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Introduction and summary

This paper is concerned with a partially ordered vector space E over R such that
E=E+—E*. The ideal center Zy of E is the algebra of endomorphisms of E which are
bounded by a multiple of the identity operator I. Z; turns out to be a very useful tool
in digging up remnants of lattice structure. It provides e.g. a missing link between the
theory of simplicial spaces introduced by Effros [13] and the theory of C*-algebras. As a
result a simple proof is obtained of the general extension theorem [1, 5.2.] for certain func-
tions on the extreme boundary of compact convex sets in locally convex spaces proved
by Andersen and Alfsen. A unified treatment is given of maximal measures on simplices
and central measures on state spaces of C* algebras.

In §1 the algebraic foundations for the subsequent theory are laid.

If the ordering on £ is Archimedean then Zj is isomorphic to a dense subalgebra of
C(Q) where Q is a compact Hausdorff space. The relation of Zz with relics of lattice strue-
ture becomes clear in studying the idempotents in Z; which are precisely the extremal
points of (Zg)i. The images SE+ of such elements are called split-faces of E+ because
they induce a splitting of ¥, which is similar to the decomposition in disjoint comple-
mentary bands in the lattice setting. An important property of the set of split-faces is
that it is a Boolean algebra. The concept of split-faces can be “localized” by considering
spaces ¥ —F, with F a face of E+ and split-faces of F within F — F. This gives rise to a
disjointness relation, 4, for faces and elements of E+. A geometric characterization of dis-
jointness for two faces F, G is that if 0<k<f+¢g with f€F, g€@Q then k admits a unique
decomposition k=%, +k, with 0 <k, <f; 0<k,<g. Then &, is the infimum in & of £ and f.
These notions and propositions can be generalized to more than two of course.

A map R from one partially ordered vector space into another is said to be bipositive
if B is positive and Rk>0 implies ¥>0. If k€E*+ and J, = {T €Z;| Tk=0} then J, is a
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closed ideal in Z and if n: Z,—Z,/J, is the canonical projection then, if finally Z; is com-
plete for the order-unit topology, the map Zg/J,57(T)— Tk is a bipositive map onto a
sublattice of E.

A simjlar result has been obtained simultaneously by Alfsen and Andersen [2]. After
this paper was finished F. Perdrizet informed the author about work of his and F. Combes
[6] in which they introduce a generalisation of split-faces and they seem to be the first
in the literature to consider the operators 0 < R= R?< [ in End (Z). The emphasis in [5]
however is more on ideal theory than on decomposition theory. The relation of the split-
faces, as defined here, with the split-faces of convex sets studied by Alfsen and Andersen
[1] is as follows. Suppose that K is a convex set in a linear space F such that there exists
a linear functional ¢ on ¥ with K <e-1(1) then we put E+= ) 501K and E=E+—E+,
The intersections with K of split-faces of E+ are the split-faces of K. See also [20].

In § 2 we assume that # is the dual of a regular ordered Banach space and thus E
is a regular Banach space itself, with a weak* closed positive E+ and K = E+ N B, is weak®-
compact. Then 4 can be identified with the set of all weak*-continuous affine functions
on K, which vanish at 0, with the natural order and a norm which is equivalent to the
uniform norm on K.

It is not difficult to see that under those circumstances Zg is order complete and even
a dual Banach space. If A is the union of elements on extremal rays of E+\{0} then as
in [1] the intersections of A with closed split-faces of E+ defines a topology on A. We
denote by C,(A) the algebra of bounded continuous functions on A and by Z; (=Z,*) the
algebra of weak*-continuous elements in Zg TIf fEA and T€Z; then Tf=21,{f)-f with
Ar(f) a real-number. Thus for T€Z, a function A, on A is defined. It is shown that the
map Zz>5 T ~>Ar€CHA) is an isomorphism. The proof is much simpler than in [1] and [2]
where Andersen and Alfsen prove the same theorem in a special case, and it rests on the
simple fact that if 0<b is an affine u.s.c. function on a closed split-face GE+, G=G2€Z,
then b0@ is an affine u.s.c. extension to B+,

Several more results, also obtained in [1] and [19], come out as direct corollaries of
the last assertion.

In § 3 we make a special assumption on A, as in § 2, to the effect that the dual norm
on K is additive on E+. The problems are different and the techniques more elaborate.
1f g€ E+ we denote by C, the smallest face in E+, which contains g. Let V,=C,—C, and
Z, the ideal center of V,. We note that V,, with ¢ as an order-unit, is an order complete
order-unit space. If 4 is a positive measure on K representing ¢ then it is well known that
for every p €L*(K, u) there exists a unique element ® 4(p) €V, with a(D,(p)) = fpadu for

all a € 4. There are four different results in this section.



THE IDEAL CENTER OF PARTIALLY ORDERED VECTOR SPACES 43

Let g€ W< V, be an order complete linear lattice in V,, ||g]| =1. It is shown that there
is a unique probability measure u on K such that @, is a lattice isomorphism of L®(K, u)
onto W.

Next we introduce the notion of central measure. The idea is to write ¢ as a convex
combination of disjoint elements. From the fact that the set of split-faces of C, is a Boolean
algebra it follows that these convex splittings of ¢ are directed and give rise to an in-
creasing net of representing measures for g. The supremum of these measures is the central
measure u, representing g. From the first result we infer that u, is the unique measure
such that @, maps L®(K, u,) isomorphically onto Z,g.

From the construction of y, we expect that u, gives a finest splitting in disjoint
elements and in particular that u, is concentrated on the set of those elements in B+ which
do not admit any non-trivial splitting. Such elements are called primary and the union
of them is o, B+. A measure y is said to be pseudo-concentrated on a set D iff u(0)=0 for
every Baire set O with O N D=@. With what seems to be a new technique, and where in
fact the whole concept of ideal center was born, it is proved that u, is pseudo-concentrated
on @y E+. The idea is to consider the cone B+ of positive maps from V, into K. The ele-
ment § € B+ is the embedding operator from ¥V, into E and r: B+- E+ is given by rk =hg,
h€B+. Tt is shown that r(Jg, BH)< o, (E+), rug=p, and u, is a maximal measure. The
essential point is that V;=Z;§ and that r maps Z;g isomorphically onto Z,g. The asser-
tion concerning p, and 8, (E+) follows without difficulty using the Bishop-de Leeuw-
Choquet theorem for maximal measures [21, § 4].

We remark that the measurability of 8, B+, also in the metrizable case, is an open
problem.

In the third part of § 3 the behavior of central measure with respect to, loosely speak-
ing, measurable split-faces is considered. First it is shown that if 4 is central and ¢ € L°(K, )+
then gu is central. Then let G =G2€Z; and py(f) = ||Gf]|, f€ E+. There is a large class of G,
including those for which GE+ is closed and their complements, so that if @ «(1)=g, then
D ,(pe) =@g. A little refinement of this tells us that central-measure-theoretically closed
split-faces and their complementary faces can be considered as direct summands. The
relation of this with the work of Effros on “ideal center” [12] is indicated.

The last section of §3 deals with a larger class of measures. A measure ;>0 with
®,(1)=g, |lg]| =1, is called sub-central if ®, is an isomorphism onto an order-complete
sublattice of Z,g. If »>0 is another measure with ®,(1)=g, then u,» have a supremum
©.,» With respect to the order of Choquet. A consequence of this is that every sub-central

measure and in particular g, is majorized by all maximal measures which represent g.
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In § 4 applications to simplicial spaces and C*-algebras are given. The very last sec-
tion gives some possibilities for further study.

