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1. Problem and main results

The classical work of R. Courant and H. Lewy has initiated the study of minimal
surfaces with free or at least partially free boundaries on prescribed, not necessarily planar
surfaces. During the last decade, several authors including S. Hildebrandt, W. Jager,
J. C. C. Nitsche, K. H. Goldhorn, F. P. Harth and J. E. Taylor have investigated the
boundary behavior of a minimal surface on its free boundary; see in particular [6], [11],
[12], [18], [17], [19]. A survey of the results up to 1975, with an appended bibliography
can be found in chapter VI.2, pp. 447-474, and on p. 707 of [18]}.

Let us consider a typical problem. Given a configuration in Euclidean 3-space R®
consisting of & smooth 2-dimensional surface § and of a smooth Jordan arc I"' having its
end points P; and P; on §, but no other points in common with §. We introduce the class
€ =G(I, §) of all surfaces x =z(w) = (x}(u, v), 23(u, v), ¥3u, v)) in C°N H}(B, R?), w=u +v,
which are parametrized over the semi-disc B={w; |w| <1, v>0} and are bounded by the
configuration <TI", §) in the following sense:

Denote by C the closed circular arc {w; |w| =1, v>0} and by I the open interval
{w; |»| <1, v=0}. Moreover, fix a third point P, on T, different from P, and P,. Let x,
and z; be the Ly-traces (;‘boundary values”) of € H}(B, R®) on C and I, respectively. Then,
for any surface x in € we assume that z, maps C continuously and in weakly monotonic
manner onto I" such that xo(—1)=P,, xc(l) =P, and x(t) = Py, while x,(w) € § almost every-
where on 1.

We look for a surface x(w) which minimizes the Dirichlet integral

D(x)= J‘LiV:vl'dudv (1.1)

in the class G(T, §). It is well known that this variational problem, to be denoted by

DT, §), always has at least one solution x€C. The position vector z is real analytic in

17 — 792908 Acta mathematica 143, Imprimé le 28 Décembre 1979,



252 8. HILDEBRANDT AND J. C. C. NITSCHE

B and satisfies there the conditions
Az =0 (1.2)
and
|2,]2 =|%|2 @ 2,=0. (1.3)

In other words, every solution of P(I", §) is a minimal surface which is bounded in a weak
sense by the configuration <{I', §). It is a matter of record that z(w) also minimizes the

area functional

A(x)= ff |2, A 2,| dudo
B

in the class G(T", §); see [6], [16].

There exists satisfactory information concerning the boundary behavior of a solution z
of P(I', §) near the “fixed”” boundary; see [18], chapter V.2.1, pp. 281-325. In particular,
if T is a regular arc of class C**% s=1,2, ...,O.v<ac<1, then z€C***(BU C,, R?) where
Cy=int C={w; |w| =1, v>0}. Howe;ver, the investigations regarding the behavior of a
solution surface near the free part of its boundary and the nature of its trace have not
yet reached a final stage. For the present, the best result is the following ([17], [19]):

Every solution of D(T', §) belongs to the class C°***(BU I, R®), provided that § is a
regular surface of class C**%, s=1, 2, ..., 0<a<1, without boundary and satisfies a local
chord-arc condition.

That is, § can be for instance a sphere, a torus or a plane, but the theorem generally
does not apply to surfaces § with boundary. A typical example of such a surface is the
finite portion of a plane. On the other hand, these are just the examples with which the
experimenter is often confronted; cf. figures 1-3(1). It is the aim of the present paper to
supply a regularity theorem for the solutions of P(T", §) yielding regularity up to the free
boundary even in cases when the boundary of the supporting surface § is non-void. For
this we shall assume that § is a part of a larger complete surface J without boundary which
is obtained from J by finitely many cuts along closed and mutually non-intersecting
Jordan curves I'}, 'y, ..., I'y. As examples we can consider the finite simply-connected
portion of a plane, or a hemi-sphere § as part of a sphere cut out by an equator Iy, or a
triply-connected plane domain § which is cut from a plane J by three closed curves
I';,, T, and Ty (figures 1, 2). Our approach consists in treating JXT', §) as a Signorini
problem, that is, as a variational problem with a ‘“thin obstacle” on the supporting sur-

(1) In experiments with the configuration of figure 2 one may observe occasionally also a three-
sheeted surface system having two free traces which follow either side of ‘hole”, as well as a branch line
along which the three sheets meet at an angle of 120°. Such an aggregate of minimal surfaces is not
a solution of problem D(F, $), but can be transformed into one if one of the surfaces is broken.
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Fig. 1.

face J, the obstacle being formed by the curves Iy, I',, ..., I'y. For scalar equations the
Signorini problem has been studied by many authors; cf. [3] and [4] for a bibliography.
We know that under natural conditions on the variational problem there exist Lipschitz
continuous solutions. The results include the case of harmonic functions and that of
non-parametric minimal surfaces. In two recent papers [3], [4], J. Frehse found an im-
portant improvement. By a remarkable combination of Widman’s hole filling technique
and Moser’s iteration procedure he proved that a Lipschitz continuous solution of a
scalar Signorini problem is in fact of class C' up to the thin obstacle. C. Gerhardt [5] has
considered the problem for non-parametric minimal surfaces. The results mentioned do
not apply to the problems considered in the present paper, however, since we deal with
parametric minimal surfaces, that is, with systems of differential equations. We shall
prove an analogue to Frehse’s result proceeding in four steps:

