 

cisely one dually regular chain ch* ~ representing ~. 

Proo/. In  case ~ E C is not  proper ly  equivalent  to  a real number ,  and  hence ~ F  for 

a n y  -~E~,  it  follows f rom the results  in section 1.3 t h a t  for  any  hEN0, there  is a unique 

.FnE~" ~ with ~ E Fn. Put  Fn=F(tootlo ... ot,), hEN0, then  it  is obvious t h a t  T o T  ~ ... T~ ... 

is a well-defined regular  chain represent ing ~, and  clearly also the  only  one. 

I n  ease ~ E R \ Q  it  follows f rom the results  in section 1.3 t h a t  for a n y  n E No, there  is a 

unique F ~  ) wi th  ~ E ~ )  ~_ ~,  and  & unique F ~  ) with ~ E F ~  ) ___ y;  of course F ~  ) = ~(F~ )) = F ~  ). 

Put F~ k) ~,,,(k)^,(k)~ T~) = ~' ~0 ~.1 ~ ot(n ~) for  hEN0, kE {1, 2}, then  it is obvious t h a t  m(~r~(~) 

(k = 1, 2) are well-defined regular  chains represent ing a, and  clearly also the  only  ones. 

Le t  ~ = [a0, al, a2 . . . .  ] (regular cont inued fraction),  t hen  it  is a s imple m a t t e r  to  show 

t h a t  

and  t h a t  

chIo:=EaV~a~ , if g<O, 

ca 1 ~ = E1 vat-1  u as aa 2 ~ V~ V ~ . . .  i f 0 < ~ < l ,  

Va,-i va, V~ V~' V~'... if cr ch1,r = Ez 1 ~a 

(2.12) 

(2.13) 

(2.14) 

a t  c h 2 a =  V-1E1 3 V-ao-1V3V~'-IV~'V~'Vsl ... if a < 0 ,  (2.15) 

u c l 7 a t - 1  a~ as a4 c h s a =  -1  -3  V2 Va V2 ... if 0 < ~ <  1, (2.16) 

V-1E  V ~'-1 . . . . . . . .  >1 .  (2.17) c h 2 ~ =  1 2 1 V~ V1 V2 V1. . .  if a 

Now let ~EC~Q( i )  be proper ly  equivalent  to  a real number ,  say  ~=m(~]), where  m is 

p roper ly  unimodular  and ~ f i I t ~ Q .  B y  L e m m a  1.3 (v) there  is a smallest  integer noEN o such 

t h a t  ~ EOF for some F fi :~n0. 
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In  case no---0, then ~---~+ib o with g E R ~ Q ,  boEZ, and clearly 

ch 1 ~ = V~ ~ ch 1 a, ch~ ~ = V~ ~ ch~ a. (2.18) 

In case n o i> 1, then Fn. E :~o is uniquely determined by requiring that  $ E ~no, and that  

F~~ be of circular type. Let  F~~ =F(tootlo ... o t ,~)=F(m,.)be its standard representation 

(cf, section 1.3). Then ~=m~.(~) with ~ E R \ Q ,  a n d w e  put  Al=m~,(]O,l[), A ~  

m~~ oo[), A a =m~o(]- c% 0[), and 051 a =  U o U 1U S . . .  (given by  (2.12), (2:13), (2.14)). 

Clearly 

chx ~-= ToT 1 ... T~, UoU~ U 2 ... (2.19) 

is a regular chain representing ~. Also it is easily verified that  there is precisely one other 

regular chain ch 2 ~ representing ~, namely 

ell 2 ~ = T O TI ... T n , _  1 ~Pn,~(Uo) 2(U1)2~(U2) ... .  (2.20) 

where 2 is the permutation 

(V 1 V 2 ~r 3 E l E 2 E 3 C)  

~: V1 Va V2 E1 Ea E~ ' 

and 

= 

Vg if ~EAg and T~~ 

Ek if ~EAk and T , . =  V s (]4]c). 

C if ~eAk and T,o= Vk 

This proves the second part  of Theorem 2.2. 

The proof of Theorem 2.2* is easily derived from Theorem 2.2: 

2.2.  Equiva lence  

The relationship between regular (dually regular) chains for two numbers ~:, ~ E C \Q(1) 

((z =x+iy[O <~x~ 1)~q( i ) )  that  are equivalent (cf. section 1.1) is described in the following 

theorems. 

T:~EOBV.~ 2.3. ~, ~EC~Q(i)  are properly equivalent i / a n d  only i[ ~, :~ have regular 

chains o/ the /orm 

ch ~ = T O T1... Tg Ta+ 1 Tg+~ ... Tg+n ..., 

ch 71 = Uo U1 ... U~ Uh+l Uh+~ ... Uh+~ ... 

with 

(i) det tootlo ... ot~ =de t  uoou 1 o... ouu 
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and 

(ii) Ua+n=SJTg+~S -j, nEN,  

where iE{l ,  2, 3} is a fixed integer. 

TH~ORE~ 2.3*. ~, ~q E {Z~=X +iy[ 0 <X < 1}~Q(i) are properly equivalent i / a n d  only i/ 

~, ~ have dually regular chains of the form 

ch* ~ = T o T ,  ... T o To+ ~ To+2... To+~ .... 

c h *  "~ = U 0 U 1 ... U h Uh+ 1 Uh+ 2 ... Uh+ n ... 

with conditions (i), (ii) of Theorem 2.3 satisfied. 

THEORV.M 2.4. ~EC~q(i ) ,  ~ E {Z=x + iy[O <~x <. I ) ~Q(i )  are improperly equivalent if 

and only if ~, ~q have chains o[ the form 

ch ~ = T o Tx  ... T o To+ x To+~ ... Tg+~ ... ,  

ch* ~ = U0 U1 ... Uh Uh+l Uh+~ ... Uh+n ... 

with 

det toOtlo ... otg = { _  i} det UoOUlO ... ou a 

and satis[yinq condition (ii) o[ Theorem 2.3. 

Proof. We restrict ourselves to Theorem 2.3, since the two other theorems are proved 

similarly. 

Suppose first tha t  ~, ~ have regular chains satisfying conditions (i), (ii). Then by (2.5) 

= t 0 o t l  O . . .  o t r  

= U 0 O U l O  .. .  OUh(~h+l ), 

and by condition (ii), 

Hence 

~h+l=SJ(~g+l )  �9 

*~ = U o O U l  0 .. .  OUh0810 ( t0o t lO  ..* o tg ) - - l (~ ) ;  

by condition (i) and since det s = ( •  1}, this shows that  ~, ~ are properly equivalent. 

Conversely, suppose that  ~, ~EC~,Q(i) are properly equivalent, say~=m(~) ,  where 

m: z e-> (az + b)(cz + d)-I  is properly unimodular, and let 

eh ~ = To T1 ... T , . . .  

be a regular chain representing ~. Put  F n = F(tootlo ... otn), then it follows that  m(Fn) is 
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a F a r e y  set  of the  same type  as ~F n and  containg ~, provided -d/c(~Fn. However ,  

this condit ion is certainly satisfied for all n>~n o (say), since - - , d / ~ # ~ Q ( i ) ,  and  

lim d iam F= = 0. 

Case 1. We assume there  exists a g/> n o such t h a t  Fg (and hence also m(Fg)) is of t r iangular  

type .  Le t  m(Fg)= F(uoou~o ... ou~) be the  representa t ion  of section 1.3, then  in par t icular  

det  t0o t~o ... o t~ = det  %0 u~o ... o u~ ( = {_+ i}). Also we pu t  

q(1 g) q(f) ~3"(~)1/= To T1 . . . .  ~ 0 1 

\Q(1 h)~P(lh) p(h)Q(2 h) ~(h)" (1 0 1) 
,~(h)} = Uo U1... Uh 
,~  / 0 1 1 

Since m maps  ~Fg onto ~m(Fg) with preservat ion of orientat ion,  it follows b y  (1.5) t h a t  

/ / ~ ( r  ~)(h) l / ~ ( h )  
~l'~k I ~ k  I - - ' t  k + J / Y k + J  

for kE{1, 2, 3} with some fixed jE{1,  2, 3}; of course k + j  has to be reduced modulo  3. 

Now define Ua+~, nEN, b y  condit ion (ii), t hen  clearly U 0 U1. . .  Uh Uh+l Uh+=... Ua+ . . . .  is 

a regular  chain represent ing ~. 

Case 2. We assume for all n>~n o t h a t  Fn (and hence also m(Fn)) is of circular type,  

whence in par t icular  T~ ~ {Vj} for all n > n 0. Le t  un be the  max ima l  angle of wm~(n)/_(~) ~' ..L ~k~l / ( /1  , 

p(~)lq(~ n), p~>/6n>), then ~/3 <u, <~/2 by Lemma 1.3 (ii). 
I n  case Un does not  converge to 2t/2 for n-+ 0% we proceed as in case 1 using the  con- 

formal  mapp ing  p rope r ty  of m together  wi th  L e m m a  1.2 (i) and  L e m m a  1,3 (ii). 

I n  case u a converges to ~/2 for n--> 0% it is a simple consequence of the  no rm relat ions 

of L e m m a  1.3 (i) t h a t  there  exists a f ixed (n D k) wi th  nl>no, kE{1, 2, 3), such t h a t  

T n e { Wl, V2, W3}~{ Vk} for all n ~> n 1. Hence  ~ E~F*(toOt~O... otn,), and  since F*(toOt~O ... otn,) 

is a dual  F a r e y  set of t r iangular  type,  the proof  is comple ted  as in case 1. 

2.3. Approximation theorems 

For  any  ~E(3~Q(i)  ({z=x+iy[O~x<<.l)~Q(i)) we shall call a reduced fract ion p/q 

with p,  qEZ[i] ,  q # 0 ,  a convergent (dual convergent) of ~ if p/q=p~n)/q~,)for some 

n E No, ]" E { 1, 2, 3} corresponding to  any  regular  (dually regular)  chain of ~. 

As in [33] we define the  approximation constant of a ~EC~Q( i )  as 

C(~) = l i m  sup  ([q] Iq~-Pl)  -1, 

the  lira sup being t aken  over  all p ,  qEZ[i] ,  q # 0 .  
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THEORE~ 2.5. Let ~EC\Q(i )  ({z=x+iylO<~x<~l} ~Q(i)); then any irreducible/rac. 

tion p/q with la, qEZ[i], q#  O, and ~is/ying 

~-  <(1+ 1/V~)lql~ 

is a convergent (dual convergent) of ~. 

Proo/. The proof of Theorem 3 of [33] applies with some obvious changes. 

THEOREM 2.6. Zet ~EC\Q(i)  ({z=x+iylO<~x<~l}~Q(i) have the regular (dually 

regular) chain ToTI T ~ ...; then (with the notation o/section 2.1) 

v(~) -- nm sup (I q?)ll q?)~ - p?'l)-a,  

the lim sup being taken over all (n, J)fiNo x {1, 2, 3}. 

Proo]. The result follows readily from Theorem 2.5, since 

1 + l/If2 < [/3 ~< C(~), 

the last inequality being a consequence of a theorem of Ford [13]. 

THEOREM 2.7. Suppose ~EC\Q(i)  is represented by a purely periodic regular (dually 

regular) chain, 

= [To T , . . .  T~_~] 
(c]. chapter 3). Then 

where D and g are determined by 

c(~) = VID-I/g, 

(~ bd)=ToTl""Tk-l '  

/ (X ,  Y) = cX'  + (d - a) X Y -  b y2, 

D = (d - a) ~ + 4bc, 

/~ = min [/(p~,)/q~Z))], 

the minimum being taken over all (l, ]) E{0, 1 .. . .  , k - I }  x {1, 2, 3}. 

Proo]. Obviously ~=(a~+b)/(c~+d) is a root of/(x, 1) =0, and hence 

l(x, r) =c(x -~  Y)(X-~'  Y). (2.21) 
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By the pure periodicity 

in particular 

/(p$~ + ,,~)/q~z+ ,,k)) = (ad - bc)2" /(p$')lq~')), 

23  

I t  follows that  

hence 

Example 

chain 

ch ~ = ch* ~ = C. 

/ ( x ,  r )  = (1 - i ) (x~ - x r + Y"), D = 61, ~ = ~ ,  

V(f) : V 3 :  IVl:-i- l / I  2= 1.7320 . . . .  

Example 2.2.2=�89 +7(2 + 1/9-9)/5) has the (unique) regular chain 

eh ~ = V1 E1 CE1 P~ ~. 
I t  follows by a simple calculation that  

/(X, Y) = 2i(5X ~ - (5 + 2i) X Y + (6 + i) y2), D = 396,/~ = 10, 

hence 

Example 2.3. 

quadratic form 

C(~) - 4V4 Z- 1153 = 1.9899 . . . .  

(Cassels [3].) ~o = ( -  1 + ] / -  15-12i)[(2 +4i), which is a root of the 

(1 +2i)X~+XY +(2-i)  y2, 

i/(p~+.~,/qi,+.~)l = i#(p~,)/qT))l (2 .22)  

for nqN o, O<~l<~k-1. 

Consequently by (2.21) and (2.22), 

(I q$' + "">i Iq$ '+' '> ~ -p$'+""> I ) - '  - I~11 vT+"'~>lq7 +:") - r 
I#(vT>lqT) l 

I011~-r 1/-I-b-i for , ,-+<~. 
-" 177p7>~1-  I/(p$'>lq$") I 

This proves Theorem 2.7 in view of Theorem 2.6. 

By Theorem 2.7 it is a finite procedure to calculate G(~) for any tE(~\Q(i)  having a 

periodic regular (dually regular) chain. We shall give three examples of this. 

2.1. (Ford [13].) ~=�89 +i]/3) has the (unique) regular and dually regular 
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has the (unique) regular chain 

ch ~0 = CCE~ C V 1 E 1 V 1 CE a C V~ E2 F2 CE1 C F3 E3 ]7; 

Of period 18. Since ~o is improperly equivalent to ~1, and hence C(~0)= C(~1) , we consider 

~ ,  which has the purely periodic dually regular chain 

oh* ~1= CE2GV1E 1 V1CEaCV2E2 V2CE1CVaE a Va. 

The calculation of C(~1) is much facilitated by  the observation tha t  in oh* ~1, 

T,~+a=STnS -1 for hEN o, 

by  Lemma  1.1 (ii). Hence by  a slightly modified version of Theorem 2.7 we get 

= \ 1 2  + 3 i  - 11 + 6i/ 

](X, Y) = (4 + i) (3X 2 - 3X Y + (2 + i) Y~), i )  -- (4 + i) ~ ( - -  15 - 12i), 

/~= rain II(pi"/qT')l = g i ~ .  1/g, 

henee 

e(~0)--  c(~1) = V ~ / b  = ~ / ~ V ~  = 1.9599 . . . .  

In  chapter 6 we shall prove the result tha t  the se t  of approximation constants < 2 is 

{ V4-1/A~IA= l,5,29,65 .... } u ( V ~ } .  

The three examples above thus represent the three lowest approximation constants. 

3.1. Periodic chains 

A regular (dually regular) chain 

Chapter 3 

Periodic chains 

To T1 ... Tn ... 

is called periodic with period k >~ 1 if there exists an h/> - 1 such tha t  

T , =  T,+~ for a l l n > ~ h + l ,  

in which case we write the chain as 

T o T1... T~ Th+ , Ta+~... T h 2  ( 3 . i )  
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The chain (3.1) is called purely periodic if we may take h = - 1 .  (Notice that  in order that  

(say) V~ C V 1 V~ be considered as a purely periodic regular (dually regular) chain, we have 

to deviate slightly from the notation used so far and thus allowing T 1 to be V1). 

W I{ E 0 R E M 3, l. A periodic regular chain represents a ~ 6 C ~,Q(i) which is quadratic over 

q(i). 

T H E 0 R E M 3.1". A periodic dually regular chain represents a ~ E {z = x + iy I 0 ~ X ~ 1 } ~Q(i) 

which is quadratic over Q(i). 

Pro@ Suppose ~ has the regular (dually regular) chain (3.1), then by (2.2), (2.5) 

$h+l=th+l~ ~ .,. Oth+k(~h.k+l), 

with mh and th+loth+2o ... oth+k unimodular. Since ~h+l=~h+k+l by the periodicity, the 

result follows immediately. 

THEOREM 3.2. Every ~6C~Q(i) which is quadratic over Q(i) has a periodic regular 

chain (two in ca~e ~ is properly equivalent to a real number). 

THEOREM 3.2*. Every ~6 { z = x +  i y lO < x<  l } \ Q ( i  ) which is quadratic over Q(i) has 

a periodic dually regular chain (two in case ~ is improperly equivalent ~o a real number and 

Re ~{0,  1}). 

Pro@ Let ~ be quadratic over Q(i); then ~ is a root of a quadratic equation 

Az~§ Bz+ C= O  

with A, B, CEZ[i], and D = B 2 - 4 A C  not a square in Z[i]. Hence 

- B + ~ / D  
~= 2A ' 

where we fix I/D such that  arg l/DE [0, ~r[. In any case ~ = to has the form 

VD+ Po 
~o 9o 

with Po, Qo E Z[i] and Qol D - P ~  (in Z[i]), since 

D - P ~ = D - B e = - 4 A C ,  Qo =++_2A. 

Let 

T o Ti... T~... 

be any regular (dually regular) chain representing seo . 
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As the first step of the proof we want to show that  any complete quotient ~n of the 

chain above is of the form 

with P . ,  Q.e  Z[i] and Q.I D-PS." 

I/D+ P. 
Qn 

We proceed by  induction. Since we know the result to be true for t0, suppose it true 

for ~. and consider ~n+l, which by (2.2) is of the form 

~+i =t;l(~,,) 

with 

Hence 

-d~n + b -d (V] )  + P,,) + bQ,, 

~n+l= c~n_ a c(VD-t- P.)-aQ,~ 

- -  r  A _  (bc-ad)  Qn I / D - c d ( D -  P'~) , Qn( ( -ad -bc )  Pn + abQ.) 
c2(D - P~) + Q,~(2acPn- a2Q.) 

However, since b c - a d  =e is a unit in Z[i] and Qn I D -P~ ,  we have 

Pn+l =e-l( - cd( D -P~)/Qn - (ad + bc)P,, + abQ.), 

Qn+l = e-l(cS( D -P~)/Q,~ + 2acP. - a s Qn) 

both lying in Z[i]. That  Q-+ll D -P~+I  does not follow from the unimodularity of T~ but 

is easily checked in each of the seven cases TnE{Vj, Ej, C}, e.g, in case T,~=C, we find 

that  

and hence 

Pn+l = ( - 1 + i)(D -P2.)/Qn - 3Pn + (1 + i)Q,,, 

Qn+l = - - 2 ( D  -P~)/Q,, - ( 2  + 2i)P~ + iQ,,, 

D -P~+l  =Qn+l( - i ( D  -P~)/Q. + (2 - 2 i ) P n -  2Q.). 

