ON THE NUMBER OF RESTRICTED PRIME FACTORS
OF AN INTEGER. II

BY

KARL K. NORTON()
2235 Floral Drive, Boulder, Colorado 80302, U.S.A.

§ 1. Introduction

Let P be the set of all (positive rational) prime numbers, and let E be an arbitrary
nonempty subset of P. Throughout this paper, let p denote a general member of P, and
for non-negative integers a, write p?||n if p*|n and p*+fn. For each positive integer =,

define

wn,B)y= > 1, Qn;E)= 3 a.

pln,peE po||n,peE

We usually write w(n; P)=w(n), Q(n; P)=Q(n). In a previous paper [37], we obtained
sharp inequalities for the frequencies of large deviations of w(n; E) and Q(n; E) from
their normal order of magnitude. Those inequalities included refinements of a special case
of a general theorem due to Elliott [11, Theorem 6] concerning large deviations of f(g(n)),
where f is a strongly additive arithmetic function and g(z) is a positive-valued polynomial
in n with integral coefficients. Elliott’s result was in turn a refinement (under stronger
hypotheses) of a theorem of Uzdavinis [55]. (The result of Uzdavinis is stated as Theorem
3.3 in Kubilius [28].)

The methods used in [37] were “‘almost” elementary. Here we shall use more difficult
methods to obtain asymptotic formulas for large deviations of w(n; E) and Q(n; E). We
shall also generalize some of the results of [37] and give some applications. For a partial
survey of the literature in this area, see {39].

In order to state our main theorems, it is necessary to introduce further notation

which will be used throughout this paper. First, we define

(1.1) Qty=t—(1+t)log(1+¢) forrealt> —1,
Q—-1)=—1= lim Q).
t>-1+
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Note that
_ -] (___ l)n—ltn
(1.2) Q(t)—,gg—_——(n—l)n for |t|< 1.
Next, if v, 8 are real, let
(1.3) R,() = exp {vQ(BvH} forv>0, B> —uvh,
(14) 6(8) = (27)"t f " exp (~ )
(1.8) F,(B) =exp (B2/2)G(— |B]) Ru(f) forv>0, B> —ot
Now define .
(1.8) E@x)= p ' (x real).

In [387], it was observed that if E(z)—> + oo as x> + oo, then both the average order and
the normal order of w(n; F) are equal to E(n), and the same statement holds for Q(n; E).
However, it is often more convenient to discuss the distributions of w(n; E) and Q(n; E)
when n <z in terms of some approximation to E(x) which is more elementary or easier to
calculate than E(x) itself. For example, if £ =P, one usually uses log, x=1log log « as an
approximation to E(x) and considers the size of w(n)—log, z or Q(n)—log,  for values of
n<z. In this paper, we shall compare the sizes of w(n; E) and Q(n; E) (for n<z) with a
number » which we think of as an approximation to E(z). The degree of approximation
will be specified in the theorems. We assume throughout that

(1.7) z, v, § are real with x>1, v>0. E is a nonempty set of primes, to be regarded as
arbitrary unless further assumptions are stated. (£ may depend on z or on various

parameters.)

(In many applications, it is convenient to take v to be a functional value v(x; E), the func-
tion being defined for all z>¢,(v).) Lastly, we define

(1.8) A = A(z, v; E) =max {2, | B(z)—v|}.
We can now state our first main result.
TuarEorEM 1.9. Assume (1.7), and let

(1.10) {g(n)=w(n; E) (foralin) or

g(n) =Q(n; E) (for all n).
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Define
(1.11) T x,B; E,g9) =xtcard {n: n <z and g(n) <v+pfuvi},

where card B means the number of members of the set B. Suppose that

(1.12) v > At
and that
(1.13) |8l < A-2ot.

If B<0, then
(L14) Ty, B; B, g) = Fy(f) — Qn)~H {E(x) — v} B,(B) vt + O(R,(B)v7H),

and if >0, then

(1.15) 1-Ty(, B; B, g) = F,(B)+ 2n)~{E(x) - v} B,(f) vt + O(R,(B)v ).

In (1.14) and (1.15), the constants implied by O are absolute.

By (4.7), the right-hand sides of both (1.14) and (1.15) can be written in the slightly

less precise form

F(8){1+O0(A{|B| +1}v 4},

8o that Theorem 1.9 actually gives asymptotic formulas for T',(x, §; E, g} if v and § are
functions of z such that v— + oo and f=0(A~2st) as x— + 0. It also gives sharp upper
and lower bounds for 7',(z, 8; E, g) if |8|A%vt is less than a sufficiently small absolute
constant. For somewhat less precise upper and lower bounds holding over larger g-intervals
(roughly |B| <vt), see § 3, Theorem 4.27, and [37]. Upper bounds valid for even larger
values of § can be obtained in the same way as [37, (5.15) and (5.16)].

Theorem 1.9 is best possible in a rather strong sense. The error terms in (1.14) and
(1.15) cannot be improved. Furthermore, the functions F,(8) (for <0) and 1— F,(f)
(for §>0) are essentially the best possible continuous approximations to T,(z,§; E, g),
since the latter (considered as a function of §) has a jump discontinuity of size > R, (8)v—#
when v + vt is a positive integer and [B| is not too large. (For a more precise formulation,
see the end of § 5.)

Theorem 1.9 is of “large deviation” type, so called because it gives precise approxima-
tions when § is allowed to range over a rather large interval whose size may vary with .
Asymptotic formulas for large deviations of additive arithmetic functions have been ob-
tained previously by other authors, but Theorem 1.9 and its proof differ significantly
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from their work. In the special case E =P, g(n) =w(n), v =log, x, the result is due to Kubilius
{28, Theorem 9.2]. It was later extended by Kubilius [31] to real-valued additive functions
f(n) of a somewhat more general type than w(n), and Laurinéikas [32] obtained Kubilius’s
conclusions for such functions under weaker hypotheses. However, both Kubilius and
Laurindikas assumed that f(p) is very near a fixed number A for “most” primes p. Con-
sequently, a result like Theorem 1.9 (or Theorem 4.27 below) does not follow from their
theorems unless the set X satisfies a condition somewhat stronger than
> pllogp~ >pllogp asxz—> + oo,
P<T.PEE sz

Furthermore, it seems doubtful that our theorems could be obtained by their methods,
due to the possibly irregular distribution of E (see the comments on p. 168 of [28)).

Whereas Kubilius and Laurindikas used probabilistic methods, our proof of Theorem
1.9 does not require the use of any idea from probability theory. One reason for this is
the availability of powerful results of Hal4sz [18], [19] on the local distribution of w(n; E)
and Q(n; E), the proofs of which require only classical real and complex analysis and some
prime number theory. We obtain Theorem 1.9 by combining his results with certain
estimates for partial sums of the exponential series (Lemma 4.20). As we showed in [38)],
the latter estimates can be obtained by an elementary ad hoc method. However, it was
also shown in [38] that they can be derived (in a slightly weaker form) from the difficult
Cramér-Petrov theorem on large deviations of sums of independent random variables.
Thus there does exist a connection between the present work and probability theory, and
Theorem 1.9 (slightly weakened by the requirement of additional assumptions that v=
v(x; E)> + oo and f=o(v!) as x— + o) can be regarded as apparently the first applica-
tion of the Cramér—Petrov theorem to number theory.