First, we prove that every solution z(w) of P(I', §) satisfies a Morrey condition on
By I. From this it follows that z is Holder continuous in B U I. This fact is already
contained in [11], {16], but for the sake of readability we include a self contained proof.
We then apply the technique of [10] to derive Ly,-bounds for the second derivatives of =
on every compact subset of BU I. The crucial step is the third one. Introducing new
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coordinates in R3 near §, which are chosen in an appropriate way, we are able to split off
from the variational inequality for PD(I', §) a boundary value problem for only two func-
tions which can be treated by potential theoretic means. The derivatives of the third co-
ordinate function are connected with the derivatives of the two other coordinate functions
via certain conformality relations. In this way it will be seen that x belongs to the
regularity class C1. In the final step we discuss the differential geometric behavior of the
trace curve z(u,0), u€1, along which the minimal surface z intersects the supporting
surface §. Adapting an idea from [8], [9], [15] and using the well known asymptotic formula
due to Hartman and Wintner [7], we obtain an asymptotic representation for x, on I
which in turn yields the desired properties of the trace. We find that the trace is a regular
Ct-curve except in the (isolated) branch points of odd order where the non-oriented
tangent is still continuous, but the tangent direction jumps by 180 degrees. Both pheno-
mena occur in the experiments, as can be seen from figures 1 and 3.

Nevertheless, it is interesting to describe conditions on I' and § which exclude the
appearance of cusps in the trace. This matter will be discussed in a forthcoming paper
of the authors.

An explicit example of a minimal surface whose trace has a cusp on the boundary of
§ can be obtained from Henneberg’s surface ([18], § 154):

2! = 2 sinh % cos v — § sinh 3u cos 3v
x? = 2 cosh 2u cos 2v —2
x® = 2 sinh w sin v + § sinh 3u sin 3v.

This surface intersects the plane 2®=0 in Neill’s parabola 9(z!)2 = (22)3. Figures 4, 5 depict
two views of parts of Henneberg’s surface.(!) The part in figure 4 corresponds to the
domain {w; |w| <0.64, v>0} with the square |z!| <1, |22—1| <1 in the plane 2®=0 as
supporting surface §. The z%-axis is a line of symmetry for the surface, and the arc
I—image of {w; |w| =0.64, v>0}—has a closed convex curve as its projection onto the
(22, 23)-plane. In view of a new uniqueness theorem, to be published elsewhere, the surface
is, in fact, a solution of problem P(I, §). For small values of the variable w we have

expansions
2 =Re {—-w*+..}, 22=Re {4uw?+..}, 2*=Re {—diw?+..} (1.4)

from which it is seen that w =0 is a branch point of order one on the minimal surface.
We wish to point out that our technique works as well in the case of minimal surfaces

(') Figure 5 was kindly prepared by Dr. I. Haubitz at the Rechenzentrum of the University
Wiirzburg.
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Fig. 4.

which may assume a completely free boundary on a surface §. A typical example is
shown in figure 6 where § has the shape of a distorted napkin-ring.

Finally, we mention that the actual minimum property of a solution of P(T’, §) is
only used in the first step, while the other steps of the regularity proof rest merely on
the assumption that x is a stationary minimal surface bounded by the configuration <T', §).

2. Growth of the Dirichlet integral of a solution of D(T', §)
Definition. A set § in R? is said to satisfy a (local) chord-arc condition if there exist
constants M >1 and 4 >0 such that any two points z, and z; on § of distance |z,—x,| <4
can be connected in § by an arc whose length is bounded by M|z,—xz,]|.
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It is not difficult to see that every compact regular C'.surface, with or without
boundary, satisfies a chord-arc condition. On the other hand, an unbounded surface will
in general not satisfy such a condition, even if it is of the regularity class C®.

The aim of the present section is the proof of the following result:

THEOREM 1. Suppose that x=x(u, v) is a solution of the problem P(T', §). Assume that
S satisfies a chord-arc condition with constants M and 8, and set e =inf {D(z); z€&(T, §)}>0.
Let d be a number in the interval 0<d<l, and Z,={w€B; |w|<1—-d}, B,(w,)=
{w; |w—mwy| <r}. For every wy€Z, and r in 0<r<oco we have

f f |Vl dudv < (2r/d)* Diw) (2.1)
BN B, (we)

where
wu =min {1/(1+M?), 62/(re)}. (2.2)

It follows that x(u, v)€EC***(Z,, R3).