This completes the first step of the proof. 

W e  shall use a prime (') to indicate taking conjugates in the field extension Q( i )c  

Q(i, ~/~;  in particular 

- VD + P . ,  
Q. 
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~ , - ~  = Q--~-, (3.2) 

D - P ~ '  (3.3) 

(~:n-- 1) -I  - (~" - 1) -1 = 2Q,,V1) 
D - (P.  - Qn) 2" 

(3.4)  

As the second step of the proof we want  to show tha t  the sequence of complete quoti- 

ents t0, ~1 . . . .  contains only finitely many  different numbers, or equivalently tha t  the two 

sequences of Gaussian integers Pn, Qn (n ~>0) are both bounded. By (3.2) and (3.3)this will 

follow if we prove the existence of a constant ~ > 0 such tha t  

>a, >a  for (3.5) 

From the formulae (2.6), (2.7), (2.8) we obtain by conjugating and taking absolute 

values, 

Since 

~t  .~_~(n) l~(n)  __ / [ ~ ( n )  2 t: t ~ ( n ) l ~ ( n )  I - 1  
n + l  ~/2 1~/1 --~1~/1 f f0--kt~l  171 ] 

1(- -~  + ql ")/ql ") ] - '  I~(.) is I ~, ~ ( . ) l . ( . )  I - - I ] ~ 2  ] ] f f 0 - - p 2  /~2  ] ) - 1  

] ( ~ ' + l _ l ) - l •  , f~( . )  2 ~, _ ( - ) /~ ( . ) l ) - l .  
~/1 / 7 3  I ~-~173 I I o - - P 3  /~/3 I 

(3.6) 

(3.7) 

(3.8) 

[qi~)[-~ ~ and [~-10~")/q~)[-~ [ ~ - ~ o [  * 0  for n-~ oo, 

i t  follows tha t  the expressions in (3.6), (3.7), (3.8) all tend to zero for n ~  o% thus to prove 

the existence of (~ to be used in (3.5) it suffices to prove the existence of a constant ~1>0 

such tha t  

]~,~+x + q(2n)/qi")[ >(~x, I$~+x + qln)/q(2")[ >51 (3.9) 

for all n >~ n 1 (say). 

However, it follows from (3.2), (3.3), (3.4). since Qn [D - P ~  and Q,[ D - ( P n  -Qn) 2, tha t  

are all ~<2 ] ] /~[  for n~>0. Hence using once more tha t  the expressions in (3.6), (3.7), (3.8) 

tend to zero for n-+ 0% we can find a constant K > 2 V [ D ] / > 2  (e.g. K--2VIDI +]), such 

that  

]~,,+t + q(2")/ql ") 1, a . -1  . _ ( n ) / ~ ( n ) [ ,  [ ( ~ n + l  - -  l )  - 1  • ~(n) /_<n)  T~I  /7a ] (3 .10)  ] f f n + l  q-  ~{1 l~/2 

are all < K  for all n>~n I =nl(K ). 
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We will prove tha t  the inequalities (3.9) are valid with 51 = 1/(2K) for all n >t n 1 = n l ( K  ). 

More explicitly, the first inequality of (3.9) follows from the second and third inequalities 

of (3.10), while the second inequality of (3.9) follows from the first and third inequalities of 

(3.10). 

In  fact, for each hEN0, either (2.3) or (2.4) is valid. Now suppose (to prove the first 

inequality of (3.9), say) tha t  for some n >~nx, 

1 1 
I~+,  + q(2")/qi~)l <~ 2 K  < -4' (*) 

then we have to obtain a contradiction. 

From (*) it follows, independently of whether (2.3) or. (2.4) is valid, tha t  ~n+, and 

-q(2")/q(1 n) are both in the same circular disc B(0; 1/2) or B(1; 1/2); by symmetry  we may  

as well assume tha t  (2.3) is valid, and tha t  ~+1 and -q~'~)/q(1 ~) are both in B(0; 1/2). 

I t  follows then from (2.3) and (*), tha t  

-q(2n)/q(1 ~)= re ~(-'t2+~), 0 <  r <  1/(V2K), 0 <  u <  ~/4, 

so t ha t  

l i m  ( - q(l~)/q(~n)){ = r -1 cos u > K .  

Hence by  (2.3) 

{~nll + qi~)/qi~){ >1 {ira (~;i~ + qln)/q~ ")) {>1 {Im ( - qln)/q(2n)){ > K 

contradicting the second inequality of (3.10). This completes the second step of the proof. 

The final step of the proof is now an easy one. Since there are only finitely many  

different numbers in the sequence ~0, ~1 ..... we can pick five different indices n I . . . .  , n 5 

such tha t  ~ ,  = . . . .  ~=,. Among these indices we can pick three, say n 1, n2, na, SUch tha t  

det mn,-1 = a c t  m~,-1 = d e t  mn,-1 ( ={___ 1}, {~i}). Then the number  ~,, =~, ,  =~ , ,  has 

T,1T ,~+I  .... T ~ , T , , + I  .... T , , T , ~ + I  ... 

as regular (dually regular) chains. However, since at  most two different regular (dually 

regular) chains can represent the same number, two of the three chains above must  be 

identical. This proves the periodicity. 

The proof above of Theorems 3.2, 3.2* follows very closely the classical proof of 

Lagrange for the corresponding theorem about  the periodicity of regular continued frac- 

tions of (real) qua~lratie irrationals. The most notable deviation lies in the second step, 

and is in fact inavoidable because of the differences in the notions of redueedness (cf. sec- 

tion 3.2). 
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I t  is easy  to give an alternative proof of Theorems 3.2, 3.2* using the idea of Charves 

(cf: [~7, .pp. 71:72]), however, I shall leave the details to the reader. 

3.2. Purely periodic chains 

DEFINITIO~ 3.1. A number ~EC\Q(i) ,  which is quadratic over Q(i) with conjugate 

~', is called reduced i[ 

~EY and ~t EY*, 

and is called dually reduced i/ 

~EY* and ~'E~. 

T H ~. o S E M 3.3. Every purely periodic regular (dually regular ) chain represents a ~ E C ~Q (i), 

which is quadratic over Q(i) and reduced (dually reduced). 

Proo]. To be specific let 

To T1... Tk *_ 1 

be a purely periodic regular chain. By Theorem 3.1 it follows that  [ToT 1 ... Tk_~= 

e {~Q(i)  and is quadratic over Q(i). By the pure periodicity 

=$ ~  f o r n = 0 , 1 , 2  ..... 

whence, since all complete quotients $1, ~2 .. . .  are in Y by (2.3), (2.4), it follows at once 

that  ~ e y. 

Further by the pure periodicity 

det m2nk_ 1 =(det  m=k_l) ~ = { _  1}, neN,  

and hence by (2.3), 
. ( 2 n k - 1 ) / ~ ( 2 n k - 1 ) a  ~1. for heN.  

- -  ( / 2  1 (11  ~-  , )  

Finally, using that  the expressions in (3.6) tend to zero for n-~ co, we obtain 

~ = ~ k  = lim -- q(2 ~'nk ~)/q(2~-1) E 3", 
n - ~ o o  

since ~* is a closed set. Thus ~ is reduced. 

The dual part  of Theorem 3.3 is proved similarly. 

T H ~. o a v. M 3.4. Every ~ E C ~ (i) which is quadratic over Q (i) and reduced (dually reduced) 

has a unique purely periodic regular (dually regular) chain. 

Proo[. As the first s tep of the proof we want to establish the uniqueness. 
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By the description of Farey sets in section 1.3, there is no Farey set F of circular type 

with OF N Y \ ( 0 ,  1, oo) q: 0 ,  ~F f~ Y * \ ( 0 ,  1, oo} :~ 0 .  Consequently, a ~ E C\Q(i ) ,  quadratic 

over Q(i) and reduced, cannot be properly equivalent to a real number, since otherwise 

there would exist a properly unimodular map m with 

~, ~' era(R) =~F(m). 

Hence in this case the uniqueness follows from Theorem 2.2. 

Similarly, the only dual Farey sets F* of circular type with 

~F* n ~* \ {0 ,  1, o ~ } . O ,  ~l~  n :~\{0,  1, o o } . ~ ,  

are F*(ej), j = l ,  2, 3. Consequently for any ~EC\Q(i ) ,  quadratic over Q(i) and dually 

reduced, we must have ~ E~7*, and hence the uniqueness follows from Theorem 2.2", except 

for 

e { z  = x + i y l O  < x < 1, y = ( x -  x2)1/2}. 

These special ~ have two different dually regular chains, one of the form 

T o T I T  2 ..., with ThE(V2, Va} for n>~0, (*) 

the other of the form 

V ~ I C E 1 U a U 4  .... with UnE(V~, V3) for n>~3. (**) 

Since chains of the form (**) are never purely periodic, we have shown the uniqueness also 

in the dually regular case. 

Disregarding dually regular chains of the form (**), every ~ E C\Q(i ) ,  quadratic over 

Q(i) and reduced (dually reduced), has a unique regular (dually regular) chain, which by 

Theorems 3.2, 3.2* is periodic, say of the form (3.1). 

As the second step of the proof we want to show that  every complete quotient ~n 

belonging to the chain (3.1) is also reduced or dually reduced. 

To be specific let ~ be reduced and (3.1) be its unique regular chain. Then we claim, 

that  ~n(n ~> 1) is reduced if act  m~_t = ( •  I),  and dually reduced if det mn_~ = ( •  i}. 

We proceed by induction on n, starting with n = 0 with m t being the identity map of 

determinant ~ + 1). For the inductive step we must distinguish between two cases according 

as det m n _ l = { •  or {•  

Case 1. det ran-1 = { • 1}; then ~n E Y, ~ E Y* by the inductive assumption There are 

three subcases. 

(a) T n = Vj; then det mn= ( •  1}. Of course ~+1 E Y by (2.3), but  also 

~+~ = v;~(~ ") evi-~(y *) =~ov,ox(y*) = ~ f  ~ y* 

by (2.2) and Lemma 1.1 (v) (vii), hence ~+1 is reduced. 
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(b) T~ = Ej; then det m~ = ( ___ i}. Of course ~+1E Y* by (2.4), but also 
t - 1  t ~n+l = e j  (~n)Eei-I(Y *) =goetog(y*)= ~ t c  

by (2.2) and Lemma 1.1 (v) (vi), hence ~n+l is dually reduced. 

(C) T~ = C; then det m~ = ( • i}. Of course ~+IE y* by (2.4), but also 
t 1 t 

~ n + l  = C - -  ( ~ n )  E C - - I ( Y  *) = g O C O g ( y * )  = C C y 

by (2.2) and Lemma 1.1 (v) (vi), hence ~+1 is dually reduced. 

$ t 
Case 2. de tmn_x=( •  then ~nEY , ~nEY by the inductive assumption. The two 

subeases (a) Tn = Vj, (b) T~ = C are treated as in ease 1. 

This completes the second step of the proof. 

To finish the proof of Theorem 3.4 suppose that  the regular chain (3.1) of ~ is not 

purely periodic, hence Tn ~: Ta+k(h ~> 0). Then we have to obtain a contradiction. We have 

to distinguish between two cases according as detma = ( •  1) or ( •  

P $ Case 1. det mh = ( •  1 }; then ~h+l E Y, ~a § E y by the second step of the proof, and 

Th = Vj or C by the very definition of a regular chain. 

(a) Th= Vj; then det m~_l=(+ - 1}. By the second step of the proof ~h is reduced, in 

particular ~, =vj(~+l)E Y*, and hence ~h+lEv71(y *) = u o v j o z ( y * ) = ~ .  

(b) T~ = C; then det mh_ 1 = ( •  i}. By the second step of the proof ~h is dually reduced, 
t i t 1 in particular ~a =c($h§ ~ Y, and hence Sa+~ ~c- (Y) =uoco~(y) = C*. 

Using the first step of the proof, we obtain from (a), (b) that  T~ is uniquely deter- 

mined by the position of ~h+l. However, applying the same argument to ~a+~ (also reduced 

or dually reduced), we conclude that  Ta = Ta+~ = T~+~, since det ma+~ = detma = ( • 1 

and ~+x =~+e~+~ by (3.1). This is the required contradiction. 

Case 2. det mh = {___ i}; then ~h+l E :/*, ~+1E ~ by the second step of the proof. The three 

subcases (a) T~= V 1, (b) T a = E  s, (e) Ta--O lead to a contradiction as in case 1. 

The dual part of Theorem 3.4 is proved similarly. 

3.3. Inverse periods 

T H E 0 R v, ~ 3.5. I /  ~ E C \ Q  (i) has the purely periodic regular (dually regular) chain 

To T1. . . Tk_ 1, 

then ~' has the purely periodic dually regular (regular) chain 

Tk-1 T~_~ ... To. 
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Proo/. To be specific suppose that  ~ has the purely periodic regular chain 

To T1... T~_I. 

Then ~ E J, ~'E ~* are the roots of the quadratic equstion (with coefficients in Z[i], when 

reduced) 

z = t o O t l  o ... o Q _ l ( z ) .  

Evidently 

is then a purely periodic dually regular chain, which represents a number ~EC~Q(i), 

quadratic over Q(i) and dually reduced. Hence ~ E :]*, ~q' E ~ are the roots of the quadratic 

equation 

z =t~_lOtk_~o ... oto(z) = (uot;_~lox)o (~ot;l~o~)o ... o (xot~o~)(z) 

=:~o(Q_l-loQ_2-1o ... ot~l)ox(z), 

whence applying tooho ... otk_lOU on both sides, 

z=t0Otl o ... otk_l(~). 

I t  follows that  ~ E Y*, ~' fi Y are also roots of the equation 

z=tootl o ... OQ_l(Z). 

However, since ~7 fl ~* = {0, I }, we must have ~q' = ~, hence ~q = ~', which we had to prove. 

The dual part of Theorem 3.5 is proved similarly. 

3.4. Special quadratic surds. The Pellian equation 

Suppose D E Z[i], where D is not a Gaussian square, and let 

ch I /D= T O T1... Tn... 

be any regular chain of ]/D (arg ]/D 6 [0, ~[). With the notation in section 3.1 

+ P~+I) , P2 Qn+l VD = ~:0 = mn(~n+l) Pin)( ~f~ j_ (n) 
qln)( V~ + P,+l) + ql n> Qn+l 

whence, using that  (1, VD) is an independent set over Q(i), 

( p~n) Dq(l,)~ M l Pn+l), 
ql n) pl ") ] " \0 Qn+v 
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(W' ( 
\q(~) p(an ) ] M~ 1 

Finally, taking determinants, we obtain 

where 

(D - P~+I)IQ,~.I] 

- P .+I  / '  

P~+l + (D - P~+~)/Q.+I] 
Q~+I - P,+x 

p l  ")2 - D q l  ~)~ = e .  Q.+I,  

p(n )2  D.(n)2_ _ 8n(D_ p2n+l)/Qn+l, 2 - -  '-/2 - -  

p<n)2 _ D.(,)~ _ _ e,(D - (P,+I - Q,+I)Z)/Q,+I, 3 ~ 3  - -  

_ , ~ . .  ] x  _ _ ( n )  ~ ( n )  _ ( n )  ; . (n )~:S  _L',  "~ i } .  
8 n - -  u u u  . z u  n - - 1 . ] 1  ~ 2  - - 1 J 2  ~ 1  u . [  '.2- -'-, _ _  
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(3.11) 

(3.12) 

(3.13) 

I t  is an easy consequence of Theorem 2.5 that  for any solution (X, Y) E Z[i] x (Z[i] \{0})  

of the Diophantine equation 

X ~ - D Y 2 = e ,  e e ~ / = { + l ,  +i},  (3.14) 

either X / Y  or - X / Y  is a convergent p~n~/q~ n) of VD. Hence by  (3.11), (3.12), ~ (3.13) the 

complete solution (X, Y)eZ[i] • (Z[ i ] \ (0})  of (3.14) consists of 

(s'(• -(~)' e $}, (3.15) ~j ,[~'~Zt, (/ ,n) 

where 

S = ((1, n) I Qn E ~} U {(2, n)[ (D -P~+l)/Qn+l E ~} U {(3, n)[ ( 1 ) -  (Pn+~ -Qn+l)~)/Qn+l E ~} .  

To solve equation (3.14) it is not restriction to assume that  D =a § ib, a, b E N 0 (other- 

wise replace D by - D, D or - D~), and hence that  V-D = a + i~  with g/> ~ ~> 0. I t  is then an 

easy consequence of Theorem 3.4, tha t  ~ (except for D=i ,  1 +i ,  1 +2i,  2 + i ,  3i, 4i)has 

a unique regular chain of the form 

ch VD = V~~ E~ T2 T3 ... T~ T ~ ,  (3.16) 

where k denotes the shortest period with 

det t2otao ... otkotk+l = { •  1}. 

I t  follows easily that  a ]undamental solution of the PeUian equation 

X 2 - D y a =  +_.1, (3.17) 

is given by  

(a)  ~Pt+lt-q+l), q~z++ll)), ] = 1, 2, in case k = 31 and Tn+ , = SJTn S -j for 2 < n ~< 21 + 1, 

3 - 752903 , 4 e t a  m a t h e m a t i c a  134. I m p r i m 6  le 30 Ju i l l e t  1975 
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and  otherwise b y  

(b)  (p(ik+l) ,q(/+l)) .  

Also the calculation of (3.16) gives an effective method  to  decide whether  the non- 

PeUian equation 

X 2 - D Y~ = • i (3:18) 

has solutions, and  to  determine a [undamental solution if this happens to  be the case. 

This me thod  of solving equat ion (3.14) is illustrated b y  the following examples. 

Example 3.1. D = 7 + 2 i ;  ch 7 ~ 2 i  is of type  (a) with bo=O, k = 3 . 1 3 ,  j = l  and  

T 2 ... Tla= VxCV1EaCV a V 1 V~E a V 1 V 2 V~ V~. 

Hence a fundamenta l  solution of the Pelhan equat ion is 

( p i  TM, q(~')) = (p l  1~), qi  TM) = (17 - 6 3 i ,  3 - 2 4 i ) ,  

while the non-Pell ian equat ion has no solutions. 