Theorem 1.9 will be derived from Theorem 4.27 below, in which the hypotheses and
conclusions are slightly weaker. We shall show that the following result is also a corollary
of Theorem 4.27:

TrEOREM 1.16. Assume (1.7) and (1.10). If |B| <min {v}, A-1vt}, then
(1.17) T, 8; B,g)=G(B)+0 (exp (—B2[2) {f2+ A}vH),
and hence if f is any real number, we have
(1.18) T2, B; E, g) = G(B) + O(Av-4).

In (1.17) and (1.18), the implied constants are absolute.
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Since Lemma 4.4 shows that

1-G(|B]) = G(—|B|) ~ (2m)7|B| ™ exp (—£*2) as |B] > +o,

(1.17) gives an asymptotic formula for 7(x, §; E, g) whenever v and § are functions of
such that v— 4 co and f=o (min {v¥, A-19#}) as x—> + oo. The estimate (1.18) is much
weaker than (1.17) (if |8| is moderately large) but holds without restriction on §. Results
like (1.18) have been obtained by many authors beginning with Erd4s and Kac [15], who
showed that if v = E(x)~> + oo ag &~ + oo, then for each fixed real g, T,(2, §; Z, 9)—G(8)
ag z— + oo, They actually proved a more general result on the distribution of values of
additive functions, but they did not estimate the difference 7',(z,8; E, g)—G(B). The
latter quantity was estimated in various ways by LeVeque [33], Kubilius [26], [27], Barban
[3], UzZdavinis [56] (cf. Kubilius [28, pp. 108, 113]), and Barban and A. I. Vinogradov [4].
Rényi and Turén [47] were the first to obtain an error term like that in (1.18) for the
special case K =P (and also in a somewhat more general result on additive functions which
does not include (1.18)). Certain generalizations of (1.18) for additive functions, with error
terms of similar strength, were obtained by N. M. Timofeev [54] (whose proof was incom-
plete), Elliott [12] (whose result essentially implies (1.18) for g(n)=w(n; E) but not for
g(n)=Q(n; E)), Dubovik [10], and Popov [45]. In his book [13, Chap. 20], Elliott obtains
a very general theorem on additive functions which implies (1.18) with v= E(x) and either
choice of g. For further discussion and other references, see Norton [39].

We now indicate several applications of our main results.

THEOREM 1.19. Let x, u, B be real numbers with 3 <u <zx, write log log u =log, u, and

define
A, u,f)=2tcard {n:n<z and > 1<log,u+ B(logau)t}.

pln.p<u

If (—1) (log, u) <B <0, then

(1.20) A, u,B) = G(—|B]) exp {2 + (log, u) Q(B (log,u) )} {1 + O({|B] +1} (logyu)~H)}.

When 0<f<} (log, u)t, (1.20) still holds ¢f A(x, u, B) is replaced by 1 — A(x, u, §). In both
cases, the implied constants are absolute.

To prove this, let E={p: p<u}, take v=log, u, and note that 0 <E(z)—v<2 (see
Rosser and Schoenfeld [49, (2.10), (3.19), (3.20)]). Hence A =2, and the result follows from
Theorem 4.27. Theorem 1.16 can also be applied here; it shows, for example, that

A(x» U, /3) = G(ﬂ) +0 ((logz u)_l)
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if 3<u <z and § is real. Such results yield interesting estimates for the sizes of certain
prime factors of n. This will be the subject of a later paper.

The special case v =z, B =0 ((log, z)t) of Theorem 1.19 is due to Kubilius [28, Theorem
9.2] (as mentioned above, his result was extended by Kubilius [31] and Laurindikas [32],
but their extensions do not include Theorem 1.19). Novoselov [40, p. 266] obtained a
weaker version of another special case by showing that for each fixed real 8, A(x, log z, )~
G(B) as x> + oo. His method was quite different from ours (he used topological ideas and
Liapounov’s central limit theorem), and he did not estimate the rate of convergence.
Several other authors have used probabilistic methods to obtain results which are super-
ficially related to Theorem 1.19. For example, if ¢ denotes a prime, then (see Billingsley
(6, p- 765])

(1.21) lim x *card {n:3<n<x and
T30

max ( > 1-log,q)< f(logyn)t}=2G(f)—1

asn pln.p<e
for each fixed §>0. For theorems of the same type as (1.21) (some of them stated in greater
generality), see Kubilius [28, Theorem 7.3], Babu [1], [2, p. 331], Billingsley [5, pp. 1113—
1114], and Philipp [43, pp. 235-236]. (None of these authors estimated the rate of con-
vergence in results like (1.21).)

Another application of Theorems 1.9, 4.27, and 1.16 concerns prime factors lying in

various arithmetic progressions with the same modulus. It is an easy consequence of the

following result:

LEMMa 1.22. Let k be a positive integer, and let L be a nonempty set of integers such that
for each 1EL, we have 1 <I<k and (k,1)=1. Write card L =2, and let

E= zUz.{p: p=l(mod k)}.
Then for x=>2,
E(x)=Ap(k)  loggz+ 3 p~'+O(Ap(k)~" log (3k)),

p<z.pel
where the implied constant is absolute, ¢ i3 Euler's function, and log, x =log log z. Also,

> p i< logy(34)+ O(1).

p<z,pel

This lemma is due to the author [37, Lemma 6.3], whose proof depended on the
Brun-Titchmarsh and Siegel-Walfisz theorems. We refer to [37, pp. 698-701] for back-



PRIME FACTORS OF AN INTEGER. II 15

ground and remarks on how to improve the result in certain cases. It should be noted
that the special case A=1 of this lemma was discovered independently by Pomerance [44];
A somewhat weaker version of this special case was obtained earlier by Rieger [48, Hilfs-
satz 1].

Lemma 1.22 leads immediately to applications of Theorems 1.9, 4.27, and 1.16 with
v=Ap(k)~1 log, x. (Note the importance here of the second-order terms in (1.14) and (1.15).)
As a rather special illustration, we mention here the following consequence of (1.18) and
Lemma 1.22: if k and [ are positive\ integers with (k, 1) =1, then for all real z, § with >3,

we have

(1.23) z'card {n:n<zxand > 1
pIn.p=l(mod k)

< (k) log, = + B(p(k) " log, )} = G(B) + O({p(k)/log, z}*),

the implied constant being absolute. The error term here is best possible when 8 is near 0,
and this result improves a theorem of Gyapjas and Kétai [17], who obtained (1.23) with
the error term O(c(k) (log, x)—t), where c(k) is an unspecified function of k. (It should be
noted that Gyapjas and Kétai obtained some similar results which do not follow from
ours. Also, Mai-Thuk-Ngoi and Tuljaganov [36] apparently announced without proof an
estimate for the left-hand side of (1.23), but their work has been unavailable to the present
author.)