The disjointness relation as defined in § 1 reduces for the lattice-case to ordinary
disjointness as it is commonly defined for lattices. Consequently in this case f€0,, E+, in
the same set up as in § 2 again, iff f lies on an extremal ray of E+. For the metrizable
cage this implies conversely that E is a lattice. Only half proved but still true is the as-
sertion that E is a lattice iff every central measure is maximal. One way follows immediately
because every maximal measure representing g € £+ majorizes u, and thus u, is unique
maximal. The other side is proved in the text.

The applications to C* algebras are less trivial and rest upon the following two facts.
If A is the self-adjoint part of a C* algebra 4 and g € E+(= A’) then there can be associated
to g a representation sz, of 4 on a Hilbert space 3, [10, 2.4.4]. There exists an isomorphism
V,3h—~h€(m,(A))s of the order-unit space ¥, onto the self-adjoint part of the commutant
7 (A) with the operator norm {10, 2.5.1]. The second observation is that if e is a unit for
A4 then the map Z,57—>Te€4 is an isomorphism onto the self-adjoint part of the cen-
ter of 4.

A combination of the above remarks shows that Z,g is isomorphic with the self-adjoint
part of the center of ,(4)’ (or 7,(4)"). Corollaries are that g € 8,,(E+) iff w,(,4)" is a factor
and g4 f iff s, 4, [10, 5.2.2]. Also the central measure of Sakai [23] coincides with the
central measure as it is given here.

We remark that the general Plancherel theorem of Dixmier [9] can be proved using
central measures. The proof is not included because it is hardly an improvement over
Dixmier’s elegant proof. Also the invariant of Kadison [16] for quasi-equivalence can be
formulated entirely within the frame work of central measures.

For separable C* algebras, where o, B+NK is measurable [22], u, g€EE+ can be
characterized as the minimal measure representing g and concentrated on &, E+ N K. For
general C* algebras p, is the greatest measure which represents g and which is majorized
by all maximal measures representing g.

In the last section of § 4 a condition is considered, which is satisfied in the simplicial
and O* algebra case, and which ensures that local splittings (see § 1) extend to global split-

tings. Some directions for further study are indicated.

This paper had its origin in conversations with Erik Alfsen and Gert Kjaergaard
Pedersen after a talk on central measures for C* algebras at a functional-analysis gathering
at Aarhus, Denmark [29]. I owe much to Erik Alfsen for a lively correspondence and per-
sonal contacts.

Parts of the results of this paper were announced in [30].
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Some preliminaries on ordered vector spaces

An ordered space E over the real field is defined as a real vector space K with a cone
E+ which is proper in the sense that E+N — E+={0} and with the partial order given by
saying <y iff y—x€E+. E is said to be positively generated if E =E+— E+. The order
on  is Archimedean means, <O whenever there is a y such that nx <y for all n>0.
An element ¢€E is an order-unit if for all y€E there is an » such that —ne<y<ne.
For an Archimedean space with order-unit e an order-unit-norm can be defined by ||| =
inf {A] —Ade<w<le}. An ordered space E is order-complete if every increasing and
bounded net in F has a supremum.

An order-ideal in an ordered space F is a linear-subspace M such that y <z <z with
¥, 2€M implies x€ M. If M is an order-ideal, an order can be defined on the quotient space
E|M by (E/M)t=n(E*), where 7z is the canonical projection.

If E and F are ordered spaces we can define a preorder on the linear maps from E
into F by saying S<T iff Sx<Tx for all z€ B+. A map T: E— F is said to be bipositive
if 720 and if T2>0 implies 2>0.

In particular a linear functional f for an ordered space is said to be positive if f(x)=0
for all z€ E+. The preorder so defined on the algebraic dual of E is called the dual order.
A positive functional f on E is order-continuous if for every increasing net {z,}, such that
x=sup, {v,} we have f(x)=sup, f(z,).

A subset F of a convex set K< K is said to be a face of K if px+ (1 —g)y€F for
0€(0,1) &, y€K implies z, y€F. In particular F is a face of the positive cone E+ iff F
itself is a cone and 0<f<A with A€ F implies f€F. A face consisting of a single point is

called an extremal point. A ray of E+ which is a face is called an extremal ray.

1. The ideal center of a partially ordered vector space

Let E be a partially ordered real vector space such that B = E+— E+.

Definition 1.1. The set of all T€End (E), with —al <T <l for some x>0 and I
the identity map on # is called the ideal center of E. It is denoted by Zj.

Obviously Z% is the smallest face in (End (E))*, which contains J. We note that Zy
is an algebra and Z%-Zf<Z%, that is, Zz is an ordered algebra. The algebra unit I of

Zyg is also an order-unit.
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THEOREM 1.2. The ideal center Zy of an Archimedean space E is isomorphic with a
dense subalgebra of C(Q) where Q) is the o(Z%, Zz)-compact set of real homomorphisms of Zg.

Proof. If E is Archimedean, so is Z; and Stone’s algebra theorem applies. We sketch
the proof.

Let ||-|| be the order-unit norm on Z; and K ={f€Z;*|||f|| =f(e)<1}. Then K is a
weak*-compact subset of the norm-dual Z;* of Z;. If 0 <a <ne for ¢ € F then 0 <ne —a <ne
so that ||ne —al|| <n and for f€K, |f(ne)—f(a)| <n||f||. There follows f(a) =0 for a=0.

For a€A let |a| =inf {A]a<le} then |ia|>2]a| for all scalars 1. Define f: aa+fe—
a|@| +B, then f is linear, ||f|| =f(e)=1. Let f be a norm-preserving extension of f to Zg,
then f€ K. This shows that the evaluation map A: a €Z,—~ Aa €C(K) with Aa(f)=f(a), fEK
is a bipositive, isometric map.

An element 0f€ K is extremal iff ||f|| =1 and 0<g <{ implies g =Af for some A€[0, 1].
If 0<<b<e, bEZ; and a€Z; then 0<ba <a and so for an extremal /=0 in K, f(ab) =1f(a)
for all a €Z; and some A. Substitution a =e shows 1=f(b) so that f is multiplicative. Let
Q) be the weak*-closed subset of K consisting of the real non-trivial homomorphisms of
Zg, then € contains all extremal points of K, so that by the Krein—Milman theorem and
what is proved already Zz3a->Aa|q€C(Q) is an isometric bipositive homomorphism of
ordered-algebras. The image is dense in C(Q) since AZz|q separates points contains the
constants and is a real algebra.

Our first aim is to study Z; and some of the related concepts.

Lemma 1.3. S€(Zy)i ={T€Z;|0<T<I} is extremal iff S2=S. Any two extremal

points of (Zg)7 commaute.
Proof. For S€(Zz){, S=428 —S82) 4 4(8?) so that S extremal implies S = S2.

Conversely if 0<S=82<1 and S=oT+(1—0e)T’, a€(0,1), then S=82=aST+
(1 —0)ST" with 8T, ST'<S8 so that ST =8T7"=§8. We obtain also 0=a(l —S)T + (1 — )
(I-8)T" so that 0=(I—-8)T=(I—-S8)T". There follows T'=8T =8 and § is extremal.

Next let S, T€(Z;)i be extremal. We note that 0<TS(I —T)<TI(I—-T)=0 so that
TS(I—T)=0. Similarly (I —7T)87 =0. Now we have TS =ST=TST.

CoROLLARY. The set of extreme points of (Zz)7 s @ Boolean algebra with sup (S, T) =
S+T-—8T.

We note that if Z; is Archimedean ordered the idempotents in Z; of course correspond
with open and closed subsets of {) but in general there might be open and closed subsets
of Q, which do not correspond to idempotents in Z;. This can be readily seen by taking
for E the restriction to disjoint intervals of R of the polynomials on R.
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There is a simple geometric characterization of the sets SE+ with 0<8=82<1.

Definition 1.4. Two faces G, H of E+ are said to be disjoint, notation GAH, if @ - H
is a face of £+ and (G'—G) N (H —H)={0}.

