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Introduction

This paper is concerned with integration on complex analytic spaces and the (De
Rham) currents defined by such integration. It contains results about continuity of fibering
and intersection of such currents. It also states sufficient conditions for a current to be
defined by integration over a complex subvariety.

The methods of proof involve extensive use of the theory relating to the integral cur-
rents of H. Federer and W. Fleming, as it is developed in Federer’s treatise Geometric
measure theory [7]. Since this theory is unfamiliar to most complex analysts, we have stated
necessary results in Chapter Two and in Section 5.1. Few theorems are needed for the
fibering result, but Chapter Five uses the theory in more detail.

Each chapter has a brief introduction, but we will state the main results here.

The fibering theorem of Section 3.3 is stated for holomorphic maps f: X™— Y" between
complex analytic spaces X™ and Y”, where Y is locally irreducible and the complex
dimension of the fibers f~(y) equals m —n for all y in Y. If » is a continuous (2m —2n)
form with compact support on X™, u defines a current [«] and for any holomorphic f the
current f.[u] on Y is defined. If f satisfies the hypothesis above, we prove that f.[u]=
[A], the current defined by a continuous function 1 on ¥; moreover, A(y) =<{[X], f .4 (),
where {[X], f, y> is a current defined by integration on f-1(y), with suitable multiplicities.

The motivation for this theorem was the study of algebraic or analytic cycles (in
this paper called holomorphic cycles to avoid confusion with real analytic sets) by means
of De Rham cohomology and currents in [11], where it was necessary to study intersection
and fibering. Similar results have been obtained by others: the proof which inspired the
one in this paper is that of H. Federer [8)], who treats complete projective varieties. If X
is a manifold and Y is normal, the result may be found in W. Stoll [23], which includes a
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more general theorem for forms « with certain singularities. Another theorem of the same
nature for algebraic varieties is contained in a paper of A. Andreotti and F. Norguet [3].

In Section 5.2 we prove that a closed positive locally integral current on a complex
manifold (or complex space) is the current defined by integration on a complex subvariety
(with multiplicities). This is used in Section 5.4 to prove two theorems of B. Shiffman
on extension of analytic varieties [19], [20], and [21].

In Section 5.3 we draw the same conclusion for a closed positive current in an open
set in C" if the Lelong number at each point (or almost every point in the appropriate
Hausdorff measure) of the support is a positive integer. This gives a partial answer to a
question of Lelong [14], p. 2-07.

The result in 5.2 is a very special and tractable case of a more general problem in the
theory of integral currents, that of regularity of minimal currents (i.e., solutions of Plateau’s
problem.) A closed positive rectifiable current in a Kihler manifold is minimal, and in

this case Theorem 5.3.1 gives a precise statement about the nature of the singular locus.

I am happy to thank Professor Phillip A. Griffiths for his great help and encourage-
ment. Professors F. J. Almgren and W. K. Allard kindly answered many questions about
integral currents. I would also like to thank Professor Herbert Federer for several enlighten-

ing conversations, especially with regard to Chapter Five.
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Partial list of notation

1.1. A"(M), AL(V), 429(z), CAT (M), ete.

T A24(V), d, d’, d"

1.2. Dy(M), EL(V), Dy q(X), ete.
1.3. [ul, [c]

14. f.,D;(M),,b, integration along the fiber, closed and exact currents, T u, T, x T,

2.1. currents of order zero or representable by integration,

lal] (), v (), M(T'); N2 (M), R (V), Fo (M), I,(X), ete.

2.2. good coordinate cover U, F and F topologies

2.3. (T, f, 9>
2.4. H*(A)

3.1. Z,(X), positive current

3.2. clear s-coordinates, normal z polydisc

3.3. g¢-fibering, normal f-coordinate neighborhood
41. S-T,4S, T, E)
4.2. Lelong number n(x, T')

5.1. (¢, k) rectifiable set, Tan*(H*|_E, z), J,.f, (S|, x), H*|_B) An.

Forms and currents

This section recalls the definitions of the standard mappings of forms and currents on

manifolds and also on complex analytic spaces. General references for this section are the
books of Schwartz [18], Chapter IX, and De Rham [15] for currents and that of Weil

[28] for complex manifolds. Complex analytic spaces are studied in Gunning and Rossi [9].
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Notation. M and N will denote oriented real C* manifolds without boundary. V and
W will be complex manifolds, and X and Y will be (reduced) complex analytic spaces
(complex spaces for short). We will denote that M (V or X) is of real (complex) dimension
& by writing M* (V* or X%).

1.1. Forms

Let A"(M) be the space of complex valued r-forms on M and let AL(M )<= A"(M) be the
r-forms with compact support. We write write A"(V) =2, 4=, 4?4 V), where A™¢(V) is
the space of {p, ¢) forms, and

AT (V) =A4>(V) N AZT (V).

The operator d:A"(M)-> AT+ (M) is the usual exterior differentiation; and on V, d=d' +d”,
where d': A7 YV)—>A4?*4V) and d": A" YV)->A4>H(V). If f: M—-N is a C* map,
o A"(N)—=A"(M) is defined as usual; if f: V—W is holomorphie, f*(42 4 W))< A2-4(V).
The maps d and f* commute.

The corresponding spaces of continuous forms will be written as CA"(M), CAZ YY), ete.

If X is a complex analytic space, we wish to define 47:%(X) as it is done in Bloom-
Herrera [4].

Let 8(X) be the singular locus of X and R(X)=X —S(X) be the manifold of regular
points.

Suppose first that X is a subvariety of a complex manifold V. Let JzA4?-4(V)=
{u€4?>YV): i*u=0in 4> Y(R(X))}, where i: R(X)—V is the inclusion map. Then we define
A7 9X) to be A?-9(V)/J AP YV). It can be shown that A4?:%X) is independent of the
imbedding; therefore, 47-9(X) may be defined for any complex analytic space X by using
the local imbeddings in ¢" given in the definition. (To be precise, we should define a sheaf
of germs of (p, ¢) forms on X and take global sections.) We also define 4"(X), A7'%X),
0474 X), CA2%(X) in an analogous manner.

If /- X—Y is a holomorphic map between complex spaces, a map f*: 479(Y)—~ A2 4X)
is defined. Since d'(Jz AP YV))<JxA?*19(V), ete., the operators d: A(X)—~A™X), d":
AP Y X)~> AP X), and d”: 429 X)—> A7-4+1(X) are defined; f* commutes with d, d’, d”.

1.2. Currents

The spaces A"(M) and AL(M) can be given their usual topologies, which make them
locally convex topological vector spaces. We will recall the definition of convergence for

sequences in these spaces.
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A sequence (or net) u, Uy, ... in A"(M) is said to converge to a form u in A"(HM) if for
every coordinate neighborhood the sequences of component functions of the sequence
{u—u,} and also the sequences of higher derivatives of these component functions converge
to zero uniformly on each compact set of the coordinate neighborhood. If u, u,, %, ... are
in AYM), u;~u in AZ(M) if there is a compact set K< M such that supp »,< K for all ¢
(supp w=support of u) and u,~u in AL(M).

Definition 1.2.1. A (complex valued) current of dimension r on M is a complex-linear
functional T A{(M)—C which is continuous in the topology described above. The space
of these currents will be denoted by D(M).

It T€D(M), the support of T, supp T, is the closed subset of M with the following
property: z ésupp 7' if and only if there is an open set U< M containing x such that for
u€ALYM), supp < U implies T(u)=0.

Definition 1.2.2. E;(M) is the space of continuous complex-linear functionals 7"
A"(M)—~C.

Since the inclusion AL(M)~~A"(M) is a continuous map onto a dense subspace of
A"(M), every T € E;(M)induces a unique o(T) € D;(M) by restriction. It can be shown that
the image of this restriction map is the subspace of currents in D;(M) with compact sup-
port; we will often identify €;(M) with this space (but not with the induced topology).

Sometimes it will be convenient to speak of the degree of a current T € D;(M™); this
is defined to be dimension M™— dimension 7 =m —r; we write D'™"(M™) = Dy(M™) and
EMT(M™ =E(M™).

We can define D;{X), when X is a subvariety of a complex manifold V, as the sub-
space of D(V) which annihilates JxA(V): T€Dy(X)< Di(V) if and only if 7'(u)=0 for
any u€JyA"(V). (N.b. T€DyX) implies supp 7< X but not conversely; see Example
1-3 (¢).)

As in the case of A"(X), we can extend the definition of D;(X) to any complex space X.
The support of a current is defined as before, and £;(X) is the subspace of currents in D;(X)

with compact support.

Definition 1.2.3. If X is a complex space of dimension # (perhaps a complex manifold),
then we define currents of type (p, q): Dy.o(X)={T€Dy+¢(X): T(u)=0 for u€Ay*(X),

r+p}
Ep. e (X)=Dp,0 (X) 0 Epso(X)

D' (X)) =Dhe(X)
EMTPT(X) = Ep o (X).
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1.3. Examples

(a) CA"(M™) can be identified with a subset of D' (M™). For u €CA"(M™) we define
the current [u] by setting [u](v)=[y,u Av for v€EAL"(M™). Since supp u=supp [u],
[u]€E"(M) when w€CAL(M). Also, u€ (AP 9X) implies [u]€ D'* 4X).
‘ (b) Singular chains define currents. If ¢ is a locally finite C* singular chain of dimen-
sion 7, we define [c](u)= f,u for w € AL(M). An oriented submanifold may be considered to
be a singular chain; thus it defines a current by integration. An important example of this
is the Dirac 8-function at x, d,, for x € M; this element of (M) is defined by 8,(f) =f(x)
for f€A%M). (c) A final example is the current 7' € E;(R) defined by 7T'(f) =f'(0). Currents
of this kind will be excluded from the spaces studied in Section 2.

1.4. Mappings of spaces of currents

Several important mappings of currents are defined as adjoints of mappings of forms.

Definition 1.4.1. If f: M—~N is a C* map, the direct image map f.: E.(M)—~>E(N)is a
linear map defined as the adjoint of f*: A"(N)—A"(M), i.e., f+T(u)=T(f*u) for u€A"(N)
and T € E/(M). If f: XY is holomorphic, fx: &y o(X) > Ep o(¥) is defined in the same way.

If f: M—N is proper (f~'(a compact) i3 compact), f*(AL(NV))= AL(M); and f, can be
extended to a map f: D;(M)— D,(N). More generally, if f|supp 7" supp 7'~ N is proper,
for TE€D;(M), then f,T€D;(N) may be defined by f. T(u)="T(f*u) for u€AL(N), since
supp T N supp f*« is compact ([18], p. 364).

Definition 1.4.2. If f: M—N is a C* mapping, let D;(M), be {T€D;(M): [|supp T
is proper}. By the remark above, f.Dy(M),~ D,(IV) is well-defined. Similarly, if f=X—-Y
is holomorphic, we may define D (X), and extend f to this space. In general for any
subspace L<D; (M) or D;(X), we shall set L,={T €L: f|supp T is proper}—for example,
A¥(M); or CA¥(X),.