There are also applications to prime factors in arithmetic progressions with different
moduli. For example, suppose that k,, ..., k, are positive integers which are pairwise
relatively prime, and suppose I, ..., |, are integers such that 1<I,<k, and (k;,1,)=1 for
1<j<r. If

E-U {p: p=1(mod &)},

then by successive application of the inclusion—-exclusion principle, the Chinese remainder

theorem, and Lemma 1.22, we obtain

r

E(z)= {1 -[T1Qa- <p(k,)"‘)} log,z+0(2") for >3,

j-1

the implied constant being absolute. This can be combined with Theorem 1.9, Theorem
1.16, or Theorem 4.27 in an obvious way.

For a final application, suppose that whenever m, n are positive integers, d,,(n) denotes
the number of ordered m-tuples (t,, ..., {,,) of positive integers such that ¢, ... {=n. (Thus
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dyo(n)=d(n) is the number of distinct positive divisors of #n.) Then m*™ <d,,(n) <mB™
(see [37, pp. 683-684]), and hence our main results give asymptotic formulas for large
deviations of log d,,(n) from its normal order (log m) log, n. This application is not new,
since it follows from Kubilius’s theorems on large deviations of w(n) and Q(n) (see [28,
Theorem 9.2] and [31]). However, our proof is quite different from his (in particular, it
requires no probability theory). The result on log d,,(n) which can be obtained from (1.18)
is due to Rényi and Turdn [47]. It improves earlier work of Kac [25], LeVeque [33], and
Kubilius [26], [27]. See [37, pp. 683-684] for further information on the distribution
of d,,(n).

It seems appropriate to indicate the limitations of our main results. Our methods
depend heavily on the properties of the particular functions w(n; £) and Q(n; E), and we
have nothing new to say about other additive functions. Furthermore, we are unable to
prove similar results concerning the distribution of w(|f(n)|; E) or Q(|f(n)|; E) (where f
is a polynomial with integral coefficients), nor can we deal with the joint distribution of,
say, w(n; E) and w(n+1; E), nor with the distribution of a sum of such functions. Finally,
we have not been able to obtain asymptotic formulas for 7,(x, §; E, g) in larger S-intervals
than those indicated in our main theorems, nor can we derive asymptotic expansions.
See [37, § 7] for a few additional remarks along these lines and some references. Further
discussion and references will appear in [39].

This work was begun while I held a visiting research position in the Mathematics
Department of the University of Geneva. I am grateful to Professor John Steinig, who
arranged my visit and helped to make it a pleasant one. The work was continued at the
Mathematics Department of the University of York (England), where my visit was financed
by a grant from the Science Research Council of Great Britain. I extend my sincere ap-
preciation to Dr Maurice Dodson for arranging this grant. Finally, I thank Professor
P.D.T. A. Elliott for stimulating and informative conversations about various aspects of

this research.

§ 2. Notation

The symbols k, I, m, n always denote positive integers, while p always means a prime.
v, 2, Y, a f, 9, 9, € denote real numbers. [x] means the largest integer <z, and log, xr means
log log x. Empty sums mean 0, empty products 1. The notation x; ... 2,,/y, ... ¥, is some-
times used instead of (¥, ... ;) (¥ --- ¥,) L.

In this paper, the notations O (without subscripts), <, > always indicate implied
constants which are absolute. (Thus 4 =O(B) is equivalent to 4<<B.) The notation O; ,

indicates an implied constant depending at most on 4, ¢, ... For i=1,2, ..., ¢/(d, ¢, ...)
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means a positive number depending at most on 4, ¢, ..., while ¢, means a positive absolute
constant.

Most of the remaining symbols and functions were defined in the first few paragraphs
of § 1 (prior to (1.12)). A few further notations will be introduced as needed.

§ 3. Upper and lower bounds for To(x, 85 E, g)

To avoid constant repetition, we assume throughout this section that (1.7) and (1.10)
hold. Our concern here is to obtain upper and lower bounds for 7 ,(x, 8; E, g) which gener-
alize somewhat the main results of [37]. Although the inequalities of this section are not
quite as precise as our main asymptotic formulas, they are of interest in themselves be-
cause they are valid over larger 8-intervals and because their proofs are simpler. Further-
more, some of these inequalities will be used in deriving the asymptotic formulas.

Instead of dealing directly with T',(x, 8; E, g), we shall find it more convenient to

consider (as in [37]) the related functions

Lz, 0; E,g) =card {n: n <z and g(n) < (1-0)v},

Ry x,0; E,g) =card {n:n <z and g(n) > (1+d)v},
where ¢ is real. (There should be no confusion between R (z,d; E, g) and the function
R,(B) defined by (1.3).)

Since we shall often make use of the function Q(tf) (defined by (1.1)), it seems ap-

propriate to state here the following simple lemma (cf. [37, Lemma 2.1]):
Lemma 3.1, Q(t) is stricily increasing on [ —1, 0] and strictly decreasing on [0, + o0)
(thus Q(t) <0 for t+=0). Also,
—B<QE)<—t32 for —1<t<0,
—12/2 <Q(t) <{1—~2log 2)#2 < (—0.386)2 for 0<t<l.
Now define

(3.2 N(m,z; E,g) =card {n:n <z and g(n) =m}

for m=0,1, 2, ... We refer to the problem of estimating N(m, x; E, g) as the local distribu-
tion problem for g. Note the obvious formulas

(33) Lv(x’ 6; E: g)= z N(m7 z; B, g)’
Ogm< (18w

(34) Rx,8;E,9)= 2 Nim,x; E,g).
m>=(1+8) 1

2-792907 Acta mathematica 143. Imprimé le 28 Septembre 1979
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In order to use these formulas to estimate L,(z, §; B, g) and R,(«,d; E, g), we need the
following remarkable result of Haldsz [19]:

Lemma 3.5. Let 0<6<2. I 0<Sm <(2—0) B(x), then
(3.6) N(m, z; B, g) < cy(d) xE;n—x!)e‘E‘”.

Furthermore, if E(x)>c5(0) and 0<m<(2—0) E(x), then

3.7 N(m,z; E,g)+Nim+1,x; E, g) =c,(d) xzf—g— e F®,

In [19], Haldsz proved Lemma 3.5 only for g(n) =£(n; E). His proof can be extended
to the case g(n) =w(n; E); see Norton [37, pp. 687-689] for a few remarks on this extension
and on the literature dealing with such results, and see also the remarks below and in § 4.
(In [37], the hypothesis E(z)>c,(0) was replaced by a less general condition.) It should
be noted that Sarkozy [51] has recently improved (3.7) by showing that the left-hand side
can be replaced by N(m, z; E, g) when 8 E(zx) <m < (2 —8) E(x). We shall not need Sarkézy’s
result in this paper.

The first uniform upper bounds like (3.6) were proved by Hardy and Ramanujan [23]
(reprinted in [46, pp. 262-275]) for the special case E =P (the set of all primes). Since
their results have been stated and applied incorrectly several times in the subsequent

literature, it seems appropriate to mention here that they proved the sharp estimate

csz(logy x + cg)™ !

(3.8) N(im,z; P,w) < (m—- 1)1 log #

forx>2,m=1,2,...,

but they observed that an inequality of this strength does not hold for N(m, x; P, Q) with-
out some restriction on the size of m. In [23, Lemma C], they obtained an inequality for
N(m, z; P, Q) which is more complicated than (3.8); from this, it can be deduced that if
>3 and >0, then

¢, 07 2(logy z + ¢)" !
{(m—1)!logx

(3.9) N(m,z; P,Q)< for 1 <m <(10/9 —4) log, .