A face G of E+ is called a split-face if there exists another face G’ of E+ with G',G
and G+ G =E+ Then @, G’ are called complementary faces.

Itis clear that if &, G are complementary faces of E+ then for p € E+ we have p =p, +p,
with p, €@, p,€G and p,, p, are unique. The map G: p—p, can be extended to a linear map
of E with 0<G@=G2<]. Thus to every split face of E+ corresponds a unique extremal

element of (Z;)7. A moments thought shows that the converse is true also.

PrOPOSITION 1.5. The map Ouy(Zp)i 3T~ TEY is one-one and onto the set of split-
faces of E+.

If G, H are split-faces then H +G =(H +G—HG) E+ so that H-@ is also a split-face.
Also if @ is a split-face then [I —G]E+ is the split-face complementary to G.

COROLLARY. The set of split-faces of E* 1s a Boolean algebra.

We remark that E=GE -+ (I —G) E as a direct sum of ordered vector-spaces, that is,
this is a direct sum of vector spaces and E+=GE++ (I — @) E+. Note that GE is an order-
ideal in ¥ since » <y <z with , 2 € GE implies [ — Gz =0<[I — Gy <0 so that y =Gy EGE.
Let z: E—~ E/GE be the canonical projection and u the restriction of 7 to (I —G) E, then
7 is an isomorphism of ordered spaces; i.e., & is bipositive and onto.

Thus we are led to the following definition,

Definition 1.6. The set of all split-faces of E+ is called the central Boolean algebra
of E. It is denoted by B(E*).

A family of mutually disjoint split-faces {G.};c; is said to be a splitting of E+ if
2,6, =B+, where Z,G, is the set of all finite sums X,g,, 9,€G,.

One could ask whether a finest splitting of B+ exists or equivalently whether B(E+)
is atomic. In general this question does not have a positive answer and we shall reformulate
the problem. The concept of disjointness and splitting can easily be carried over to elements
of E+. We introduce some more notation.

If G is a face of E*, we put V=G —G. For p€ E+ we put

F,={q€E+|q<p}, Op=lL>JOle, V,=0C,—0C,.

Two elements p, p’ € E+are said to be disjoint, notation p & p",if C, 4C,.. And p =T}, p,
is a splitting of p if {C, }*1 is a splitting of C,,.
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In R; we consider C = {(z, y, 2)| ||y|| +||z]| <2}. Then Cis a cone which does not admit
any non-trivial splittings, but which contains many elements that can be split. The problem
is among others that although splittings of bigger faces induce splittings of smaller faces,
the converse is not true in general. Therefore it seems better to study not so much splittings
of E+ as of the faces 0, p€ E+. This shows that our point of view will be essentially local.

The right setting for studying splittings of p € B+ is representing measures. In order
then to be able to take limits and introduce the analysis of the problem we shall have to
assume that the cone E+ has a compact base, say. We shall pursue this line of thought in

§ 3 and elaborate first somewhat more on disjointness.

ProrosiTioN 1.7. Suppose G, H are faces of E+. The following conditions are equiva-
lent.

(i) GLH.

(il) G@NH={0}and for all g€G, h€ H we have F ., =F + F,.
If there are elements g€G, h€H such that G=C,, H=C0,. Then (i) and (ii) are equivalent to

(i) Fyup=F,+F, and F,n F,={0}.

Proof. (i)—(ii). Let g€@, h€H and 0<k<g+h. Then with k'=¢g-+h—k we have
Lk-+k €G+H, which is a face. Thus k=Fk, +k,, &' =k;+k; with k,, k1€G and ky, ks €H.
Hence because of VN Vy={0} we see k, +k1=g, ky+ks=h so that b=k, +k,€EFy,,.

(i)~ (i). If 0<k<g+h then k=k, -k, with k, <g, ky<h.

Since G -+ II is additive too, it is a face. To show ¥, N V= {0} it suffices to prove that if
g+h=g +F with ¢, g€G; h, b’ €H then g—¢g’, h=h'. Well, 0<g<g' +1" and s0 g=g¢, ¢,
with ¢, <¢’ and g, <h'. Since g,€ G N H, ¢,=0 and g=¢,<g¢'. By symmetry g=¢', h=5".

(ii) — (iii) is obvious. So we assume that @ =C,, H =), and prove (iii) - (ii). We consider
g'<g, ¥’ <h and show F ., = F_ -+ F,.. This will be enough to prove (ii). So let k<g’ +74'.
Then k=Fk, +k, with k, <g, k,<h. Let ¥’ =g —¢'. Then %' <g¢ and k, -+ &' <g +k. Therefore
ky+k =1, +1, with I, <h, I,<g. Also I, <k, +% <2¢ so that ;€GN H={0} and k, +%' =
l,<g. We obtain k, <g—k"=g’. Similarly k, <k’ and we are through.

We see that for lattices, where we always have the Riesz decomposition property
Fon=F,+F,, disjointness is equivalent to @ N H ={0}. In general disjointness is much
stronger. We infer from this proposition that disjointness is hereditary in the sense that
G H, '@, H < H implies " H’, where of course G, &, H, H' are faces of E+.

It is simple to find examples of disjoint faces of cones in R? or R3. Other non-trivial
examples will be studied later. It is an amusing exercise to find a counter example to the
statement FLG, GLH, HLF implies FLG + H.
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As long as we consider disjoint elements it is as if we are in a lattice.

LevMma 1.8. Suppose g4h; g, € B+ and 0<k<g-+h.

Q) Then k=ky+ky with ky<g, ky<h. If k' <k, &' <g then k' <k,.
2

() If k<<q with g'sh, then k<g.
Proof.

(i) Sincek’ <k, +k,wehavek’ =k kswithk; <k, ks<k, Butthenks€F,n F, ={0}
and therefore &’ —kj <k,.

(i) If k=k,+k, withk, <g, ky<hthenk,<k<g and k,<h. Thusk,=0and k=k, <g.

If we want to generalize these results to more than two faces (or elements) we cannot
consider merely families of two by two disjoint faces. If ¢"< B+, let F(C’) be the smallest
face of E+, which contains C’. A family {G,};c; of faces of E* is said to be split if {G;};e;
is a splitting of F(U ic; Gy).

Lemma 1.9. Let {G}c; be a split-family of faces of E*. If 0<k<Z;h, with h,€Q,,
then k=X, k, with k,€G,. The k; are unique and k,<h,.

Proof. Let E=F(U,G,)—~F(U,G,) and consider the idempotents S, in Zz correspond-
ing to the G,. Then X,S,=1I in the sense that X,8,g=g for all g€ E. Let k=X,8,k=3,k;
with k;€G,. Then S;k=F} since 8;G,=0 for i+ and 82=3,. Because 0<38,<I also
0< 8,k <S8, (E,h) = by

From this we deduce readily that splittings of bigger faces induce splittings of smaller
faces.
CoroLLARY. Let {G};c; be a split-family of faces of B+ and J<I.
(i)  {G}ies s a split-family.
(i) If H,= G, are faces, then {H },c; s a split-family.
(i)  F(UesGy) is the set of all finite sums 2,g, with g,€Q,.
(iv) I f {H}ues, are split-families such that Hf €Q,, o€, then {H$}y , is a split-family.
Proof. Straightforward.

ProprosiTioN 1.10. Let {G;};; be a family of faces of E+. The family {G}; is
split iff every k€ F(U ;G,) admits a unique decomposition k=2,k,, k,€G,.

Proof. The only if part follows from 1.9 and its corollary. For J'=J we put G, =
F(U ;s @y). In order to prove the if part we have to show that each @, is a split-face of

4— 712906 Acta mathematica 127. Imprimé le 28 Mai 1971
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G; and that G,(Gn . If kE€G; then k=Fk,+2,.,k; with k,€G, so that G+ G\, =G,
From the uniqueness assertion there follows readily (G\g—Gry) N (G —@G;)={0} and so
G:ibGna

So much for disjointness and the extremal elements of (Zz)*. We return to Zz, the
ideal center of E.