Proof. A solution x of P(T', §) is harmonic in B and satisfies there the conformality
relations (1.3), as well as the condition

D(z) =e. (2.3)
For any point wy€B we define

O(r, w,) = ffans . )IVx|’dudv. (2.4)

We shall prove first that, given any d€(0, 1), the ineguality
D(r, wo) < (r/d)rD(d,.wp) (2.5)
holds for all r€[0, d] and for every w, €[ satisfying |wy|<1-d.
For this purpose we fix an arbitrary w,€I with |wy| <1—d and introduce the
abbreviations B,= B,(w,), S,=B0 B,(w,), ®(r)=(r, w,). Introducing polar coordinates
r, 0 around w,, we write z(w) =z(w,+re'’) =&(r, §). Then

r n 1
o~ | { [ [|5,(e,0) [+ 5 léote 0)|’] ede} do. (2.6)
There is a 1-dimensional null set } such that
fﬂlfr(’»O)lzda <oo for r€(0,d)-M
0

and that the absolutely continuous function ®(r) satisfies

)= [ [rler. 008+ e o) as

r
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for r€(0,d)— M. In particular, the limits

y(7) =0-1>inn-}0§(r’ 0), @(r)= GEnmiOE(r, 6)

exist for r€(0,d)—N. On account of (1.3), wé have r|&,| =&, & -£5=0, so that

&)= (2/r)f”|§g(r,0)|2d0 for r€(0,d)— M. (2.9)
0
Consider an arbitrary r€[0, d]—H for which
f | otr, 0)dO < 8. 2.8)
o
Since
7 E] 1/2
s -zl < [ leatr.0)do< Va] [ Ieatr 0rpa0] 29)
we see that

[#1(r) ~ma(r) | < 6.
Since the supporting surface § satisfies a chord-arc condition, there exists a rectifiable arc
y={n(s); 0<s<i(y)} on § which connects the points z,(r), z,(r) and whose length is subject
to the inequality
Uy) < May(r) ~2y(r)|. (2.10)
If s is chosen as parameter of the arc length on y, then |%’(s)| =1 almost everywhere on
[0, i{»)]. Introducing the reparametrization of y,

£6)=7 (2;_";(7)), n<f<2m,

we obtain
[£6(6)| = const = i(y)/ a.e. on [m, 2],
and also

25
Wy)= f |26l do.
This implies that

2n 27 2
n f Lot do = ( f |c,|do) ey @11)
From (2.9)-(2.11) it can be concluded that
2n £
[T1eapar<ae [lesrorpras. @.12)
% 0

Consider the harmonic function h(w)=~h(u, v} on B, with the boundary value function
H(8) =h(w,+re'?) which is defined by

&(r,0) 0<o<m,
H({G)= for

£©6) n<0< 2.
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The function H(f) is absolutely continuous on [0, 27x] and periodic: H(0)=H(2=), and,
by (2.12),

27 7
J. |Hg|2d0<(1+M2)f |£6(r,0)12d0. (2.13)
0 0
Furthermore,
27
J‘f |Vh|2dudv<f | Hg(0)]2d0 (2.14)
B, 0
(cf. [14], Lemma 9.4.2, p. 375). Combining this inequality with (2.7) and (2.13), we find
j f | VAP dudy< (1 + M?) (r[2) D' (). (2.15)
BI'

We now consider the function y=y(w, v)=y(w) on B U B, which is defined as x(w) for
w€ B— B, and as k(w) for w€ B,. Clearly, y(w) is of the regularity class C°n H on BU B,.
Let 7 be the homeomorphism of B onto B U B, which maps B conformally onto BU B,
leaving the points 1, —1, ¢ fixed. Then, the composition z=yoz is in §(I', §), that is, 2
is a comparison surface for the minimum problem (T, §) so that

ff | Ve |?dudv < ff | Vz[Pdud. (2.18)
B B

By virtue of the conformal invariance of the Dirichlet integral,

ff | Vz[*dudv= ff | Vy|2dudo. (2.17)
B BUB,

Because of the definition of y, (2.16) and (2.17) imply that

(’D(r)=ff | Va]Pdudv< ff | VA2 du dv. (2.18)
s’ a"
From (2.15) and (2.18) we derive the relation

O(r) < H(1 + M) rd'(r) (2.19)

for every r€(0,d)— N for which (2.8) is satisfied.
On the other hand, if for some r€(0,d)— M

f " £6(r,6) P> ¥, (2.20)
0
then, trivially,
O(r)< Dx)=e<emd? fﬂlfg(r, 6)|*ds.
0

Hence, (2.7) yields the estimate
O(r) < dmed=2rd'(r). (2.21)
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Defining u as in (2.2), we finally obtain the estimate
2ud(r) <r®'(r) for r€(0,d)—MN.
It follows by integration that

D(r) < (r/d)26D(d) or r€[0,d],
thus (2.5) is proved.

259

(2.22)

(2.23)

Next, we choose w,=1u, -+, With v,=> R and |wy| <1— R for some R€(0, 1). Then we

have (cf. [14], Lemma 4.9.2, p. 375)
27 )
O(r, wy) = J:f | Va2 dudv < f |&6(r,0)|2d0 =3r®’(7)
B,(we) 0

for almost all r€(0, R), so that
O(r, wy) < (r/R)2®(R, w,) {for r€[0, R].

(2.24)

(2.25)

Finally, let w, be an arbitrary point in Z,, for some d€(0, 1), ie., w,€ B and,

|wy| <1—d. We distinguish two cases.