An inequality similar to (3.9) (with ¢,6-1 replaced by cy(8)) was later shown by Sathe [52, IV,
p. 77, (iv)] to hold over the wider range 1 <m < (2 —3) log, . Sathe actually obtained an
asymptotic formula. Selberg [53] gave a different proof of Sathe’s result and showed [53,
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p. 87] that such an upper estimate for N(m, x; P, ) does not hold if (2 +4) logs x<m <
¢yp log, .

The Hardy-Ramanujan estimates (3.8) and (3.9) have recently been generalized in
one sense by Warlimont and Wolke [57], who estimated from above the number of integers
n such that y<n<y+z and w(n)=Q(n)=m. Upper bounds for the local distribution of
more general additive functions have been given by Erdds, Ruzsa, and Sarkézy [16] and
by Hal4sz [20] (see also Ruzsa [50] for related work, and see § 4 below).

The first uniform lower bounds like (3.7) were obtained independently by Erdds and
S. 8. Pillai for the special case £ =P. Pillai’s work was done about 1940 but apparently
was never published; the standard reference for a statement of his results is [22, p. 56].
Erddés [14] actually obtained asymptotic formulas for N(m, x; P, w) and N{m, x; P, Q) in
the range |m—log, x| <c,; (log, z)}. For further comments on asymptotic formulas for
local distribution, see § 4 below.

In order to use (3.3) and (3.4), we first obtain a more convenient form of Lemma 3.5.
{Recall that A is defined by (1.8).)

LeMwma 3.10. Let 0<f<§<2. If

(3.11) 0 <m<(2—8),
then
(3.12) N(m, z; E, g) < cy(B) :? e~ A,

Furthermore, if E(x)=c,o(B), if

(3.13) v>3p-1A,

and if (8.11) holds, then

(3.14) N(m,z; E,g)+ N(m+1,x; E, g)>c,4(8) x;%m‘ e A,
Proof. Write E(xr)=v+2, so |z| <A. First we assert that

(3.15) 0<m<(2—pB/3)E(x) if (3.11) and (3.13) hold.

For we have E(z)2v—A>(381—1)A, so v< E(x) + A<3(3— )1 E(z), and (3.15) follows
easily from the inequality 0 <m <(2—8)v.
Assume in this paragraph that (3.11) and (3.13) both hold. By (3.15) and (3.6),

Nm, B, 0)< co(B13) 7 e (L + zfo)"e ™
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But

EPzl+zfv=21-Alv=1/3
by (3.13), so

(L42/v)me? < &@™o~D L oh,

Hence (3.12) follows in this case. Furthermore, if E(x)>c4(8/3), then by (3.15) and (3.7),

m

Nim, z; B, g)+ N(m+1, z; E, ) > ca(B/3) = ;’7 e~?(1 + zfv)me.

We now apply the inequality log (1 +y)=y(l+y)! (valid for y> —1). Since z/v> —2/3,

we get
m

By (3.15), 2(m/E(x) —1) = — A, and (3.14) follows.
It remains to be shown that (3.12) holds under the assumptions (3.11) and

(3.16) 0 <v < 3p-1A.

If m =0, then (3.12) follows directly from (3.6}, so we assume m =1. It may not be true

that m < (2 —¢) E(x) for some ¢ >0, so we can no longer use (3.6). However, we assert that

Y"N(m,z; E,9) < 3 4" < y5(B) 2 PE®  for 0<y<2-B.
n<e
The first of these inequalities is trivial, while the second follows for ¥ <1 from an elementary
result of Hall [21] and for 1 <y<2—f from Norton [37, Lemmas 3.10, 3.11] (or from a
much more general and difficult result of Haldsz [18, Theorem 2]). From this, we immedi-
ately obtain
N(m, z; B, g) <cis(f)zexp {(y—1)v—mlogy+|y—1|A}

for 0<y<2—p and any m. The right-hand side is approximately minimized by taking
y=m|v (which is permissible by (3.11)). Using this value of y and applying Stirling’s
formula, we obtain

(3.17) N(m,z; B, g)< cm(ﬁ)xi—'r”m* exp (I%’— 1|A).

Considering separately the cases 1<m <v, v<m<(2—8)v, and using (3.16), we find that
(3.12) follows from (3.17). Q.E.D.
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TeEEOREM 3.18. If 0 << <1, then
Lz, 6; E, g) <611 —8) tap~ted-0v+A,

Proof. Combine (3.83) and (3.12) (with f=1 and § replaced by ¢’=1+4). The result
then follows immediately from [37, Lemma 4.5]. Q.E.D.

THEOREM 3.19. Suppose that E(x)=c,y, v23A, and v <8 <1-3v-L. Then
Ly, 6; E, g)>8Y1—8)av 12904,
Proof. Define n=[(1—-6)v»]—1. By (3.3),
n
Lz,8;,E,q)> 2> {Nim,z; E,q)+Nim~+1,z;, E, g)}.
m=0

We combine this with (3.14), taking #=1 and replacing é by 6’=1+4. The result then
follows from [37, Lemma 4.6]. Q.E.D.

TurEoREM 3.20. If 0<6<B <1, then

Rz, 0; B, g) < ¢\g(f) 0~ 2wt A,
Proof. Use (3.4), (3.12), and the method of proof of [37, Theorem 5.12]. Q.E.D.

THEOREM 3.21. Suppose that 0<f <1, E(zx)=c,o(f), v=4(1—F) LA, and v 1<d<p.

Then
R (x,8; E, g) = coo(B) 0~ 1av-1e99 A,

Proof. Write n=[(1+9)v]+1, y =(2v6)L. By (3.4),

(3.22) R(x, 8 E,9)> > {N(m,z;E,g)+Nm+1,xE,qg)}

n<m<A+y)n
Since v>4A, we have E(zx)<v+A<%v. Also, vd>vt. Hence if c,y(f) is sufficiently large,
(I +p)n < v{l +6+v71+ (206)~1 + (2v)~1 + (20%6)1}
<v{l+B+1(1-B)} =v{2-§(1-H)}.
We apply Lemma 3.10 with g replaced by §'=%(1-£), and we assume c,o(f) =c,3(f’).

Since v=4(1 —§)" 1A 23(8')LA, it follows from (3.14) that

m
N(m, 2 B, g)+ Nm+1,2; E,g) > 6,,(f)z 2 e~
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for each m such that n<m <(l +y)n. Substituting this estimate in (3.22) and using [37,
Lemma 4.8], we get the result. Q.E.D.

In order to obtain the asymptotic formulas of Theorem 4.27 and Theorem 1.9, we
need the following slight sharpening of the upper bounds given in Theorems 3.18 and 3.20:

THEOREM 3.23. If 0<§<} and

(3.24) v 236714,

then

(3.25) Ly, 6; B, g) <O-lay—teQ-0v+oA
{3.26) Rz, 8; E, g) <&~ lav-teSOvHoA,

Proof. Write E(x)=v+z. By (3.24),

(3.27) v=6A >6]z|,
80
(3.28) 50/6 < E(x) < Tvf6.