The various properties, which E can have, carry over directly to Z;. For example
if E is order complete so is Zg; if F is Archimedean so is Zy; if all the spaces V,, with p € £+
as their order unit and equipped with the corresponding norm-topology are complete then
Zy is complete. We note that every 7' €Zg leaves the spaces V, invariant. The proofs of
the above facts are elementary and are omitted.

In the sequel we shall consider Archimedean spaces only.

We are interested in the maps Z;3 T—>Tk, k€ E+.

Prorositiox 1.11. Let k be an order-unit for E. Then the map Z;3T—+TkEE is

bipositive.

Proof. It is clear that the map is linear. Let T €Zg be such that 7%>0. We infer from
1.2 that for all ¢>0 there exists a S€(Z;)T with ST> —el and (I —8)T <¢l. Suppose
0<f<k.

Tf=STf+(I—8)Tf>[—el +(I —8)T)f> —ek+(I~8) Th> —ck

so that T'f>0. Therefore 7 >0.
If Z5 is complete, we can do better than 1.11.

Lemma 1.12. Suppose S, T€Zy are such that sup (S, T)€Zy. If k, f€E are such that
Sk, Tk<f then sup (S, T)k<{.

Proof. We identify T, S€Z; with their image in C(Q) with Q asin 1.2, Let Q, =
{w€Q| T'(w) > S(w)} and for £ >0let Q, = {w€Q| T(w) <S(w) —e}. Let A>2 max (|| T ||S]))-
There exists U €(Zg)7 such that 1= U(w)>1—¢/A for w€Q; and 0< U(w) <g/Ad for w€Q,.
We find

sup (T, S)+el=2UT+(I—-U)S8=sup (T, S) —&l
and we obtain = UTk+ (I —U)Sk. If k=k, —k, there follows
f=sup (T, S)k —elk, +ky).

Since this holds for all £>0, by Archimedicity f=>sup (T, S)k.
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CorROLLARY 1.13. Suppose that Z; is complete with respect to its order-umit norm and
kE€E*. Then Zgd3T—TEk€E s a lattice homomorphism of Zy onto a sublattice of E.

Proof. Tt follows from 1.12 that for 7', S€Zy, sup (7, S)k is the smallest element in
E, which majorizes T and S%.

CoROLLARY 1.14. Let Zy be complete and k€ E+. Then Ty, = {T €Zg| Tk=0} is a closed
ideal in Zg and if m: Zg—Zg| T, is the canonical projection then Zg/ T, 27(T)~Tk€Zsk is a

laitice isomorphism.

Proof. Obvious.

2. Ordered Banach spaces

In this paragraph we introduce the analysis. The ideas in this section are strongly
inspired by Alfsen and Andersen [1]. Independently Alfsen and Andersen [2] established
Theorem 2.8. Also independently Perdrizet [20] found 2.9-2.12. The idea to use regular
rather than GM or GL-spaces (see further on for definitions) was incorporated in a second
version of this paper after seeing a preprint of [5]. We feel nevertheless that publication
of this material is justified since our proofs are different and serve as a nice illustration
of the use of the algebra developed in § 1.

It will be convenient to have some terminology ready. An ordered Banach space X
over the real field is defined as a Banach space X with a partial order defined by a closed
cone X+. X is said to be regular [E. B. Davies [6]] if it has the properties

R;: Ifz,y€X and —y<z<y, then ||y| > |||
R, Tf 2€X and >0, then there is some y with —y <z <y and ||y|| <||z|| +e.
We shall denote by K the set K= {r€X|x>0, ||z] <1}. The open unit ball in a

Banach space X will be written as X; and the closed unit ball as X,. If X is a regular
Banach space, 7' is the set T = {k; —k,|k,, ky, ky +*,€K} and it follows from R, and R,

that
XicT<X,. P)

Let X be a positively generated ordered Banach space, i.e., X =X+—X+ with Banach
dual X*. The set (X*)* of continuous positive functionals is a weak*-closed proper cone
in X*. By the Hahn-Banach theorem if x€X, then z € X+ iff f(x) >0 for all f€(X*)+,

We firstly record some results from the duality theory for regular Banach spaces.

For the proofs we refer to Ng [17].

TeEOREM 2.01. Let X be a regular Banach space.
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(1) [E. B. Davies [6]] Then X* is also regular.

(2) [Ng [171) Suppose there is given on X a locally convex topology v such that K is
t-compact. Let A be the space of linear functionals on X, whose restriction to K s t-continuous.
Then A is a regular Banach subspace of X* such that X is naturally isomorphic as an ordered

Banach space to the normed dual of A.

CoroLLARY. If A and E are ordered Banach spaces such that E = A*, then A is regular
iff B is regular. In that case A is isomorphic, under the evaluation map on K, with Ay(K),
where K =E; N B+ and Ay(K) is the space of affine weak* continuous functions on K, which

vanish at 0, with the natural order and norm ||| = sup {a(f) —a(g)|f, g, f+9€K}.

Examples of regular Banach spaces are the usual L” spaces, 1 <p< oo,

There are some interesting special cases. A regular Banach space X is said to be a
GM (GL) space if GM: for z, y € X7, there exists z€ X; with z, y <z (GL: for z, y€X+, we
have [z +]| = ]| + vl

Examples of GM-spaces are the self-adjoint part of a C*.algebra, the simplex-spaces
introduced by Effros, and M-spaces. Examples of GL-spaces are the preduals of von Neu-

mann-algebras (and duals of C*-algebras) and L-spaces.

TEEOREM 2.02, (4dsimow, Ng, Perdrizet). Suppose that A and E are reqular Banach
spaces such that B = A*, then

(1) A4 s a GL-space iff £ is a GM-space.
(2) A4 is a GM-space iff E is a GL-space.

In the rest of this paragraph A4 shall denote a fixed regular Banach space, which is
represented as 4y(K) as in 2.01 with K = E, N E+ where E =A* We shall consider Z always
with the (¥, 4) topology. So far the introduction.

Lemuma 2.1. If X is an order-complete space and F is a face of X then Zp_y is order-

complete.

Proof. Tt suffices to show that F—F is order-complete. Let {g,}, be an increasing
net in F— ¥, which is bounded above by g€ F —F. Let h=sup, ¢g,€X then 0<h—g, <
g—g,<k~1 with k,1 € F. Hence 0<k—g,<k and because F is aface of X+,h—g,€F and
heF—F.

CoroLLARY. For F as in the lemma, the central Boolean algebra B(F) is complete.
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If we let X = E, then the conditions of Lemma 2.1 are certainly satisfied.

LeMMA 2.2, The set of closed split-faces of E+ is closed under arbitrary intersections

and finite sums.

Proof. The intersection of an arbitrary family of closed (split-) faces of E+ is again
a closed (split-) face according to 2.1.

If F and G are closed split-faces of E+, then F+@ is a split-face of E+ and since
(F+@NK=3co(FNK,GFNK)NK it is also a closed face.

Let A be the set consisting of the elements in extremal rays of £+/{0}. Then the closed
convex hull of A is E+. Following [1] we define the facial topology on A by taking as
closed sets the intersections of A with closed split-faces of E+. According to Lemma 2.2,
this defines a (non-Hausdorff) topology on A.

Also let Z be the algebra of weak* continuous elements in Z. Then T'€Z, iff there
exists S€Z, with §*=T and for the order-unit norms ||- ||, clearly ||S*||o=||S]lo- In order

to show that Z is a complete sub-algebra of Zj, it suffices to prove that Z, is complete.