Ezxample 1.4.3
(a) If [c]€E,(M) is given by the singular chain ¢, f«[c] is the current defined by the

chain fyc.

(b) If f: M™—N" is any C*” map, f.(A"(M),) < f+(D'"(M);) < D" *N), where k=m —n.
However, if the rank of the differential Df, equals n, the dimension of N, for all x€M,
then actually f.(4A"(M),)< A™*(N). In this case the map /. is called integration along the
fiber. For each y€N, [~Y(y)=M, is an oriented k-dimensional submanifold of M; if r=k
and u€A4"(M),;, the function f,u€A°(N) is given by f*u(y)=j'Myu ([18], pp. 390-391].

Integration along the fiber for complex spaces will be discussed in Section 3.3.
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Definition 1.4.4. The boundary operator b: D; (M)~ D,(M) is the adjoint of the
exterior derivative d: AL(M)—~>AY(M): for TE€D; (M) and u€ALM), bT(u)="T(du).

If T is the current [v] defined by a form v€A™ "L M™), blv]=(—1)"""[dv], since
b[v](u) = [v](du) = [yv Adu=(—1)""{dv Au+ [ yd(v Au)=(<=1)"" [, dv Au=
(—1)Y""[dv](u) by the Stokes Theorem. Therefore, b: D'*(M)— D'*+(M) is an extension of
(—1yHd: A5(M)—>A* (M), and we can define d: D'*(M)—~D"**YM) by d=(—1)"+b,
which gives an extension of the usual d.

For complex manifolds V or complex spaces X, b and d can be defined as above, al-
though the fact that b[v]=(—1)*+Ydv] for v€A4°(X) depends on Theorem 3.1.1. In these
cases d"; D7 4X)~ DP9 X) and d”: D7 YX)>D'?(X) can be defined by d=d’'+d".

Since df*u=f*du, the operator b commutes with f,. A current 7T is closed if b1 =0

and exact if T =b8 for some S.

Definition 1.4.5. If T€D;(M) and w€CA*(M), we may define the product T'| u€
Dr-s(M) by T|_u(v)=T(uAv). This definition also applies to currents and forms on a
complex space X. (T'| _u is often denoted by 7' A wu).

We observe that if w is a form and T ~[w], [w]|_u =[w A u]. Also, if 7€ D;4(X) and
u€ASHX), T1_u€Dyg 4_i(X).

Definition 1.4.6. If T,€D;, (M), i =1, 2, the Cartesian product Ty x T, of Ty and T,
is the unique current in D; ., (M, x M,) such that Ty x To(pF(u,) A pa(uy)) =T (%) Ty(us),
where p, =M, x M,~ M, are the projections and u,€AS(M,). ([7], p. 360.)

2. Geometric currents

This section discusses certain subsets of the whole space of currents which will be
useful for studying integration on complex spaces,

Ingegral currents are a group of currents 7' such that 7' and b7 are generalized singular
chains with integer coefficients (rectifiable currents). These are contained in the space of
normal currents—currents 7' such that 7' and b7 are vector-valued measures. A still
larger space is the space of flat currents, which includes the currents [u] defined by locally
integrable forms.

Section 2.1 defines these currents and states the Support Theorem, which says that
a flat current supported on a submanifold comes from a current on the submanifold. Section
2.2 is devoted to the Compaciness Theorem which makes possible normal families type argu-
ments for normal and integral currents. Section 2.3 studies the fibering of these currents

and includes the Slicing Theorem, which defines fibers almost everywhere. Finally, Section
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2.4 defines Hausdorff measure and states a Measure Support Theorem and other useful
results involving Hausdorff measure.

The general reference for all this material is Federer’s Geometric Measure Theory [7].
A brief study of the subject is given in Almgren [2]. Most of the theorems stated here
are found in a more general form in [7], but the full strength of these results will not be

needed in this paper.

2.1. Normal, flat, and integral currents

The space CA™(M) may be given a topology by defining convergence to be uniform
convergence on compact sets of component functions in any local coordinate system.
With this topology the inclusion map i: A"(M)~CA"(M) is a continuous map with dense
image; consequently, the dual space of continuous linear functionals on CA"(M) is mapped
injectively by the adjoint of ¢ onto a subspace of &, (M).

The space CA;(M) can be topologized so that a sequence u,, %, ... is convergent when-
ever there is a compact set K <M with supp ;< K for all j and the sequence converges
in the topology on CA"(M).

The dual space of CAL(M) may be mapped injectively onto a subspace of D;(M). These

maps will be used as identification, as stated in the following definition:

Definition 2.1.1. A current T € D,(M) is said to be of order zero or represeniable by
integration if it can be extended to a continuous linear functional (necessarily unique) on
CAL(M).

The term representable by integration is appropriate since by the Riesz representation
theorem such a current is a vector-valued measure. If 7€ £,(M) is of order zero, T defines
a continuous linear functional on CA™(M). ([18], pp. 24-25, 89.)

In studying such currents it is useful to define certain norms. Let us suppose that M
is given a Riemannian metric. If y is a multivector at 2 €M, we denote by |y |, the length
of y given by the metric.

Definition 2.1.2. It w€CA(M), ||u| is a continuous function on M defined by
[|]|(x) = sup {|u(y)|: y is a decomposable r-vector at = and |y|,<1}.
For a set K< M the comass of u on K,vx(u)=sup {||u| (z): z€ K}. If T € D;(M) the mass
of T is defined as M(T)=sup {|T(u)|: u€ALM) and vy(u) <1}. We say T has finite mass
if M(T') < 4 oo,
Notice that the topology on A"(M) given by the seminorms g, for K compact, is the
one already introduced. Therefore, if T€E&,(M) is of order zero, M(T)=sup {|T(u)|:
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Veuppr (W) <1} <oo. If T € D;(M) is representable by integration, then 7' has locally finite
mass, i.e., for each z €M, there is a T',€ D;(M) such that = ¢supp (7 —7T,) and M(T,) < oo,

Definition 2.1.3. The space of locally normal currents of dimension » on M, N°(M),
is the set of T'€ D,(M) such that 7' and bT are both respresentable by integration. The
normal currents N (M)=N2(M)n E(M).

If TEN,(M), then M(T)+M@T) < oo.

Ezxamples. The (a) and (b) examples of 1.3 are representable by integration; (c) is not.
If v€AT(M™), [v]ENS (M) but not if v is merely continuous. Example (b) is also locally
normal.

We also wish to define a subgroup of N;°°(M) which consists of generalized singular
chains with integer coefficients.

Recall that a map f: 4-B between two metric spaces is Lipschitzian if and only if
there is a number C >0 such that dist (f(a), f(b)) <O dist (a, b) for alla, b€A. If PEELT)
is a finite integral polyhedral r-chain in some open U<R® (i.e., P is the current defined by
a finite sum of oriented linear simplices) and if f is a Lipschitzian map from U to a Rie-
mannian manifold N, then we can define a current f,(P) € £,(N) by approximating f by C!
functions f; and taking a limit of f;.(P) (See Federer, [7], pp. 370-371, for details).

Definition 2.1.4. If K< N is compact, we define R, ((N), the rectifiable r-currents in
K as follows: T€R, ,(N) if and only if 7€ E;(N) and for every &>0 there is an open set U
of some R®, a Lipschitzian map f: U~N and a finite integral polyhedral r-chain P with
f(supp P)< K such that M(7' —f,P) <e. (Thus the rectifiable currents are a completion of
the group of Lipschitz chains.) We define R,(N), the rectifiable r-curents in N as U R, g(IV),
where the union is taken over all compact K< N. The locally rectifiable r-currents in M,
RP°(N), is {T'€Dy(N): for each €N there is a T,€ R,(N) such that z€supp (T —T,)},
ie., T agrees with 7', near z.

Rectifiable currents are representable by integration, but in general this is not true

of their boundaries. We define a subgroup which has this property.

Definition 2.1.5. The group of locally integral currents I°°(N)={T € R°(N):
bT € R°%(N)}. We define the group of integral currents I(N)=I°°(N)n E(N).

Definition 2.1.6. The space of locally flat currents of dimension r, Fi°°(M)< Dy(M),
is the completion of N°°(M) in the F topology described in Section 2.2 (or see [7],
pp. 367-368) and the flat currents F(M)=F2(M)N & (M),

Examples of locally flat currents are given by I’°°(M)< RN°(M)< F*°(M) and
NP (M)< FY°(M). Also, the boundary of a current in F°°(M) is in Fy°(M) and
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T\ w€Fr (M) if T€F°°(M) is representable by integration and  is a locally bounded
Borel measurable k-form ([7], p. 374).

Definition 2.1.7. If X is a complex space, we define N;*°(X), R;°°(X), I}°*(X), and
F°(X) to be subspaces of D;(X) described locally by Ni°*(X)=N;°(V)n D;(X), ete.,
if X is a subvariety of V. Also N(X), R(X), I(X), and F,(X) are the corresponding spaces
of currents with compact support.

If f: M- N is a C* map or g: X - Y is holomorphie, f. and g, map rectifiable, integral,

normal, and flat currents into rectifiable, integral, normal, and flat currents, respectively.

Remark. Two questions concerning currents on complex spaces arise at once. First,
if V is a complex manifold, D;,(V) and its various subspaces are defined two ways if we
also consider V to be a complex space; we ask if these definitions agree. That the answer
is yes can be seen as follows: if ¢: V—W imbeds (not immerses) V as a submanifold and
r: WV is a retraction (roi—identity on V), then if 7€ D;(V) as a subvariety s <7 =T
since (u—r*t*u)€J(W). Since such an r always exists locally, the desired result follows.

The second question is under what conditions does supp T'< X<V, for TED(V),
imply 7€ D;(X). This condition is necessary, but Example 1.3.(c) shows that it is not
sufficient in general. The second corollary to the theorem below shows that this is suffi-
cient if 7" is flat and of order zero (thus if normal or integral). This fact is the important

property that makes these currents useful in geometry.

TaeorEM 2.1.8. (Support Theorem) If f and g are C° maps from M to N, if
TEFP (M);, and if f|supp T=g|supp T, then f T =g.T.

CoROLLARY. (i) If M< N is an tmbedded submanifold and i is the inclusion map,
i I (M) = {T €F°(N): supp T<M}. Furthermore, if T =1i.T" and T is locally normal,

rectifiable, or integral, then T' is also.

(i) If X <V is a subvariety, T € F1°°(V) is representable by integration, and supp T< X,
TeFr(X).