Define v and ¢ by

(3.29) (1-8)v=(1—-p)E(x), (1+6)v=(1+e)E(x),
80
(3.30) y=0+(1-8)z(w+2z)"Y, e=0—(1+8)2(r+2)L

By (3.27) and (3.24),

(3.31) [(1+8)2(v+2)7| <#|z| (5v/6)* < 385.
Hence

(3.32) 285 <y <88/5<%,

(3.33) 28/5<e<83[5<4.

Now by (3.29), (3.3), and (3.4),
(3'34) L,,(Z, 6; E, g) = LE(I)(Z» Vs E, g),
(3.35) R,(z, 6; E, g) = Rp,(x, & E, g).
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We apply Theorem 3.18 and use (3.32) and (3.28) to get
(8.36) Ly, y; B, g) <y wE(z)” 1e%VED < §lgy—1 o8- ED,

Now if a> —1 and b> — 1, Taylor’s theorem yields
(3.37) Q(b) = Q(a) + (@) log (1+a)— (a—b)2/2(1 +£),
where & is between a and b. We take a=—4, b= —y, and use (3.30) to get

Q(—y) <Q(—0)+(1—0)2(v+2)~ log (1 -).

By (1.1), it follows that
(3.38) Q(—y)E(x) =Q(—y)(v+2) <Q(—8)v—382 <Q(—8)v+JA.

Combining (3.34), (3.36), and (3.38), we obtain (3.25). (3.26) can be obtained in the same
way from (3.35) and Theorem 3.20. Q.E.D.

The next theorem is not needed later but is an interesting complement to Theorem
3.23.

THEOREM 3.39. Suppose that E(x) = cyy, v= A2, and v-1<6<§. Then
(3.40) Lz, 8; E, g) > §—lav—ted-Dv-20A,
(3.41) R,(x,8; E, g)> 6~ lay— 90204,

Proof. Write E(x)=v+2. We shall show that the theorem holds if we take
(3.42) gy = Max {cy, C19(4), 42}.

First suppose that 3v~¥<§<}. The hypothesis v>A? then shows that (3.24) holds.
(3.27) and (3.28) follow, and if we define y and ¢ by (3.29), so do all of the remaining steps
in the proof of Theorem 3.23. By (3.32) and (3.28),

y >26/6 28v~t > E(x)-t.

We apply Theorem 3.19 with v replaced by E(x), A=2, and § replaced by y. (3.42) and
(3.32) show that the hypotheses of Theorem 3.19 are satisfied, and the result is

(3.43) Ly, y; B, 9) >y~ aE(x) td-1E®,
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We now apply (3.37) with a= —4, b= —y, then use (3.30) to get

_ _ s
Q(—y)=Q(~90)+(1—8)z(v+2)" log (1 - J) T Rt
where § > —%. By (3.27) and (3.24),

(1—8)222

2,,~-1
2—(v+z)(1+5)<3A v <A,

80

Q(~y) E(x) = Q(—y)(v+2) = Q(—8)v—28A.

(3.40) follows from this and (3.43), (3.34), (3.28), and (3.32). Still assuming that 3v—¥<§<{,
we can derive (3.41) in the same way from Theorem 3.21 (with §=%).

Finally, suppose that v—# <d <3v—t=4§,. (Note that d,<} by (3.28) and (3.42).) Using
what we have just proved and the fact that Q(¢)<<#* for [¢| <1 (see (1.2) or Lemma 3.1),

we find that
Ly, 8; B, g) > Ly(w, 8; B, g) > 2> 8- Yoy £9-0v-2A,

and similarly for R (x, é; E, g). Q.E.D.

§ 4. Preliminary asymptotic formulas

We assume throughout this section that (1.7) and (1.10) hold. Up to this point, our work
has been based on Halész [19] and Norton [37] and has been essentially elementary. How-
ever, the upper and lower bounds given in § 3 are so near to each other as to suggest the
existence of asymptotic formulas, and in order to obtain such formulas, we need to use
the more difficult results of Halasz [18)]. These we shall combine with one of the main
theorems of Norton [38], which is essentially a special case of the Cramér—Petrov theorem
of probability theory but which can also be proved in an elementary way (as was shown
in [38]). Before beginning this work, we state here two easy lemmas from {38, § 2]. (Recall
that Q(B) is defined by (1.4).)

Lemma 4.1. For any positive real numbers v and z, define
(4.2) hy(z) = e~"(ev[z)*z~t = z~t exp {vQ(zv~1—1)}.
Then for any positive integer m, we have

4.3) (27)~thy(m) (1 —1/12m) < e=*v™|m! < (27)~th,(m).
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LEMMA 4.4. For real y=0 and n=0, 1, 2, ..., we have

(4.5) exp (#2/2)6(— |y|) = Tu(y) +0(1-3:5- - (2n—1)|y| 2" 1),
where

(4.6) To(y)=(2n)"* él (-1)"'1-3.5. - - (2m—3)|y|*"*"
Hence

(4.7) 1 <exp (2/2)G(— |y|){|y| +1} <1 for all real y.

We need the following deep and beautiful result of Haldsz [18], which should be

compared with Lemma 3.5 above.

Lrvmma 4.8. Let 0<6<]. If E(x)>2 and dE(x)<sm < (2—0) E(x), then

N(m,x; E, g) = xE—::?j e FD{1 + O4(|mE(x) "t — 1|+ E(z)"})}.

In [18], Haldsz proves Lemma 4.8 only for the function g(r)=C(n; E). The proof is
based on Theorems 2 and 3 of [18], which we need not state here. These theorems give
estimates for >,., f(n), where f is a complex-valued completely multiplicative function
(i.e., f(mn)=f(m)f(n) for all positive integers m, n). In his application to Lemma 4.8,
Haldsz takes f(n) to be 2™ ® where z is complex. In order to establish Lemma 4.8 for
g(n)=w(n; E), one needs to consider z*™% instead of 2™ and hence it is necessary to
generalize Hal4dsz’s Theorems 2 and 3 to the case in which f is merely multiplicative. This
can be done by considering the completely multiplicative function f* determined by
defining f*(p)={(p) for all p. Let b be the multiplicative function determined by taking
h(p°) =f(p°) — f(@) {{p°?) (for each prime p and c=1, 2, ...). It is then easy to verify that
fn) =3 410 h(d) f*(n/d) for all n (each side of this identity is a multiplicative function). If
x =y 21, it follows that
(4.9) 2 fn)= 3 h(l)f*m)= S k() 2 f¥m)+ X k() 2 f*m).

n<z Imgz sy m<zfl y<iga m<zil
It is convenient to take y =at. Then the inner sums on the right-hand side of (4.9) can be
estimated by using Theorem 2 or Theorem 3 of [18], and it turns out that if >, |A(l)|I~°
converges for some ¢ <1, each of those theorems has a generalization of the desired type
(i.e., for functions which are multiplicative but not completely multiplicative). The details
are elementary but a bit lengthy. Finally, the proof of Lemma 4.8 for g(n) =w(n; E) is
completed as in [18, pp. 230-232].
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The first uniform asymptotic formula similar to Lemma 4.8 was obtained by Erdds
[14] for the special case B =P (the set of all primes). He showed that