LemMma 2.3. Let X be a regular Banach space. Then for T€Zy, ||T|o=|T|, where

| T} is the operator norm and || T, the order-unit norm.

Proof. (a) | T|| <||T|ls. Let x€X, £>0. There exists y€X, |y|| <|x|+e, —y<a<y
according to R, Suppose T €Z, satisfies —AI<T <AI. We obtain (Al +TYa<(AL+T)y
and — (Al —T)x<(Al—T)y. Adding these inequalities gives Tx<2y. The same holds for
—z so that by Ry, || Tz|| <i|y| <2||z|| +2e there follows || T|| <||T|lo-

®) IT]iZ||Tlo- In the proof of (b) we need Lemma 2.4. In the proof of 2.4 we
only use || T'|| <||T!, Thus we assume (Zy, |- |lo) is complete. Let T'€Z; and a=||T||,=
inf {A>0|AI>T} (otherwise consider —7'). We identify T€Z, with its image in C(Q)
with Q as in 1.2. Standard arguments show that there exists UE€(Zg)i such that
TU+eUzaU, U=+0. Let x€X, such that y=Ux30. By R, we may suppose z>0 so
that y >0. Then we have Ty +ey>ay>0 so that ||Ty||>(x—é¢)||y|| and ||T|| >« —e. The

conclusion follows.
Lemwma 2.4. Let X be a regular Banach space, then (Zy, ||+ |o) is complete.

Proof. Suppose {T',}, is a Cauchy sequence in (Zg, || -||o). Then there is a A>0 such
that —AI<T,< +I. By 2.3(a) the sequence {T',}, converges to a T €End (X) such that
|7l <4 and by Archimedicity —AI<T <Al so that T€Zy. Clearly also T'=lim, T', for

" : "0-
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ProproSITION 2.5. If fEA and T €Zy, then there exists a (unique) constant Ax(f) such
that Ap(f)f=Tf. Let Az: f—~A7(f). The map Zz3 T4y is a bipositive algebra homomorphism
of the ordered algebra Zy into a sub ordered algebra of C,(A), the set of bounded facially con-

tinuous functions on A.

Proof. It 0<ST<I, T€Z; we have 0<Tf<f and so Tf=A.(f)f. Obviously T4, is
linear, positive and multiplicative. If A, >0, then T7>0 for fEA. Since E+=C?(Z), T>0.

It is left to show that 1,€C/(A). Because A;=1 and the 4, form an algebra it suffices
to prove that for 0<T <., A, is lower semi-continuous. We consider F' = {f€A|1,(f)<p}
with 0<T<I and $>0. Let T'=inf{T,fI} and T"=T—-T'. Then Ay =2 +A» and
Ar(f)>p if A7~ (f) 0, so that F'={f€EA|T"f{=0}. We may suppose 0<7”"<I and if
T=I—-T" we have F'={feA|Tf=f}. If F={f€E+|Tf=f}, then F is a closed face of
E+ with FNA=F'. We put S=inf, {T"}, then 0<8=S52<7 and since TS=8T =8 we
have SET< F. Because also SE+2 F we obtain SE+=F so that F is split and we are
done,

We note that the map 71, can be extended to Z; in a straightforward way. It is
possible however that the ideal {T€Z;|A;=0} is non-empty. Indeed we only have to
produce a split-face without extremal rays. An example is the set of normal positive func-
tionals on a von Neumann algebra of type II or III, which is a face in the cone of positive
functionals and which does not contain any extremal rays.

The question is, of course, whether Z;3 T'—+21,€C(A) is onto.

THEOREM 2.6. Let GS E+ be a closed split face and b a non-negative upper-sems-
continuous (u.s.c.) affine funciion on G. We define b(k) =b(Gk), k€ E+. Then b is u.s.c. and

affine on E+.

Proof. We show that {k€E+|b(k)>o} NnK is closed for all n. Thus let {g,}, be a net
in nK with b(g;) >« and lim; g;—g. The net {Gg,}, is contained in nK N @, has a cluster-
point g, €EnK NG and g¢,<g, b(g,) >« We find g, =Gg, <Gg and therefore b(g) =b(Gyg) =
b(g,) = .

All the following results are more or less simple consequences of 2.6.

ProrosiTioN 2.7. Let 0<@p<1 be a facially w.s.c. function on A. If G,=
{f€A|p(f) =} and G, is the unique closed split-face with G, 0N A=G,, then for a € A+ we put

1

[Da] (k) =f a(G, k)de kEE.

0

Then @a is u.s.c. on Et and linear on E. On A we have ®a=g¢-a.
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Proof. The @, are decreasing and so for k€ E+, a—>a(G, k) is decreasing. This shows
that the above integral exists in the Riemann sense. Plainly ®a is linear. If f€A and
a<g(f) we have G,f=f and for a>¢(f), G,f=0 so that [Da](f) =¢(f)a(f).

From 2.6 we infer that the upper sums of the integral, considered as functions of &,

are u.s.c. on E+, But then ®g itself is u.s.c. as well.
TueorREM 2.8. The map Zgd T—2A,€CA) defined in 2.4 is an isomorphism.

Proof. If @ in 2.7 is continuous, then so is 1 —¢. We apply 2.7 to 1 —¢ and « and find
that a —®@q is u.s.c. also so that ®a is continuous. The map a—®a defines an element

T€Z , and obviously Az« =¢. This ends the proof.
We see that we have obtained a natural representation of Z,=2Z,.
Let G be a fixed closed split-face of E+. We put V=G —-G=GE, W=(I—-G)E and
G =7V={acd|{a,g)> =0 for fEG}.
We want to study G°, 4/G°, V, 4|, and G°|y.

ProrosiTioN 2.9. Let X be a regular Banach space and H a split-face of X+.
(1) HX =H —H is a closed subspace of X and a regular Banach space.
(2) The restriction mw=m|q-mx of the canonical projection 7w: X—>X/HX to (I-H)X

s an wsomorphism of ordered Banach spaces.

Proof. (1) It follows from Lemma 2.3 that the projection H is continuous on the Banach
space X and so has closed range. R, is trivially satisfied by HX and R, follows since
0<H<I

(2) It follows from the remark preceding definition 1.6 that 7 is an isomorphism of
ordered spaces and since by Lemma 2.5 || I —H|| <1, # is isometric.

We take up @, V, W and G° as indicated. It follows from 2.9 that V and W are regular
Banach spaces and that W and E/V are isomorphic, via 7, as ordered Banach spaces.

LeEMMA 2.10. V s closed.
Proof. 1t suffices to show that ¥ n B, =7V, is closed. Well,
VNE; =3co (GNK, —-GNK)NE,,

where all sets on the right are compact and so are closed.
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Let [E/V] denote the linear space E/V with quotient-order, quotient-norm and the
weak*-quotient topology. Similarly [W] denotes W with the induced order and norm and
the ¢(W, G°) topology. Finally [G%*] will be the Banach dual of G° with the weak* topology
and the dual order. Let z: —~E|V be the canonical projection; 7t =7 |y; o: B[V G the

natural isomorphism and ¢: W—G* the restriction map.

ProrosiTION 2.11. Let the notation be as above.

(1) Then the diagram
o
Y G

[ «——2& [E/V]

s commutative and the maps 7t, o and 1 are isomorphisms.

(2) The set KN W in [W] is compact. The cone W+ in [W] is closed.
(3) The map r: P3a—a|gnw€A(K N W) is an isomorphism of ordered spaces.

Proof. (1) Tt is well known that g is an isomorphism of Banach spaces and it follows
from 2.9 that so is 7. Since for k€ W and ¢ €G° we have

{oodi(k), ay =<k, ay = (ik, a)

there follows gosi—=1. Thus also ¢ is an isomorphism of Banach spaces. We see from the
definition that ¢ is a linear homeomorphism for the weak*-topologies and so is g. Therefore
the same holds for 7. There follows that a functional @ on [W] is continuous iff gy, is
continuous. Since W N K =s-lon(K), where K is compact and sz-lox is continuous, W N K
is compact. As in 2.01 we find Wy=2co(WNK, —WNK)N W, so that ¢ is continuous
iff a| wng is continuous, i.e., a| wnx € Ao(K N W). Therefore we have G°| gnw=A44(K N W).