Case 1. d[2 <v,.
With the choice R=d/2, (2.25) implies that
®(r, wy) < (2r/d2D(x) for 0<r<d/2.
Case 2. 0<vy<d/2.
(a) If vy<r<d/2, then B, (wy)< By (u,). Then
D(r, wy) < D2, u,).
On the other hand, (2.5) implies that

D(2r, uy) < (2r/d)2rD(d, u,),
and therefore,
O(r, wy) < (2r/d)2+ D(2).
In particular, we note that
D(vo, wy) < (2v9/d)*+ D(x).
(b) If 0<r<w,, we may apply (2.25) with R=1v, to obtain
B(r, w) < (r/ve)* D(vy, wy)
and, combining this with (2.28)
O(r, wo) < (r/vo)*(20/d)* D(x)
< (2r[d)*# (v/vy)2~# D(x)
<(2r/d)?# D(x).

(2.26)

2.27)

(2.28)
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Thus inequality (2.27) is established also for the subcase 2(b).
The above discussion of the two cases 1 and 2 yields that

O(r, wy) < 2r/d)* D(z) for 0<r<d[2 (2.29)

and for all wy€Z,. This in turn implies the estimate (2.1).

It is a consequence of the Morrey condition (2.1) that z(u, v) satisfies a uniform
Hélder condition in Z, with exponent u (the proof is similar to the proof of Theorem
3.6.2 on p. 79 of [14]).

Theorem 1 is proved.

3. L,-estimates of the second derivatives up to the free boundary

We repeat some notations: w=u+iv=(u,v), B={w; |w| <1, v>0}, I={w; || <1,
v=0}, Z;={w€ B; |w| <1—d}, B,(wy)={w; |w—w,| <r}, 8,(wo)=BN B,(w,).

The first aim of this section is the proof of the fact that every solution x=x(u, v) of
DT, §) belongs to the regularity class Hj on Z, for every d<1. For this purpose it is
clearly sufficient to prove that for every w,€1, there is a number ;>0 such that the
second derivatives V3z of z are square integrable en 8, (w,).

Suppose now that § satisfies a chord-arc condition, and is a part of a regular C3-
surface J in R® without boundary which is cut out of J by finitely many closed regular
non-intersecting Jordan curves I';, T'y, ..., [y of class C3. In the previous section 2 it has
been shown that z(u, v) satisfies & Hélder condition on Z, for every d <1. Therefore, the
following discussion can be carried out locally, that is, around small pieces of § which
can be flattened.

Consider an arbitrary point wy€Z, and set z,==(w,). Then, z,€ §. If 2, ¢ U/_, T, that
is, z,€int §, we may find a number p>0 such that the image of {w€I: |w—w,| <g}
under the mapping by the vector z(u, v) is contained in int §. Hence, we can infer that x
belongs to the regularity class C? on S, (w,) for every r,€(0, g); see [17].

In view of the above, it suffices to consider the case that €08 =T +Ty+...4+y.
Assume that z, is a point on [',. We shall linearize the boundary conditions by ““flattening”
the supporting surface §, and by “straightening” the obstacle curve I';. This is done in
the following way:

There is a 3-dimensional neighborhood U(x,) of x,, and a C*-diffeomorphism g: z—+y
of R3 onto itself mapping z, onto y, and U(z,) onto the open ball Kx(y,)={yER?;
ly —yo| < R}, such that INn U(z,) is mapped onto {y; ¥*=0, |y —yo| <R}, $ N U(x,) ismapped
onto the convex set Cp={y€RS; 1 >0, y*=0, |y —y,| <R} and I, N U(x,) onto the interval
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{5 ' =4*=0, |y—y,| <R} on he y®-axis. Since x(, v) is continuous on BU I, there isa
0>0 such that S,(w,) is mapped by z(u,v) into Ul(x,).

Let kb be the inverse of g. The transformed surface with the position vector y(u, v) =
g(x(u, v)) is connected with the minimal surface by virtue of the relation

z(u’ ’U) = h((?l(u, ’U))
from which it follows that

Ve=H@)Vy, V= (a% a%) H(y)=2—z.
Therefore
|Vx|2 = Ixul'g'I' |xv|2 =Y GO Yu+Ys- G(’?‘/)ym
where we have set
Gy) =H'(y)- H@y) = 9nly)), 1<j, k<3,

Let us introduce the new functional

D.(z) = ff {zu . G(z) 2yt 2y g(z) zv} dudv.

B

Then,
D(z) = D*(y).
Let &, be a positive number, and ¢ =¢(u, v)={p'(», v), ¢*u,v), ¢3(u, v)} a Ri-valued
function on B with the property that
z,=h(y —ep) €T, §) for all ¢ in the interval (0, &y). (3.1)

Then, '

D(z,) = D*(y —eg),
and the minimum property of x implies that

D(x) < D(z;) for 0<e<aeg,.