P )= z(log,2)" "
N(m,z; P,w)={1+o0(1)} m—1)llog as r—» + oo
for |m—log, z| <¢y, (log, )}, and he remarked that his methods establish the same result

for N(m, z; P, Q). Erd6s’s results were improved by Sathe [52, IV, pp. 77, 79], who obtained
the formula

z(logy )™ 1 1
Nim,5: P.g) = Byfmlogy2) 225140,

for §>0, 1 <m <(2-9) log, z, where

and I' is the gamma function. It is easy to see that these results of Sathe imply a slightly
more precise form of Lemma 4.8 when E =P, the error term O,(E(x)™ ) being replaced by
O5(1/log, x). Sathe’s proof was essentially elementary but very lengthy and complicated.
A simpler but nonelementary proof was given by A. Selberg [53], whose analytic method
formed the basis for much of the later work in this area. Delange [8] stated without proof
a generalization of the Sathe-Selberg formulas to the case in which P is replaced by the
set E, of all primes in a union of finitely many arithmetic progressions. He stated also an
asymptotic expansion for N(m, x; E,, g), provided m is fized. (In a later paper [9, § 6.5],
Delange obtained general theorems which he asserted were enough to prove all of the
results in [8].)

Levin and Fainleib [35, Theorem 2.2.3] obtained an asymptotic expansion of
card {n: n <z and h(n) =m} for fixed m, where h is an additive function which takes positive
integer values and the numbers h(p) are distributed fairly regularly. (See also Delange
[9, § 5.1 and § 6.5] for results on this problem.) The theorem of Levin and Fainleib applies
to h(n)=w(n), for example, but not to h(n)=w(n; E) unless E has sufficiently regular
distribution. (The same comment applies to Delange’s results in [9].)

Kubilius [29] derived asymptotic formulas and asymptotic expansions for card {n:
n<z and f(n)=m} which are uniform in m, where f is an integral-valued additive function
such that f(p) is “usuvally” equal to 1. In particular, his Theorem 3 leads to a slightly
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more precise version of Lemma 4.8 under the rather restrictive conditions >,z p~*log p <
+ o0 and m~log, x (a8 z— + oo).

Many other authors have contributed results on N{m, x; B, g) and similar functions,
although none except Sarkézy [51] has achieved the generality with respect to E that
is evident in Hal4sz’s theorems (Lemmas 3.5 and 4.8 above). For references to some of this
related work, see Norton [37, p. 688]. Additional work (not mentioned in [37]) concerning
asymptotic formulas for local distribution of additive functions has been done by S. Sel-
berg (1940, 1942, 1943, 1947, 1951), Richert (1953), Rényi (1955), Hornfeck (1956), Delange
(1957), Rieger (1958), Lu Hong-Wen (1964), Kubilius [28], Kalecki (1965), Katai (1969),
Fainleib (1970), Kubilius (1970) and [30], and Lucht (1970). Specific references for the
papers listed only by date can be found in LeVeque [34, Sections N24, N28, N60].

The form of Lemma 4.8 is a little awkward for our purposes. The following corollary

will be more convenient:

LemMma 4.10. If

(4.12) v >3A?

and

(4.12) |m—v| < A-1v,

then

(4.13) Nm,x; E,g9)= x;—: e {1+ O(A{|mv = 1|+ v t})},
and hence

(4.14) N(m,=; B, g) = 2nav)*z exp {vQ(mv1—1)} {1 + O(A{|mv1—1| +v71})}.

Proof. Write E(x)=v+2. By (4.11),

(4.15) v>6A>6|z|,
80
(4.16) 10 < 5v/6 < E{x) < Tv/6.

By (4.12) and (4.16),
3E(x)[7T<v/2<m<3v2<9E(x)/5,
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so we can apply Lemma 4.8 with 6 =¢. Observe that by (4.11),
|m—E(z)] <|m—v]|+A <|m—v]|+ot,

80 by Lemma 4.8 and (4.16),

(4.17) Nim,z; E,g)= x—:; e (1 +zfv)"e {1 + O(|mv~ ' — 1|+ v~ H)}.

Using (4.15), (4.12), and (4.11), we get

m log (1 +2/v)— 2z = m{z/v+O(22[v?)} —2

= (mv1=1)z+0(2%v) <A(|mv 1 —1| +vH) <L
It follows that
(1+z/o)me™ = 1+ O(A{|mv1— 1| +v-1}),

and thus (4.17) implies (4.13). Finally, (4.14) follows from (4.13), Lemma 4.1, and the

fact that
mt = {o(1 +mv-1— 1)}t = v~ H{1 4+ O(|mv1—-1])}. Q.E.D.

We need to state one more preliminary result. When v and § are real numbers with

v>0, we write

(4.18) vg = v+pod,
e V™
(4.19) SiB=, 3

Recall that the functions R,(8), F,(f) are defined by (1.3) and (1.5), respectively.

LeMMma 4.20. Let v, € be real with v=10, §<e<l—vt If —evt<f<0, then
(4.21) 18,(8) = Fu(B)| < 0.8(1 &)+ Ry(B)v—+.
If 0<fB <ot then
(4.22) |1~ 8,(8)~ Fo(B)| < 0.1R,(B)o~+.

This is Theorem 1.8 of Norton [38], where an elementary proof was given. As was
observed there, the constant factors 0.8(1 —¢)= and 0.7 are not far from best possible,

but their values are irrelevant for our present purpose (in view of the undetermined con-
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stants in Lemmas 3.5 and 4.8). When v is large and g =o(vt), a slightly less specific version
of Lemma 4.20 can be derived from the Cramér—Petrov theorem on large deviations of
sums of independent random variables. For proofs of the Cramér-Petrov theorem, see
Cramér [7], Petrov [41], [42, Chap. 8 and p. 323], and Ibragimov and Linnik [24, Chaps.
6, 7, 8]. For an expository account of the Cramér—Petrov theorem and its connection with
Lemma 4.20, see Norton [38, §§ 3, 4].

LEMMA 4.23. Define Ty, B; E, g) by (L.11). If — A-wt<a<B <0, then
(4.24) Ty, B; E, )~ Ty, o; B, g) = Fo(f) — Fy(a) + O(AR,(B)vH).
If 0<a<B<A-1ot, then
(4.25) Ty, B; B, 9)—Tofx, a; B, g) = F(2) — F(B) + O(AR,(a)v7?).

Proof. First suppose that » <3A2. By (1.2) (or Lemma 3.1), Q(¢)<<#? for [¢| <1. Hence
if y is real with |y| <A~1vt, we have vQ(yv1)<1, so 1<R,(y)<Il and 1 <F,(y)<l. Thus
(4.24) and (4.25) both follow from the trivial inequalities 0 < T (2, y; E, g) <1.

For the remainder of the proof, assume that v > 3A2. Our starting point is the obvious
formula (cf. (4.18))

(4.26) TSx,B;E,g)= 2 =z 'N(m,ux;E,g).