Now 2.01 shows that ¢ is bipositive. Since also 7 is bipositive p =¢0zt~1 is bipositive.

(2) This follows from 2.01 since G| xnw=AoK N W).

(3) ris onto and obviously bipositive, hence one-one.

COROLLARY. G° is a reqular Banach space.
Proof. This follows from 2.10 and 2.01.

There is a similar proposition for V. Let o: A—~A4/G° be the canonical projection.
Remark that G° is an order-ideal in 4 and that consequently o(4+) is a proper cone in
A/G°® and defines an order. Let [(4/G%)*] be (4/G°* with the dual norm and order and
weak*-topology. Similarly let [V] be V with the induced order, norm and topology. We
consider 4|, with the norm |ja| ;|| =sup {|<a, f>| |f€ V;} and 4/G° with the quotient norm.
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ProrosITioN 2.11. (1) Let 7: A|GO~ A|y, be defined by t(c(a)) =a|y, a€A. Then 1 is
an isomorphism of ordered Banach spaces.
(2) *: [(4/G°)*]—[V] is an isomorphism.

Proof. (1) It is well known that 7 is a Banach space isomorphism. Also 7 is positive.
It follows from 2.12 that v~ is positive too.

(2) Again it is well known that o* maps (4/G%* into V =0G%< E and is an isomorphism
of topological vector spaces. If a€A+ and f€(4/G%)* we have {c*(f), @) =<{f, o(a)> which

shows that ¢* is bipositive.

COROLLARY. A/G° is a regular Banach space.
Proof. This is a consequence of 2.11 and 2.01.

ProrosiTIiON 2.12. Let a be a non-negative continuous linear function on G. Suppose
that ¢ is a l.s.c. function on K such that ¢ >a, with @ as in 2.6. Then there exists for every

£>0 a c€AT with
a=c|lg and c¢|g<p+e

Proof. It follows as in [17, Lemma 9.7] that the set {b€A(K)|b>a}, where A(K) is
the set of continuous affine functions on K, is directed downwards with infimum a. Using

the compactness of K, that ¢ is Ls.c. and that a is continuous we find that for &' =¢/8
there exists ¢, € A(K) such that

a<c|eng<e+é& and G<c¢ <p+e'
Let ¢, =¢,-—¢,{0) and extend ¢, to a linear functional on E. Then ¢,€4 and
—&' <a—cy)|eng <¢.

Because V is regular V,=(2+0d)co (GNK, ~-GNK)NE, for all >0 and hence
lla —cs |v]| <2¢’. With 7 as in 2.11 being isometric, there must exist ¢; € A such that ||cs|| <3¢’

and ¢; |y =a—c,|y. Let ¢y =cy+c;. We obtain ¢,€4 and

cly=a and —4&'<c | <@p+4e
since 0 <¢,;(0) <¢'.

The function ¢,—a is Ls.c. on E+ and ¢,—a|s=0. We note that ¢,—d—c, on W.
There follows that ¢,| 4+ is a L.s.c. affine function on W+ in [W] (which is isomorphic with
n(E+)c E|V with the quotient topology).

We apply the Hahn-Banach theorem to the cone {(f, a)|a>¢c,(f), fEW+} and
{(f,—5¢")[f€EK N W} in [W] xR. In the usual way we obtain a ¢, €[W]* = Q° such that

=8’ <eslgnw<eggaw and 0 =c;|<cyle
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Since ¢; and ¢, are linear cg|y+ <c4|w+ and we obtain ¢;|x+ <cy|z+. We put c=c,—c;.
Then ¢ satisfies the requirements.

With an extra assumption on ¢ we can extend a theorem of T. B. Andersen [3].

PrOPOSITION 2.13. Suppose a is as in 2.11 and @ is a Ls.c. concave, positively homo-

geneous function on E+ such that there exists § >0 with
pleza and @|ye=0|-||[w+
Then there exists a ¢€ A+ such that 0 <c|z+ <@ and ¢| z=a.

Proof. By induction we construct a sequence {c,},S A+ such that (1) ¢,|s=a/2",
@) leall <2||lalv||/2" and (3) ¢ —Zi1c¢;>8]|-]}/4" on W+. It is a consequence of (1) and
a<g@|q that also g — 3 1¢,| ¢ =a/2"| ¢ >0.

The series {c,}, converges uniformly on E, so that c=2X2,¢; is contained in 4. It

satisfies )
cleg=2R1a/2 =a. -

Therefore g 2>¢ on G. But also ¢ >¢ on W+ by (3), so that ¢ =>c on E+.

It suffices to treat m=1. Because with a,=a/2%, ¢, =@ —Xi_1c; and &, =05/4* we re-
duce n=k+1 to n=1. v

If ||| =0, let ¢, =0. If ||a|| 0, let ¢’ =min (g, |ja||) and apply 2.12 to ¢’, a and e=
min (6/2, ||a||). Indeed since @|u+>0=ad|y+ and ¢ is concave, p>d. We obtain 2¢,€4+
such that 2¢,|s=ae and 0<2¢,<¢'+& on K. There follows 0<2¢, <||a| +&<2||a]| on K
and [l¢| <||e|. We also have 0<c¢,<¢/2+6/4<@-—06/4 on WNK. Hence for fEW,
N <g(#A1) —8/4 and so e,(f) <tf) — 6] 4.

We remark that the concavity of @ on W+ and on @ is not used in the proof.
Let us now quickly consider the case where 4 is a GM-space and hence £ a GL-space.
The following refinements can be given. The notation will always be as in the un-primed

propositions.

ProrosiTIiON 2.9'. (a) Let X be a GM-space and a H split-face of X+.

(a,) HX is a GM-space.
(ay) If OST<I for T€Zy; and x€X, then ||| =max (|| Tz|, |(I—T)=|).
(ay) K=HK +(I-H)K.
(b) Let X be a GL-space and H a split-face of X+.
(b)) HX is a GL-space.
(by) If OST<I for T€Zg and z€X, then ||| =|| Tx|| + ||(I—T)z||.
(by) K =co (HK, (I-H)K).
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Proof. (a,) and (b,) follow as in 2.9 (1).

(ay) Suppose ||Tz||,|(I—T)z| <o, then there exists 2€X, |z|| <« such that T,
(I-T)x<z. From 1.12 we see x<z. The same applies to —2 so that -+2' <z <z with
l|l2|I, l|z'|| <e. Then there is a z” with —z’, 2<z", ||¢"|| <o Therefore —z"<x<z’, so that

||]| <.
(ag) This follows from (ay).
(b;) For 2€X, there exist ,, #,€ X+ such that ||| =2, + |||, z =x, —,.
ol <72 + (2= T)a|| < [| T2 + 1 (2 = D)an|| + | Tl] + (L = T) || < ||| + |-
(bs) This follows from (b,).

CoROLLARY 2.10". (° is ¢ GM-space.

Proof. (W,]|-||) is a GL-space and so the proof follows from 2.02.

COROLLARY 2.11". 4/G% s a GM-space.
Proof. (V,||-]) is a GL-space and 2.02 applies again.

We remark that if 4 is a GM-space, then in 2.12 we can take for ¢ a concave ls.c.
function, which is non-negative and ¢=>a on VN K. Since @ is affine and ¢>d=0 on
WNnK,¢p=don co(VNK, WnK)=K according to Corollary 2.9’

Similarly one can in 2.13 use a l.s.c. concave ¢ on K such that ¢ =>a on V' N K and
@=0|-|| on Wn K, and obtain an extension ¢ of @ to B such that 0<c¢|r<¢. The same
proof applies.