Example 3.2. D = 7 + 3 i ;  ch ~/7-+ 3i is of type  (a) with b0=0,  k = 3 . 1 6 ,  ] = 2  and 

T~ ... T17 = V1 C V 1 V a V 1 V 1 E2 V1 CVs E1CE1 Vs V3 Vs. 

Hence a fundamenta l  solution of the Pellian equat ion is 

(p(s17) q~l~)) m (p(8 la), q(a is)) = (99 - 98i, 28 - 42i), 

while the non-Pellian equat ion has no solutions. 

Example 3.3. D = 7 + 4i; since 

ch |/7 + 4i = V ~ E~ V1 GE2 GE2 V1 V1 V1 

is of type  (b) with b 0 = 0, ]c = 8, a fundamenta l  solution of the  Pellian equat ion is 

( p ~ %  q~)) = (p?), q?) )  = ( - 7 + 4 i ,  - 2 + ~ ) ,  

while the non-Pell ian equat ion has  no solutions. 

Example 3.4. D = 8 + 7i; since 

ch U ~  Ti = V 1 E  i V I  C V  2 V 2 V 2 V 2 V 2 E  1 V 2 C V I  E 2 V 1 V 1 V 1 

is a type  of (b) with b 0 = 1, k = 16, a fundamenta l  solution of the  Pellian equat ion is 

(p(~), q(XT)) = (p(~!) I qill)) = ( _ 13 + 16i, - 2 + 61), 

while a fundamenta l  solution of the non-Pell ian equat ion is 

( p l  s), q(r = ( p i  ~) , q l  ~) ) = ( - 3 - i ,  - 1). 
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Chapter 4 

C-regular and C-dually regular continued traetlons 

4.1. Introduction 

We consider a complex number 

~o=�89 +i~o), ,Zo~R\Q, 

lying on the line Re z = �89 which is an axis of symmetry of Fig. 1 and Fig. 1". I t  follows by 

Theorem 2.2 that  ~o has precisely one regular chain 

ch ~o = To T1 T2 .... 

and that  

TnE{V1,  Ea, C}, nE]~ o. 

Hence, collecting powers of V1, we have 

ch $o = V~ '-~ U~ V~ '-~ CV~ ' - '  U 3 V~ '-~ ~ V ~  ~t-1 . . . .  

a o E Z, an E N, U2,_ 1 E {E~, C} for n E N. where 

Put  

~n = [T= Tn+x ... ] = �89 + i~n), 

then the relation ~= = t~($=+1) is equivalent to 

2 + ~n+l 

1 2 
iX n = 1 -~ g n + l  

2 
1 + 1 + ~n+------~ 

Hence corresponding to formula (4.1) we have 

with 

if T . = V .  

if T n = E  1. 

~f T~=r 

~Zo=2ao_l+2ell+]2~a +2~31 + 21 
12al 12a3 ~ + ' " '  

+ 1 if U2n_I=C, 
e2n-1 = - -  1 if U2,~_ 1=E1,  nEN.  

Similarly, by Theorem 2.2*, ~0 has precisely one dually regular chain 

oh* ~o = V~ ~ CV~ "-~ U~ -1":~"-1 ,_,"~ub'-x,1 U4 V~ "-~ �9 �9 

where b 0 E Z, bn EN, U~n E {El, C} for n EN, and correspondingly 

12b  1263 1264 . . . .  

(4./) 

(4.2) 

(4.1") 

(4.2*) 
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with 

l+ l if U2n=C,  
e2n = hEN. 

- 1 i f  U ~  = E 1, 

A cont inued fract ion (4.2) wi th  a0eZ ,  anEN, e~ ,_xE{-1 ,  +1} for nEN is called C- 

regular. Similarly, a cont inued fract ion {4.2") wi th  b o E Z, bn E N, e2, E { - 1, + 1 } for n E N is 

called C-dually regular. 

B y  the correspondences (4.1), (4.2) and  (4.1"), (4.2") the following results f rom Theorems  

2.1, 2.1", 2.2, 2.2*, 3.1, 3.1", 3.2, 3.2*. 

THEOREM 4.1. Any C-regular (C-dually regular) continued/raction converges to some 

~eR\Q. 

THEOREM 4.2. Any aER~Q has precisely one C-regular (C-dually regular) continued 

/faction expansion. 

THEOREM 4.3. A periodic C-regular (C-dually regular) continued/raction converges to 

an ~ E R ~ Q  which is quadratic over Q. 

T~EOR~.M 4.4. Every a~ER~Q which is quadratic over Q has a periodic C-regular (C- 

dually regular) continued/faction expansion. 

An a E R \ Q ,  quadra t ic  over  Q and with conjugate  cr is called C-reduced if a > 0 ,  

~r < - 1, and is called C-dually reduced if ~ > 1, :r < 0. 

A C-regular (C-dually regular) continued fract ion (4.2) ((4.2")) is called purely periodic 

if the  sequences %, al, a~, ... and  el, ca, e5 . . . .  (bo, bl, b~ . . . .  and e2, e4, e6, ...) are bo th  pure ly  

periodic. 

Theorems 3.3, 3.4, 3.5 then  specialize as follows. 

THEOR~.M 4.5. An ~ E R ~ Q ,  quadratic over Q, is C-reduced (C-dually reduced) i /and 

only i/the C-regular (C-dually regular) continued/faction o /~  is purely periodic. 

THEOREM 4.6. I f  ~ E R ~ Q  haz the purely periodic C-regular continued/faction (4.2) 

with 

a O, a l ,  a $ ,  . . .  ~ a o ,  a l ,  . . . ,  a2k_l, 

~1~ ~ 3 ,  ~ 5 '  " " " ~ ~I~  ~ 3 ,  " " " '  ~2k--1~ 
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then - ~ '  (where ~' is the conjugate o/~ in Q(~) over Q) has the purely periodic, C;duaUy regular 

continued/raction (4.2") with 

b0, bl, b2, ,.. = a2k_l ,  a2k-3 . . . . .  a o, 

~2~ ~4~ ~ 6 '  " " �9 : ~2k--1~ E2k--3~ " " �9 ~ ~1~ 

and conversely. 

4.2. C-equivalence and C-duality 

A (real) unimodular map ~: t~-->(at + b)(ct +d) -1 with a, b, c, d E Z, ad -bc  = __+ 1, is called 

C-unimodular if either a -  d = 0 (rood 2), b - c = 1 (mod 2) or a = d = 1 (rood 2), b--= c - 0 (rood 

2). I t  is well known that  the set F c of all C-unimodular maps is a group, which is generated 

by the maps ~0: t~->t+2, qh: t~-->t-1. 

Correspondingly, ~,/3ERU { ~ )  are called C.equivalent ( ~ / 3 )  if there exists a map 

~EFc  with/3 =?(~). 

Notice that  Q consists of two C-equivalence classes Qo, Q1, where (for j = o, 1) 

QJ={P/qI(P, q)eZ • gcd (p, q ) = l , p + q = - j  (rood 2)}. 

For any a E R U { c~ }, the C-dual o~* of ~ is defined as a*= (a + 1 ) / ( a -  1). 

Notice that  (~*)*=~ and that  ~/3.~-0~*,~/3" for all a,/3ER U {c~}. Notice also that  

~/3 if and only if �89 + ia), �89 + i/3) are properly equivalent, and that  a*~/3 if and only if 

�89 +i~), �89 +ifl) are improperly equivalent. 

Now Theorem 2.3 specializes as follows. 

THEOREM 4.7. ~ , / 3 E R \ Q  are C-equivalent i / and  only i / the C-regular continued/rac- 

tions o/o~,/3 are o/ the/orm 

.2e~l [~__a~ +2 :31+ 12 
~ = 2 a ~  1 + ~ a l +  Iza3 ~ +  . . . .  

2~1 + ~ 2~31 /3=2c0-1+ 1 + . . . .  

with (/or suitable h, k E N) 

a2h-x+n = C2k-l+n, e2h-l+2n = (~2k--1+2n for all n E N. 

Of course, Theorems 2.3", 2.4 have similar specializations. 
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4.3. C-convergents and C-dual convergents  

For any ~ E R ~ Q  we write its C-regular continued fraction (4.2) reduced form as 

~ = 2ao-- 1 + ~all] + I~-~L + e3 [ + ] 2-~-a + (4.3) a " ' " ,  

and we call the convergents p,/q,, nEN0, of (4.3) the C-convergents of :r 

Similarly we write its C-dually regular continued fraction (4.2*) in reduced form as 

1A + ~ ~_[ + 1A + ~,_A + , (4.3 *) 
~ = 2 b ~  I ]2b,  ]b 3 [2b 4 "'" 

and we call the eonvergents * * p. /q . ,  nENo, of (4.3*) the C-dual convergents of ~. 

The following result is an immediate consequence of the recursion formulas of con- 

tinued fractions. 

THeOReM 4.8. For any o~ER~Q with C-convergents p,/q= and C.dual convergent~9 

Pn/qn, the ]ollowing is valid: 

(i) P~,/q2,, p~,/q~,eQo, P2,+a/q2,+x, p~,+l/q~,+leQ~ /or neNo, 

(ii) Pnqn+l--Pn+lqn= +1,  p* * * * _ qn+l--p~+lq~ = +_1 

(iii) 

(iii*) 

(iv) 

(iv*) 

/or n E No, 

1 = % <  2q1< q2< 2q2< q4< 2q5< .... 

l=q~<q~< * * q2 < q3 < .... 

[qo~-Po[  >lqlcc-Pl[ > [q2a-P2] > .... 

Iq~-p~ l  >21q*~-p~[ > Iq~ -p~i >2 q~ - p ~ l >  . . . .  

The following theorems generalize classical theorems of Legendre on regular continued 

fractions, and can be proved similarly. 

THEOREM 4.9. The sequence Pn/qn, nGN0, o/C-convergents o/o~ER~Q is characterized 

as the maximal sequence Pn/qn satis/yincj conditions (i), (iii), (iv) o/Theorem 4.8. 

The sequence * * Pn/qn, nGNo, of C-dual convergents o/ ~ e R \ Q  is characterized as the 

maximal sequence p*/q* satisfying conditions (i), (iii*), (iv*) o/Theorem 4.8. 

THEOREM 4.10. Let o~ER~Q. Any p/qEQj (]=0,  1) satis/ying the inequality 

] g - - p / q [  < (c/q2) -1, (C0 =-~, C1=2  ), 

is a C-convergent o/~. 
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A n y  p/q E Qj (] = O, 1) satis/ying the inequality 

la-plql <(~q,)-l,  (c~=2,c*=~), 

is a C-dual convergent o /a ,  

39 

4.4. The C-approximation constant 

For  any  ~ E I t \ Q  we define 

ds(a ) = lim sup (q [ qa - p [ )- 1, (j = 0, 1), 
plq ~ 0 t 

d(a) = m a x  (do(a), �89 dl(a) ), 

and we call d(a) the  C-approximation constant of a. 

I t  was proved  b y  W. T. Scot t  [34], t h a t  d0(a ) ~> 1 for all aEIt \Q,  and by  1~. M. Robin-  

son [31], t ha t  dl(a) >~2 for all a f i I t \ Q .  See also L. C. Eggan  [11]. 

The following result  is an easy  consequence of Theorems 4.8, 4.9. 

T ~ v. o 1~ ]~ M 4.11. For any a E It \ Q  with C-regular continued/raction (4.2) and C-dually 

regular continued/faction (4.2"), we have 

d0(a ) = lira sup d2n = lira sup d* 2 n ,  
n n 

d 2 7 t _ l ,  dl(a ) = lira sup d2n_ 1 lim sup * 
n n 

where 

d = ( q , ] q , a - p , I )  -1, * � 9  d.=(q=]q.a-p*]) -1, 

are given by 

2l 2e,.+~l., 21 + 
2d2.=  2a~.+, + ]2a2.~ + 12a2.+ ~ -  12a,.+ ' ... 

+2e~.+ll+, 21 +2e, . - l l+ 2e, l+ 2] 
]2a~. 12a2._1 12a~.----~ "'" + 12a2 12al' 

d2._l=2a~=+2e2=+ll+ 21 +2e2.+3__]+ 
]2a2n+x [2a~n+2 ]2a~.+s "'" 

+, 21 2e2._1l_ 21 + +2e~l+ 21 
12a~.-1 + ~ ' 1 2 a z . - a  "'" ]2az ]2a1' 
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2d~',, =" ,  -,- 2~=,,+,l +.  2] + 2e=,,+,l.a_ 
"vu"+x-12b=.+------ ~ 12bo.+a 12b=.+-------4 . . . .  

+12~2+.2e.=l + i ~ +  + 21 2~,1 
[2b,,_,  _ "'" ~ + 12b1' 

d* =2b2.+, 21 + 2e2.+2. 21 
3.-1 12b2.+t [2b~.+2-[252.+a+"" 

+~,2e2. ]_  21 +2e=._21+ ... + ~ + 2 ~ 2 1  
I 2.-1 [2b=.-z ~ ]2b," 

COROLLARY. For any o~, t i e R \ q ,  

ot ,~ fl ~. do(o:) = do(fl) , dt(o~) = d,(fl) ,  d (a )  = d(fl), 

a* ~ fl ~ 2d0(~ ) = di(fl) , dl(~t ) = 2d0(fl), d(a) = d(fl). 

E x a m p l e  4.1. I t  follows f r o m  T h e o r e m  4.11 t h a t  for  

V 3 = l +  + ~ ,  ( a n = e 2 , + l = l  for  nEN0), 

we h a v e  

do(V ) = (a, di(V )= 2V , d(V ) = 

E x a m p l e  4.2. I t  follows f r o m  T h e o r e m  4.11 t h a t  for  

-21  s 
- - l + g 2 = l + - ~ - + ~ ,  ( a n = - - e ~ , , + x = l  

we h a v e  

for  n E N o ) ,  

do( - 1 + ]/2) = V'2, dl( - 1 + W2) = 2V2, d( - 1 + [/2) = V2. 

E x a m p l e  4.3. I t  follows f r o m  T h e o r e m  4.11 a n d  its corol la ry  t h a t  for  

e=3+~_31]+ 1[ -1[ 1 1 11 -t- [-~ + . . . .  

we h a v e  

do(e ) = 0% dl(e  ) = 2, do((e + 1)/(e - 1)) = 1, dl((e  + l ) / ( e - -  1)) = oz. 

I n  chap te r  5 we shall e x t e n d  the  resul ts  of M a r k o f f - H u r w i t z  b y  f ind ing  all C-approxi -  

m a t i o n  cons t an t s  < 2 .  
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4.5. Ergodic theory 

Let 

X 1 =]0, 2[ \Q, X2 =]1, 3[\Q, 

and let X be the disjoint union of X1 and X~. A normalized measure # on X is defined by 

1 
#(]0, Xl[)=21og 3 log(1 -~-Xl) , for XlEX1, 

1 
#(]1, x2[ ) = 2o log  ~ l~ for x~EX2. 

Further let T: X--->X be given by 

2e~(xl) [ 2l 2es(XO I 
xx = 1 + [ 2a~(x~) ~- ~ -~ 12a~(x~) 

21 
~- ... ~-> T(xl)  = 1 

]2a2(xl) 
t - ~ +  ... EX 2, 

x 2=  1 §  2I ~_2s~(x~)[ 2[ 
[2bl(x2) 12b2(x2) + 12ba(x~) ~ ~-> T(x~) = 1 + 2e2(x2) [ 21 - - _ - - -  . . .  ~ +  12b~(x2)+ .. .  eX1.  

A simple computation shows that  T acts as a mea6'ure preserving transformation on 

(X,/~), i.e. 

/~(T-I(]0, Xl[)) =/2(]0, Xl[ ) for  all x l E X  1, 

/~(T-l(]l, x~[))=/~(]1, x~[) for all x ~ E X  2. 

Further the argument used by C. Ryll-Nardzewski [32] shows that  T is an indecompos- 

able transformation on (X, #), i.e. any measurable subset E c X with T - I ( E ) = E  has #- 

measure 0 or 1. 

Hence by the individual ergodic theorem we get the following analogue of a theorem of 

C. Ryll-Nardzewski [32]; also Corollaries 2, 3 represent analogues of well-known results of 

P. Ldvy and A. Khintchine. 

T~EOR~M 4.12. For a n y / :  X ~ R,  / E L l ( X ,  ~t), we have 

lot  almost all x E X  (with respect to /a). 
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COROLLARY 1. For  almost all x ~ X ~ ,  x~ ~X~, we have 

p(e2,_l(xl) = - 1) =p(e~,(x~) = - l)  --- (log 2)/(log 3), 

p(e~,_l(xl) = 1) =p(e2,(x~) = 1) = (log 3 - l o g  2)/(log 3), 

where p(e ,  = c) denotes the frequency o / c  in the sequence (e,), n ~ N. 

Proo/. Apply  Theorem 4.12 f o r / = Z ~ , ( k =  1, 2), where ~ ,  is the  indicator  funct ion of 

Ak, and 

A I = ] 0 ,  I [ ~ X  1, A 2 = ] l ,  2[~-X~. 

COROLLARY 2. For almost all x lEX1 ,  x~EX2, and all m E N  we have 

p(a2n_l(Xl) = m) =p(a2~(xl) = m) = p(b2,~_l(X2) = m) 

1 
= p(b2~(x2) = m) = ~ log 

log~  

(2m + 1) 2 

(2m - 1) (2m + 3)" 

Proo/. Apply  Theorem 4.12 for  / = XA~, (]r = 1,2), where  

A I = ] I - I , 1  - 
m 

1 1 
m - i  [ u ] 1+ ~ 7 ~ ,  1 + 1- [-= X ' m  

2 2 
A 2 = ] l §  ~, l + ~ [ g X 2 .  

COROLLARY 3. For almost all x ~ E X l x 2 E X 2 ,  we have 

lim (al(x 0 aa(Xl) ... a~N_I(Xl)) l/'v 
N->ao 

= l im (a2(xl) a4(xl) . . ,  a2n(xl)) 1iN 
N ~  

= l im (bl(x2)bs(x2).. .  b2N_lllX2,!iillN 
N ~  

= lim (b2(x2) b4(x2).., b2N(X2)) 1/'u 
N---~,~O 

= ~I (1-F 4 ~log mj~oga 
m=l ( 2 m - 1 ) ( 2 m + 3 ) ]  

Proo/. Apply  Theorem 4.12 for /= /k ,  ( k =  1, 2), where 

/1: xl~->l~ al(xl), x~e->O, 

/2: XlV->0, x2~->l~ bl(X.~). 