0<m<vﬂ
We shall prove only (4.24), since the proof of (4.25) is almost identical. Let £=[v,]+1,
I=[v4). Suppose that — A-'vt<a<f<0, so v(1 —A~!)<v,<vz<v. It follows from Lemma
4.10 that for k<m<lI,

@ N(m, z; E, g) = ‘im—"’{l +OA{l —mv + v 1)}

If k<, it follows from this, (4.26), and (4.19) that

1
T, x,B;E,9)— Ty, E,g)= 2 « 'N(m,x; E,g)
ok e—v,vl e—v,vk»l
N (k—1)!

= v(ﬂ)_Sv(o‘)_i—O(A{ }‘l‘A’U_*{Sv(ﬂ)—Sv(OC)}) .

Furthermore, by Lemmas 4.1 and 3.1, e~"¢'[/l! <R, (f)v—t. By (4.7) and (4.21), S,(8)<R.(8).
Thus if £<1, we get

Tv(x, ﬂ; E: g) - Tv(x’ & Ey g) = Sv(ﬁ) _Sv(“) + O(ARv(ﬁ) U_*)’
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and this is trivial if 2> (in which case k=I+1 and
Tz, B E,9)— Tz, a; E, g) =0 =8,(8) — S,(a)).

Finally, we apply (4.21) and use the inequality R,(e) <R,(f), which follows from Lemma
3.1. We obtain (4.24). Q.E.D.

We now come to the main result of this section. It can be viewed as a preliminary
version of Theorem 1.9. Note, however, that in the following theorem, there is no agsump-
tion like (1.12) about the relative sizes of » and A (we merely assume (1.7), as always).
Also, the assumption here about the size of |8| is slightly weaker than (1.13).

THEOREM 4.27. If — A-10t<B<0, then
(4.28) T,(x, B; B, g) = F(f) + O(AR,()v—}) = Fy(f) {1 +O(A{|B] +1}v 1)}
If 0<B<A-10, then
429)  1-Ty(,B; E,9) = Fy(8)+ O(AR,(B)vH) = F, () {1 + O(A{f +1}v-})}.

Proof. If v <3A2, the results are trivial (see the first paragraph of the proof of Lemma
4.23, and note (4.7)). For the rest of this proof, assume v>3A2
To derive (4.28), we apply (4.24) with o = — A-vt. Note that by (4.7) and Lemma 3.1,

F(o) <|ax| 1 R,(a) = AR, (a)v~t < AR, (B)vH.

Furthermore, in the notation defined at the beginning of § 3, 7' (z, «; E, g) =2~1L,(x, A~} E, g),
and hence Theorem 3.23 and Lemma 3.1 yield T,(z, o; B, g)<AR,(8)v—3. Thus the first
part of (4.28) follows from (4.24). The second part of (4.28) follows from the first part
and (4.7).

We now prove (4.29) with f replaced by « (for convenience). We take 0 <a<A-lvt=4
and use the identity

(4.30) 1-Ty(x, o B,9) =1—-Ty(, B E,9)+To(z,; E, )~ T(, a; E, g).
First observe that
(4.31) 1- Tz, §; B, g) = 1 - [z]a— + [#)a~t — Ty(x, §; E, g)
<z l+z-1R . (x, A% E, g),
in the notation of § 3. By Theorem 3.23,

4.32) 2 1R, (z, A% B, g) < AR, (B)v1.



PRIME FACTORS OF AN INTEGER. II 31
Next, we assert that
(4.33) z 1< R, (B)v L.
To prove this, first note that since v>>3A2>6A, we have

v<E@@)+A< Y nt+A<logz+ A<logz+v/6,

2<nge

so z~1<exp (—5v/6). On the other hand, Lemma 3.1 shows that

v1R,(B) > vt exp {vQ(1)} > exp {—0.4v—4} log v} > exp {—0.4v—(1/2¢)v} > exp {—0.7v},
and (4.33) follows. (4.31), (4.32), and (4.33) yield

(4.34) 1— Ty, §; B, g) <AR,(B)v-+.

Now, F,(8)<f2R,P) by (4.7), and R,(B)<RB,(«) by Lemma 3.1, so (4.30), (4.34), and
(4.25) combine to give the first part of (4.29) (with § replaced by «). The second part of
(4.29) follows from the first and (4.7). Q.E.D.

It is possible to rewrite Theorem 4.27 in various less precise forms. For example,
F,(B) can be rewritten by expressing the factor exp (82/2)@(— [B|) in the form (4.5). It
is also possible to rewrite F,(f) by using partial sums of the series (1.2) to obtain a represen-
tation of the factor exp (52/2) R,(8). We shall prove here only one relatively simple result
of the latter type, namely Theorem 1.18.

Proof of Theorem 1.16. First assume that || <min {v?, A-1v%}. Since Q(t) = — /2 +
O(|¢[®) for [t <1 (by (1.2)), we have

R,(f) =exp {—f%/2+0(|8[*vH)},

Fy(B) = &(—|B){1+O(|B|*v~H)}.

80

Using (4.7), we get
F(B){1+O0(A{|B] +1}v7H)} = G(—|B]) +O (exp (—£2) (B2 + A)v™H).

(1.17) now follows from Theorem 4.27 and the identity Q(8)+G(—p)=1.

We now prove (1.18) for all real 8. This is trivial when » < A?, since T',(, f; E, g)=0(1)
and G(8)=0(1). Suppose v>A2, and define y=A"tt, so 1<y<A-lot If |B| <y, then
(1.18) follows from (1.17). Now suppose that |8| >y. Then by (4.7),

H—1B]) =1-G(|B]) <1=G(y) = G(—y) <y~texp (—p*/2) <y* = Av"t.
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It follows that if 8 < —y, then

0 < Ty, B; B,9) < Tz, —y; B, g) = G(—y)+ O(Av ) < Av,
while if §>y, then

0<1-Tyx, 8, E,q)<1—-T(x,v; E, g9) =1-G(y)+O(Av}) <Av-t. QE.D.

§ 5. Proof of Theorem 1.9

In order to derive Theorem 1.9 from Theorem 4.27, we need the following lemma;:

LemMA 5.1. Define f(y)=exp (y*/2)G(~ |y|) for all real y. If B, y are real with §0
and By =0, then

(5.2) Hy) = 1B) +(y —B){BI(B) — (27)~t sgn B} + O({y — B} {|B| + |y —B| +1}).
If B40 and By <0, then
(6.3) fy) = f(B) + (2m)~H (B +y) sgn B+ O(B2{| B] + 1} +y2{|y| +1}).
Proof. Consider the functions f,, f, defined by
fiy) = exp (1*2)G(—1)'y) (j =1, 2; y real).
Note that for each j and ¥,

) = (=1 @a)yt+uf(y), fiy) = (—1Y2n) Yy +v2f,(y) +1,(y).

If $<0 and y <0, or if >0 and y >0, we can use the Taylor expansions of f,(y) and f,(y)
to obtain

) = f(B) + (y — B {BH(B) — (2m)~ sgn B} + 3 (y — B)* { — (2n) 3 |&| +&/(£) +/(6)},
where £ is between f and y. By (4.7),
(6.4) — (27m)"H[&E] +EH(E) +f(£) <[] +1,

and since [£—B| <[y —p|, we obtain (5.2).