Proof. The theorem is found in [7], pp. 372-373, for f and g Lipschitz. Part (i) of the
corollary is proved as in the Remark above, except that we see i, 7. T =71 because tor
and the identity map on N agree on supp 7'. Part (ii) is proved by induction on dimension.
We have X = R(X)U S(X), where R(X) is a manifold and dim S(X)<dim X. Let 1 be the
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characteristic function of ¥V —8(X); by the remark following 2.1.6 the current 7' 4 is a
locally flat current representable by integration if 7 is also. Since R(X) is a submanifold
of ¥ —8(x), 1t is immediate from part (i) that 7'| _A(u) =0if u€J ¢ (V). But supp (I'-T[_A)<
S8(X), so (T —T|_2A){u)=0 for u€J(V), since Jx(V)=Jgx(V), by the induction hypo-
thesis (if dim X =0, X is a manifold). [

The following result will be used later in conjunction with the support theorem.

ProrositioN 2.1.9. If TED(M™)=DM™) and bT =0, T is the current defined
by a locally-constant function; iof T € I'S® (M) this function is integer valued. If V™ is a complex
manifold and T € Da, (V") =D'UV") with d"T =0, T is the current defined by o holomorphic

function.

Proof. This is a standard result about elliptic operators; see [18] p. 143 and [7]
p. 385. []

2.2. The compaciness theorem

In this section we will give topologies for spaces of locally normal and locally integral
currents and then state a compactness theorem resembling Ascoli’s theorem for functions.
This theorem will furnish a kind of Montel theorem for complex analytic sets. We will

first state the theorem, then define the terms used and finally give a reference for the proof.

TuroreM 2.2.1. (Compactness Theorem) A bounded subset of N°°(M) or N*°(X)
18 relatively compact in N (M) or N2°°(X) with the F topology. A bounded subset of I\°° (M)
or I1°°(X) is relatively compact in I°°° (M) or I}°°(X) with the F topology.

Let M be a manifold; we will call U a good coordinate cover if U={U};c;is a covering
of M by open sets U, and for each U, there has been chosen a larger open set U; > U,> U,
and a coordinate map ¢;: U;—~>R™ such that ¢,(U,;) = B,, the unit ball.

If X is a complex space, we will call U a good coordinate cover if U;> U, > U, are as
above, but the coordinate maps ¢;; U;—C" map U; as a subvariety of an open set in C"
and map U, onto a subvariety of A;, the unit polydisc.

If E is a relatively compact (i.e. has compact closure) open subset of a Riemannian
manifold N, then we define ¥ and JF as follows: if 7€ D,(N),

Fy(T) =inf {M(R)+M(S): RED;(N), SED;+,(N), and supp (I'—R—-bS)<N - E}.
If T eI (),
F5(T) =inf {M(R)+M(S): RER}’*(N), S€ R’*(N) and supp (T'—R~bS)=N - E}.

F is not always finite for a general current but it defines a seminorm of N¥%(N). Jx

defines a pseudometric on I °¢(N).
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We observe that Fy(T)<M(T), Fy(T)< Fg(T)<M(T) when defined. Also, Fy(bT)<
Fy(T) and Fy(bT) < Fx(T).
These pseudometrics can be used to topologize the locally normal and integral

currents as described below:

Definition 2.2.2. Let U be a good coordinate cover on M; the F(U) topology on N©°° (M)
is defined by taking finite intersections of sets of the form {T €N;*°(M): Fu,(T) <e} as a

basis for the open sets. In other words, convergence is convergence in each Fy,.

Definition 2.2.3. Let U be a good coordinate cover on X; the F(U) topology on N2**(X) is
defined by a basis of finite intersections of sets of the form {T € NP°(X): Fa,(¢:, (T | U3)) <e}.

Definition 2.2.4. The F(U) topologies on I;°° (M) and I}°°(X) are defined in an analogous

manner.

Note. If Y and U’ are two good coordinate covers, the F(U) and F(U') topologies and
also the F(U) and F(U') topologies are the same for M or X; hence, we will just refer to the
F and the F topologies. The topologies on M can be defined directly by the pseudometrics Fy
and JFy for all relatively compact open E< M. It is less obvious how to do this for X; and
rather than discussing this at length, we have adopted the definition used here, which is

adequate for our purposes.

Definition 2.2.4. A subset A< N1°°(M) is said to be bounded if for every relatively
compact open E< M there is a constant Cp such that M(T'|E)-+M(@bT|E)<Cj for all
T€A. A subset A<N;**(X) is bounded if for every coordinate map ¢: U->€" which
imbeds an open UcX as a subvariety of an open set D=(" the subset ¢.(d)=
{¢+(T'|U): T€A}<=N;°(D) is bounded. It clearly suffices to check boundedness for a single

coordinate covering.

Proof of Theorem 2.2.1. The theorem is proved for N, and I, with support in some
fixed compact Lipschitz neighborhood retract K in Federer [7], pp. 411-415. To get the
theorem for N;°°(R™) we can use partitions of unity and this with Tychonoff’s theorem
(since the F topology is induced from product topology) implies the result for N;°° (M)
and N;*°(X). To show the theorem for I’ we must also show that a limit point in the JF
topology of a set of locally integral currents is locally integral. This is a local question, and
the argument of Federer which proves the theorem for I, proves this result for I}°° (M)
and 7°°(X) as well. [

2.3. Slicing (fibering) currents
If f: M™—~>N"is a smooth map of maximal rank and 4 € A?~"*(M). we saw in Example
1.4.3.(b) that fi[u] is the current defined by the smooth function of , fMyu=[M T(%).
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We call [M,1={[M], {, y) the slice of [M] at y, for yEN. In this section we list results
which say that for a general flat current 7', (T, {, > is defined for almost all y € N and the
current f.(T| u) is defined by the measurable function {7, f, y>(u).

In R" the notions of a set of Lebesgue n-measure zero and of locally Lebesgue integrable
functions are invariant under differentiable coordinate changes; therefore, it makes sense
to speak of sets of (Lebesgue) measure zero and locally integrable functions on a real
n-manifold N.

If A is a locally integrable function defined almost everywhere on IV, it defines a current
[A€ D7 (N) by [A](u)=fyAu. Since the values of 4 may be changed on a set of measure
zero without changing [4], the value A(y) is not unambiguously determined for all y€N
by [4]. However, a theorem of Lebesgue says that a definite value may be assigned to almost
all y by a process of differentiation.

Suppose N is given & Riemannian metric and that W is the volume form on N. Then
for a fixed y€N, if C), C,, ... is a regular sequence of closed sets converging to y ([17],
p- 106), we may ask if the limit

a, =lim AW / J‘ w
s J Ca Cn
exists and is independent of the regular sequence chosen. If for some y € N this is the case,
we define }:(y) =a,,; if not, set Z(y) = 4 oo, The theorem of Lebesgue states that 1=1almost
everywhere ([17], p. 118). If i(y) % 4 oo, we say that A has a well-defined value at y.
The definition of 7 is clearly local and independent of the choice of W (any continuous
nonvanishing n-form would do). If g: N> N' is a diffeomorphism and C;, C,, ... is a regular

sequence of closed sets tending to g(y); it is evident that

Aog! =JlogL.
We will now apply these ideas to finding the values of certain currents defined by
fibering maps.
THEOREM 2.3.1. If TEFS(M™), T=[A] for some locally integrable function A.
Proof. [7], p. 376. [
If f: M™>N"is a C*° map and T €N, (M) and w€ECA'(M) are such that flsupp TN
supp w is proper (that is, T'|_u€NY(M),), then f. (T u) € FX(M) (see remark after 2.1.6)

and from previous theorem is the current [1,] for some function 2,.

Definition 2.3.2. If y€N and /lu has a well-defined value at y for all such w€A"(M)
(it suffices to check for all w€AL(M)), then the current (7, f, y> € D;(M) defined by
T, f, y>(uy=~,(y) is called the slice of T at y by f.
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Example. If T is the current defined by integration over some (n + r)-dimensional oriented
submanifold M’'< M and rank Df,=n for all € M’, then (T, f, y> is the current defined
by integration over the criented submanifold f~*(y) N M'< M. If M’ =M this is integration
along the fiber as described in Example (b) after 1.4.2. Notice that in this example
LT, f, y>(u) is actually a continuous function of y if u € CAL(M) and is smooth if u € A (M).

TurorEM 2.3.3. If f: M™—N"is a O map and S, T € F2 (M), the following statements

are true.

(1) If h: N—N' is an orientation-preserving diffeomorphism and T, f, y> exists, then
(T, kof, h(y)> exists and equals {T, {, y>.

(2) Ifu€As(M), s<r,and (T, f,y> exists, then {T|_u,f,y) existsand equals {T,f,y>|_ u.
(3) If <S,1,y> and {T,f,y> exist, then (S+T,f,y> exists and equals {S,f,y> +<{T,f,y>.

(4) If x€M we say that T slices at x if there is an SE€F (M) such that {8, f, f(x)>
exists and xésupp (T —8). If for every x€fy), T slices at x, then (T, f, y) exists (i.e.,

slicing is local in M).

(8) If LT, t, yy> exists, supp {T, f, y><supp TN {y).
68) If r>0 and {T,[,y> exists, then so does (bT,f,vy>, and b7, f, y>=b{T,{, y).

Proof. The remark in the fourth paragraph in this section shows (1) and (4) is clear.
The rest is in Federer [7] pp. 436-438, or in the earlier paper [8]. We are actually using the
definition found in this paper rather than [7] because it behaves better under change of
coordinate (i.e., (1) holds). [

The following theorem is the fundamental result about the existence of slices.

TuEOREM 2.3.4. (Slicing Theorem) If f: M —N" is a C* map, M is a manifold with o
countable basis for the open sets, and T € FX¢, (M) (resp. N2, (M), I}¢, (M), then for almost
all yEN (in Lebesgue n-measure) (T, f, y> exists and is in F°°(M) (resp. N*°(M), I,>° (M)).

Proof. The theorem for a single coordinate neighborhood is in [7], p. 438 and p. 443;

since a countable union of sets of measure zero has measure zero, the theorem follows

immediately. ]
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2.4. Hausdorff measure

To measure sets of intermediate dimension, we define p-dimensional Hausdorff meas-
ure, H?. For a p-dimensional submanifold M of a Riemannian manifold, H*(M) equals
the volume of M.

Let 4 be a subset of a metric space B, and let §(4) denote the diameter of 4. We
write 0°(4)=86(4)°B(p) if p>0 and §°%(4)=1 if A +0, 6°A)=0if 4=C. (B(p) =2 Pa(p)?,

where op) is the volume of the unit ball in R?.)

Definition 2.4.1. If p>0, >0, set HE(A)=inf {>,6°(4,); A< U4, and 6(4,)<e}.
Then the Hausdorff p-measure of A,

12 (4) = Tim H2 (4).

H? is a regular metric outer measure, so Borel sets are measurable. If H?(4) < oo,
HP+%(A4) =0 for any a>0. If f is a Lipschitzian map with Lipschitz constant K, H?(f(4)) <
KPH?(A). (See [25] pp. 21-22).