In [1] Alfsen and Andersen study the case where 4 is a GM-space with order-unit
and they use an equivalent form of 2.12 as point of departure. In [2] they introduce also
the center of 4 and prove Theorem 2.8 using the results of [1]. For the same case Andersen
[3] proves 2.13 under slightly stronger conditions on ¢.

In a first version of this paper the results of this paragraph were only stated for the
case where 4 is a GM-space. The same proofs however applied to the more general case
of regular spaces. The advantage of regular spaces is that a duality theory can be set up. -
This was the point of view, which prevailed in Combes and Perdrizet [5] and Perdrizet
[20]. An extensive study is undertaken, on how various properties of M <=4 carry over
to properties of 4/M, M°c E and E/M°. In [20] e.g., subspaces M are considered such
that M°N B+ is a closed split-face of E+. In the course of that study results similar to 2.9-
2.12 are proved.
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3. Central decomposition

We return to the ideas on decomposition, which were developed in § 1. The situation
will be the same as in § 2 and the notation will be consistent with the one already in-
troduced. We assume A4 s a GM-space, and hence E will be GL by 2.02.

The first theorem will state the existence and uniqueness of certain representing
measures on K and will be applied several times in the sequel. The measure which cor-

responds to point-evaluation at f€ K, will be denoted by 4.

Definition 3.1. If p is a positive measure on K, we let ®,: L°(K, u)—E be the map

a(D (@) =f(pad,u a€A, pEL®(K, u)

TuEoREM 3.2. Let g€K, ||g|| =1 and gE W<V, where W is a complete linear lattice
in the induced ordering.

The set of discrete probability measures Za,0r; with f,€WHN K, ;>0 and o, f; =g 18
directed in the ordering of Choquet—Meyer. Let u be the supremum of this net of measures then
w s the unique probability measure such that @, is a lattice tsomorphism from L®(K, p)
onto W.

Proof. The first part of the theorem is an elementary consequence of the fact that W

is a lattice.

Since W is a complete linear lattice with order unit it is lattice isomorphic to C(S)
for some completely disconnected Hausdorff space S [24, 8.4 and 8.5]. Let us denote this
isomorphism by W3f—f€C(S). Since |- || is additive on W+ we can define a linear func-
tional e on W by e(f) =||f,|| — ||fz||, where f, —fa=F; f1, 2€ W+. Then e is order-continuous on

W. For a €4 and e a measure on S is determined by

taf) =alf); ulf)=e(f) fEW.
The support of u, is § and so we can embed C(S) isometrically in L®(S, y,). Since both
e and p, are order-continuous this embedding is order-continuous too. Hence the image
of O(8) in L®(8, u,) is an order-complete subspace and thus coincides with L*®(S, ).
The measures y, are absolutely continuous with respect to g, and so y,=@gp.. In fact
- |ga(8)] <|la|| for all s€S and ¢,>0 if a>0, so that ¢,ELX(S, u) and we may even take
P, €C(8).

For s€8 we define g,€ K by a(p,) =g.(s). The map g: S35—>9,€K is continuous, due
to the continuity of the ¢, and therefore gy, is a well-defined measure on K. The map
R: LMK, ou.)3 p->@op €LY(S, u,) maps LYK, gu,) isometrically onto a closed subspace of
LY(S, u,), which contains all ¢,, a€A. If fEL®(S, ,) is such that
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0 sz'(pad,ue :a(f) a€d

then f=0. Consequently f=0 also and R is isomorphic. The dual map R*: L®(S, u,)—>
Lo(K, ou,) is then also a lattice isomorphism. In total we have for f€W

(D, (R*f)) = f (R*)adou, = ff%due =a(f), a€d

so that @y, (R*f)=f for f€ W. This shows that @, maps L®(K, .) isomorphically onto W.
Let » be a probability measure which represents f and such that ®,: L®(K, »)~>W is an
isomorphism and let x4 be as in the statement of the theorem. We show v =p.

Thus let 2;«,0;, be a discrete measure as mentioned, then
Zyo,0p, <X, o[ @)y =

so that u <v. But conversely » is the supremum of all discrete measures X;a;d,, where
9:=Dy(p;) with ¢, €L*(K, y)* and X, a;,=1. [Cf. 20, Lemma 9.6.] By assumption we have
g: €W+ and X, 0,9, =g so that also » <u and we are done.

Next we give the “central’” definition of this section.

Definition 3.3. For h€ E+, we denote Zy, by Z,. A (positive) measure y on K, which
represents /€ K is said to be central iff @, maps L®(K, u) isomorphically onto the lattice
Z,h= Vy, and ||u|| =||%||. We note that =~ A* has a norm, and that the intersection of E+
with the unit ball of E is K.

TrEOREM 3.4. For g€K, there exists a unique central measure u which represents g.
Proof. This follows directly from 3.2 and 3.3.

Let us keep g€K fixed and u as in 3.4. In order to study the properties of u we
introduce the cone B+ of positive linear maps of V,into E. Let B=B+— B*. Then B+
defines an ordering on B. We provide B with the topology of pointwise weak* convergence.
A universal cap for Bt is .

K ={keB+|hg€K}.
The compactness of K follows since K is homeomorphic to the set of all affine maps
h: F,—~ K, with h(0)=0 and F, as in 1.7, with the topology of point-wise convergence.
According to Tychonoff’s theorem the latter set is compact.
The embedding of V, into K is denoted by §. There exists a natural map 7: B—~E,

th =ky.

given by
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Obviously 7 is continuous, >0 and 7K < K.

Definition 3.5. An element h € E+ is said to be primary iff Z, consists of scalar multiples
of the identity map in V,.

The set of primary points in E*+ is o, B+ and 8, K=2,, E*N K.

There follows that k€ E+ is primary iff ¢}, and k do not admit any non-trivial splittings.
Indeed (Z,)* is compact (cf. 2.1) to the effect that Z, is trivial iff the only extremal points
of (Z,){ are 0 and I. On the other hand, the set of extremal points of (Z,)7 is in a one-to-one
correspondence with the split-faces of €, (cf. 1.5). Plainly also 04, K< &, K.

We want to split g € B+ into primary elements, that is, we like to show that the central

measures are carried by 9, E+ in some sense.
PrOPOSITION 3.6. T maps 8, K into &, K.
Proof. Let k€K, fEB and T€Z;5. I —ah<f<ah with >0 and 0<k<g we have
0<(oah+ )k = ahk+ ]k <o(zh)+fk
so that f maps V, into V,z. Thus we put (by abuse of notation)
TF = Tof
If T>0, we see T >0. Conversely if 7' >0, then 0<(Th)g=T(zh) and we infer from

1.11, T>0. There follows that T€Z; and Zz3T—>TE€Zy is bipositive. In particular
h¢o,K if th¢o,K.

ProrosiTioN 3.7. Let T€Z, and T €Z; be as in 3.6 (note 1§=g). The map Z,3 T~

TgeV, is an order-isomorphism.

Proof. Plainly the map is bipositive. If Z€ V; then s maps V, into itself and because
% is bounded by multiples of g, which “acts as the identity operator” on V,, we see that
I defines an element T €Z, by Tk=hk for k€ V,. Obviously s=T; and we are done.

CoROLLARY. V; is a complete linear lattice and there exists a unique maximal represent-

ing measure i on K for g. Moreover, i is central.

Proof. We apply 3.2 to g and W = V7 and infer that g is the supremum of all discrete
measures on K, which represent g, so that f is unique maximal. Since T €Z; we have

V3 =Z;¢ and therefore i is central as well.