Theorem 4.12 and  its corollaries can be refined by  the  me thod  of C. de Vroedt  [35]. 
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Chapter 5 

C-minimum ot binary quadratic forms 

5.1. Indefinite quadratic forms 

Let 

/: (x, y) ~-> /(x, y)=o~x3§ ~, ~, fl, ~ER, 

be a quadratic form with r162 ~: 0 and discriminant (~ = 5 ( / ) = ~ - 4 a ~  > 0. The/irst  and second 

roots v~l(/) and v~(/) of / are defined as follows, 

#,(1) = ( - f l  + V~)/(2~), o3(1) = ( - ~ -  V~)l(2~); 

notice that  

ai(--/)  =a,(l)  , ~2(--/) =#1(1). (5.1) 

In the sequel we shall only consider indefinite forms / with both roots v~l(/), 03( / )ER\Q.  

Let F~ denote the group of all matrices 

M = ( :  ~),a,b,c,  dEZ, a d - b c = + l ,  

with either a=-d-O (mod 2), b - ~ c - 1  (mod 2) or a==-d = 1 (rood 2), b=-c---O (rood 2). 

Two forms/,  g are called C-equivalent (/~ g) if there exists a matrix M E F~ with g(x, y) = 

/(ax +by, cx+dy); notice that  (with the notation of section 4.2) 

/ ~ g *  01(1) ~ #l(g), ~ ( / )  ~ ~(g) .  (5.2) 

For any form ] the C-dual/orm/* is defined by/*(x, y)=�89 x -y ) ;  notice that  

o1(1") = (~1(1))*, ~(1")  = (~3(1))*- (5.3) 

Using the special notation (for ?" = 0, 1) 

Z~ = {(x, y) fiZZ\{(0, 0)}]gcd (x, y ) = l ,  x+y  = ] (mod 2)}, 

we define 

vj=vj(/)= inf I/(x,y)], ( j=0,1) ,  
(x.y)~Z~ 

~, = v(/) = min (%(/), 2v1(/)), 

and we call v(/) the C-minimum of/ .  
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L~MMA 5.1. Suppose t ha t /~g ,  ~ER. Then 

(i) (f*)* = t , / *  ~ g*, 

(ii) (JLf)*=~/*, 2 f~  2g, 

(iii) (~(f*)=(~(f), 5(f)=5(g), 5(2f)=~t2~(/), 

(~v) ~(~f) = i;t i,,~(f), ~(~l)-- I,~l,'(f), 

(v) v,(l)=v,(g), v(l)=v(g), 

(vi) %(I) = 2v1(1"), 2~1(/) = vo(l*), ~(l) = v(l*). 

Proof. (i)-(iv) are obvious; (v) follows from the fact tha t  for M E F'c, (x, y)~-+(ax +by, 

cx+dy) maps Z~ onto Z~, (./=0, 1). Similarly (vi)follows from the fact that (x, y)~+(x + y, 

x - y )  maps Z~ onto 2Z~ and Z~ onto Z0 2. 

' >  L~.M~A 5.2. Suppose that f(a, c)=:(  0, (a, c)EZ~. Then there exist b, dEZ with 

(~ ha) E r'c, such that 

f(ax + by, cx + dy) = ~' x 2 + ~'xy + ~' yZ, 

and 

2 s  ~fl '  <4a ' .  

Proof. Analogous to t ha t  of Lemma 1, chapter I I  of [4]. 

L~MMA 5.3. Let ~ be any of the (irrational) roots o/ f .  Then 

A. d(/~) ~(~1/2(~)(f))-1. 

in this case ] attains its C-minimum, 

If( z, y) l = �89 

i.e. ](x, y)E Zo z with If(x, Y) I = ~(/) v ](x, y)E Zl ~ with 

C. I], in addition to B, / has the following property, 

(*) [](x, y) E Zo ~ with /(x, y) =v(/) V t (x, y) E Z~ with/(x,  y) = �89 (f)] 

A [] (x, y) E Z~ with/(x,  y) = - v(/) V ](x, y) E Z~ with/(x,  y) = - �89 

then either 

o r  

]~-P/ql <(~(a) q2)-I 

]~ _p/q ] < (2d(v~) q2)-1 

for infinitely many p/q E Qo, 

for infinitely many p/q E Qr 
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Proo/. Analogous to that of Lemma 4, chapter II  of [4]; notice that our d(v~), as defined 

in section 4.4, corresponds to Cassels' (v(O))-L 

THEOR~.M 5.1. (Isolation theorem.) Suppose that ](x, y)=otx~+flxy+yy~,with=,~,y eQ 

and irrational roots, satis[ies condition (*) o[ Zemma 5.3 C. Then there exist ~' <v([) and e0 >0, 

depending only on zr ~, ~ such that 

~(g ) < ~ ' 

/or all/orms g, not proportional to/, and o/the shape 

g(x, y)=~' x2 +fl' xy+~' y 2 

with 

Proof. Analogous to that of Theorem I, chapter II  of [4]. 

5.2. A diophantine equation 

We consider the following system of equations 

x I +x 2 =2ylY2, 2xlx 2 = ~  +y~, (5.4) 

first studied by L. Yd. Vulakh [36] in the equivalent form 

Yl ~ + Y~ + 2x2 = 4ylY2 x. (5.5) 

A solution (xl, x~; Yl, Y2)=(A~, A~; M 1, M2)EN 4 of (5.4) is called singular if A~=A2 or 

MI=M 2. A solution (A1, A2; M1, 1V[2) is said to have height h = A I + A  ~. Two solutions 

(A~, A2; M.  M~), (A*, At; M*, M~) are considered to be equal if (ha, A2} =(A*, A~}, 

(M~, M2)= (M~, M~}. Two different solutions (A1, Au; M1, Ms), (A*, At; Mr, M~) are called 

neighbours if {A1, A2} N {A*, A*} ~=O A {El, Ms} n {M*, M*}*~.  

The following lemmas are easily proved. 

LEMMA 5.4. There is precisely one singular solution, namely (1, 1; 1, 1); this solution 

has precisely one neighbouring solution (1, 5; 1, 3). 

LEMMA 5.5. Every non-singular solution (A1, A2; M1, M2) with (say) AI<A2, MI<M 2, 

has precisely/our di//erent neighbouring solutions 

(A~, A,s; Mj, M~j), i, je{1, 2}, 

where 

A~j = A~(SM~ - 1) - (A1 +A2), M,j = 4A,Mj-Mk, 
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with k e {1, 2}'-~{j}. The corresponding heights h = A 1 § hi j-- At § A~j, satis/y the inequali- 

ties 

hn<h<ht j  , ( i , i ) 4 (1 ,1 ) .  

The following result is now obvious by Lemmas 5.4, 5.5. 

TH~OR~.M 5.2. The complete solution EN 4 o] (5.4)/s obtained ]rom the singular solution 

(1, 1; 1, 1) by successive adjuuction o] neighbouring solutions o] bigger heights. For any solution 

(A 1, A~; M 1, M2), we have 

ged (A1, A~) =ged (M1, Ms)= 1. 

The tree of solutions of (5.4) is thus of the form 

(1,1;1,1) 
I 

(1,5; 1, 3) 

I k ! 
(1,65;3, l l )  (5,349;3,59) (5,29; 1, 17) 

! ! I I--I--I I ~ h I - - - - I  

{ A }  = { 1 ,  5, 29, 65, 169, 349, 9 0 1 , 9 8 5 ,  4 549, 11 521 .... }, 

{M}={1, 3, 11, 17, 41, 59, 99, 153, 339, 571,577 .... }. 

Following an idea of G. Frobenius [15], we associate to any non-singular solution 

(A~, A2; M1, M2) of (5.4) with AI<A2, M~<M2 a quintuple (e; 11, 12; ml, m~) as follows, 

(1, 5; 1, 3) ~-> ( + 1; 0, 2; 1, 1); 

if 

(A1, A2; M1, M2) ~-> (~; 11, 12; 7n 1, m2), 

then for (i, j )=(1,  2), (2, 1), (2, 2), 

(At, A~j; Ms, Mtj) ~-> (etj; lt, lit; mj, mtj), 

where 

Itj = (At jmj -  etjMts)/Mj, 

mij = (MJ~ +e/jMj)/At. 

By induction with respect to the tree of solutions we obtain easily 
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LEMMA 5.6. Let (A 1, A2; M1, Ms) with AI<Az,  MI<M 2 be any non-singular solution 

o/ (5.4), and (s; 11, l~; ml, ms) its associated quintuple. Then s = + 1 and ll, lz, ml, m s are 

positive integers satis/ying 

(i) All  2 - A2l I =2sM~, 

(ii) A l m l - M l l  1 =e(4A1M1-M2), 

(iii) Alm2-M2I 1 =sM1, 

(iv) A2ml-Mll2  =eM2, 

(v) A~m~-Mzl2=-sM1,  

(vi) Mira ~ - M 2 m l =  - 2 s A  1, 

(vii) l~ + 1 = 0 (rood A3, (i = 1,2), 

(viii) m~+2-=0 (modM~), ( i=1,  2), 

(ix) l, ~ 0 (rood 2), m,-= 1 (rood 2), (i = l, 2), 

(x) 0~l~<A,,0~<m~<M~, ( i=1 ,2) .  

COROLLARY. A n y  A is o / t h e / o r m  A = x 2 + y  * with x even and y odd; any M is o / the  

/orm M = x2 + 2y 2 with x odd. 

5.3. A chain of C-minimal forms 

For any non-singular solution (A1, A,; M 1, Ms), A1 < A2, M1 <M2, of (5.4) with asso- 

ciated quintuple (e; ll,/2; ml, ms) , we put  

2~=(l~+l) /A, ,  t ,~=(m~+2)/M,,  ( i = l ,  2); (5.6) 

notice tha t  24,/t~EN by Lemma 5.6 (vii) (viii). We define quadratic forms gA, hM (A =A~, 

M=M~) by 

AgA(x, y) = Ax* + (4A - 2/) xy  + (4 - 4l) y2, 

MhM(X, y) = Mx ~ + (4M - 2m) xy + (fl - 4m) y2. 

Notice that  by (5.6) we have the following discriminants, 

8(Agh) = 16A 2 - 4, 8(Mhi) = 16M 2 -  8; (5.7) 

hence gA, hM are indefinite binary quadratic forms with rational coefficients and irrational 

roots. Notice also that  by Lemma 5.6 (x), the forms gA, hM satisfy the reduction condition 

in Lemma 5.2. 
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Identically 

where 

and 
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A~gh(x, y ) = ~ ( y ,  z), M2h~(x, y)=y~(y,  w), 

(PA(Y, Z) = y2 + 4 A yz + z 2, ~ ( y ,  w) = 2y ~ § 4Myw + w 2, 

(5.s) 

hM~) 

occurring in this chain are 

lg l=(1  , 4, 1), 

598=(5, 16, -7 ) ,  

29g29 = (29, 92, -43) ,  

65g65 = (65, 224, - 67), 

349ya49 =(349, 1 124, -491),  

(5.9) 

z= A x - l y ,  w= M x - m y .  (5.10) 

By the chain o/ /orms gA, hM we shall understand a tree of quadruples (gAi, gA~; hM,, 
corresponding to the tree of solutions (A1, A2; M1, Ms) of (5.4). The simplest forms 

lh~=(1, 2, -1 ) ,  

3hs=(3, 10, -3 ) ,  

l l h l l = ( l l ,  38, -11) ,  

17h17 = (17, 54, -25) ,  

59h59 = (59, 190, - 83). 

L ~. M M A 5.7. For any non-singular solution (AI, Ag_; M 1, Ms), A 1 < A~, M: < M2, o/(5.4) 

with associated quintuple (~; ll, 12; ml, m2), we have 

(i) gh~(Is, A2)=gh~(l~-4Az, A2)=l  /or any e, 

(iia) gA~(m~, Ms)=gA~(ml--4M1, M1)= - 2  i / e =  §  

(iib) gh,(m~--4M2, Ms)=gA~(ml, M1)= - 2  i / e =  - 1 ,  

(iii) hM,(m2, Ms) =hM,(mz-4M2, M2) =2  /or any e, 

(iva) hM,(ll, A1)= - 1 ,  h~,(ml-4Mx, M1)= - 2  i / e =  +1, 

(ivb) hM~(/1--4Ax, A1)= - 1 ,  hM,(m:, M~)= - 2  i / e =  - 1 .  

Proo/. Analogous to that  of Lemma 8, Chapter I I  of [4]. 

COROLLARY. Let/(x, y) =x ~ + flxy + yy 2 and suppose that / satis/ies some o/the/oUowing 

inequalities, 

(i)/(12. As) >/1,/(l 2 - 4A2, A~) ~> 1, 

(iia)/(ms, M2) < - 2 , / ( m  1-4M1, M~) <~ - 2 ,  

(iib)/(m2-4M2, M2)< -2 , / (ml ,  M1)< - 2 ,  

(~) 

(iva) 

(ivb) 

/ ( m  2, Ms)/>2,/(m s -4M~, M2) ~>2, 

/(ll, _41) <~ - 1 , / ( m  1-4M1, M1) < - 2 ,  

/ ( l l -4A1,  A1) ~< - 1,/(ml, M1) ~< - 2 .  
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Then the/ollowing holds, 

l=gA.. 

l=gAo 

/=hM. 

in case e = + 1 and / satisfies (i), (iia), 

in case e = - 1  and / satisfies (i), (iib), 

in case e = § 1 and / satisfies (iii), (ira), 

in case ~ = --1 and / satisfies (iii), (ivb). 

Proo/. Analogous to that  of Lemma 8, Corollary, chapter I I  of [4]. 

49 

COROLLARY. For a n y / o r m  gA, we have (01(gA))*~O~(gA); /or a n y / o r m  hM, we have 

#l(hM) ~ t~(h~). 

Proo/. This follows from Lemma 5.8 together with (5.1), (5.2), (5.3). 

LEMMA 5.9. For any /orms  gA, hM, we have 

Proo/. Analogous to that  

IgA(x, y)] >~2 

IgA(X, Y)I >11 

IbM(x, y)[ >~2 

Ih~( x, Y)I ~>1 

/or all (x, y) e Z~, 

/or all (x, y) e Z~, 

/or all (x, y)E Z~, 

/or all (x, y) E Z~. 

of Lemma 10, chapter I I  of [4]. 

COROLLARY 1. For any /orms gh, hM, we have 

~0(gA) =2, n(gA)= 1, ~(g^)=2, 

vo(h~) =2, vl(h~) = 1, v(hu) =2. 

COROLLARY 2. Al l /orms  gA, hM satis/y c, ondit6~n (*) o] T_,emma 5.3 C, hence Lemma 5.3 C 

and Theorem 5.1 can be applied. 

Proo/. Both corollaries follow from Lemmas 5.7, 5.9. 
4 - 752903 Acta matkematica 134. Imprim6 1c 30 •uillct 1975 

LlaMa), 5.8. For any /o rm  gA, we have g~ ~ --gA; /or a n y / o r m  hM, we have h ~  --hM. 

Proof. Using Lemmas 5.1, 5.6, 5.7, the proof is analogous to that  of Lemma 9, chapter 

II  of [4]. 
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L v.M M A 5.10. Le t / ( x ,  y) = x 2 +/sxy + 7y2; then (with the notation o / L e m m a  5.7, Corollary) 

(la) (~(/) >/16-4/A~ =8(gA,) 

(lb) ~(/) >~ 16 -4/A~ =8(9A,) 

(2~) 8(/)/> 1 6 - 8 / ~  =~(hM,) 

(2b) 8(1) ~ 16-8/M~ =O(hM,) 

i / e  = + 1 and (iia) holds, 

i / e  = - 1 and (fib)/toMs, 

i~ e = + 1 and (iva) ]toMs, 

i /e---  -- 1 and (ivb) hohis. 

Proof. Analogous to that  of Lemma 11, chapter I I  of [4]. 

Lv.M~A 5.11. Le t / ( x ,  y )=.x  ~ + /sxy +7y~; then 

8(/)~>16+4/A~ i//(l~, As)-<< -1,/(/2-4A2, A2)< -1 ,  

~(/)>~16§ 2 i / / (m~,  M2)< -2 , / (m2-4M2,  M2)< - 2 .  

Proo/. Analogous to that  of Lemma 12, chapter I I  of [4]. 

Lv, MMA 5.12. Let/(x, y ) = x  ~ +/sxy +7y ~, where 2 </5 < 4 

Suppose Shat 

Then / is either a gA or a h M. 

and 0 <~(/) =/52 _47 < 16. 

i/(x, y) [ i> 2 /or a/l (x, y) E Z~, 

l/(=,y)l ~ /oraU (x,y)eZf. 

Proo[. We shall use Cassels' notation, 

P(x,  y):/(x, y)>0,  N(x ,  y):/(x, y)<0.  

If  P ( - 1 ,  1), then 1-/5+7~>2 , 

N ( - 1 ,  1), i.e. 1 -f l+y, .< --2 or 

a contradiction to 2~<p~<4 and ~ - 4 7 > 0 .  Hence 

/5>~7§ (5.11) 

If  P(0, 1), then 7~>1, which together with (5.11) gives fl>~4. Since 2~<fl~<4, we must 

have/5--4 and consequently Y = l; hence / =  (1, 4, 1) =gl. 

In the sequel we assume that /4=gl ,  hence N(0, 1), i.e. 

7-< - 1. (5.12) 

If P ( - 3 ,  1), then 9-3f l+7>~2 , which together with (5.12) gives fl<2. Since 2 </5~<4, 

we must have/5 = 2 and consequently 7 = - 1 ;  hence / =  (1, 2, - 1 ) =  h i. 
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In the sequel we assume t h a t / #  gl, hi, hence 

N(0, 1) and _hr(-3, 1). (5,13) 

The proof now follows by induction. Let  (Ax, As; M 1, Ms), A~<As, MI<Ms, be any 

non-singular solution of (5.4) with associated quintuple (e, 11, ls; m 1, ms), and suppose that  

we have 

2V(ll, A1) and N(ml -4MI ,  M1) in case e =  +1,  (5.14a) 

2~(/1-4A1, A1) and N(ml, M1) in case e =  - 1 .  (5.14b) 

Notice that  the inductive hypothesis for the solution (1, 5; 1, 3) of (5.4), which has e = + 1, 

is precisely (5.13), and thus is satisfied if / *  gl, hi- 

From the inductive hypothesis for (A1, As; M1, Ms) we want to deduce that  / =gA, or 

hM, or to prove the inductive hypothesis for at least one of the three neighbouring solutions 

of (A1, As; M1, Ms) of bigger height. By Lemma 5.5 these solutions are of the form 

( A 1 , - ;  M s , - )  

( A s , - ; M ~ , - ) '  

(As , - ;  Ms,- )  

with quintuple (e; 11, - ;  m s, - ) ,  

with quintuple (e; l s, - ;  m 1, - ) ,  

with quintuple ( - e ;  1 s, - ; ms, - ) .  