For the rest of this section we will assume that all manifolds are Riemannian mani-

folds with a countable basis for the open sets; H? is induced from the Riemannian metric.

TurorEM 2.4.2. (Measure Support Theorem) If T€F (M) and HT (supp T) =0,
then T =0.

Proof. [7], p. 378 and p. 173. ]

In particular, if supp 7' is contained in a manifold or analytic set of real dimension
less than », T'=0.
TrEOREM2.4.3. Let f: M —~N"bea C*° map. If A< M and H(A4) =0, H*(AN f{y))=0

for almost all y€N (in Lebesgue, or equivalently, Housdorff n measure.)
Proof. [7] p. 188. ]
The next theorem gives a tool for choosing good coordinate systems in C".

THEEOREM 2.44. Let A be a subset of C* and let a>0. If H¥%(A)=0, then, for almost
all complex (n—k) planes L through 0, H(ANL)=0. In particular if A is a complex sub-
variety of an open subset of C", the complex dimension of AN L<al2 for almost all L. Also,
when A is closed in a neighborhood of 0 and m, is a linear map from C* to C¥ with kernel L,
HYANL)=0 implies that there is a neighborhood U of O such that the restriction m|ANT

is a proper map.

Proof. See Shiffman [19], p. 114, Lemma 2, including the remark following; also
p. 118. The last part uses the fact that dimension ANL=0 if H{(ANL)=0. ]
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3. Fiber integration for holomorphic maps

In 3.1 we discuss integration on a complex space and the group of holomorphic cycles.
The principal goal of this section is the Fibering Theorem in 3.3, which says that if
f: XY is a holomorphic g-fibering and Y is locally irreducible, the current of integration
along the fiber f.[u] for any 4 €CA2Y(X) is given by a continuous function. This function
is actually given by [;-iq,u for all y€Y if f-1(y) is given suitable multiplicities. Under
additional hypotheses on u, which are given in 3.3 the function f.[«] will be constant,
holomorphic, or plurisubharmonic.

In Section 3.2 there are lemmas needed for 3.3 on the choosing of coordinates and on

the volume of the fibers.

3.1. Holomorphic cycles

If M™ is an oriented submanifold of a Riemannian manifold N and u€A™(N), then
Jauw can be defined even when M is not closed if the volume of M is locally finite. Inte-

gration over M defines the locally rectifiable current [M].

TreorREM 3.1.1. If X is a k-dimensional complex subvariety of a complex manifold V
and w€AZ(V), the integral [ pxi*u is defined, where i: R(X)~V is the inclusion map. If we

define [X(w)= [ yu= frxy*u, [X] is a closed current in I52(V).

Proof. This is proved directly in Lelong [13] or Stolzenberg [25], Chapter I. One shows
that R(X) has locally finite volume by choosing clear coordinates (see Section 3.2). This
implies that [X] is defined. It is clearly in RES(V)< FiS(V); therefore, B[ X]€ Fax_1(V).
But is is evident that supp 5[X]<8(X). Since H¥*1(§(X))=0, b[X]=0 by the Measure
Support Theorem (2.4.2) and [X] is closed, hence in I3 (V). ]

If X is a subvariety of Y, it follows that integration on X defines a current [X]€ I3 (Y).

Definition 3.1.2. If Y is a complex space, the group of holomorphic k-cycles Z,(Y )=
{TEI(Y): T=2,;n[X,]}, where X, is a k-dimensional subvariety of Y, »; is a nonzero
integer. The sum may be infinite; but X = U,; X, is a subvariety of ¥, for if the union
were not locally finite the sum 7 would not exist.

The following proposition will be of help in recognizing holomorphic cycles.

ProrosiTion 3.1.3. If X is a k-dimensional complex subvariety of Y, for any closed
current T € FE2(Y) with supp T< X, T is of the form >a;[X,], where the X, are the global
trreducible components of X = UX,. If TELSE(Y) as well, the a; are integers and T €Z,(Y).

Proof. If we restrict T' to ¥ —S8(X), by the Support Theorem Corollary 2.1.8.(i) and
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Proposition 2.1.9, this restriction agrees with 7" =2Xa,[X,] for some unique @, €C, since the
X, are connected manifolds. But then 7'— 7" € F5¢ (Y) and supp (T — 1)< S(X); therefore,
T=T" by the Measure Support Theorem (2.4.2). If T€I%(Y), the a, are integers by
2.1.9. O

If W* is a complex submanifold (not necessarily closed) of a hermitian manifold V
and w is the Kéhler form of the metric on V, then the volume of W equals (1/k!) fyw",

where W =w A ... Aw & times.

ProrositioN 3.1.4. If T€Z(V), V a hermitian manifold with Kdhler form w,
M(T)=(1/k}) T(w).

Proof. This follows from the remark above, which is proved in [25] pp. 6--8, or [7] p. 40

from Wirtinger’s inequality.

Definition 3.1.5. A current T€D;, (V), V a complex manifold, is said to be positive
if T|_wu is positive for any u €A% *(V) of the form (¢/2)*Adzt Adzt A ... A d2¥ A d2F, where the
' are local coordinates and 2=>0€A4%(V) (a current S€ Dg o(V) is positive if S(u)>0 for
any u=0 in AJ(N)).

It is clear that [X] is positive if X*< ¥ is a subvariety.

3.2. Lemmas on the volume of fibers

In this section we prove a lemma in local analytic geometry which gives a volume

estimate needed in the next section.

Notation for this section. I=(iy, ...,1,) is an r-ruple of integers, i,<...<i, |I|=
max; g, {4} I |I]| <n, g C—C is given by m,(2%, ..., 2") = (2", ..., 2); L; is the linear
subspace 771(0). I and the s-tuple J are disjoint if they have no common element; the
(r+s)-tuple JUJ is defined to be (¢4, ..., ¢y, 4y, ..., 5) rearranged in the obvious way if I

and J are disjoint.

Definition 3.2.1. Let X be the germ of a pure k-dimensional complex subvariety at
0€C". Linear coordinates (2!, ..., 2") are called clear coordinates for X if for any k-tuple
I=(i, ..., &), s C"—CF is a finite map of X at 0 (i.e., ;w; makes X an analytic cover over
C* at 0, [9] p. 101).

Definition 3.2.2. Let m: C*—C% k>d, be a linear map given by linear functionals
wi2, ...,2"), i=1, ...,d. If X is as above, the linear coordinates (z!, ..., z") are called
14-- 712907 Acta mathematica 127. Imprimé le 8 Octobre 1971
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clear m-coordinates for X if they are clear coordinates for X and w'=z!, i=1, ..., d (i.e.
w=m;, I=(1, ..., d)).

Notice that the existence of clear m-coordinates implies that dim (X N#—0))=k—d
at 0.

It is known ([26], p. 311) that a dense subset of the set of all coordinates, considered
as points on a Stiefel manifold, are clear. This also follows immediately from 2.4.4. We

wish to prove a slightly more general result about the existence of clear s;-coordinates.

Lemma 3.2.3. If X is a purely k-dimensional complex analytic set in some open set
U<C" and the linear map m=(@", ..., w%): C">C* is such that dim - '(0)N X =k—d >0,
then for almost all linear maps (211, ..., 2*): C*—C"4, the coordinates (w?, ..., w?, 29+, ..., 2%)

are clear s-coordinates for the germ of X at 0.

Remark. What is meant above by almost all linear maps is that the statement is true
on the complement of a set of measure zero in the space of matrices C*"~®. In the proof
we will use the fact that if Y is the germ of a purely r-dimensional complex subvariety at
0€C", then dim (Y N p~(0)) =r —s for almost all linear p: C*—C*. (2.4.4 and [9] p. 115). If
r=8, to say that p is finite on Y at 0 is equivalent to saying that O is an isolated point of
Y npY0).

Proof of lemma. In the proof all subvarieties of C* will be considered to be germs of
varieties at 0. By hypothesis, dim (X N#—1(0))=k—d. By the remark above, for almost
all linear (2*4,...,2%): C"—>C*¢ the map is finite on X Nz~1(0). Therefore the map
(wh, ..., w? 2%, ., 2¥): €"—(F is finite on X. Fix these 2! and call the map 7.

We do a proof by induction. We assume that we have a linear map m,: (w?, ..., w?
242N =(2, ..., 2"), k<r<m, of rank r such that for any k-tuple I =(iy, ..., %), |I]| <r,
dim (XNL)=0. This implies that for any (k—1)-tuple J=(jy, ..., jpa), |J]|<7,
dim (X nL;)=1.

Let Y=U,(XNnL,), where the union is over all (k—1)-tuples J with |J| <r. Since
dim Y =1, for almost all linear functionals z: C"—C, m, X z: C*—C"t! has rank r+1 and
dim (¥ n27%(0))=0. If we fix such a z and set &, = (W', ..., w% 2%, ., 2", 2) = (¢!, ..., 2"H1),
then for any k-tuple I with |I|<r+1, dim (X nL;)=0.

Thus by induction we can construct a 7, which gives clear m-coordinates by the pro-
perties of 77,. At each stage we choose any z outside of a set of measure zero in ¢**, so almost
all choices of (2%, ..., 2") give clear m-coordinates. []

Suppose (21, ..., 2") are clear z-coordinates for a purely k-dimensional subvariety X
at 0. Then since =; is finite on X at 0 for each k-tuple I, there is a relatively compact

polydise A, C" such that ;)X N A, is a proper map of XN A; onto s7,(A;) with n; sheets.
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Definition 3.2.4. Let A be any polydisc contained in ) ;A,, where the A are as described

above; such a A is called a normal s-polydisc for X at 0.

ProrosiTioN 3.2.5. If X is a purely k-dimensional subvariety of an open set U< C"
and A is a normal s-polydisc for X at O (where w: C"—C? is a linear map as before), then there
is a constant C such that the 2(k —d) volume (XN AN 1(y))<C for all y€C-.

Proof. Tt C" has the usual metric, the Kihler form w = (¢/2) > dz* A dZ' and
(w**(k—d)!)=>;w’, where J is a (kK —d)-tuple (jy, ..., jx-q) and

w' = (32 e AdF A L. A28 A dFTR-a,
We recall from the previous section that

volume (X N A Nz y)) = 1 wht =3 w.

—d)
(b —d)! xnana—ley) 7V xnanz—y)

In the m-coordinates, w=us;,, where I,=(1,...,d). If a given (k—d)-tuple J is not

disjoint from I, clearly

f w =0,
XnANE—1)

If J is disjoint from I, we set J' =1, U J. The map 7, maps X N Ay onto 7, (Ay) as an
n;-sheeted analytic cover. Therefore, 7; maps X N Ay N7l (y) onto the (k—d) polydise

7;(Ar) as a cover with sheets numbering <np. Thus

E] = f w] < nrf w]
XNAS Na— Xy EFGYD)

(w’ equals 77 applied to the volume form on C*~¢, which by abuse of notation we will
also denote by w’; so w’ =njw’ =atw’).