Consequently,

D*y) < D*y—egp) for 0<e<e,, 3.2)
and, therefore,

lim * [D*(y - ep) — D*()]> 0.
e>+0 €

If @(u,v) is essentially bounded and of the .class H} on B, this limit exists, and is
—38D*(y, ¢) where 8D*(y, ¢) is the first variation of the .functional D* in y, in direc-
tion of the vector field ¢. Thus we infer that
— 1
Haym(y) [+ yigtldudv< — Qf B%ﬂ‘ ) {whi+ ylyis} ' dudv (3.3)
for all admissible test functions g(u, v), that is, for vector functions p € H3N L (B, R?)
which satisfy (3.1) for some g, =¢4(p)>0.
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Since z(u, v) is harmonic in B, we know that y(u, v) is of class C3(B, R3). By virtue
of the fundamental lemma of the caleculus of variations, we infer from (3.2) and (3.3)
that y(u, v) satisfies in B the Euler equations

Ay +Th(y) {yigi+ ylys} =0 (3.4)
where

109, ¢g5 o9
The conformality relations (1.3) are transformed into

Yo GNY =Y 9@ Y0 Yu- GY)Y,=0. (3.5)
Now we choose some r€(0, p/2), and some “‘friend” 5 =n(w) in CZ(By(w,), R?) satisfying
n(w)=1 for w€ B,(wy), and |Vy| <kfr, 0<n<1 on C. Moreover, let us denote by A, the
tangential difference quotient which, for a function y(w)=vy(u, v}, is defined by

1
(Ary) (w)= A [w(u+h,v)~y(u,v)]
1
=2 [y(w + h) — p(w)]
where 20, and {=(1, 0).
We claim that
¢ = "‘A_h{nsAhy} (3.6)
is an admissible test function for (3.3) provided that |k| is sufficiently small. In fact,
@ is clearly in L, N H3(B, R3) for small |A], and

y(w) — ep(w) = y(w) +eA_p{n*(w) (Any) ()} = 4 y(w+hL) + Agy(w —h) +[1~ 2, — Aa] y(w)
where
Ay = (/B n*(w), Ay = (e/h¥)n*(w—h).
Hence, for 0<e<h?/2, we have that
0< i<}

Thus we infer that, for every w€ BU I, the difference y(w) —ep(w) is & convex combination
of the three points y(w-+hS), y{w), y(w—AL).

Since n(w) =0 for jw—w,| > 2r, we get A,(w)=0 and Ay(w) =0 for |w—w,| >2r+ |A|.
Therefore,

y(w)—ep(w) =y(w) for |w—wy|>2r+|h|.

If [w—w,| <2r+|h|, we obtain |wth{—w,) <2r+2]h|. Hence, for |h]<g/2—r and
|w—w,| <2r+ |k}, it is seen that w and wth{ are in S,(w,), and, therefore, z(w) and
z(w-+he) are in U(z,). Thus, the points y(w) and y(w+hl) are contained in C, provided
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that w€I and |w—we|<2r+ |h|, so that also y(w)—ep(w)€ Cg, since Cy is a convex set.
We note that §N U(x,)=k(Cz). Thus we have proved that

hy(w) —ep(w)]€S for w€Il and 0<e<h?2

provided that |h| <g/2—7.

Now it follows immediately that the test function ¢ defined in (3.6) will satisfy (3.1)
for gy=h%2. It follows that ¢ is admissible in the variational inequality (3.3). From this
point on, we may proceed as in [10], section 7. Inserting (3.6) into (3.3), and choosing

r>0 sufficiently small, we obtain an estimate of the form
J:f 72| VAyfPdudv<c (3.7)
B

with a bound ¢ independent of » as A—0. The main difficulty in deriving (3.7) consists in

proving an estimate of the type
ff 72| Vy[*| Apy 2 dudv < e(r) ff 7 {|VA,y[*dudv+ c*(r) (3.8)
B B

where &(r) and c*(r) are numbers independent of r such that &(r)—0, ¢*(r)—>oc as r—0
(cf. [10], inequality (7.9), p. 66). The proof of (3.8) can be based on a reproducing property
for the Morrey norm due to Morrey [14] (cf. Lemma 5.4.1, p. 144). The essential ingredient
is the growth property (2.1) of the Dirichlet integral of x proved in section 2 which
implies a similar property for the Dirichlet integral of y, taking into account that

|Va|? =y, G@)9u 9, GO)Y,
and that the matrix § is positive definite. For A—0, the estimate (3.7) implies that

ffnn’IVyuI’dudv< c. (3.9)

Hence y,, and y,, are in L, on 8,(w,) for sufficiently small  >0. Furthermore, (3.5), (3.8),
and (3.9) yield the estimate