If  P ( m  s, M2) and P ( m  s - 4 M 2 ,  Ms), then/=hM~ by Lemma 5.7, Corollary, since either 

(iii) (ira) or (iii) (ivb) are valid. 

Otherwise, either 2V(ms, M2) or N ( m  2 -4Ms, Ms), in which case we distinguish between 

four subcases: 

(1) e =  +1 and N(ms, M2). If  P(I~, As) and P( l s -4As ,  A2), then ]=gM~ by Lemma 5.7, 

Corollary, since (i) (iia) are valid. Otherwise either N(ls, As) or N(1 s - 4 A s ,  Az); in case 

N(ls, As) the inductive hypothesis (5.143) is satisfied for (A s, - ; M 1, - ), in case N(l~ -4As ,  

As) the inductive hypothesis (5.14b) is satisfied for (As, - ;  Ms, - ) .  

(2) e = + 1 and N(m s -4Ms, Ms). Then the inductive hypothesis (5.14a) is satisfied for 

( A .  - ;  M s, - ). 

(3) e = - 1  and N(ms, Ms). Then the inductive hypothesis (5.14b) is satisfied for 

(A1,  - - ;  M s, - - ) .  

(4) e = - 1 and N ( m  s - 4Ms, Ms). If P(l  s, As) and P(1 s - 4As, As), then / = gA, by  Lemma 

5.7, Corollary, since (i) (iib) are valid. Otherwise either N(Is, A2) or N(I s - 4 A s ,  As); in case 

N(ls, A2) the inductive hypothesis (5.14a) is satisfied for (As, - ;  Ms, - ) ,  in case N( l  s - 4 A  s, 

As) the inductive hypothesis (5.14b)is satisfied for (As, - ;  M1, - ) .  

Consequently, if ] were not a ga or ~ hM, it would have to satisfy either (5.14a) or 
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(5.14b) for an infinite sequence (A(1 r), A(r). M(x~), M(r)), rEN, with heights h(r)~ co for r ~  0o 112 ~ 

It~would then  follow from L e m m a  5.10 ((2a) or (2b) apply)  t ha t  

"~qr(r )2 O(f) >~ 1 6 - 8 / m 2  for tEN.  

However ,  since M~)-~ oo for r-~ ~ ,  this  would imply  t h a t  (~(/)>1 16, a contradict ion.  This 

proves  the  lemma.  

LEMMA 5.13. There are 2 ~* di[/erent /orm8 

/(x, y) =x  2 +flxy +yy2 with 

2 < f l < 4 ,  ~ ( / ) = ~ - 4 7 = 1 6 ,  v(/) = 2. 

Proo/. Analogous to t h a t  of L e m m a  14, chapter  I I  of [4]. 

5.4. The main  theorem on  the  C-min imum of forms 

T H E O R ~  5.3. Let/(x,  y )=ax  2 +f lxy+yy 2, 6(/)> O. 

A . I ]  

lf~)l~(t) < 2, (5.15) 

then / i8 C-equivalent to a multiple ol some gA or hM. 

B. Conversely (5.15) holds /or all forms C-equivalent to a multiple o/ some ,qA or hM; 

speci/ically 

that 

VS(gA)/v(gA) = V4 - 1/A 2, I/~h~)/v(h~) = 1 /4  - 2/M 2. 

C. There are 2 % / o r m s / ,  none o/which are C-equivalent to a multiple o /any  other, such 

1/~(/)/~(/) =2 .  

Proo/. P a r t  B follows b y  L e m m a  5.1, (5.7) and  L e m m a  5.9, Corollary 1. 

:Part C follows f rom L e m m a  5.13, since any  C-equivalence class of forms is denumer-  

able. 

To  prove  pa r t  A we notice, t h a t  b y  L e m m a  5.1 we m a y  as well assume t h a t  

0 < 5 ( / ) < 1 6 ,  v(/) =2 ,  

hence b y  the  definit ion of C-min imum either  vl(/) = 1 or %(/) = 2. 

Case 1. v l ( ] )=  1. Then  for any  s > 0, there  are (a, c)E 221 such t h a t  

1 =~1(/) ~< If( a, c)l = s  +s .  

(5.16) 
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Hence b y  L e m m a  5.2 we have  

where 
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l ~ < ~ ' < l + e ,  2~z '~p ---.,~z, ~(]')=a(/). 

with 

I f  ~ ' = 1 ,  t h e n / '  is some gA, h~ b y  L e m m a  5.12, and  -the conclusion follows f r o m  (5.17). 

Otherwise we can find an infinite sequence of forms 

/.=(~Zn, fl.,7.), n~N, 

Then  

has 

Fu r the r  since 

we have  

lira zr n = l, 2a  n ~fl~ <4an,  (~([n) =~(/), 

each ]n being C-equivalent  to •  B y  a simple compactness  a rgument ,  we m a y  as well 

assume t h a t  

fin-~ rio, 7~-~ 70 for n ~ ~ .  

/o = (1, rio, 70) 

2 <ro-<<4, a(/0) =~(/). 

l l0(x, y)[ = l im ]l.(x, y) l 
n - - ) ~ O  

[/o( x, Y) I ~> 1 for all (x, y) E Z~, 

I]o(x, y)] >~2 for all (x, y) EZ~. 

Hence  b y  L e m m a  5.12, /o  is some gA, hM. However ,  b y  L e m m a  5.9, Corollary 2, we m a y  

app ly  Theorem 5.1 to /0(=gA or hM), and consequent ly  for  some sufficiently large n, 

/n=a/o( =agA or ahM). Since a l s o / ~  •  this proves  A in this case. 

Case,2. v0(/)=2. Then  by  L e m m a  5.1i 

~1(/*) = ], ~(/*) =2 ,  0 <a(/*) =~(/) < 16, 

and hence by  case 1, we have  f* ~ agA or ah~; also a = + 1, since 

vl(agA) = vl(ahM ) = [a] 

-4-1 ~ / '  = (~', fl', 7'), (5.17) 
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by Lemma 5.1 and Lemma 5.9, Corollary 1. Finally 

2~1(1)  = ~0(1") - -  ~0( -+ gA) = ~0( -+ hu) = 2 ,  

and thus also vl(f)=I,  and hence f belongs to case 1 also. This ends the proof of part A. 

5.5.  The  m a i n  t h e o r e m  o n  the  C-approx imat ion  c o n s t a n t  

THEOREM 5.4. Let 0 E R \ Q .  

A . I /  

d(0) <2, (5.18) 

then O is C-equivalent to a root in some gA or hM. 

B. Conversely (5.18) holds if O is C.equivalent to a root in some gh or hM; specifically 

d(O) = ~ when gA(0, 1) = 0, 

d(v~)--- I/4-~-2/M 2, when hi{0,1)=0.  

For any gA, we have (01(gA))* ~t92(gA); /or any l~, we have 01(I~)~ O~(hM). 

C. There are 2 ~0 different C.equivalence classes of irrationals O, such that d(O) = 2.] 

Proof. To prove part A notice that  since d(0) = m a x  (do(O), ~/1(0)),  either do(0 ) = d ( 0 )  < 2 

or dl(0 ) =2d(0) <:4. 

Case 1. dr(0 ) =2d(0)<4.  We consider the form 

/(x, y) = 2d(0) x(Ox-y) .  

By the definition of d(0): Ve > 0 ] ]To = Yo(e) > 0, such that  

[/(x,y)l > 2 - r  foral l  (x,y)eZ~ with IOx-y I < Y o ( e ) ,  

If( x, Y)I > 1 - ~  for a l l  (x, y )eZ  2 with I O x - y l  < Yo(e). 

Further, since dl(0 ) =2d(0), there is a sequence (an, cn)E Z~ such that  

If(an, cn)l-~l, an-~oo, IOan--cnl-~O f o r n ~ o o .  

I t  is now clear that  the proof of Theorem III ,  chapter I I  of [4] carries over with obvious 

modifications; this gives the conclusion in case 1. 

Case 2. do(O ) =d(0)<2.  Then by Theorem 4.11, Corollary, 

dl(O*) = 2d0(0) = 2d(0) = 2d(0*) < 4, 
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hence by case l, v~*~v~', where v ~' is a root of some gA or hM. But  then by Theorem 4.11, 

Corollary, Lemma 5.1, Lemma 5.3 B, Lemma 5.9, Corollary, 

d,(v~) = 2d0(v~*) = 2d0(v ~') = 2d(v~') = 2d(v~*) = 2d(0), 

and thus v~ belongs to case 1 also. This ends the proof of part  A. 

Par t  B follows directly from Theorem 5.3 B, Lemma 3 B and Lemma 5.8, Corollary. 

Proo/o/C. By Theorem 5.3 C together with Lemma 5.3 A, there are 2 ~e different C- 

equivalence classes of irrationals ~ such that  d(O)~<2. By Theorem 5.4 A there are only 

enumerably many different C-equivalence classes of irrationals v~ such that  d(v~)< 2. 

5.6. Other methods  

Instead of the proof of Theorems 5.3, 5.4 given above, which follows closely the proof 

of J. W. S. Cassels [4] for the Markoff chain, we could have extended either (1) the proof of 

A. Markoff [24] as presented by L. E. Dickson [9] or (2) the proof of C. G. Lekkerkerker 

[2U. 
The extension of Markoff's method is based on the formula for d(v ~) in Theorem 4.11, 

and a similar formula for v([) obtained by  developing a theory of C-reduced and C.duaUy 

reduced quadratic forms. 

Lekkerkerker's method is extended as follows: For any basis (el, ca) of R ~ over It, let 

L =L(e 1, e2) = {xle 1 § Ix I , x~ eZ}, 

Lj=Lj(el, e2) ={~,e~+x~e~l (x,, x~)eZ~}, (i=0, 1). 
For 

L is called C-admissible for $0 if 

For example 

so= {(~,, ~)1 I~1~,1 <1} 

1 
Lo n So=L1 n ~ S0=~. 

L((1/V2, IlV~), ( - 1 + l/V2,1 + 1/1~)) with det L- -  V2, 

L((1/I/2, 1/l/2), ( - ~ 3 ~ ) )  with det L - -  V3, 

are both C-admissible for $0. 

Essentially all C.admissible L's for So of det L < 2 are constructed by the procedure of 

Lekkerkerker, however using the matrices 
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which satisfy the relations 

Co Do = ]Do g Co, fgo Co = Co g Do, CoJDo = Do Co, 

For  example 

where 

and hence we have the following associated forms, 

[c0=(1, 1 - 1 ,  - 3 ) = ( 1 ,  0, - 3 ) ~ g l ,  

/.~ 1-3,  -1)=(1, -2,  - 1 ) ~ h .  

/A = (5, S -- 12, -- 19) = (5, --4, -- 19) ~ 595, 

/B =(3, 5--7, --11)=(3,  - 2 ,  - l l ) ~ 3 h  8. 

I shall confine myself with this hint of the extension of Lekkerkerker's method. 

Also recent work of H. Cohn [6], [7] and M. Hall [17] on the Markoff chain have 

extensions to the present situation. 

Chapter 6 

Complex binary quadratic forms 

6.1. Reduction theory 

We consider binary quadratic forms ~ = (A, B, C): C 2-~ C, given by 

q): (X, Y)~-->AX2 + B X Y  + C Y  2, 

where A, B, C E C satisfy the following condition, 

A # O ,  D = B ~ - 4 A C # O ,  ~ , ~ e C \ Q ( i ) .  (6.1) 

Here ~, ~ are the roots of r  i.e. of (P(x, 1) =0.  

For any complex unimodular matrix M, we let _3~t: (X, Y)~->(aX +b Y, c X + d Y )  be 

the corresponding linear map, and (as usual) m be the corresponding homographic map. 



DIOP~_ANT~E APPROXIMATION OF COMPLEX NUMBERS 57 

Notice that  if r satisfies (6.1), then also any ~ equivalent to r  i.e. of the form ~F = r o _~ 

where M is unimodular. In fact, this follows from the formulae, 

D~ = (det M) ~ Dr = _ D. ,  (6.2) 

~r  = m 1(~r ~ r  = m - l ( ~ q ) )  (6.3) 

A~.=r C~r=r A~r+ B~+C~r=r247  +d). (6.4) 

Notice also that  an integral form (A, B, C), i.e. a form with A, B, CEZ[i], satisfies 

(6.1) precisely when D = B ~ - 4 A C  is not a square in Z[i]. 

DEFINITIO~ 6.1. A binary quadratic ]orm satis]ying (6.1) is called reduced i] (with 

suitable notation) 

~e3  and T?eY*, 

and is called dually reduced i/(with suitable notation) 

~eY* and ~e3. 

Notice that  if (A, B, C) is reduced (dually reduced), then (A, B, C) is dually reduced 

(reduced), (C, B, A) is dually reduced (reduced) and (C, B, ~]) is reduced (dually reduced). 

Notice also that  if r is reduced (dually reduced), then 2r ~ e C~{0}, is reduced (dually 

reduced) and r  (I)oS-1 are both reduced (dually reduced), the last statement being a 

consequence of Lemma 1.1 (viii) (ix). 

TH]~OREM 6.1. Suppose that r  B, C) satislying (6.1) represents primitively a 
number A' with 

0 <  Id'l < VIDII2. 
Then there exists a form r  (A', B', C'), which is equivalent to r  and such that r  is either 
reduced or dually reduced. 

Proo/. By a suitable choice between the two values of I/D and V -  D we can make sure 

that  either 

(a) arg (~DIA')e [~/4, 3~/4] 

oi-  

(b) arg  ( l /=  DIA' ) e [~/4, 3~14]. 

By assumption there exist ao, e0EZ[i ] with gcd (a o, co)=l and r co)=A'. Then 

determine b0, d0eZ[i], such that  aodo-boco=l in case (a) and aodo-boco=i in case (b), 
and put 

a~ b01, M 1 :),ICE 
Mo=(c ~ do] M~= o ( 0  Z[i]. 
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In either case the forms 

O~=~o~r~, kez[i], 
are equivalent to O, and Ok(l, O)=O(ao, Co)=A'; hence we need only prove that Ok is 

reduced or dually reduced for a suitable k fi Z[i]. 

However, the roots ~k, ~lk (suitably enumerated) of �9 k satisfy the following relations, 

~k=~o-k, ~%=~qo-k for all keZ[i] ,  (6.5) 

~k-~k = pr-D/A' in case (a) for all k e Z[i], (6.6 a) 

~-~k=]/ -~D/A ' in case (b) for all kEZ[i]. (6.6b) 

Hence it follows from (6.6a), (6.6b) that  

arg (~k--~k) E [Zt/4, 3~t/4] for all k E Z[i]. (6.7) 

Also, it follows from (6.6a), (6.6b) and the assumption of the theorem, that  

[~k--~k[ ~>V2 for all keZ[i].  (6.8) 

By (6.5) we choose kEZ[i], such that 

~ e [ 0 ,  1] x [0, - i ] .  

If  

~kE[0, 1] • [ -- ~ , -- i] ---q Y*, 

then by (6.7), (6.8), ~ E  :/, and Ok is reduced. If 

then by the same argument, either Ok or Ok-1 or 0~+1 is dually reduced. 

COROnLARY Every /arm �9 satisfying (6.1) /s equivalent to a reduced/arm and also 

equivalent to a dually reduced/arm. 

Proo[. The result follows from Theorem 6.1 together with a well-known result of 

O. Perron [26], that  every form satisfying (6.1) will represent primitively (in the Gaussian 

case) a number A' with 0 <IA'I <. V I D I/3, and finally the remark, that  if (A, B, C) is 

reduced (dually reduced), then (C, B, A), which is equivalent to (A, B, C), is dually reduced 

(reduced). 

THEOR~.M 6.2. Suppose that (A, B, C) is reduced (dually reduced)/arm satis/ying (6.1). 

Then at least one o/the/ollowinej inequalities is satis/ied, 

IACI<41D I, IA(A+B+C)I<41D I, IC(A+B+C)I<41D I. 
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Proof. Assuming that (A, B, C) is reduced (otherwise we consider (C, B, A)), and that  

IAcI ~>4[D I and [A(A+B+C)[ ~>41D I, (*) 

we have to derive a contradiction. 

Since 

B 2-D=4AC, (B+2A)2-D=4A(A +B+C), 

it follows from (*) that  

[B[>~]/1-gI/[D[ and [B+2A[>~V1-5V[D[. (**) 

Also (with a suitable determination of ~/~)) 

2 =  ( - B +  VD)](2A) EY, ~/= ( - B -  VD)/(2A) E ~ ,  

and hence at least one of the following cases occur, 

(a) arg 2ft[0, r~] and arg ~/E[--~t/2, -re/4], 

and arg (7 - 1) E [ - 3zt/4, -zt/2]. (b) arg (2-1)E[O, :~] 

However, for 

we get by (**) 

hence 

contradicting (a). 

Similarly, for 

we get by  (**) 

hence 

2 - 2 V ~  1 
B +  V~ 

arg ~ e ] - ~ / 4 , = l a [ ,  

2 -  i -2Vh 
~-I B + 2 A  + I/D 

12 - 1  
~__1-1 

2 1 ~ < - - < - - .  
Vi5- i I/~ ' 

arg ( ( ~ -  1)/(~ - 1)) ~ ] - ~ / 4 ,  ~/4[, 
contradicting (b). 

This proves the theorem. 
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COROLLARY. For any given DEZ[i], where D is not a Gaussian square, there are only 

]initely many integral/orms with discrimiuant D which are either reduced or dually reduced. 

In analogy with a well-known procedure of C. F. Gauss [16] (cf. also L. E. Dickson 

[8]), we associate to any form (I) 0 with roots ~0, ~0, which is 

o r  

(a) reduced with ~e o E y and 40 E Y*, 

(b) dually reduced with ~o E Y* and 4o E Y, 

a double chain of forms 

In fact, let 

. . . .  (I)--2' (I)--1' (l)0' (])1' {])2 . . . .  

ch ~o= ToT1 ...; oh* 4o = T - 1  T_2 ..., 

ch* ~o = To T1 .-.; ch 4o = T- t  T_~ .... 

(6.9) 

(6.10a) 

(6.10b) 

respectively. [If ~o, ~]o are not equivalent to real numbers, the chains in (6.10a), (6.10b) are 

uniquely determined by Theorems 2.2, 2.2*. Also, if (I) o is integral, the chains in (6.10a), 

(6.10b) become uniquely determined by requiring these to be purely periodic by Theorem 

3.4. In any case we require that  T o g= V~I.] Then we define (I)n, n E Z, recursively by 

(6 .11)  

By (6.11) the roots of (I)~ and (P~+I are related as follows, 

~n+l:tnl(~n), ~ n + l =  t~ !('t}n) = ~OtnO~(~n) ,  

and hence 

~n = t~(~ .+l) ,  4~+1 = t~(4n), n e Z. 