The second integral is a finite constant €, >0 independent of y. The first integral £, is
larger than the integral over X N A Nz~ (y) since A < A .. Therefore volume (X N A Nx—1(y)) <
2:E;<Zn; 0 O

Finally, we make an observation that will be needed in the next section. We use the

same notation as in the previous proof.

Lemma 3.2.6. Take a (k~—d)-tuple J disjoint from I, as above. Let A be a smooth
function = 0 with A(0)>0 in A%, (A)< AYCY). Then (lom,)w’ is in AZ—2(A) and

([ X]L_(Aomp)w’) is a current on C* given by a continuous function whick is > 0 near 0.
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Proof. This is just integration along the fiber for a product. If p =C*—~C? is the pro-

jection on the first d coordinates, posp=s. Therefore, for any form u€A42%C?),
([ XL (Aomp)w) () = [X] (e, *(Aw’) Ao*u) = [X] (o, (A’ A p™)
=g, X N A (A A p*u),

which is defined since 7. is proper on XN A;.

Now the current 7,+[X N A,] is a closed locally integral current in m;.(A}.); therefore,
it is the current defined by an integer (by 2.1.9) which is obviously n;. Thus we have seen
that the current 7'=m,([X]_(Aom;)w’) applied to u is the same as n, [ Aw’ A p*u (since
the support of 1 is compact) and this equals n,[Aw’](p*u) =n,p«[Iw’](w), where [Aw’]€
E:4(CF). Thus 7 =n, p[Aw’], and this is given by a continuous function as we saw in 1.4.3

(b). O

3.3. Continuity of fibering

This section contains a theorem on continuity of fiber integration. At the end of the
section are conditions under which the integration of a form along the fiber yields a con-

stant, holomorphie, or plurisubharmonic function.

Definition 3.3.1. A holomorphic map f: XY between two analytic spaces is called a

g-fibering if dim f~(y)=q for all y€Y (f~1(y) may be empty).

TurorEM 3.3.2. (Fibering theorem) Let X™ be a complex analytic space and let Y*
be a locally irreducible complex analytic space. Suppose that T €Z,(X) and that f: X—~Y is o
holomorphic map whose restriction to supp T is a (k—d)-fibering of supp T, then

(1) there is a map ©: Y —Z,_,(X), continuous in the F topology such that O(y) =T, f, y>
for all y€ R(Y),

(2) if u€CA¥*%X) is a form such that f|supp u N supp T s proper (i.e. T'|_u€ Dsa(X);),
then ©(y) (w) =< T, {, y> () is a continuous function of y € X which defines the current fx (T'|_w),
(that is, for any v€ AZ(Y), [+ (T u)(v) = f,(D(y) (w))v).

This theorem has been proved by Stoll [22] where X is a manifold and Y is normal and
for certain discontinuous «. When X is a singular projective algebraic variety, the theorem
has been proved by Federer [8] and Andreotti-Norguet [3]. The proof given here takes the
same approach as that of Federer but uses the local geometry developed in Section 3.2.

Before giving the proof, we wish to choose local coordinates in which the fibering is

like that of Section 3.2.



THE CURRENTS DEFINED BY ANALYTIC VARIETIES 2056

Construction of normal coordinate neighborhoods

Suppose Y is an open set in €% and f: X—+Y is a (k—d)-fibering, where X has pure
dimension k. Let 2 €X; we choose coordinates in X by finding an open set U'<X with
2€U’ and a holomorphic imbedding ¢: U'—=D<C" as a subvariety of an open set D
such that fo¢—1: $(U’)~Y is the restriction of a holomorphic ¥: D—7Y.

Let T'(F): D—D x Y be the graph function on F (with I'(F)(s)=(s, F(s))) and let z:
DxY—Y be the projection. Since ['(F) is an imbedding, the function ¢’ =T(F)oé:
U'—DxY<(" is a new coordinate map and f =mo(I'(F)o¢) on U’. Therefore, in local
coordinates f is given by the linear function sv: C*+?—C% this is the situation studied in the
preceding section.

If Y?is a complex space, choose at, f(x) a coordinate map » onto €™ and, if needed, a
projection p: C"—C¢ so that poy is finite on ¥; then proceed as above with yof or poyof.

Once these coordinates are chosen we can find a normal neighborhood A for ¢'(U")
about ¢'(x) and set U =¢'~}(A); this set U, with the accompanying coordinate systems,

will be called a normal f-coordinate neighborhood for .

Definition 3.3.3. Let f: X*—Y* be a (k—d) fibering, where Y is a complex space. The
pair (U, P) will be called a normal coordinate cover for f it U is a good coordinate cover for X,
P is a good coordinate cover for ¥ (see Section 2.2), and for each U,;€Y there is P, €D
such that U, is a normal f-coordinate neighborhood with respect to the coordinates on U;
and P,

We see from the construction above that such (U, P) always exist.

Now we will prove the Fibering Theorem by showing that almost all of the slices
(T, f, y> are given by the set-theoretic fiber with the multiplicity given by 7'. The rest of
the fibers are then filled in using the Compactness Theorem.

Proof of Theorem 3.3.2. We break the proof into several steps. First, observe that it is
sufficient to prove the theorem for the case k=m and supp T'=X, since forms on X can be
restricted to supp 7. Thus we assume X =supp 7T'; this implies X has pure dimension %
and f: X—+Y is a (k—d)-fibering. Also, since 7'=> n,[X,], where the X, are the irreducible
components of X, we may assume X=X, some 4, and T =[X]. Therefore, given
wEAM(X),, [ ([X1L 1) = fu ().

Case 4. Y is a manifold and X has a countable bagis for the open sets.

Step A1: Good Slices. For almost all y€ Y the following is true: ([X], f, y> exists and is
the current [f~1(y)] defined by integration on f-1(y).

Proof of Step AI. Let B< X ={x€ R(X): rank Df(z)<2d}U S(X); B is a closed set with
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Hausdorff measure (in local coordinates) H*~2+%(B)=0 for any a>0. Therefore, by the
Slicing Theorem 2.3.4 and Theorem 2.4.3 there is a set < Y such that Y —G has measure
zero, and for any y € G, HZ-2+1(f-1(y) N B)=0and {[X], f, ¥> € ItX-24(X) exists. By Theorem
2.3.3, b[X), f, y> =<b[X], }, 4> =0, so {{X], }, y> is a closed locally integral current with
support in f~1(y) and by Proposition 3.1.3 is a current in Z,_,(X) given by a sum of the
irreducible components of ().

To verify that ([X], f, y> =[f"y)] for y €@, we will check that they agree at points
of f~1(y)—B. Let u€ A% 2% X) with suppuN M =¢. On X —B f is a map on a manifold
with maximal rank, so by 1.4.3(b), f«[«] is a continuous function whose value at y is
f10yw. If y€G this equals {[X], f, y)(u). We have shown that supp ({[X], f, ¥> — [y <
Bn f~Yy), a set whose Hausdorff (2k —2d) measure is zero for y €G; therefore, by the Meas-
ure Support Theorem 2.4.2 ([X], f, y>=[f"1(y)] for yEG.

Step A2: Boundedness. The set {([X], f, y>: y€G}<Z;_4(X) is bounded.

Proof of Step A2. As observed in Section 2.2 it suffices to check boundedness with respect
to a given coordinate cover. Let (U, P) be a normal coordinate cover for f; if U, is a normal
f-coordinate neighborhood with coordinates ¢,: U,—~A<C", then by Proposition 3.2.5
there is a constant C; such that M($.([f1(y)]|U;))<C,. But since {[X], f, y>=[f(y)]
for y€4@, this implies Step A2 by definition.

Step A3. Filling in the gaps. Suppose y€ Y; choose any sequence ¥y, ¥, ... in G such
that y,—»y. By Step A2, the sequence {[X], f, > is bounded and by the Compactness
Theorem 2.2.1 is relatively compact in the F topology. Thus the sequence has a convergent
subsequence; we wish to show that for any such subsequence the limit is uniquely deter-
mined. We will define ®(y) to be this limit and conclude that the theorem then holds.

Relabeling the sequence if necessary, suppose <[X], f, >~ S € I¥-24(X). Then bS =
lim;,., 8{X], f,¥;>=0 and supp S<jf(y). Thus by Proposition 3.1.3, S€Z, ,(X) and
is the current defined by some sum of the irreducible components f~1(y); of f~1(y): 8=
> n,[f(y),]. Therefore, S is determined by the n,, and the n, are determined by the be-
havior of § at points in R(f~(y)).

In fact, all we need to show is that for each component f~I(y); there is a point
x,€R(f1(y);) and a form u,;€ 4224 X) with the following properties: supp %;N f~1(y)<
B(FYy),), Srau;=1, and £ ([X]L_w;)=F«[u,] is given by a continuous function.

This suffices, for
ny = S(uy) = lim <X, £, 9> (w) = lim fu 1] (90 = o [0,](9)

which is independent of the sequence y,. This u; is supplied by Lemma 3.2.6, so we are done.
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Conclusion for Case A. We have constructed a function @: Y —+Z,_,(X), continuous in
the F topology, by setting ®(y)=1lim {([X], {, y,> for any sequence y;, ¥s, ... in G. By F
continuity, for any u€A4%*-2%(X), the measurable function of y ([X], f, ) (u)=D(y) (),
which defines the current /i ([X]|_wu), is continuous. This implies that {[X], f, ¥> is defined
for all €Y and equals ®(y). The continuity for u € CA¥~24(X), follows by approximating

w with smooth forms.

Case B.Y is a locally irreducible complex analytic space; X has a countable base for
the open sets.

Step BI1: Boundedness. The set {{[X], f, y>: y€R(Y)} is a bounded set.

This set is bounded near z € X by Step A2 if f(x) € R(Y). If f(x) €S(Y) the result follows
by an indirect application of Step A2. Let g be a proper finite map of a neighborhood of
f(z) onto a polydisc A in €% Then the set {{[X], gof, s): s€A} is bounded because A is
a manifold, by Step A2. Since M({[X], f, y>|U)<M({[X], gof, g(y)>|U) for any y€ R(Y)
and any open U<X, we have the desired result.

Step B2: Filling in the holes. By Case A, we have the theorem for R(Y). We use the
same kind of convergence argument as in Step A3 to show that if y€S(Y) and yy, ¥, ...
is a sequence in R(Y) converging to 4 there is a subsequence of {[X], f, ;> converging to a
current S =2 n,[f1(y),1€Z;_ «(X).

To show the uniqueness of S we choose a u,€A4%*2¢(X) such that supp u;N f~1(y)<
R(-(y)) and [1yu;=1; then n;=S(u,).