J-f 7?|Vy|* dudv< ¢, (3.10)
B

Solving equation (3.4) for y,, and using (3.9), (3.10), we finally obtain

” 7* | Y P dudv< c”s (3.11)
B

Thus we infer that V2 is in L, on S,(w,), for sufficiently small r>0. Since x(w) =h{y(w)),
the chain rule and Vy€L,, V2y€L, on 8,(w,) imply that also V2x is in L, on S,(w,).
For the details of the proof, the reader is referred to [10], sections 2, 6, and 7.
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Hence we have proved that x€H3(Z,, R®) for every d<1. By virtue of Sobolev’s
lemma, also x€H}(Z,, R?) for every p<co and: each d<l. Let I,={w€l; |w|<d}. A
well known imbedding theorem (cf. [14], Theorem .3.4.5, p. 76) implies that z, and z,
have an L,-trace on I, Analogously, y,, y,€Ly(I;, R?) for d<1. If we perform in (3.3) a
partial integration, and take into account (3.4) as well as the regularity results, which
were stated before, we arrive at the inequality

f“ )y/k(y)yiw"dw 0, (3.12)
e,

where I (wy) =10 By(wy)={w€I; |w—wy| <g} and wy€I, and p(w)=(p'(w), p*(w), g*(w))
is an arbitrary admissible test vector of the class CX(B,(w,), R?).

By our construction, ¢? is free on I, (w,), while ¢! is free only on the open part
- {w € I(w,); y'(w)>0}, and @* has to be zero on I,(w,). Thus we conclude from (3.12) that

90 yh =0 a.e. on I(w,)N {y*(w)>0},

(3.13)
9a¥)¥ =0 sue. on Iuw).

Now, that we have proved that z(u, v) is in H}(Z,, R?), we observe that it suffices to
assume that ¢ is a C2-diffeomorphism to obtain (3.4), (3.5), and (3.13). Then, we have the
following:

THEOREM 2. Suppose that x=2x(u, v) is o solution of D(I', §) where § satisfies a
chord-arc condition and is a part of a regular C3-surface J in R3 without boundary which is
cut out of J by finitely many, closed, regular, non-intersecting Jordan curves 'y, ..., 'y of
the class C3. Then, x(u, v) is in H3N HA(Z4, R3) for each d <1 and every p < oo, and x, and z,
have an L,-trace on every compact subinterval of 1.

Let wy€1, and xy=x(w,) €S, and suppose that U(x,) ts mapped into a neighborhood
of the origin by a C3-diffeomorphism g: U(xy)—> V(0) which maps TN U(x,) into the plane
{y €ER3: y* =0} such that g(x,)=0. If 2, €L, for some k, we assume in addition that g maps
[N U(z,) into the y*-axis, and SN U(x,) into the half plane {y ER3; y1 >0, y3=0}. Finally,
let >0 be so small that x(u,v) maps S,(w,) tnto U(xy). Then, y(u, v)=g(x(u, v)) is in
C2(8,(wp), BR®) as well as in HEﬂH},(So(wo), R3) for each p€(l, o°), and satisfies (3.4) and
(8.5) on S,(w,). Moreover the normal derivative y, has an Ly-trace on I (wy) ={w€ I; |w —w,| <
0}, and satisfies the following boundary conditions:

9n(¥)ys =0 a.e. on I (wy)N {y'(w)>0}
9:(¥)yh =0 a.e. on I(w,) (3.14)
=0 on I ,(wp). '
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4. Continuity of the derivatives at the free boundary

Let wy, %y, @, and g be chosen as in Theorem 2, and let h be the inverse of g. To
simplify the boundary conditions (3.14), we now choose the diffeomorphism z=~h(y) in a
special way. Consider a Gauss representation

HE m) = (B1E, m), (&, n), 3(E, m)),
|&]2+ |n|2<R2, of a piece TN U(x,) of T around x,, by a C3-function #(¢, 7). Set

E =t F=t-t, G=|t]2
and let
tg/\tq

n=
[téf\tﬂ'

be the associated unit normal vector on J. Moreover, set

W =|t;At,| =VEG—F?,

and
L=—t€-n5 =n-t€5
M= '—#(te"n,’+t”"ﬂ£) =n't£,’
N=-t,n, =N-ly,

The Weingarten equations are
ng= Wli{(FM— GL)t£+ (FL— EM)t”}
Ny = Wl—z {(FN—-GM)t;+ (FM — EN)t,}.

We may choose £, 7 as orthogonal coordinates on J, that is, ¥ =0 and in such a way that
the part I, 0 U(x,) of the “obstacle curve” I'y on J is represented by {&=0}, while the
“admissible domain” §0 U(x,) on JN U(x,) is described by {£>0}.
Set
y'=§ y=n 9= y=0"99)
and define z=h(y) by
x =&, n) +{n(é, ).

Then, the matrix elements

w=22
InlY ayjayk
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of G(y)=H"(y)H(y), H(y)=0h/2y, are computed as

O = |hg[? = B—20L+ 32| ne |

G2z = | by|2 = G—20N + (2| n, |

g3 = || =|n]* =1

Gro=0ga =hg hy=F—-20M +{%n;-n,
Grs=9n=hg-hy=t;n+ing-n=0
Jas = Gs2 =y by =ty n+Eny-n=0.

In view of the relation F =0 and of the Weingarten equations, we find

o]
M* N”}

911=E—2CL+52{L2 Mz}

7
LM MN}
=gn

922=G—2CN+4'2{

e
g33=1, G13=9u1=0, gs3=¢5=0.