Now suppose that §<0 and y >0, or that >0 and y <0. We cannot apply Taylor’s
theorem directly to f(y)—f(8) since f is not differentiable at 0. However, we can apply
Taylor’'s theorem to f,(y) and f,(y) at y =0, then use (5.4) and the fact that f(0)=4 to get

(6.5) y) =4~ @n)Hy| + 0|y +1}) (y real).
Using (5.5) to estimate f(8) and f(y), we obtain (5.3). Q.E.D.
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Proof of Theorem 1.9. Throughout this proof, we think of , v, 8, E as being arbitrary
but fixed, subject only to the assumptions (1.7), (1.12), and (1.13). Write E(z) =w=v-+z2,
80 |z| <A and w>A*— A >14. Define y by the equation

(6.6) v+ Bt = w+pud,
80
(6.7 T, 58; E, g) = Tz, Vs E, 7).

From (5.6), we obtain
(5.8) y = wH (ot ~2).

From (1.12), it follows that v >8A, so v(1 —~2A-2) >v/2>4A, and hence (1.13) implies that
2|B| vt <2A-2v<wv—4A. Thus (5.8) yields

2|y|wt <2|B|vt+2A <v—-2A <w,

80 |y| <jwt. Hence we can apply Theorem 4.27 with v replaced by E(x)=w, A replaced
by 2, and § replaced by . Combining the result with (5.7), we get

(6.9) Ty, B; B, 9) = Fu(y) + O(By(y)w) ify <O,

(5.10) Ty(z,B; B, g) =1—Fy(y)+O(R,(y)w ) ify=>0.

The idea of the proof is now very simple: we must estimate R, (y) and F, (y) in terms
of R,(8) and F,(f). Because of the somewhat complicated nature of these functions, an
extended series of calculations is needed to finish the proof. First,

(6.11) wt =2yt =711+ 0(Av )} =v 1+ O(AvH).

Hence by (5.8), (1.13), and (1.12),

(5.12) y =B—2vt+0(vH).

Next, we apply (3.37) and recall that [y| <3wt to get

(5.13) Qlyw) = Q(pv3) + (Bv—t —yw) log (1 +fv—4) + O({fv—t ~—ywi}3).
By (5.12), (5.11), (1.12), and (1.13),

(6.14) ywt =Bv~t—2p1 L O(v-1).
3792907 Acta mathematica 143. Imprimé le 28 Septembre 1979
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Using (5.14), (1.13), and the estimate log (1 +y)=y+0(y?) (for |y| <%), we obtain
(5.15) (Br—t —ywt) log (1 +fvt) = B~ E+ O(|B|v7Y).

Utilizing (5.13), (5.15), (5.14), (1.12), (1.13), and the estimate Q(¢)<t? for [¢| <1 (see (1.2)),

we geb
wQyw) = (v+2)Q(yw1) = vQ(BvH) + frv-t + O(|f|v-t +vH).

Exponentiating this and using (1.13) and the estimate e =1+y+O0(y?) (for y<1), we

obtain
(5.16) Bu(y) = Ry(B) {1 +Ba-t+0(|B|v—t +vH)}.
In particular,

(5.17) By(y) <R,(f).

Now define f(y)=exp (y2/2)G(— |y|) for all real y, so F,(y)=f(y) R,(y). We shall
apply Lemma 5.1 to estimate f(y). For the remainder of this proof, write (2z)-t=c for
simplicity. First suppose that

(5.18) B+0 andfy>0.

We apply (5.2), using (5.12), (1.13), (4.7), and (1.12) to estimate ¥ — 8 and the error term.
The result is

(6.19) f(y) = () +{c sgn B —Bf(B)}2v~t + O(v~H).

Multiplying the expressions (5.19) and (5.16), noting the cancellation of the terms
+61(B8) B,(B8)zv—t, and simplifying by the use of (5.17), (4.7), (1.13), and (1.12), we get

(6.20) Fu(y) = Fy(B) +cR,(B)zv-t sgn f+ O(R,(B)vY)

if (5.18) holds.
Now suppose that

(6.21) f=0 andpfy<0.

If <0 and 9 >0, then by (5.8), || <Avt, and the same inequality holds if #>0 and
p<0. Thus by (5.12),

(5.22) [B] <Avt and |y|<Av i
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We combine (5.3) and (5.12), then estimate the resulting error term by using (5.22) and
(1.12). The result is

(5.23) f(y) = {(B) + (2B —zv~t) sgn f + O(v~H).
Observe that (5.22) and (1.12) imply |8z| <|B|A <1, so (5.16) becomes
(5.24) R, (y) = R,(B) + O(B,(B)vH).

Multiply the expressions (5.23) and (5.24), then use (4.7), (5.22), and (1.12) to estimate the

error terms. The result is
(5.25) Fy(y) = Fy(B) +c(28—2v) B,(B) sgn B+ O(R,(B)vH)

if (5.21) holds.
We need to deduce from (5.25) an appropriate expression for 1 — F,(y). Recall that
Q(t)<<#? for |t] <1. Hence if |[y| <1, we have

R.(y) = exp {vQ(yv~1)} = 1+0(y?) = 1+ O(y2R,(y)).
From this and (5.5), it follows that
F(y) =3 By(y) —c|y| B.(y) + OB, (y)) = 4 —c|y| Bo(y) + O(y*R(y))
if |y| <1, and in particular,
(5.26) Fy(B) = 3 —c|B| Bo(B) + O(B,(B)vH)
if (5.21) holds, by (5.22) and (1.12). From (5.25) and (5.26), we obtain finally
(5.27) 1—F,(y) = Fy(B) +cR,(B)zvt sgn B+ O(R,(B)vH)

if (5.21) holds.

Now by (5.17) and (5.11), the error terms in (5.9) and (5.10) are both O(R,(8)v1).
Hence if 80, we can derive (1.14) and (1.15) immediately from (5.9), (5.10), (5.20), and
(5.27).

Finally, consider the case §=0. If §, <0 <f,, then

Tv(m’ ﬂl; E’ g) < Tv(x’ 0; E: g) < T,,(x, ﬂ2; E, g)
If we use (1.14) and (1.15) and let B, and f, tend to O, we get
Tz, 0; E,g) =} —czv-t+0(v71),

and hence (1.14) and (1.15) both hold for 8 =0. Q.E.D.
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Theorem 1.9 and Theorem 4.27 are best possible in a rather strong sense. To see this,
suppose that ¢,y is a sufficiently small (positive absolute) constant, and assume that
v>max {cz7, 3A2}, |B| <cguA~lot, v+Pvi=m is a positive integer, and f—« is positive
and sufficiently small. Then by (4.14),

(5.28) T, B; B, g)— Ty, a3 B, g) =a-*N(m, z; E, g) > R ().

Keeping « fixed, let H,(y) be any real-valued function which is defined for w > max {c5’, 3A%}
and y in the interval («, f] and which has the property that for each fixed w, H,(y) is left-
continuous at y =§. It follows easily from (5.28) that

I T,,(Z, el E: g) _Hv(y)l > 62&’:'}‘)‘1)('}/)0"i

for some y € (e, B]. Thus (for any fixed z) Theorems 4.27 and 1.9 show that in this sense,
the functions F,(f) (for §<0) and 1—-F,(B) (for §0) are essentially the best possible
continuous approximations to T,(z, §; E, g). Likewise, (1.18) is best possible if § is near

Zero.
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