By Case A, {[X], f, 2>(u;) is a continuous function of z€ R(Y). Since Y is a locally
irreducible complex analytic space, by a topological lemma found in [1], pp. 326-327, the
fact that the limit points of {[X], f, ¥,> (u,) for any sequence y;~¥, y,€ R(Y), are a subset
of the integers implies that there is a unique continuous extension of {[X], f, 2> (u;) to all
of Y. Since n, is the value of this extension at y, § is uniquely determined.

Thus in Case B we can define ®(y) =S as before, and the rest of the theorem follows

as before.

Case C: No restriction on X.

Proof of C. Even if X does not have a countable basis for the open sets the theorem is
still true; for if uw€A%~24(X), there is an open set containing supp « which does have a
countable basis. Since slicing is local (Theorem 2.3.3(4)), this is sufficient. []

Remark. The requirement that ¥ be locally irreducible is clearly necessary. If near
the point y, Y=Y,U Y,U...UY,, where ¥, is an irreducible component, then set X =1,
T=[Y,], and let u€A%X) be a function with u(y)=1.
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TaeorEM 3.3.4. If f: X~ V%is a holomorphic map from a complex space X to a manifold
V and TEFX), r>2d, and if u€ A™>4(X) is such that f|supp T N supp u is proper, then
F[T_u]=[A] for some locally integrable function A on V.

(i) If 8T =0, du=0, then A is locally constant.
(i) If d"T =0, d"u=0, then 1 is holomorphic on V.
(i) If T€Z(X), u is real and the current [id'd"u] is positive, then if A is upper semi-

continuous, A is plurisubharmonic.

Remark. If f: X— Y is holomorphic, we can apply the theorem to R(Y) and if Y is
normal, locally irreducible, ete., can apply extension theorems to conclude that 4 is holo-

morphie, ete., on all of Y.

Proof. This theorem is essentially in [3] p. 71, and the proof is the same here. Under
the hypotheses (i), (ii), (iii), f4[7'_u]=[A] satisfies b[A]=0, d"y[A]=0, and [A] is real and
td'd"[2] is positive. Therefore, by 2.1.9 or [12], p. 25, we are done.

4. Intersection and multiplicity

The Fibering Theorem can be used to define intersection of holomorphic cycles. In
Section 4.1 we show that this definition coincides with the classical definition in Draper
[6] and the homological definition in Borel-Haefliger [5].

In Section 4.2 the Lelong number of complex analytic set at a point is defined (the

multiplicity in another guise) and is proved to be an integer using the Fibering Theorem.

4.1. Intersection theory

Using the Fibering Theorem we will define the intersection of two holomorphic cy-

cles. We shall need the following theorem about iterated slicing.

Prorosiriox 4.1.1. If L}, M™, and N™ are C* manifolds, if T€F,, ., (L), and if
f: L>M and g: L~ N are C* maps, then for almost all (x, y) € M x N the following slices exist
and are equal: {T, h, (x, y)> =T, [, 2D, g, y>, where h=(f, g): L—~M x N is the Cartesian
product of | and g. LT, (f, 9), (@, y)> =(—=1)""<T, (g, f), (¥, x)>.

Proof. See [7], p. 441. [J

COROLLARY. Suppose that X, Y*, Y}* are complex spaces, Y, and Y, locally irreducible,
and f: X—=Y,, =1, 2, are holomorphic. Then if h=(fy, fo): X= Y, x Y, and T €Z,(X) are
such that dim (A x, y)Nsupp T)=k—n,—n, for oll (&, y)EY, x Y, the following slices
exist and are equal for all (x, )€Y, x Yy: LT, h, (, y)) =X, f1, £, f2 ¥ €Ly nymny(X).
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Proof. The two slices are continuous functions of (z, y) by Theorem 3.3.2. Since they
agree on a dense set, they are equal. [

In papers by Draper [6] and Borel-Haefliger [5] there are definitions of intersection
theory. We will give a definition using slicing and show that this is the definition given in
the other cases. Then we will see that if f: V- W has rank =dimension W, and X €Z,(V),
the intersection of f~'(y) and X is <X, f, y>.

ProrosiTioN 4.1.2. Let W" be a complex submanifold of the manifold V™ which is
defined by m—mn global funciions; i.e., there is a holomorphic function f: V—C"" which has
maximal rank at every point and f~1(0)=W. Then of T €Z V), k=n, and dim (W N supp T') =
kE+n—m, we define the intersection of W and T to be W-T =<1, {, 0>, which is a well-
defined element of Z, , (V) independent of the defining functions.

Proof. 1t is clear that (T, f, 0>€Z, ,_,(V) is defined; since dim (f~%(0) N supp 7)==
k+n—m, by the upper semicontinuity of the fiber dimension (see [9], p. 159) there is a
neighborhood U<V of 4 such that dim (f(y) N Supp I'N U)=k+m —n for all y€C™",
Then apply Theorem 3.3.2.

Therefore, it remains to show that if f;: V—=C""" and f;: V—-C""" are holomorphic
functions with maximal rank everywhere and f5 2(0) =1 1(0) = W, then <7, fo, 0> =<{T, f;,0>.
Since these currents are in Z,,,_,(V), to show that they are equal it suffices to show that
for any z,€ R(W n supp T}, the multiplicity of the component containing x, is the same for
both currents. Let N, N; be the respective multiplicities.

Since R(W Nsupp 7') is a manifold, we can find a neighborhood Uy<V of x, and a
submanifold Y of U of dimension 2m—n—k such that ¥ N W nsupp 7' ={z,} and Y is
transverse to R(W (\supp 7). If we choose U, small enough we can assume Y =g¢~(0),
where g: Uy~ "™ i a holomorphic function with maximal rank everywhere, and
g|R(Wnsupp T)N U has maximal rank (this comes from transversality). Therefore,
LT, 1, 05| U, g, 05 =N g1 €Z( V).

However, by the Corollary to Proposition 4.1.1 (T, f;, 05| U, g, 0> =<T'|U, (f;, 9),
(0, 0)>. If we substitute in the hypotheses of Proposition 4.2, U for V, WN Y for W, and
{f1» g) for f, we see that we have reduced the question to proving the Proposition for the
case k=m —n.

Let &k =m —n; we have two maps f, and f,, finite on supp 7’ at x,, both of rank k on V
with f3(0)=f7"(0)=W. If we had 7 =[supp 7']=[X], we would wish to show that the
analytic covers f,| X and f,| X have the same number of sheets. This result can be found
in [6], p. 184, Lemma 3.2; and since 7T is the sum of currents of the form [X], for some

X, we are done.
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A proof of this result can be given using the Fibering Theorem. We find a family of
holomorphic maps f,: U,—C* holomorphic in z, with f,, f, the same as before (up to
coordinate change) such that ([X], f,, 0> is a continuous function into Zy({,}), hence

constant. [

Definition 4.1.3. If V is a complex manifold of dimension m, W is a submanifold of
dimension %, and T €Z,(V), with dim (W nsupp T)=k-+n—m, then we define W-T'€
Zyin-m(V) to be the current such that W7'|U=W|U-T in any open set U in which W
is defined by global equations of maximal rank, as defined in Proposition 4.1.2. By this
Proposition W-T' is well-defined, If S€Z,(V) and T€Z,(V) then S-T is the unique ele-
ment of Z, ., (V) such that A,(S-T)=A(V):SxT where A: V=V x V is the diagonal
map. This is well-defined by Proposition 4.2. When 8.7 is defined and ¥ is an irreducible
component of supp (§: 7)< supp SN supp 7, we define the intersection multiplicity i(S, T, E)
to be the multiplicity of the component ¥ in the current S-7', (i.e., the unique integer such
that B —supp (S-T —4(S, T, E)[E])+ D).

It is not immediately clear from the definition that the intersection of cyecles with

cycles and manifolds with cycles is the same; but this is shown in the next proposition.

ProrosiTioN 4.1.4. If S=[W]€EZ,(V™), the current defined by a submanifold, and
TEZ,(V™), then ST =[W]+T =W-T whenever dim (W Nsupp T)=k-+n—m.

Proof. Since the question is local, we can suppose W =g—2(0), where g has rank m —n
on V and A(V)=f-1(0), where f has rank » on ¥V x V. Let p,;: ¥V x V~V be projection on
the first factor; then p,0A is the identity map on V,

Let w€ALZ**™™(V x V). By definition S-T(u)=<{SxT,f, 0>(pFu); but 8xT=
[WIxT={V]xT, gop,, 0> (this is clear since gop; has rank m—n on V x R(supp 7).
So 8:T=([VIxT,{ 05 gop,, 0> by the Corollary to Proposition 4.1.2, since slicing by
(f,9) is independent of the order of f and g.

We see that ([V]x T, f, 0> =A.T because f has rank m on V x R(supp 7'). Therefore,
ST(u)=<{A«T, gop,, 0>(pTu), which is the value at zero of the function defining the cur-
rent (gop;)s (Ax T piu)= gu((prals T)_w) =g (T ).

But the value at zero of the function defining the latter current is W-7'(u). [

Remark. By further use of the Corollary to Proposition 4.1.2, we may show the other
elementary properties of intersection. In particular, the intersection product is associative
and commutative.

We have now defined intersection; we prove the following proposition to show that this
definition agrees with others.
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Definition 4.1.5. An intersection theory I for holomorphic cycles on complex manifolds
assigns for any S€Z V), T€Z(V), such that dim (supp Snsupp I')=r+s—dim V a
unique cycle I(S, T)€Z,.s_qumv (V).

ProrosiTiON 4.1.6. Suppose I is an intersection theory satisfying the five properties
below, then I is the intersection theory defined in Definition 4.1.3. (The use of the symbol
I(S, T) below assumes that sapp SN supp T has the right dimension. The symbol « denotes

intersection as defined above.)

(1) Supp I(S, TY<supp Snsupp 7.

(2) If [W,] and [W,] are cycles defined by submanifolds which meet transversally (i.e.,
for all x€W, N W,, the tangent space TV, =TW, +TW,,), then I([(W,], I(W,], T))=
(W W, T) for any T.

(3) If dim S +dim 7'=dim V¥, I(S, T} =S-T.

) A(I(S, T))=I([A(V)], S x T).

(6) If U<V is an open set and if oy is the restriction map from currents on V to currents
on U, then I{oyS, oy T)=0yI(8, T).

Proof. Let I(S, T) be defined for SEZ(V™), T €Z,(V™); to determine I(S, T) it is
sufficient to know the multiplicity at « for all z€ R (supp SN supp T). This is the same as
the multiplicity n, of A.(I(S, T") at (z, x); by (4) AI(S, TH)=I{[AV)], Sx T).

Find an open neighborhood U<V x ¥V of (x, ) and a submanifold W< U of dimen-
sion 3m —r —s, transversal to B(A(V)Nsupp 8 x T), with Wn A(V)Nsupp 8 x T ={(x, )}.
Then I([W], oo ITA(V)], 8 x T)) =W g I([A(V)], 8 x T)=n,{(x, 2)] by (3).