J12= ‘2€M+C2{

We see that {=0 lies on TN U(x,), and that
E(&,m) U
G(&,7m,0)= Y G 0],
0 0 1

where E(&, 7)+0, and G(&, %)+0, since W2=EG@=+0. Hence, the boundary conditions
(3.14) reduce to
£, =0 a.e. on I,(w,)N {&(w)>0}
7, =0 a.e. on I (w,) (4.1)
=0 on I (w,)

for the transformed minimal surface‘
y(u’ v) = h(x(u, U)) = (E(u’ ’D), 77(%, v)9 C(u’ 'U)).
Furthermore,
Ay'= —Th(y) {vivi+yiyl} in Sy(w,)
for 1<I<3, and |Vy|2€L, on S,(w,), for each p€(0,1). Thus, we obtain

An€L,(S,(wo), R), 7,=0o0n I w,) for each p€(l, o) 4.2)
and
AL €L,(S,(w,), R), {=0on I(w,) foreach p€(l, o). 4.3)
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Well known potential-theoretic results yield that %(x, v) and (%, v) are in Hz on S,{w;)
for each r€(0, g), and every p€(l, o). Then we infer from Sobolev’s embedding theorem
that 9(u, v) and (%, v) are of the regularity class C1*%(S,(w,), R) for each a€(0, 1), and
0<r<p.

We still need an information about the first derivatives of &(u, »), however. We

know that
AZEL,(S,(w,), R) for all p€(1, co)
and that
£=0on Ij(w,), &=0on I} (w,),
where
Lo(wy) = {we I (wy), Ew)=0}, I (we) = I(wy)— Iy(uwy).

While it seems to be impossible to draw any conclusions from these relations, we can
fortunately still exploit the conformality relations (3.5) which can be written in the form

v G0, L-3(2-i2). (44
Since
G1a=gn =9 =0s=0 gu=1,
(4.4) becomes
1Y) €5+ 2012(9) 0 o+ Jay) s + % = 0. (4.5)

If ¢>0 is sufficiently small, then y{w) is sufficiently close to (0, 0, 0); consequently,
guly(w)) is close to E(§ (w), n(w)), and therefore, g,,(y(w))=c>0 for some number c,
provided that w €S, (wy).

Set
PR LU - 48
fw)=§,+ ly) T YY) (4.8)
We see from (4.5) that
200N F12(y) }2_922(?/) a1 4.7
f) {911(y)nw 911(1/)1710 911(?/)&”‘ ®D

Since 7,, and ¢, are continuous on S, (w,) for 0 <r<p, (4.6) and (4.7) imply that f(w) is a
complex valued, continuous function on the open, connected set € =28,(w,) and that the
square of f(w) is continuous on Q. With the help of the following lemma of E. Heinz
(cf. [8], [8]) it will be seen that f(w) is continuous in the closure S,{w,).

LemMuMa. Let f(w) be a complex valued continuous function on an open connected set Q
in C, such that f*(w) has a continuous extension to Q. Then also f(w) can be extended con-
tinuously to €) provided that 3 Q is non-degenerate, that is, for every w,€8 Q there exists a
8>0 such that Qa(wy)= QN Bj(w,) 8 connected.

18 — 792908 Acta mathematica 143. Imprimé le 28 Décembre 1979,
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Proof. Let wy be an arbitrary point on 8£). Then, there exists an «€C such that
fA(w) >« a8 w>wy. If ¢=0 then |f(w)|2—-0, and also f(w)->0 as w—>w,. If a==0, set a=p2
for some BEC, f==0. Pick an £>0 such that 0<e<|B|. There is a §>0 such that
Qs(w,) is connected, and that f(w) maps the set Qj(w,) into the disconnected set
B,(B) + B,(—B). Since f(w) is continuous on Q, the image set f[Qs(w,)] is connected, and
therefore already contained in one of the dises B,{8), B.(—f8). Thus, lim,,,, f(w) exists and
is equal to § or —f. We now define a function F(w) in the following way:

f(w), weEQ
Fw)=11im f(@), weoQ

e

This function, an extension of f(w), is continuous in Q. The lemma is proved.

From the continuity of f(w) it now follows from (4.6) that &, is continuous in S, (w,).
Thus y(w) belongs to class C! in S,(w,). Since w, is an arbitrary point on I, we finally see
that a(w)€CH{B U I, R3).

We summarize the results of section 4:

TurorEM 3. Suppose that the assumptions of Theorem 2 are satisfied. Then every
solution of problem D(T', §) belongs to the regularity class CY(B U I, R3).

5. Asymptotic expansions around branch points on the free boundary

We continue to employ the notations and assumptions of section 4.
It follows from (4.8) and (4.7) that, for sufficiently small ¢ >0, there is a number
¢o>0 such that
| VE[2<eo {|Vn|2+|VE|2} on 8,(w,). (5.1)
By virtue of
Ay'= -Tu) {vlyi+ iy}, 1<I<3,
therefore also

|An] +]AL] <c{|Vn|*+|VE|*} on Sywo), (5.2)

where ¢ >0 denotes another suitable constant.
Moreover, from (4.1),
7,=0 and { =0 on I (w,). (5.3)

Denote by @ =u — tv the image point of the point w =u + v under a reflection on thereal axis.
We know that 7 and { lie in C%(S,(w,), R?) provided that ¢ >0 is sufficiently small. Thus it
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follows from (5.3) that n(w) and {(w) can be extended as C'-functions H(w), Z(w) across
the real axis onto B,(w,) by the definitions

[n(w) if weS,(w,),
H(w) =
(@) if €S, (wy),

bS]

and
{(w) if we€Sy(w,),

Z(W)=[ R
— @) it weT,w).