By (6.10a), (6.10b), (6.12) it follows that  

(6.12) 

~ = [ T ~ T ~ +  1 ...], 4,=[T~_ITn_2 ...], nEZ. (6.13) 

By the very definition of (Tn) it follows, that  one of the chuins in (6.13) is regular and 

the other is dually regular. Consequently, each Ca, n E Z, is either reduced or dually reduced. 

Notice that  in case (I) 0 is reduced (dually reduced) and integral, the two-way infinite 

sequence (T~) defined by (6.10a) or (6.10b) is periodic by Theorem 3.5. 

The actual calculation of a double chain of forms is facilitated by the following table: 
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D (A, B, C) 

r 
(~ 0 ~.,~ - 1  

Do ?1 

Do?$ 

Do ?~ 
DoE1 

Do/TJ~ 

D o E 3  

O o C  

(C, - B - 2 C ,  A + B §  

( A + B + C ,  - 2 A - B ,  A) 

(A, 2iA + B, - A  + i B + C )  

(A - i B -  C, B -  2iC, C) 

( - 2 i A  - ( 1  + i ) B - C ,  (2 +2 i )A  + 3 B +  (2 - 2 i ) C ,  - A  +( - 1 + i )B+2iC)  

(A + (1 - i ) B  -2 iC ,  i B  + (2 + 2i)C, - C )  

(A, ( - 2  +2 i )A  +iB,  - 2 i A  - ( 1  + i ) B - V )  

( - A ,  iB, C) 

(A + ( 1 - i) B - 2iC, ( - 2 + 2i)A + 3i B + (2 + 2i)C, - 2iA - (1 + i) B - C) 

We shall i l lustrate the  computa t ion  of double chains of forms in the  following examples ,  

which correspond to Examples  2.1, 2.2, 2.3. 

Example 6.1. The  integral  form 

Do=(1  , --1, 1) 

is bo th  reduced and  dually reduced with  

ch ~o = eh* ~o = C, 

Since 

(91 = (I)oo ~ = ( - i, i, - i) = - iD o, 

we have  

O ~ = ( - i ) ~ r  n e Z .  

Example 6.2. The  integral  form 

D0=(5 ,  - 5 - 2 i ,  6 + i )  

is both  reduced and  dual ly  reduced with  

c h  ~0 = V1 E1 CE1 V1 C, oh* ~0 = CE1 CE1 C ~  

Thus  precisely two double chains pass th rough  D 0 =~Fo, name ly  (On) , where  

(I) 1 =D0o [71 = (5, - 5  +8 i ,  3 - 4 i ) ,  

(I)~ = (I) lo~ 1 = (7i, 6 - 7 i ,  - 3  +4 i ) ,  

D a = O 2 o C  = (7, - 7  +6i ,  4 - 3 i ) ,  
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and  (~n),  where 
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(I) 4 = ( I ) so /~  1 = ( 5 i ,  8 - 5i ,  - 4 + 3 i ) ,  

(I) 5 ~- (I)4o l~ I = ( 5 i ,  - 2 - 5 i ,  1 + 6 i ) ,  

(I) e = ( I ) s o C  = (5 ,  - 5  - 2 i ,  6 + i )  ~ 0 ,  

(I)n+ s = (I) .  f o r  a l l  n E Z; 

~F 1 = ~ 0 o C  ~ ( - 9 i ,  6 + 9i, - 3  - 4 i ) ,  

~F 2 =~V'loE 1 = (7, - 7 - 8i, 3 + 4i), 

~ s  ~ 2  ~  = (  - 7 i ,  8 +7 i ,  - 4 - 3 i ) ,  

tF4 ~-~I~'3o~ 1 = (9, - -9  --6i,  4 §  

~F s =~F4o~ = ( - 5 i ,  2 +5i ,  - 1 - 6 i ) ,  

~Fs = ~ F 5 o C = ( - 5 ,  5 + 2 i ,  - 6 - i ) =  -~F0, 

~Fn+s = - ~ F ,  for all n E Z. 

Example 6.3. The  integral  fo rm 

(I) =(1 +2i ,  1, 2 - i )  

is not  reduced bu t  dual ly  reduced. However ,  the  form 

(I)0 =(I)oC = ( - 3 i ,  3i, 1 - 2 i )  

is both  reduced and  dual ly  reduced with 

ch ~0 = V2 E2 V2 CE1 C V 3 E 3 ~z 3 CE~ C V 1 E 1 V 1 C E  3 0 ,  

ch* ~0 = CE2 C V 1 E l V1 CE3 C V2 E 2 V 2 CE 1 C V 3 E 3 ~ .  

Thus  precisely two double chains pass through (I) 0 =~Fo, name ly  ((I),), where 

(~)1 =(I)00 ~2=( 2 --i, - 4 + i ,  l --2i),  

(P~ = (I)1o/~ 2 = (2-- i ,  - -3  +2 i ,  2 + i )  

(I)3=(I)2o ~ 2 = ( 2  + i ,  - 1 - 2 i ,  2 + i ) ,  

(1) 4 = (I)ao C = ( 1 - 4 i ,  2 + 5 i ,  - 1 - 2 i ) ,  

(I)5 = (I)4oE 1 = ( 4 + i ,  - 3 - 4 i ,  1 +2i ) ,  

(I)e = (I)ao C = ( - 3i, 3i, 1 - 2i) = 4P0o ~-1, 

(P~_m--q5~oS-1 for all nEZ;  
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1121=kI20o~ = ( - 1  -2 i ,  3+4i ,  - - 4 - 0 ,  

~I22 =1t210~2 = ( -  1--~i)  2+5i ,  1-4 i ) ,  

tFa=tF2oC = ( - 2 - i ,  1 +2i, - 2 - i ) ,  

iF4 =tFa~ ~1 =(  - 2 - i ,  3 -2 i ,  - 2 - i ) ,  

tF 5 =tF4o/~ 1 = (1-2 i ,  - 4  +i ,  2 - i ) ,  

1~P6 =~rSO 71 = (1-2 i ,  8i, - 3 0  = ~ r 0 o ~ - l ,  

tF~+6=ttz~o~-i for all nEZ. 
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6.2. Minimum of quadratic forms 

Let (I)= (A, B, C) be a complex quadratic form. Then 

/z((I)) =in/I(I)(X, Y)], 

the infimum being taken over all (X, Y)EZ[i]2~{(O, 0)}, is called the minimum of ~.  

If  ~ does not satisfy (6.1), it is obvious that/~((I)) =0. 

If (I) satisfies (6.1), then by Theorem 6.1, Corollary, we may associate (in several~ways) 

to (I) a double chain of forms (r each (I)n being equivalent to (I), and thus a two-way 

infinite product 

I~Tn = .... T_ 2 T_ 1T o T 1T~ .... 

satisfying the following two conditions, 

(i) T~ E { Vj, Ej, C} for each n E Z, 

(ii) if for n l < n  ~ we have 

T , , = E j , , T ~ = E j ~  andT ,=FEj ,  ( ~ 1 , 2 , 3 ) ,  f o r n l < n < n  ~, 

then 

card {n 6 Z In 1 < n  <n~, T,  = C } -  1 (mod 2). 

A two-way infinite product I-ITn satisfying conditions (i), (ii) is called a regular double 

chain. 

Conversely, for any regular double chain 1FITn and any deC\{0} ,  we may define for 

nEZ, 

~ = [Tn Tn+l ...], 

(?~ = [ T . _  1 T~_2 ... ], 

(I)~(X, Y) =e~d(~ -~ , ) - I (X - ~  Y)(X  -~qn Y), 
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det  T 0T1 . . .T ._1  if n>~0 

e~= (det T_ IT_2 . . .T_(_ . ) )  -1 if n < 0 .  

Then it is easily seen, t h a t  (~Pn) is a double chain of forms with d iscr iminant  ((I)0) = d  ~, and 

]-[T~ is thus  a regular  double chain associated to  (I) 0. 

For  any  regular  double chain I-IT~ we define 

K=K(1-IT~) = s u p  { [ ~ - ~ , [ ,  [ $ 7 ~ ' - ~ [ ,  [ ( ~ -  1 ) - i - ( ~ n  - ])--1[ }. 
n~Z 

Also we define a congruence relat ion in the  set of regular  double chains by  pu t t ing  

if 

I]T.-1-iU  

Un=~r(Ta(n)) for all n E Z ,  

where a: Z ~  Z is of one of the  forms (with a fixed kEZ), 

q: n~>n + k or a: n~--->-n + k, 

and ~: {Vj, Ej, C ) o { V  s, Ej, C} is of the  fo rm 

:r: Vj~-->V~(j), Ej~-> E~,<~), C~--'~C, 

where ~ is a pe rmuta t ion  of (1, 2, 3). 

I t  is easily verified, t h a t  ----- is an equivalence relat ion in the  set of regular  double 

chains, and  t h a t  the  set 

{l~n--~nl, [ ~ n l - - ~ n l [ ,  [(~n-- 1)-x--(~n - 1)-1[ I n e z )  

appear ing  in the  definit ion of K(I-ITn) is invar ian t  under  - .  Consequently 

1-[Tn=- I-[U~ ~ K(1-ITn) -~K(I-IU~). (6.14) 

THEOREM 6.3. Suppose that (1) is a [orm satis/ying (6.1) with diseriminant D and 

minimum/a, a~wl that ~ITn is a regular double chain associated to ~ .  Then 

A. VID[/#>~K(1-IT=). 

B. I~, in addition, �9 is proportional to an integral/orm, then 

~[D[/I~=K(I-]T~). 

Proo/. The double chain ((I),) defined above  by  

O~(X, Y) = e ~ d ( ~ - ~ ) - x ( x  - ~ ,  Y ) ( X - ~ ,  Y), 
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where [en[ =1 and d~=D, has each �9 n equivalent to O. Consequently for each nEZ, we 

have 

=/.t(On) ~< min ([ On(l, 0) 1, [ On(O, 1)[, I On(l, 1)[ ) 

= VIDI min (l#n-~/nl-t, I~ ;x -  ~ 1 - ~ ,  i( 1 _ ~,) -~-  (1 _ ~/n)-x i-a). 

This proves part A. 

The proof of part B is essentially identical to that  of Theorem 2.7. 

COROLLARY. I /  (On) with (I)n=(A ., Bn, Cn) is a periodic double chain of/orms saris. 

/ying (6.1), then 

~u(O0)=min (]Anl , ICnl, IA~+B~+C~I), (6.15) 

where it suffices to extend the minimum over a period. 

Example 6.4. Using formula (6.15) for the forms �9 0 occurring:in Examples 6.1, 6.2, 

6.3, we obtain. 

~ ( ( 1 ,  - 1 , 1 ) )  = 1 ,  

/~((5, - 5  + 2 i , 6 + i ) )  = 5 ,  

~ ( ( l  + 2i, 1, 2 - i)) = Vs, 

VID]//~ = V3 = 1.7320 .... 

V ID[//~ = I / 4  - 5 - ~  = 1 . 9 8 9 9  . . . .  

] / ~ / #  = r  = 1.9599.... 

A main problem about the minimum of complex binary quadratic forms is tha t  of 

determining all forms �9 with [/I D[//~ < 2. 

We shall solve this problem in two steps, using Theorem 6.3: 

1 ~ In section 6.3 we describe rather precisely those regular double chains HTn, which 

have K(IITn) <2. 

2 ~ . In section 6.4 we solve the remaining problems by means of Theorem 5.3. 

6.3. Regular double ,chains r I T  n with K <  2 

Throughout this section we deduce restrictions on a regular double chain IITn in 

order to satisfy the condition K < 2, by the following two arguments: 

(1) If Tn Tn§ .-. i s a  regular chain and Tn_ 1Tn-~ ... is a dually regular chain, then by 

Theorems 2.1, 2.1", 

~ = [Tn Tn+l ...] EF(T~ Tn+ 1 ,.. Tn+a_l )  , 

•n = [Tn_l T~_u ...] 6 F*(Tn_I ... T,_k), 
5 - 752903 Acta mathematica 134. I m p r i m 6  le 31 Jui l le t  1975 
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for all h, ]r 0. [Notice, tha t  we write F ( T ,  ... T~+h-1) instead of F(t~o ... ot~+h_l), etc.]. 

However, since 

] ~ - ~ l  <K<e, 
we must  have 

d(.F(TnT,~+I ... Tn+h_l) , F*(T ,_  1 ... Tn_k) ) <2  

for all h, kEN0; here d denotes the euclidean distance between the two sets involved. 

Similarly, if T~ T~+ 1 ... is a dually regular chain and Tn_ 1 Tn_ 2 ... is a regular chain, 

then  we must  have 

d(F(T._I  ... T,_k), F*( T~ Tn+ I ... T~+h_l) ) < 2 

for all h, k E N 0. 

(2) If, by  argument  (1), we have excluded a product U~_ k ... U._ 1 U~ U~+ 1 ... Un+h_ 1 

from appearing as a subproduct in I I T , ,  then by  (6 .14)any  product congruent to 

U~_k ... Un_l U" U~+I ... U~+h-1, i.e. obtained by applying a permutat ion ~: {Vj, Ej, C}-~ 

{Vj, Ej, C} induced by a permutat ion ~ of {1, 2, a}, and possibly a reversion, is also 

excluded as a subproduct of II  T~. 

We shah often refer to an application of argument  (2) by the phrase: "using con- 

g ruence . . . " .  

The first four laminas will deal with V-subproducts i.e. subproducts of I I T ,  consisting 

only of Vj's. By  the very definition of a regular double chain, a maximal  V-subproduct, if 

finite, will be of the form 

u~ v~ vj.... V~ v2, (6.16) 

with U1, U2E{Ej,  C}, and either U I = C  or U2=C.  

L~MMA 6.1. The regular double chain I-IT~ contains, modulo congruence, only the 

/ollowing V-subproducts, 

V 1, V 1 V2, V 1 V2 V 3. 

Proo/. Using congruence, we get the result concerning V-subproduots of length 2 from 

d(F( V 1 VI)  , _~*(I ) )  = 2 .  

Using this result and congruence, we obtain the result concerning V-subproduets of 

length 3 by  excluding V 1 V2 V1 as a subproduct. Hence assume tha t  V 1 V2 V1 is a subproduct 

of I] T~, and assume, using congruence, that  the maximal V-subproduet containing V 1 V 2 V 1 

is either of the form (6.16) with U 1 = C or is infinite to the left. Since 

d(F(V1V2V1) ,  F * ( V 3 T ) ) > 2  for T = V 1 ,  V~, C, 
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and V3Va has already been excluded, it follows that  I ]T  n either contains a subproduct 

congruent to CV1 V2 V1 or a subproduct congruent to V1 V21 the arrow indicating periodicity 

to the left. However, since 
h 

d(F(V1 V2 V1, F*(C)) >2,  

both possibilities ave exeiuded. This proves the result concerning V-subproduets of length 3. 

Finally, i~ f[T~ contai:a~ a V-subproduct of length >74, then by the same argument as 

above, either II T~ contains a subproduet congruent to C V 1 Vs Va V~I o r  a subproduct con- 

gruent to V1 V2 Va. However, since 

d(F(V1 V2 Va V1), F*(C))>2,  
4 

d([V  V. Vs V1])='V 6 > 2, 

both alternatives are impossible. This excludes the existence Of a V:subproduct of length 

->>4. 

L EMMA 6.2. The regular double chain II Tn contains no V-subproduct o/length 3. 

Proo]. Using congruence, we need only by Lemma 6.1 exclude C V1 V2 V3 U1 U2 with 

U I E {Ej, C}, as a subproduct of l]T~. However, this follows frbm 

d(F( V1 C) ~F(  VI,C V~), F*( V3 V2C)) > 2, 

d(F( V1 V2E2), .F*( V3C)) >2, 

d(F( V 1 V2 V3 E2), F*(C)) > 2, 

d(F( V1 Es V1) \ F (  V1 E2 V1 V~), F*(V3 V2 C)) > 2, 

d(F(V1 E2 V2), F*(V3 Vs C)) > 2, 

d(F( Vx V2 E3 Vi), F*( V a C)) > 2, 

d(F(V1 V2 E3C), F*(V3C)) > 2, 

U 1 = E 3, U 1 = E~, U 1 U s = E 1 V 3, U 1 Us = E1 V1, U1 Us :- E1 Vs, which excludes UI=C , 

U 1 U 2 = E 1C, respectively. 

L ~ M M A 6.3. The regular double chain IIT n contains no V-subproduct o/length 2. 
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Proo]. Using congruence, we need only by Lemma 6.2 exclude CV1 Vs U1 U2 U3 ... with 

~16{Ej, C}, ' a s~  Subproduet of I lTn.  Since 

d(F( V1 V2 E2), F*(C)) =2, 

d(F(VlV) ",,F(V1CV~), F*( V3C)) >2, 

d(F(V1 V~.Ea V1), F*(C)) >2,  

d(F( V 1 E s VI) ~ F (  V 1 E s V l U2), F*( V3C)) > 2, 

d(F( Va Es gd \ F (  V1 E2 V~ V~), F*( V3 C)) > 2, 

d(F(V~ V~,3OU), F*(C))>2 ~or U~(V~, V3, E~, C}, 

d( F( Vx E~ C V3), F*( Va C) ) >2,  

d(F( V x E2 CE1) ~-~( V 1 E 2 C E  1 ~22), F*( V 3 C)) > 2, 

d( F( V 1 Es C Es) ~ F ( V 1 Es C E 2 V~), F*( V3 C) ) ~ 2, 

we can exclude U t - -  E~, U 1 = C, U I Us--  E3 V1, U1 Us = E3 V2, U1 U2 = Ea Va, U1 U2 Ua 

E~C U with U E { VI, V3, E~, C), UI Ua Us = E3 CV~, U~ U2 U3 = E3 CEI, U1 Us Ua: E3 CE3, 

respectively. Consequently U~ = E 1 is the only possibility. 

Since 

d(F(VaEaU), F-~(VaC)) for UE{V3, Va, C}, 

we can exclude U2 E { V1, Vs, C). Consequently U 1 Us = E1 V3 is the only possibility. 