But by (5) this is just I(W, I{(oo[A(V)], 0u(S x 1)) =I(o,[W-A(V)], 0u(S x T) by (2).
This equals oy(W-(A(V)+SxT)) by the associativity of -, and this equals N,[(z, )],
where N, is the multiplicity at (z, ) of A(V)+X x ¥ =A,(X-Y) which equals the multi-
plicity of X.Y at . [

The paper of Draper [6] explicitly gives these properties for his definition of intersec-

(13

tion, which is a “‘classical’” one. The homological definition of Borel-Haefliger [5] gives
all these properties except (4), but gives the projection formula, which implies (4). Thus

these three definitions of intersection are the same.

4.2. The Lelong number

In this section we will define the Lelong number at a point for a closed, positive
current. Then we will prove the result of Thie [26] that for a holomorphie eycle 7' the Lelong

number is always an integer. A converse to this will be proved in Section 5.
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Let T€Ds:(U) be a closed positive current in an open set U < . Let (2%, ..., 2) be
linear coordinates: |z|= (27| ")}, If y=1i (d” —d’)|z|*, then w=dy=1id'd"|z|? is the
usual Kéhler form.

Since T is closed and positive, T'€ N3¢ (U), [14] p. 3; and T'|_w* is a positive measure.
Let 2, , be the characteristic function of the ball of radius r about «; 1,(z) =1 if [z —z| <r,
Ar(2)=0 if |z—a|>r.

Definition 4.2.1. If x€supp T, T" a closed positive current as above, we define
w(x, r, T)=(1/a***) (A, ,w*) for r>0 and n(z, T)=lim,q.n(z, 7).
The limit exists because n(z, 7} is a monotone increasing funetion of » ([14] p. 4, or for

any volume minimizing rectifiable current see [7], section 5.4.3(2)).

THEOREM 4.2.2. (Thie [26]). For a closed positive current T, T €Z,(U) implies n (x, T)
is a positive integer for all xz€supp T.

This integer may be interpreted in terms of the tangent cone of 7' at =; [26], p. 310.
Draper has shown that the Lelong number equals the algebraic multiplicity; [6] p. 202.

We will prove a converse of this in the next section. For completeness, we will give a
proof of this theorem using the methods of this paper; the proof follows that of Thie, but
the machinery that we have makes the proof easier to write down. A proof of this fact is
implicit in 4.3.18 of [1] as well.

Proof of 4.2.2. We can assume z =0, and we write 1,=1, ,. If we choose clear coordi-
nates, one can get volume estimates as in 3.2.5 and find a constant € such that M(7'|_2,) <
Cr¥ for small 7. [25], p. 16. By choosing coordinates by a constant multiple, we can
assume the inequality holds for <1, and that the unit ball B, is contained in U,

Let u,: €"—>C" be dilation by 7, i.e. u,(z) =rz. Then (1/7*)T (A, w*) = (uyreT) (2, w").
Now the current py,+7T defines by restriction a current 7', in Z,(B,). Furthermore, the
inequality above gives M(T,)<C, so by the Compactness Theorem 2.2.1 there is a subse-
quence 7', which converges to a current S€ I3 (B;). Also, since supp S is contained in
the limit of the supp 7', (as closed sets, [25], p. 23), which is clearly the tangent cone of
supp T at O (intersected with B;) [29], pp. 510-11. Therefore S €Z,(B,) is a sum of complex
cones.

Actually the mnet 7', converges. This can be seen by constructing a current
TEZk+1(B1 xC) so that if p: B, x C—C is the projection, <7, p, r>="T,x[r]. If T=[X],
T =[)Z], where X is the closure of the set {(x, r): re€X and r==0} in B; x C (cf. [8], Section
4.10). By the Fibering Theorem 3.3.2, T, is continuous in r and 7,8 as r—>0, where
S x[0]=<T, p, O>.
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Since S =lim;,e T, n(0, T) = (1/7*) 8(1,w*), and the question is reduced to finding
the Lelong number of a cone.

Since this is algebraic, by Chow’s Theorem, the results of [8] prove the theorem, but
we will give a brief proof using the Fibering Theorem.

Let ) =i/4 (d” —d’)log |2 =n/|2|* and & =d4j. Then # A % =n A w[[]***2 If p: C" — {0}
~P"1(C) is the usual projection onto projective space, @ is p*(w), where @ is the
usual Kéhler form on P*1(().

If we approximate 1, by a smooth form 4, which is =1 on B,_, and =0 outside B,.,,
then S(Auw*) =S(Ad(n A w*1)) = —S(dA Ay Aw 1) = —8(|z|*dA Ay A@F1), since S is closed,
and this equals — [ uwos (S, P, ¥) (|2|*dAA%)) o by definition, since p|suppdi is
proper.

Since supp S is a cone, we can apply the Fibering Theorem with Y = R(p(S)). Since p
acts locally like a product and the fibers are complex lines, S, p, y>(|z|*di A7) is just
the integral of [z|**dAA 7 on a line.

Thus we are reduced to evaluating

|2 dz ~=—Uzd % p )
[[ exarnn== [ [ aaizpns

which is approximately equal to — [5* {§d(r*)d6/2 = —n, since 1 approximates the charac-
teristic function of the unit disc.

Thus we see that S(A,u) =S (w), where S is a holomorphic cycle supported on
p(supp S)=P*1(C). But S’(w) is known to be 7"1m, where m is an integer [16]. (It is homo-
logous to m times a hyperplane.) []

5. Characterizations of holomorphic cycles

Here we prove two related theorems giving sufficient conditions for a current to be a
holomorphic cycle. In Section 5.2 we show that a closed, positive locally rectifiable current
is a holomorphic cycle. This is used in 5.4 to give proofs of two extension theorems of
Shiffman [19], [20], and [21].

In Section 5.3 we show that a 2k-current in an open set in €" is a holomorphic cycle
if it is closed, positive, and has integral Lelong numbers H% almost everywhere.

Both theorems require further results about the structure of rectifiable currents, as
found in [7]. Some of these are stated in 5.1. Others, needed only for 5.3, are noted in that

section.
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5.1. Structure of integral currents

In this section we state theorems from [7] giving the structure of rectifiable (hence
integral) currents in more detail. Since the results are local, we will restrict our attention

to subsets of R* and C* with the usual metrics.

Definstion 5.1.1. A set E<R" is k-rectifiable if there exists a Lipschitzian function
mapping some bounded subset of R* onto E. If ¢ is a measure there is a weaker notion:
E is (¢, k)-rectfiable if $(E)< oo and for every ¢ >0 there exists a k-rectifiable set ¥ with
HE—F)<e.

The (H, k)-rectifiable sets are a natural generalization of a smooth manifold because
it can be shown that for H* almost all x € E, if E is (H¥, k)-rectifiable, there is a k-dimensional

linear tangent space Tan® (H*| K, x) at z, [7], p. 256.

Notation. If u is a measure and E is a set, 4| _F is the measure such that u| E(4)=
u(EnA). It » is a k-vector field, (u|_E)A7 is the current whose value on w€A5(U) is

§u, pydul_E.

TerEOREM 5.1.2. If f: U->R"™ s @ 0% map, for open U<R", and E< U is an (H*, k)-

rectifiable set k>=m, then for any H*|__E integral function g,

f ngde"=f f gdH*~"dH"(y),
E R Jf-1w)nE

where the integral on the right exists and J,f(%) s the norm of A™Df(z): A™Tan*(H*| _E, z)—
A"Tan™R™, f(x)).

Proof. [7], p. 258. [

Definition 5.1.3. Let U< R" be open; if S € Dy(U) is representable by integration, there
is a positive measure ||S|| on U such that S(u)= [y, Sd 1511 where § is an |8} measur-
able k-vector field with ||S(z)|| =1 for ||S|| almost all z€ U (this norm is the dual of the one
defined in 2.1.2), [7], p. 348, p. 357. The k-dimensional density

O ([lS[l, %) = Lim a(k) "¢~ |8} (Bo),

where B; is the ball of radius ¢ about x and «(k) is the k-volume of the unit k-ball

(=a"/r! if k=2r), whenever this limit exists.

TEHEOREM 5.1.4. Let U<R™ be open, SE€EEL(U), then the following are equivalent:
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(1) S is a rectifiable current, 1.e., SER(U).

(2) There exists an HF-measurable and (H*, k)-rectifiable subset B of supp S and an
H*|_B summable k-vectorfield n such that S=(H*|_B)An; and for H* almost all z€ B,
n(x) is a simple k-vector, |n(x)| is a positive integer, and the subspace Tan® (H*|_B, x) is

represented by n(x).
Moreover, ||S|[=HF_65(|[S|; *); and |n(x)| =65(||S||, «) for H* almost all .
Proof. [T] pp. 384-386. [J
Thus S€I°(U) if § and bS satisfy condition (2) locally.

THEOREM 5.1.5. If S€ER,(U) (we use the notation of the preceding theorem) and f:
U—R™ is a C° map, k>m, then for H™ almost all yER™, (S, f, y>=(H""__fYy)) AL,
L(x) ts the simple (k—m)-vector representing the (k—m) dimensional oriented linear space
7(x) N ker (Df(x)) with |{(z)| = |n(x)| (ker Df(x) is the vertical subspace of the tangent space

at x).

Proof. [7], p. 444. [

5.2. Integral currents and holomorphic cycles

We wish to prove the following theorem:

TaEOREM 5.2.1. Let S€RES(W™), where W is a complex manifold; suppose that bS =0
and that S is a positive current, then S€Z,(W™).

The method of proof is to write supp S locally as a finite “branched cover” in some
general sense, and then to use the standard methods of local analytic geometry to find

holomorphic functions vanishing on supp S.

Proof of 5.2.1. Since the result is local, assume W"=U, an open set in C". We shall use
the notation of Theorem 5.1.4; §=(H%| B)A7. We assume that the (H, 2k)-rectifiable
set B is chosen so that for all € B the properties of 5.1.4 (2) hold and |n(z)| =6%(||8||, =),
which we will denote by 6(x) for the duration of the proof.

The fact that S€Dj (U) implies that 7(x) represents a complex subspace for H?¥
almost all x€ B, since (k, k) currents are invariant under multiplication by Y =1 in the
tangent space. Since § is positive, this implies that S is volume minimizing ([7], p. 652),
and so H*+% (supp S)=0 for a>0 by [7], p. 628 (5.4.5 (2)), p. 181 (3), and p. 173. (For a
general rectifiable S, the closure of B may be large.)

Therefore, given some z€supp 8, which we will assume to be 0, we will choose clear
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coordinates as in 3.2.1 by Theorem 2.4.4. Thus for each coordinate projection s: C"—C*
there is an open neighborhood V=7V,xV,_, of 0 such that z|V Nsupp S is proper and
7z: V=V, is the projection on the first coordinates. We let (2, ..., 2;) be coordinates in ¥,
and (wy, ., wy_y) In V4.