The vector valued function

Y(w) = (H(w), Z(w))
has continuous first derivatives on lm , and continuous second derivatives on
B,(wy) — I(wy). The second derivatives are in L, on B,(w,) for each p€(1, o). (5.2) implies
that Y,z =%AY is essentially bounded on B,(w,), and that

| Yuu| <k|Y,| on B,(wy)—I,(w) (5.4)
for some constant t>0.
On the other hand, a well known application of the Gauss integration formula yields

the identity

1
—.§ Y, pdw= (Y, 9n+ Yyup-@)dudo (6.5}
2t J oo D

for each domain D in B,(w,) with piecewise smooth boundary, and for all <p€01(5, C?).

On account of (5.4), we derive from (5.5) the inequality

H; Y,,,-tpdw.<2ff 1Yol {|¢n| + k|| } dudv for all p€CY(D, C?). (5.6)
a0 )

As in [8], p. 103 or [15], p. 331 the technique of P. Hartman and A. Wintner [7] can be
applied to (5.6). Hence, if ¥ (w,) =0, and if Y, 30, then there exists a vector 4 = (a?,a?®) €C?
with 440, and an integer »>1 such that

Y(w) = A(w—w)’ +o(|w—w,|") as w—w,. (6.7)
Let us consider now a boundary branch point w,€7 of z(u, v), that is,
Z2,(we) =0 and z,(w,) =0.

Then y,(wy) =0, and in particular, ¥, (w,)=0.

Since the branch points w€ B of z(u, v) are isolated, we have x,%0 on each open
subset of B. It follows from (4.5), that also ¥, =0 on each open subset of B,(w,). Thus
the Hartman-Wintner device can be applied, to obtain (5.7).

We now consider the function

h(w) = (w —wy) ™" f(w);
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h(w) is continuous on {w; 0 < |w—w,| <p}, f(w) being defined by (4.6). Note that y(wy) =0,
and that
E 0 0

Ggoy={o a o
0 0 1 £=0,7=0,

In view of (4.7) and (5.7) the limit lim,,,,, h*(w) exists. Applying the lemma of section 4,

we see that also lim,,,,, k(w) exists. Set

a' = lim h(w) = lim (w — wy) ™" &, (w). (5.8)

W->Wy W->Wo

Then it follows from (4.7) and (5.7) that
Yult0) = alw—w0) +o(|w—w,|") as w10, (5.9)

where a = (a', a?, a®)==0 is a vector in (% which satisfies
g2(0)@’a* =0, (5.10)
Since

oh
= H== 5.11
Zy = H(Y) Y, o (5.11)

we obtain the following result:

THEOREM 4. Suppose that the assumptions of Theorem 2 are satisfied. Let wy€I be a
branch point of a solution z(u, v) =z(w) of P(I', §) on the free boundary. Then there exist a
vector b= (b1, b2, b%) €C? with |b| >0 and

b-b=0, (5.12)
and an integer v=1, such that

T,(w) = blw—w,) +o(|w—w,|") as w—>w,. (6.13)

A geometric consequence of (5.13) is the following. Let

2b = a—1if, where a, BERS. (5.14)
By (5.12),
[«|=|B| %0, a-f=0. (5.15)
For wy=u,€1 and w—w, we have
Z,(w) = o Re (w—1w,)” + 8 Im (w—wp)” +o(|w—w,|”) (6.18)
zy(w) = — o Im (w—w,)’ + Re (w—w,)" +0(|w—w,|*)

and therefore
2, (w) A z(w) = (2 A B) |[w—wo| ¥ +o |w—wy|*). (6.17)
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Denote by
2, (w) A x,(w)
N(w)= —2——L  ww,, 5.18
) [z, ) ()] ’ 519
the unit normal vector of the minimal surface x(w). Then H(w) converges to a limit vector

as w—w, In fact,

lim 92(w)=l:/A\gl. (5.19)

Therefore, the tangent plane of the minimal surface x(w) tends to a limiting position
as w tends to the branch point w, on the free boundary w,.
We further consider the trace x(u, 0) on the supporting surface §. By (5.16),

xy(u, 0) = a(u—up) +o(|u—up|’) as u—>u, (5.20)

Then we obtain for the tangent vector

(2, 0)
il ey 5.21
= 0] ®-2)
of the trace curve x(u, 0) the asymptotic representation
T(u)= |—:—‘—| (ﬁl) +o(l) as u-—>u,. (5.22)

Therefore, the non-oriented tangent moves continuously through a boundary branch point
while the oriented tangent is continuous for branch points of even order », but, for
branch points of odd order, the tangent direction jumps by 180 degrees.
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