Now U3= V 3 contradicts Lemma 6.1. Further  Us=  V2 implies U4=C by Lemma 6.2 

and the definition of a regular double chain, hence U 1 U2 U a U 4 = E 1 V a VIC-~ C V 1 VIE3, 

which was exeluded above. Similarly, U 3 = VI implies U 4 = C, however, this is also impos- 

sible, since 

d(~~( V 1 E 3 V 2 V 3 ) ~ F (  V 1 E 3 V 2 V 3 V2), F * ( V a C ) )  > 2. 

Consequently U 1 U s Us = E1 VaC is the only possibility. 

Since 

d(F(V1E~V3V2C), F*(CU))>2 for UE{Vs, V 3, E 1, Es, C}, 

d(F( V t E 3 V 2 C V2), F*( V 3 C)) > 2, 

we can exclude U 4 E { Vi, Vs, E3, El, C}, U 4 = V 3, respectively. Consequently U 1 U 2 U l U a = 

Et V3 CE2 is the only possibility. 

Since 

d(F(VI E 3 V~. CE 1 U), F*(Va C)) > 2 for U E { V1, Vs, C}, 

we can exclude UsE(VI, Va, C}. Consequently U1UsUaU4Us=E1VaCEIV1 is the only 

possibility. 
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If  U s = V j, t hen  CE~ VI Vj C would be a subproduct  of 1I T~, however,  th i sposs ib i l i ty  

has a l ready been excluded in  course of the proof Consequent ly  U 1 U s U 3 U 4 U 5 U e = 

E1 VaCE2 V1 C is the only  possibility. However,  this is also excluded since 

d(F( V1E2CV3), F*(C)) >2.  

This proves Lemma 6.3. 

LWl~IA 6.4. The regular double chain IIT~ contains Vj only in the/ollowing combina- 

tions, 

CVjEjC, CEj VjC, CVjEj VjC. 

Proo/. Using congruence, we need only  by  Lemma 6.3 consider subproducts  of YIT~ 

of the  form ... W a W 2 W 1 C V 1 U 1 U 2 U 3 .... where U 1 E (Ej ,  C}. Since 

d(F( V 1 C), F*(C)) = 2, 

we m a y  assume, using congruence, t ha t  either (a) U 1 = E 2 or (b) U 1 = E 1. 

Case (a), U 1 = E 2. Since 

d(F( V~ E 2 V1), F*(C)) = 2, 

d(F( V1 E2 Ve), F*(C)) > 2, 

either (aa) U~ = C or (ab) U 2 = V3. 

Subcase (aa), U1U 2 = E 2 C. Since 

d(F(VIE2CU), F*(C))>~2 for UE(V1, V3, El, E2, C}, 

d(F(V1) , F*(CE1) ) = 2, 

we mus t  have U a = E a. 

Suppose t ha t  U a = Vj, then  U 5 = C by  Le mma  6.3 a n d  the  defini t ion of a regular  double 

chain. However,  U 1 U s U a U 4 U 5 = E 2 CE a V2 C-- C V 1 E 2 CE 1 was excluded above, hence 

U 4 =~ V2, and  since 

d(F( V~ E2CE a VtC ), F*(C)) > 2  for jE(1 ,  3}, 

also U4~(V1, V3}. Consequent ly  U4=C. 

Since 

d( F( E3 C E1C ), F*( V~) ) >2,  

this leads to a contradict ion;  thus  subcase (aa) is excluded. We use this fact tac i t ly  in  the 

sequel. 
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Subcase (ab), U 1 U,~ = E 2 V 3. Then Ua'= C by  Lemma 6.3. Since 

d(F(V1E2 VaC), F*(CW1)) > 2  for W l e ( V  a, E 1, C}, 

d(F(V1), .F*(C V3 El)) = 2, 

we can exclude W x E {V3, El,  C}, W 1 = Ve, respectively. Consequently either (aba) W 1 = E~ 

or (abb) W1 = V1 or (abc) W x = E 3. 

Subcase (aba), W1 C V 1 U 1 Us U3 = Ee CF1 E2 V3 C. Then either We = C or W 3 W~ = C Vs 

by  L e m m a  6.3 and  the exclusion of subcase (aa). By  symmet ry  U4E(Ee, V3, E~}, and 

in ease U4 = E2, either U 5 = C or U 5 U e = V~ C. 

Since 

d(F( VI E 2 V3C), F*(CE 2 V2C)) >2,  

we can exclude Wa W~ W 1 = C V2 E~, and hence by  s y m m e t r y  also U 4 U 5 U e = E e V~ C. Since 

d( F( V~ E s VaCU 4 U 5 U6), F*(CE2C)) > 2  

for U 4 = Vs, U4 U5 = E1 C, U 4 U s U e = E 1 V 1 C, Ua U5 = E2 C, we can exclude W2 W1 = CE2, 
and  hence b y  s y m m e t r y  also U~ U s = EeC. Thus subcase (aba) is excluded, and necessarily 

U4e{V3,/~1}. 

Subcase (abb), W1CV 1 U 1 U2 U3= V1CVI E2 V3C. Since 

d(F(V1E~ V3C), F*(CV1Ea) ) >2 ,  

d(F( VI Ee V3CU4 U5 Us}, F*(CVx E2 V3 C)) > 2 

for U 4 = V a , U  4U 5 = E  1 C , U  4U 5U s = E  1V a C , a n d  

d(F(VIC ), F*(C))=2, 

the  only possibility remaining is W e -  E3, and consequently W 4 W a = C V2. 

Since 

K(CVaE1 V2CV~E 3 VICV1E2 V3)= -~ >2 ,  

we m a y  assume, using congruence and U4E{V3, El}, t ha t  U~=E 1 and consequently 

U 5 = C  or U 5 U s = V1C. However,  this leads to a contradiction, since 

d( F( V3 Ee V~ C V1E3 V s C), F*( C E1 U5 Us)) > 2  

for U 5 = C  and U 5 U 6 = V1C. Thus subease (abb) is excluded, and by s y m m e t r y  a l ~  U4= V3 

is excluded. 
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Subcase (abc), W1CV1U1UaUaU4=EaCV1E2VsCE1. T h e n  W2=C or  WaW2=CV3 

a n d  U5 = C or U 5 U 6 = V1 C. H o w e v e r ,  al l  f o u r  c o m b i n a t i o n s  a r e  imposs ib le ,  s ince 

d( F( V3 E~ V 1C E a W~ W3), F*( C E1 U5 Ue) ) > 2 

in  all  f o u r  cases. Th i s  exc ludes  subcase  (abe). 

C o n s e q u e n t l y  subcase  (ab) is exc luded ,  a n d  t h u s  case  (a) is exc luded .  

Case (b), U 1 = E 1. T h e n  b y  L e m m a  6.3 a n d  t h e  exc lus ion  of  subcase  (aa), we c o n c l u d e  

t h a t  e i t he r  U 2 = C or  U s U 3 = V1 C. Th i s  c o m p l e t e s  t h e  p roo f  of L e m m a  6.4. 

L E M M A  6.5. The regular double chain 1]Tn contains Ej only in the/ollowing combina- 

tions, 

CEjC, CVjEjC, CEjVjC, CVjEjVsC. 

Proo/. T h e  resu l t  is an  i m m e d i a t e  c o n s e q u e n c e  of  L e m m a  6.4 a n d  t h e  de f i n i t i on  of  a 

r egu la r  doub le  chain .  

L E M M A 6.6. The regular double chain II Tn contains C Vj Ej Vj C as a subproduct only i/ 

either 

1-I Tn = C V1 E1 V1 CE2 C V 3 E a V3 CE1 C V2 E2 V2 CE3 

or 

I ]  Tn = C V 1 E 1 V 1 CE a C V 2 E~ [72 CE 1 C V a E a V3 CE2. 

Conversely,/or each o] these regular double chains 

K = K(I]Tn) = ~ / ~ / ~  = 1.9599 . . . .  

Proo/. U s i n g  congruence ,  we  m a y  a s s u m e  t h a t  I-IT n con t a in s  t h e  s u b p r o d u e t  

... W 3 W e W 1 C V 1 E 1 V 1 C U 1 U S U a . . . .  S ince  

d(F(V1E1V1C ), F*(CX))>2 for  XE(V2, V3, El, C}, 

d(F(V1E1 V~C), F*(CV1E1)) =2, 

we conc lude  t h a t  U1, W 1 E (E2, E3).  S ince  also 

d(F(E a VsCE1C) U F(E a VaCE 1 V1C ), F*( VaCE1C ) U F*( VaCE 1 V1C)) >2, 

we conc lude  b y  L e m m a  6.5 t h a t  U 1=~ W r H e n c e ,  us ing  congruence ,  we m a y  a s s u m e  t h a t  

U 1 = E2, W1 = E a. 

U s i n g  L e m m a  6.5, we o b t a i n  f r o m  

d(F( V 1 E 1 V 1CE 2 C) U F( V 1 E 1 V 1 C E  2 V 2 C), F * ( C E  3 V3C)) > 2, 
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tha t  Wa 4: Va; by  symmetry,  also U24: V2. Hence by Lemma 6.5, it follows bhat U~ = W~ = C. 

Since 

d(F(V1) , F*(CE1) ) =2,  

d(F(C2), F*(CE 1C V3 E3 V3 C)) > 2, 

d(F(E a C V2 E2), F*(C V2 E~ Vs C)) > 2, 

d(F(EaCE1C ) U F(EaCE 1 V1C), ~ (CV~E~  V~C)) >2,  

d(F(E 2 C V1 E1 V1C), F*(CE I C) 0 F*(CE 1 V 1C)) > 2, 

d(F(E 8 C V2 E2 V2 C), F*(CE 3 C) D F*(CEs V3 C)) > 2, 

we can exclude Us = V2, Ua = C, U 3 = V1, Us = Ea, Ua = El, Ua = E2, respectively, by Lemmas 

6.4, 6.5. Consequently U s -- V3, and hence by  Lemma 6.4, either U 4 U~ = EsC or U 4 U 5 U s = 

E a VaC. However, since 

d(F( V~ Es C), F*(CE 1 C V3 E3 V3 C)) > 2, 

we can exclude the first of these possibilities, and hence U4 U5 Us = E3 V3 C. 

Repeating the argument  used above in both directions, we conclude Chat necessarily 

l'I T ,  =- C V 1 E 1 V 1 CE~ C V 3 E s V 3 CE 1 C V~ E s V~ CE s. 

By (6.14), Theorem 6.3 B and Examples 6.3, 6.4, this yields the result. 

Lv.MMA 6.7. The regular double chain IITn contains C or -C as a subproduct only i/ 

I I T  n = C. Conversely 

g = K(~) = I/3 = 1.7320 .... 

Proo/. That  K(C~)=V3 follows from Theorem 6.3 B and Examples 6.1, 6.4. Hence 

assuming by congruence, tha t  l I T ,  =CU1 U2 Ua ... with U1E{V1, El}, we have to reach a 

contradiction. 

By Lemmas 6.4, 6.5, 6.6, either (a) U 1 U s = E 1C or (b) U 1 Us Ua = E1 V1 C or (c) U 1 Us Ua 

= V1E1C. 

Case (a). This possibility is excluded at  once by 

d(F(C4), F*(CE1C)) > 2. 

4 - - "  

Case (b). Since K(CE 1 V1C ) =2,  we may  assume, tha t  

CU1 Us U3 . . . .  CE1 V1CkX1X~X3 .... 

where X 1 4 C. By the definition of a regular double chain together with Lemmas 6.4, 6.5, it 

follows tha t  k = 2m - l, m E Y. 
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However ,  

d([C-*], F--~(CE, V1 C2"-'XI X~ X3)) > d([C], [CE~ V 1 C ] )  = 2 

for X 1 = V1, X1 Xz = E2 C, X 1 X 2 X a = E 2 V2 C, X 1 X 2 = E a C, X 1 X 2 X 3 = E a Va C, and  hence by  

L e m m a s  6.4, 6.5, 6.6, we have  XII([{V1, E2, E3}. 

Similarly 

d([V,E,C], F*(C 2m IXtX2X3) ) >d([V, E1C], [C]) = 2  

for X1X~X3= V2E2 C, X1X2X3= V3E3C , XI=E1, and hence by  L e m m a s  6.4, 6.5, 6.6, we 

have  Xlq(V2, V31 E,}. 

This excludes case (b). 

Case (c). This possibil i ty is excluded similarly to case (b). 

F rom L e m m a s  6.4, 6.5, 6.6, 6.7 and the  definit ion of a regular double chain we obta in  

the  following s t ructure  theorem.  

TH]~OREM 6.4. Suppose that the regular double chain IIT~ with K(IITn) <2 is di//erent 

lrom "d and/rom 

and 

C V, E, W 1 CE 2 C V3 E3 V3 CE, C V 2 E 2 V2 CE3 

C V1 E1 V1 CE3 C V2 E2 V2 CE1 C V3 E3 V3 CE2. 

Then [I T,~ is o/ the /orm 

C 2 m _ l - 1 T ( 1 - 1 )  f i n ( -  1 ) /~2m0 1 ~ ( 0 )  f/~(0) p 2 m l - 1  
" ' '  " ' *  a k  1 ~ Z l  . . .  "~k0 ~-/ * * . ,  

where m r E N/or all r E Z and T(1 r) T (r) /or each r E Z is one o/the nine products, �9 . .  k r 

Ej,.V~Ej, EjVj  w i t h ] E { 1 ,  2, 3}. 

L ~. M M A 6.8. The regular double Chain II T~ contains 

C2Z-1 EiC2~.-1 

as a subproduct only i/(1, m)E{(1, 1), (2, 1), (1, 2)}. 

Proo/. Using congruence, we m a y  assume t h a t  1 ~> m and j = 1. Then  l ~> 3 is excluded 

by  

d(F(Cr F*(CE1C)) >~d(F(C~), F*(CEI C)) > 2, 

and (1, m ) =  (2, 2) is excluded b y  

d(F(C2), F*(CE, C3)) > 2. 
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LEMMA 6.9. The regular double chain HT~ contains C3EjC or CEjC 3 as a subproduct 

only in the/ollowing combinations, 

E~CaEjCEj or EsCEjC3Ej. 

Proo/. Using congruence,  we get  the  resul t  f rom Theorem 6.4 and  L e m m a  6.8, since 

d(F{C2), F*(CE 1CX 1X 2 X3) ) > 2, 

d( F( C2 X1X~X3), F*( C E1C) ) >2 ,  

are  bo th  sat isf ied for  X I =  V1, X1X~=EkC ( k = 2 ,  3), X 1 X 2 X 3 = E  k VkC ( k = 2 ,  3), X 1 X 2 X  3 

= VkEkC (]c=2, 3). 

L]~MMA 6.10. The regular double chain I] T~ does not contain any o/the/ollowingproducts 

as a subproduct, 

CEjCEkVkC, CVkEkCEjC (i4-k). 

Proo/. Using congruence,  we ob ta in  the  resul t  f rom 

d(F(E2 V2 C), F*(CE 1C)) > 2. 

L ]~ MMA 6.11. The regular double chain II Tn does not contain any o/the/ollowing products 

as a subproduct, 

CEsCVkEkC, CEkVkCEjC ( j~k ) .  

Proo/. Using congruence,  we need on ly  exclude CE 1 C V 2 E 1 CX 1X 2 X a as a subproduc t .  

However ,  since 

d(F(E~CX1X~Xa) , F*(V2CEIC)) > 2 

for X1X~X3= VkEkC (k = 1, 2, 3), X 1 X  ~ = EkC (k = 1, 2), X I X 2 X  3 = E k VkC (k = 1,2), X 1 = 

C, we conclude b y  Theorem 6.4 t h a t  X 1 = E 3. Consequent ly ,  by  Theorem 6.4 a n d  L e m m a  

6.10 on ly  X z X  a = VaC remains  as a possibi l i ty .  However ,  using congruence,  we can  exclude  

this  b y  

d(F(E2 V2 C), F*(CE 1 V1C)) > 2. 

L ~ ~ M A 6.12. The regular double chain II Tn does not contain any o/the/ollowing products 

as a subproduct, 

CEjCE~C (j~=k). 

Proo/. Using congruence,  we need on ly  exclude W 3 W 2 W1CEICE2CU1 U2 U3 as a sub- 

p roduc t .  Since 

d(F(E~CU1 U2 U3), F*(CE1C)) > 2  
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for U1U~Ua=VkEkC ( k = l ,  2, 3), U1U~=EkC ( k = l ,  2), U1U~Ua=EkVkC ( k = l ,  2), and 

U 1 = C  is excluded by Lemmas 6.8, 6.9, we conclude by  Theorem 6.4 tha t  U 1= E3; ana- 

logously W 1 = E a. Since also 

d(F(E 2 CE 3 V a C), F*(CE 1CE a C) U F*(CE 1CE a Va C)) > 2, 

it follows by  Theorem 6.4 tha t  only U S = C and analogously W2 = C remains as a possi- 

bility. 

Repeating the argument  in both directions, we find tha t  I ITn - -CE1CE2C ~ is the 

only possibility left. However, this is also excluded, since 

4 

K(CE1CEzCEa) = ~/~> 2. 

L~MMA 6.13. The regular double chain H Tn does not contain any o/the/ollowing products 

as a subproduct, 

EjC 2m-1Vj, V]C2m-IE t (mEN). 

Proo/. Using congruence, we need only by  Theorem 6.4 exclude E 1 C 2m- 1 V1 E1 C2S-1 

X1X2X a with X 1 ~: C as a subproduct. 

I t  is easily proved by  means of Lcmma 6.16 below tha t  in order to have 

d( F( V1 E1C 2~-1X1X2Xa), F*(C 2m-1 El)) < 2, 

we must  have XI=~E1, X1X2Xa4 VkEkC (k=2,  3) and s<m. By Theorem 6.4 we must  

have XI{~(E1, V2, V3). 
For 1 <s  < m  it follows similarly tha t  in order to have 

d( F( C ~ 2 X1X~Xa), "~( C E 1 V1C2m-1 El) ) <2,  

we must  have X 14  V1, X 1X~ X a =~ Ek V~ C (k = 2, 3). By  Theorem 6.4 we must  have X 1 ~(V1, 

E~, Ea} in this case. 

For s = 1 it follows from 

d(F(V~), F*(CEI)) = 2, 

tha t  XI~:  V1, and hence necessarily X I = E  k (k=2,  3). By Lemma 6.10, it follows tha t  

X2~:C , and consequently by  Theorem 6.4 we must  have X1X2Xa=EkVkC (]c=2, 3). 

However, this possibility is excluded by  

d(F(Ek VkC), F*(CE~ V~C))>2 for kE(2, 3). 