The closed current 7,S €% (V,) equals m[V,] for some nonnegative integer m, by
2.1.9. By 5.1.5, for almost all y€V,, {8, n, y) exists and equals

O(x)[x] €Zy(V), where >  O(x)={S,my)(1)=m.
zen— LYINB rexr—1YINB
Denote the subset of y in ¥, for which this is frue by G<7,.

We wish to construct a holomorphic function P, (z,w)=w]'+a;wr ™ + ... +
a,,;(z), where the a;;(2, ..., z;) are holomorphic functions on V,, so that P;(x)=0 for all
x=(z, w)€Ex~Y(G)N B. We do this by adapting the method of Bishop described in [25],
pp- 30-33; it follows a construction in local analytic geometry [9], Chapter III.

Let Pz, W) with indeterminate W be given by P;(z, W) =] I3, (W —w;(z,))%*,
where {,},={x€a~'(z) N B}, for z€G. For each such z this is a monic polynomial of degree
m, and the coefficient a;;(2) is given by the ¢th elementary symmetric function in m varia-
bles, a;, applied to the m-tuple W;(z) = (w;(,), ..., w;{%,), w;(%,), ..., wy(x,)), where each w,(x,)
appears 0(x,) times.

But the polynomial g,(t;, ..., t,,) can be expressed by a polynomial in the power sums
S, =28, p=0, ..., 1[27], p. 81. Furthermore, the function of z, S,(W;(2)) = > (a3 0(z,)w (x,) =
{8, 7, zy(wf), which by 3.3.4 is a holomorphic function (d"S=0, since b8=0 and
8€D;..). Henee a;,(z) is a holomorphic function also. If we redefine & by removing a set of
H?* measure 0, we have P,(z, w;)=0 for any z=(z, w) ExY(@)N B.

If we set X={a€U: Pyzx)=0, j=1, ..., k—n}, this is a subvariety of dimension %
(possibly @ if m =0) and n~1(G)N B< X. We are not through, however, for a priori there
might be vertical components of B. Therefore, for each k-tuple I, we do the above construc-
tion for the coordinate projection sr;=C"—>C* and get V,, &}, X, ete. for each I.

Let V=NV;and X=UX,; we wish to show that 4 2 almost all of BN U is contained
in X.

Let B,={x€B: Jym,(x)+0} (i.e., D, has rank 2k on 5(x)). Let C;=Bn0V —a;'(G,).
Then H**(B;N C;)=0, for by 5.1.2

J I 717(%) AH™ () =f (J gdﬂo) dH™ (y) =0,
BINCY vi,=6r \Ja;aynB

where g is the characteristic function of B;N C,. Since J,.7,>0 on B;n C;, H*(B,n C;)=0.
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Since the 7; range over each projection onto a %-plane in these clear coordinates,
B=U B, Now (BN V)N (Uar (@)= X, but (B0 V) — U, (G = NA{BNV —a7{(Gy) =
N (B-B)YU(B,nCHl=[NAB—-B)JU D=D, where D is the union of the remaining
intersections. Since D< U (BN C}), H*(D)=0.

Thus we have shown H*(BN V —X)=0 and 8|V =(H*|_Bn X) An. Since X is closed
in U, supp S0 V=X. But by 3.1.3 this implies S| V<Z,(V). Since we chose any z Esupp S
to be 0, this shows S<Z, (U). []

5.3. The Lelong number and holomorphic cycles

The following result is a partial answer to a question raised by Lelong [14] p. 7; a more
general result in codimension one has been obtained by E. Bombieri [30], [31]. The
method of proof will be to show that § satisfies (2) of Theorem 5.1.4; then Theorem 5.2.1

will give the desired conclusion.

TeEoREM 5.3.1. If U<C" is an open set and S€ Ds(U) is a closed positive current

with Lelong number n(x, S) equal to a positive integer for H* almost all x€ supp S, then
S€ZU).

Proof. As we observed in 4.2, since § is closed and positive, SENFF(U). Since the
theorem is local, we may assume—shrinking U if necessary that M(S) <<oo.
Let w=w"/k!, where w is the Kéhler form. As noted in 3.1.4

[S]1(T) = M(S| U) > (S| U) (w).

Therefore, comparing Definitions 5.1.3 and 4.2.1 we see that §°(||S||, ) >n(x, 8)>1 for
H% almost all xz€supp 8.
Now using a result about densities, ([7], p. 181, 2.10.19 (3) and p. 171, 2.10.2)

H*(4) <||S||(4) for any A<supp S. (*)

Thus H*{supp 8) < .
We also have, by a more refined version of the Measure Support Theorem, 2.4.2,
IIS)l(4) =0 if Gi*(4) =0 for any A< V. {**)

(See [7], p. 410.) The integral geometric measure G5* is a measure <cH? for a constant
¢>0 ([7] p. 173); therefore, H*(4)=0 implies ||S]| (4)=0.
Now (**) implies that 6%(||S]| supp S, z) >0 for ||S|| almost all z€supp S. This implies

([7], p- 299, 3.3.15 and p. 171, 2.10.2) that supp S =BU C where B is (|| S]], 2k) rectifiable
15 —712907 Acta mathematica 127. Imprimé le 8 Octobre 1971
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and G*(0)=0. Since by (**) ||8]|(C)=0, supp S is (||S], 2k) rectifiable. By (*) supp S
is also (HZ, 2k) rectifiable.

Then (by [7], p- 255, 3.2.18) there exist compact subsets K;, K,, ... of C* and Lipschi-
tzian maps f;, fs, ... of (¥ into ¥'< €" such that f,(K,), fs(K,), ... are disjoint subsets of supp S
with H¥(supp S — U21/;(K,))=0. Moreover, each f; is one-to-one, and the Lipschitz
constants of f; and (f,]K,)~1 are <2.

By (**) 8=272:8] f(K,). We can extend (f;| K,)~* to a Lipschitzian map g,:¥ - C*
{[7} p. 201). The current S;=S8[_f(K,) € Fy (V) as noted in the discussion after 2.1.6;
therefore, by the Support Theorem for Lipschitzian maps, [7] p. 373, (cf. 2.1.8) §;=
f+9:+S; and this equals (H*|_ f,(K,)) Ay (by 2.3.1 and [7] p. 383, 4.1.25), where 7(z) is a
simple 2k-vector associated with Tan® (H%| _f,(K,), z) for H% almost all z€ f;(K,).

Thus we have that §=(H™|_supp S) A7 and for H* almost all z,%(x) is a simple
2k-vector associated with the 2k-dimensional real linear subspace Tan®* (H*| supp S, )
[7], p. 254).

Since H (supp 8)< oo, (**)and the Radon-Nikodym Theorem imply that S =||S|| A8
= (H*| supp S) A 25: where 1 is a H*|_ supp S summable function. Since A(z) g»’(x) =
n(x), a simple vector (for H*| supp 8 almost all ), and S€ D, (V), by the argument
in the proof of 5.2.1, § (x) represents a complex linear subspace. Since |8 (z)] =1,
Lw(@), 8(x)> =1, for these  and 1811 (T) = § v <o, Syd 18]l = SL_ U(w) for any Borel set U.

Thus we see that 6%(]|S]|,2) =n(x,8) for all z. Now the measure ||S||=(H%|_
supp 8) A A; by Lebesgue’s Theorem ([7], p. 156, 2.9.8, cf. Section 2.3) for H* almost all z,

: 181l(B:)
= lim — o2y
M) oo H*|_supp S(B))
But this limit equals 6% (||8\, )/6% (H*|_supp 8, z),

which equals §%(|| S]], #) since the denominator equals 1 (for H* almost all z), [7], p. 256.
Then A(x)=|n(x)| =n(z, S) is an integer for H* almost all x and by Theorem 5.1.4,
SEeIT). [

S.4. Application to extension theorems

We will apply Theorem 5.2.1 to give proofs of two theorems of Shiffman about exten-
sion of analytic sets. Since the proof of 5.2.1 resembles Shiffman’s proof of 5.4.1, there is
little new in this proof; but the proof of 5.2.2 avoids certain estimates in the original proof.

However, 5.2.2 gives only “half” of Shiffman’s theorem.

THEOREM 5.4.1. (Shiffman). Let U be open in C* and let E be closed in U. Let X be a pure
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k-dimensional complex analytic set in U — E, and let X be the closure of X in U. If H*-1(E) =0,

then X is a pure k-dimensional analytic set in U.

Proof. See [19] for original proof. We wish to show that the volume of X is locally
bounded in U, for then X will define a current [X]€ RS (U). Furthermore, by the Measure
Support Theorem 2.4.2, since clearly supp b[X]< H, b[X]=0. Then applying 5.2.1, we see
that [X]€Z,(U); and this implies the theorem.

To see that the volume of X is locally bounded, we observe that H*+*(X U E)=0 for
a>0 and use 2.4.4 to get clear coordinates at each point. As in Section 3.2 a local upper
bound for the volume is given by the number of sheets of the coordinate projections
a (XUEYNU,xU,_,~ U, In this case, since we cannot assume X U E is analytic, it is
less clear that there is an upper bound for the number of sheets. However, let F'=S8(X)U
{x€ R(X): rank Dr(x)<2k}; then H*-YEU F)=0 and H*(n(EU F))=0. By [10] p. 104,
therefore, the (topological) dimension of #(EU F)<2k—2 and U;,= (U, —=(E U F)) is con-
nected ([10] p. 48). Then 7| X N ~1(Uy) is a proper map with maximal rank, hence a cover-
ing space with a finite number of sheets. []

The other theorem deals with extension through R”. The theorem in [21] includes all
dimensions, but the most interesting case is dimension one, given in [20], also which is
included here.

Let »: C*—C" be the complex conjugation map, v(z,, ..., 2;) =(Z;, ..., Z,). The set R*< ("
is left fixed by »; also, for any complex analytic subvariety X of an open set U< (", »(X)
is a subvariety of »(U).

TEEOREM 5.4.2. Let U<C" be an open set and let X be a complex subvariety of U —R"
of pure dimension k such that X =v(X). Then if the volume of X is finite and k is odd, X

the closure of X in U is a subvariety of pure dimension k.

Proof. In this case the volume assumption says that X defines a current [X]€ R¥¢ (U);
the question is whether b[X]=0. Now »(X)=X as sets, but since » is conjugate linear, the
map v, reverses the orientation of the odd-dimensional manifold R(X). Thus »,[X]= —[X],
and so by, [X]=7.b[X]= —b[X].

But b[X]<R" clearly and b[X]€ F¥¢ 1(U) since it is the boundary of a locally flat
current, thus by the Support Theorem 2.1.8, »,b[X]=>b{X]. Thus b[X]=0 and we apply
52.1. 1
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