LEMMA 6.14. The regular double chain II T~ does not contain any o/the/ollowingproducts 

as a subproduct, 

VjEjC2'n-I Ek V~ (]:~ ]c). 
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Proof. Using congruence, we need only by  Theorem 6.4 exclude 

C V2 E2 C ~m - 1 E1 V1 C ~ "  1X1 X2 Xa 

with X 1 =~ C as a subproduct .  

I t  is easily proved by  means of Lemma 6.16 below tha t  in order  to  have 

d(F(Ce'~-2 E2 V2C), F*(CE 1 V~ Ces-I XI X2X3)) <2,  

we must  have X 1 ~= V1, X 1 X 2 X 3 ~ E k Vk C (k = 2, 3), and fur ther  X 1 X 2 X 3 ~ Vk Ek C (k = 2, 3) 

in case s >~ m - 1. 

Similarly, in order to have 

d( F( V1E1C2m-I E2 V~C), F*(Ces- I X1X2X3) ) <2 ,  

we must  have X1X2X3:~ VkEkC (k=2 ,  3) in case s < m - 1 .  

Finally, XI=~E I by  Lemma 6.13, and X1X24EkC (k=2 ,  3) by  Lemmas  6.8, 6.9, 

6.12. 

Now the result follows by  Theorem 6.4. 

L E MM A 6.15. The regular double chain II Tn does not contain any o/the following products 

as a subproduct, 

EjVjC 2m-1VkEk (j,4k). 

Proof. Using congruence, we need only by Theorem 6.4 exclude 

CE~ V2 C 2"- 1 V1 El C2~- 1X1 X2 X3 

with X~ ~= C as a subproduet .  

I t  is easily proved by  means of L e m m a  6.16 below t h a t  in order  to  have 

d(F( V 1E 1C~'-IX1X~Xa), F*(C ~'-1 V~ E 2 C)) < 2, 

we mus t  have XI*E1, XIX2X3:# VkEkC (k=2, 3). Since XI~= V 1 by  Lemma 6.13, it 

follows by  Theorem 6.4 tha t  either X1X 2 = E~C (k = 2, 3) or X 1X2X a = E, VkC (k = 2, 3). 

However,  the first possibility is excluded by  Lemmas  6.8, 6.9, 6.10, and the second 

possibility is excluded by  Lemma 6.14. 

LEMMA 6.16. For rEN we have 

cr= 
1- i  ~ I = ~ - I  ~ -~,+i(�89 

wh~re 

a~=(1 + ~/3)~-- (1 - V'3y. 

Proof. S i n c e  a r + l  = 2~r d - 2 a ~ _ ~ ,  we obtain the formula by  induct ion on r .  

L ~ ~ MA 6 17. K( VI E~ C ~ V3 Ea C r) > 2/or all r ~ N. 
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Proo/. A computation of V1 E1C r V3 E3Cr by means of Lemma 6.16 shows that  the 

regular double chain "V 1 E 1C T Vs E3 C f is associated to the qua~lratic form 

r = ( - �89 ~ + ~r ~r,i  ~+ ~2r_1 -- i ( 5 ~  + 6~, ~_~ + 2~_~) ,  

- -  { ~ - -  ~r xr-1 - ~ -  1 + i ( 6 ~  + 4 ~  ~ - 1 ) ,  

3 2 2 i (6~ + 8:~, ~_1 + 2a2 1))" -~ ~ 6r - -  ~ ~r - - I  - -  ~ r -  1 - -  

Hence by furtber eomputationso 

/ ) = D ( q ~ ) =  ~ + 1 3 ~ _ ~ + 5 ~ _ 2  - 9 - 4  ~§ 

r 1, i) = 4 ~  + 6~T ~ . ~  + 2 ~ _ 1  + i(~ ~ + 3 ~  ~_1 + ~_1), 

D - 4/V((I) ( - 1, i)) = 9 .4  r. 

Consequently it follows by Theorem 6.3 B, since ~u =ju((I)) ~< I (I)( - 1, i) I, that  

~/ D ~ 9.4~ >2" 
K(V~ E1CTV3E3 C~) ~> N(r - 1, i)) 4 + N(~(---],i)) 

L E M MA 6.18. The regular double chain I] T~ does not contain any o] the ]ollowing products 

as a subproduvt, 

VjEiC 2m-lV~Ek, E~V~C~m-IE~V t (~k) .  

Proof. Using congruence, we need only by Theorem 6.4 exclude 

C Va Ea C 2m- ~ V~ E~ C :s- I X  1 X 2 X 3 

with X~ 4 C as a subproduct. 

I t  is easily proved by means of Lemma 6.16 that  in order to have 

d(F(CeS-2 X1 X2 Xa), F*(CEI V1C e'~- ~ Ez Va C)) < 2, 

we must have X~ 4: V~, X~ X~ 4: E~ C (k = 2, 3), X~ X~ X a 4: E~ V~ C (k = 2, 3); hence by Theo- 

rem 6.4, XI (~(V~, E2, Ea). 

Similarly, in order to have 

d(F(E~ V~ C 2m-~ El V1C), F*(C a~-~ Y~ Y2 Ya)) < 2, 

we must have Y14: Va, Y~Y24:E~C (]=1, 2), Y~Y~Y34:E~V~C (?'=1, 2), and further 

s~<m in case Y1 Y~ Ya= V~ExC. Using congruence, we conclude by Theorem 6.4 that  

X~ q(V~, E a, E~), and that  s ~ m  in case X~XeXa= V3EaC. 
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Repeat ing the  a rgument  above, we see t h a t  there exists a number  IEN, 14m, such 

tha t  

1-[ Tn ~ ... V1 E1 C 2l - l V3 Ea C21-i. 

However ,  this possibility is excluded by  L e m m a  6.I7. 

Combining Theorem 6.4 and  Lemmas  6.8, 6.9, 6.10, 6.11, 6.12, 6.14, 6.15, 6.18, we 

obtain  the following impor tan t  improvement  of Theorem 6.4. 

T H E O R E ~  6.5. Suppose that the regular double chain I I T  n satis/ies the preliminary 

restrictions o/Theorem 6.4. Then YI T n is congruent to 

c 2 m _  ~,_ 1 T ( 1 - 1 )  r / ~ ( -  1) p 2 r n o -  l r / l ( 0 )  r / ~ ( 0 ) / - ~ 2 m i -  1 
. . . . . .  ~ k  1 ~ J  •  �9 �9 �9 ~ k a  ~.s . , .  

where m~ E N for all r E Z and T~ ~) ~(~) /or each:r E Z is one of the three products o . .  . L k r  

El, V1E1, E1 Vr  

6.4. The main theorem on the minimum of quadratic forms 

TH~.ORE~ 6.6. Let O = ( A ,  B, 

D = D ( O )  4-0 and minimum # =#(O) .  

A . I /  

VIDII~<2, 

then ~P is equivalent to a multiple o/either 

G = ( - 3i, 3i, 1 - 2i), G = (3i, - 3i, 1 + 2i) 

or some GA, where 

GA(X, Y )= g ,~ (2 X-  Y, iY) ,  

the/orms gh being the C-minimal/orms o/chapter 5. 

B. Conversely 

specifically 

that 

C) be a complex quadratic/orm with discriminant 

(6.17) 

(6.17) holds /or all /orms equivalent to a multiple o/ G, G or some GA; 

1/i D(G)I//~(a) = V I D(0)]/~(0) = ]/~ V~,  

I/ ID(GA) I /~(G A) = I/~-- ~-~. 

C. There are 2 ~~ ]orms ~P, none o] which are equivalent to a multiple o/ any other, such 

I/I n ( r  I 1#(@) = 2. 

Proo/. To prove pa r t  A we notice, t ha t  (I) mus t  have both  roots  inequivalent  to  rea l  
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numbers, since otherwise ~/I D I//~> ~/~ by the Markoff-Hurwitz approximation theorem. 

Let I] Tn by any regular double chain associated to (I). By Theorem 6.3 A, we must have 

K(I ITn)  <~ V[ DI [t~ <2, 

and hence by Theorems 6.4, 6.5 either 

I. ]] T n = C V 1 E 1 V 1 CE a C V2 E2 V2 CEi  CVa Ea V a CE2, 

II T,~ = C V 1 E 1 V 1 CEe C V a E a V a CE 1 C V~ E 2 V 2 CE a, 

o r  

II. H T~ ~ II U=, where U~ E { V 1, E ,  C} for all n E Z. 

Case I. (The asymmetric case.) I t  follows by Example 6.3 that  �9 is equivalent to a 

multiple of G, G, respectively. Notice that  G, G are inequivaleut, since D(G)= 15 + 12i 

+ D(G) = • (15 - 12i). 

Case II. (The symmetric case.) Then (I) is equivalent to a form, where the roots ~, 

satisfy R e ~ = R e ~ = � 8 9  (el. chapter 4), hence (I) is equivalent to a multiple of a form F, 

where 

F ( X ,  Y ) = / ( 2 X :  y ,  iY ) ,  (6.18) 

where ] = (~, fl, 7) is a real form with (~(]) > 0 and having irrational roots. Notice that  F also 

satisfies (6.17), and that  D ( F ) =  -4~(/). 

If / is not C-equivalent to a multiple of some gA or hM, then ~/~(/)/~(/) ~>2 by Theorem 

5.3 A, hence either there exists (x0, Y0) E Z~, such that  

(O(/)/I/(Xo, Y0)[ > f [ D ( F )  I//~(F) = 2 ~(])//~(F),  

of there exists (xl, yl)EZ~, such that  

Consequently, either 

/ i x ' + Y ~  - i ) y 0 )  I ~(F) >21/(xo, yo)l = l]((l + i ) x o , ( l  §  = F ( ~ - ~ - ,  (1 

o r  

/~( F) >4]/(xl ,  Yl) I = I/(2xl, 2Yl) 1 = I I~(xl - iYl, - 2iYl) l , 

in contradiction to the definition of/~(F), since (ix o +y0)/(1 +i)EZ[i]. 

Suppose that  / ~ ch~ (c ~: 0)~ where (A1, A2; M1, M2) is any non-singular solution of 

equation (5.4) with A 1 < A~, M 1 <M s, and associated quintuple (~; ll, 12; m 1, me). Then 

F ~  CHM~ , where H ~ ( X ,  Y)  =hM~(2X -- Y,  iY ) .  
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I t  follows easily by  L e m m a  5.6, t h a t  in case e ~ 1, we have 

I Ms HM~(�89 - 1 + ll i), A1)] = AI]/16M~ - 8. 

Also, it follows by  Lemma 5.6 (vii) (ix), that, A1 and 1 - l l i  have a common divisor ~ (in 

Z[i]) with N(~) --- A1,  in particular (A1 - 1 + l 1 i)[~ E Z[i]; however, since N((A1 - 1 + 1 li)/~) 

= ( A ~ - 2 A I + I + l l 2 ) / A I = A 1 - 2 + ) t l = - I - 2 + I = 0  (rood4) by L e m m a  5.6 (vii), also 

( A  1 - 1 + 11 i)/(2~) E Z[i]. 

Consequently,  for M = M 2 and e = 1, we have 

~(MH~) < V1-6~ - S. (6.10) 

I n  case M = M  s and  e = - 1, we can prove (6.19) similarly, using t h a t  

]M2 HM,(�89 - 1 + (l~ - 4 A 0  i),  i ~ ) ]  = A , t " 1 6 ~ -  8. 

Finally, (6.19) is valid for M = 1, since 

H~(X, Y ) = h ~ ( 2 X -  Y, iY)=2(1 - i ) ( (1  +i)X  ~ - 2 X Y  + Y~). 

Using (5.7) and (6.19), we see t h a t  in case / ~  ch~ (and hence F,,, CHM), we have 

V]D(F)]//~(F) = V]DiMtt~)]/I~(MHM) = 2 V ~ / # ( M H ~ )  >~ 2. 

This completes the proof of par t  A. 

Part B. I t  follows from Example  6.4 tha t  

VID((~)II~(O) = ViD(G)I/~(G) = V i V a .  

Also it follows f rom (5.7) t ha t  

V t D(AeA) t = 2 V~(AgA) = 4A V4 - A -  3, 

hence to  prove B we need only show tha t  

~(�88 = A. (6.20) 

By  Lemma 5.6, the form 

�88 Y) = A X  ~ - (A - i(2A - l)) X Y  + ((A - ~)/4 + l - i(A - / / 2 ) )  y2 

= A(X  - �89 + iV~I(gA)) Y) (X - �89 + iV~(gA)) Y) 

has coefficients in Z[i], and it follows easily f rom Theorem 5.3 B b y  considering the  two 

cases Re (X/Y)  = �89 and Re (X/Y)  :i: �89 separately,  tha t  

�88 [ D(�88 I = AS - �88 ~< N(/~(�88 < A s = N(iAGA(1, 0)). 

This yields (6.20), since N(#(�88 Z. 
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Part C follows similarly from Theorem 5.3 C by considering forms F, where F ( X ,  Y )  = 

](2X - Y,  iY ) ,  and ] is any form with ~8(])/v(]) =2. 

6.5. The main theorem on the approximation constant 

TH~OREM 6.7. Let ~EC~Q(i). 

A . I /  

C(}) <2, (6.21) 

then ~ is equivalent to a root o] either G, G or some G A. 

B.  Conversely i] ~ is equivalent to a root o] G or G, then 

and i/ ~ is equivalent to a root el GA, then 

= V 4  - A 

C. There are 2% di]]erent equivalence classes o /~  such that O(~)=2. 

Remark.  Since no isolation theorem (like Theorem I, chapter I I  of [4] or Theorem 5.1) 

is available for complex forms, Theorem 6.7 cannot be deduced from Theorem 6.6 (cf. the 

proofs of Theorem III ,  chapter I I  of [4] or Theorem 5.4). 

Proo]. Suppose ~ ~ (~\q(i) with C(~)~< 2. Then ~ is inequivalent to a real number, since 

otherwise C(~)~> ]/5 by the theorem of Hurwitz ([19]). Hence by Theorem 2.2, ~:--~0 has 

a unique regular chain 

ch ~= T1To ... T~ ....  

Also by Theorem 2.6 

C($) =lim sup c} "), 

where c~ ~) for l ~ ] ~ 3  is given by (2.9), (2.10), (2.11). 

By putting 
~,+1 = - q(2~)/q(1 ~), 

we may rewrite the c~ ~) as follows, 

c(n)=  I~n+l --  ~n+l [, C(2 n , - -  [ ~ n l l -  ~ n l l ] ,  o$"n)---- [ (~n+l --  1) -1 - - ( ~ n + l  --  1)-1[ �9 

F r o m  

To T1... Tn = (qi~) 
q(e') f 

6 - 752903 Acta mathematica 134. Imprim~ le 30 Juillet 1975 
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we get by taking inverses and using Lemma 1.1 (iv), tha t  

( q n, _pin,] 
_ q(.)  p(n) ] = + e .  T . . . .  T 1 T 0. 

Consequently for any h, kEN(k~ n),  we have 

I F(T,+I. . .  T,+h) if e, = _~ 1 
~,+l = [Tn+IT,+~..-]E (F*(T~+, ... T,+h) if e~= _+i ' 

/ F ( T , . . .  T._k) if en= __+i 

~n+l = - -  q(2n)/q(~ n) e [ ~u T~_k) if sn = +_ 1 

:Because of the resemblance between the formulae for 

C([ToT 1... T~ ...]) and K(HTn),  

it is obvious, tha t  the content of section 6.3 can be modified to yield the following result: 

If  C(~)<2, then either 

I. eh ~-- T o ... TaGV1E1 VICEaCV2E~ V~CE1CVaE a VaCEa, 

ch ~-~T o ... TaGV1E 1 V1CE~CVaE a VaCE1CV2E ~ V~CEa, 

o r  

II .  ~ ,,~ "~ = [ U o U,. . .  U,...], where U, e { V~, E,, C} for all n e N 0. 

Case I. (The asymmetric case.) By Example 6.3 and Theorems 2.2, 2.4, ~ is necessarily 

equivalent to a root of either G or G. Conversely if ~ is equivalent to a root of either G or G, 

then by Theorem 2.7 and Theorem 6.6, we have 

Case II .  (The symmetric case.) Then (of. chapter 4) necessarily ~,~�89162 where 

e R \ q .  For convenience we put  

Ca(l(1 +i~))=lira sup (]qL ]t(1 +i~)q-pl)-l, 

the lim sup being extended over all p, q E Z[i] (q ~ 0) with Re (p/q)=�89 

Similarly we put  

C~(t(1 +is)) - - l i ra  sup ([ql I�89 I +iot)q-p[ )-', 

the lira sup being extended over all p, q E Z[i] (q + 0) with Re (p/q) ~ 1 
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We claim that  for any zcER~Q, we have 

C1(�89 +izt))=d(a), (6.22) 

where d(g) is the C.approximation constant of a, and 

c~(�89 +i~)) <2. (6.23) 

Suppose first that  ~/~ E Q0 (cf. section 4.2), then 

�89 +i(zt/~)) = (~ +~zi)/(2Q), 

where 

N(~ +zd) =7t ~ +~2 ~ 2 (rood 4), N(2Q) =2 .2~  2. 

By putting p = (~ +~zi)/(1 - i )  and q =~(1 +i), we obtain, since gcd (re, ~)= 1, that  

p, q E Z[i], gcd (p, q)= 1, �89 +i(:t/e) ) = p/q. 

Also 

([q[ [1(1"~$6C)q--~91)'1=([~1 I{Z~--~?~l)--l" 

Suppose next that  s/Q E Q1, then 

�89 + i(~r/~)) = (e + zd)/(2e), 

where 

N(Q +~i) =~2 +Q2 ~ 1 (mod 4), N(2~) =4~ z. 

By putting p =~ +~i  and q =2Q, we obtain, since god (zt, ~) = 1, that  

p, qe Z[i], god (p, q)=1, �89 + (~r]~))=p]q. 

Also 

(Iql [l(l +i~)q-Pl) - l=�89 1~-7 t [ )  -1. 

Altogether this proves (6.22). 

If Re (p/q)#�89 and p, qEZ[i], then obviouslyp/q=a+ib with a, b~q, and ]a- �89 

1/(2[q[2). This proves (6.23). 

I t  follows by (6.22) ~hat if ~ ~ ~(1 +in) has C($) <2, then necessarily d(a) <2. By Theo- 

rem 5.4 A, ~ must be a root of some gA or hM, hence �89 +in) must be a root of some GA 

or HM. What  remains to be proved of parts A and B follows thus by Theorems 2.6 and 6.6. 

I t  follows from (6.22), (6.23) and Theorem 5.4 C that  C(�89 +in)) =2 for any ~ with 

d(:r =2. This proves part C. 
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