Prorositron 3.8. Let y=vix. Then u is the (unique) central representing measure on
K for g.
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Proof. Suppose T,€(Z,); and «;>0, ;=1 are such that X,e,T,=1I. Because 7
is linear and 77§ ="Tg for T €Z, we get

T(2112,07,7) = 271 4;0r,-

If i >7 on K, then 7ji >7# on K and so we find that 7ji—pu since 7ji is the supremum of
all measures 2. 0;07,, by the above equality and the continuity of 7.

The observation that the use of B+ as above, rather than of the set of positive bilin-
ear functionals on 4 x V,, which featured in an earlier draft of this paper, would clarify

the proofs considerably, is due to E. B. Davies.

TrEOREM 3.9. Every g€K, |lg|| =1 can be represented by a unique central measure p
and u(0) =0 for every Baire set O0< K with ON 0, K=0.

Proof. Existence and uniqueness were established in 3.4. Let O< K be a Baire set
with O N 8, K =@. Then 71(0) N 8,, K =D, because of 3.6 and since 7-1(0) is also a Baire
set we have 0=p(r~1(0)) =1i(0) =u(0) by the maximality of & and 3.8 [21, ch. IV].

CoROLLARY. If u is a central measure on K, then u(K\@,, K)=0.

Proof. If f€C(K) and f|p,,x=0 then {k€K|f(k)=0} is a Baire set disjoint from &, K
and so f|f|du=0. If we take the supremum over all f€C(K){ with f|, =0 we obtain
:“(K\aer) =0.

Remarks. 1. If g &0, we let its central measure be |||z, where y is the central measure
associated to g/||g||.

2. A problem, of course, is the measurability of ¢, K and for e.g. separable 4 it
would be desirable to have that supp u N ¢, K =@. A possible way to prove that this is
the case could be to show that supp jiN &,, K & or even supp an Boxte K =D. In general
K is not metrizable, even if K is, so that we do not know much about the measurability
of Doy K.

If we consider a subspace gE W< V, and the positive maps from W into E, we can
proceed as before. Proposition 3.6 actually still holds. The map Z,€T—>Tg€eV, maps Z,
onto a complete sublattice, say W, of Z;g. The map ¢: W—Z,g is an isomorphism. We can
“diagonalize” W by means of a measure fi, as can be seen from 3.2 and again we have
3.9. However we do not know whether g is maximal. By taking for W a separable subspace
of V,, with respect to the order-unit norm, we construct indeed a K which is metrizable. It
is unclear whether one can chose W at the same time such that g is maximal. A sufficient

condition would be that ¥, is the smallest order closed subspace of ¥, which contains W.
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For separable C* algebras we shall see that W can be chosen to be separable and so
that g is maximal [cf. § 4].
We want to investigate the behavior of central measures with respect to split-faces

of E+ and we need the following result on extension of central elements.

LeMMA 3.10. Let g€ B+ and TE€Z}. Then every S€Zy, is the restriction to Vy, of an
element S€Z,.

Proof. Let S€(Zy,). We suppose T €(Z,){ . For k€ V+ we put
Sk = sup,, {S[k — (I — T)"k]}.

We note that Sk is well-defined, since k— (I —T)"k€ V, and the sequence is bounded in
+

V, by k. We have 0<Sk<k, S is additive and positive homogeneous on V;, so that it
can be extended to a linear operator on ¥, which is central. If 0 <k < Ty we find

0<S(I—T)k<(I-T)"Tyg

The sequence of maps (I —T)"T converges pointwise to 0 and thus the right side of the
inequality tends to 0 € V,. There follows Sk=_8k, so that § is an extension of 8.

Prorositiown 3.11. If u is a central measure on K and @ €L®(K, u)* then u is central.

Proof. Let g be the resultant of u and T €Z; such that @ ,(p)="Tyg. If y is the sup-
port function of ¢ in L®(XK, u), then L*(K, pu) can be identified with yL®(K, u). If
YE(L®(K, pu))i and ®,(y) =8y, SE€(Z,){, then we obtain

Q) =D, (py) = STy.

Therefore ®,, maps into Z, Tg. If ®,,(y) >0, then ®,(py) >0 and thus yp=>0, p=>0 for
pE€L®(K, gu). This shows that ®,, is bipositive. If S€Zy,, there is a p €L®(K, u) such
that @ ,(y)=Sy. We have

@y (xy) = O xypp) = ©,(vp) = STy

so that the image of ®,, is all of Zy, Ty and ®,, is an isomorphism. We infer from 3.4
that @u is the central measure which represents 7'y.

We consider the set of split-faces of E+, B(E+). If G€ B(E+), we define p; by pq(f) =
G|, 1€ B+. Then pg is additive and positive homogeneous on E+. A measurable affine

function a on K is said to satisfy the central barycentric calculus if

fadu =a(g)
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for all g € E+ and where u is the central measure associated to g. We call G € B(E+) admissible

if p4 is measurable and satisfies the central barycentric calculus.

ProrosiTioN 3.12. Let GEB(E+) be admissible. For every g€E*, with associated
central measure u, we have @ ,(pg)=Gy.

Proof. There exists an idempotent ¢ €L®(K, u) with @ () =Gg. We get
fpe du=lGg] = f @ dp=pe(Gy) = f«moa dp.

Since 0<p,<1 on K we have p,=1 modulo gu and because p is an idempotent p,=>¢

in L*(K, u). Then we readily obtain p;=¢ modulo 4 and that ends the proof.

CoROLLARY. If G is admissible and g€ K N G then we have for the central measure u
associated to g, u({k €K |pg(k)=1}) =u(K).

Proof. Indeed we have ||g|| =pa(g) =fpe du and because >0, f1du=||g|| and po<1
on K, the conclusion obtains.

ProrosiTioN 3.13. The set of all admissible G € B(E) 1s closed for relative complemen-
tation, that is, G, H admissible and G= H, then G’ (\ H, with G’ the complement of G, is ad-
missible. The set is closed for monotone sequential limits and contains the closed split-faces,

their complements and intersections of those.

Proof. It G, H are admissible faces and G& H, then pgny=p5— D¢ 5o that @ N H is
admissible. Since E+ is admissible there follows @ is admissible if G' is. For an increasing

sequence of split-faces {G,}, and G=sup, {G,} we have p;=sup,{p¢ } so that @ is ad-
missible.

If @ is a closed split face {aoG’|a€A+,|a| <1} is an increasing family of lower

semi-continuous functions (2.6) and
Pe =sup{aol’|a€A4,|al| <1} on E*.

There follows that p. is.of the right kind so that @ and G are admissible. If @, H are
closed split-faces then @' N H'=(G'+ H)' is admissible and also @' N (G+H)=G'n H.

ProrosiTioN 3.14. Let G be a closed split-face and H' the complement of a closed split-
face. If T is a Baire subset of K such that (TN GNH')N o, K= and u a central measure,
then p{T NGNH')=0.

5—"712906 Acta Mathematica 127. Imprimé le 1 Juin 1971
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Proof. We have
u=|"llp=pep+pon

since according to the corollary of 3.12, u is concentrated on {k€K|||k||=1}. Because
(pe p)(G)=0 and pgu is central on G N K in the induced topology, and because 7'N G
is a Baire subset of GN K, we can restrict our attention to the case where GN K =K,
that is G=E+ and pou=pu.

For a€H® we let Q,={k€ K|a(k)=:0} then Q,NT is a Baire subset of K and
QNTNne,K=2. Indeed if h€&,KNH', then h¢T since TNH' N, K= and if
h€0, K N H then h¢Q), so that

fad,u,=0, a€H’
T

If we take the supremum over all min (a, 1), a€H® we get u(T 0 (K\H))=0, so that
p(T' N H')=0 and we are done.

An earlier version of this proof for the C*-algebra case originated in a discussion
with ¥. Combes.

For separable A, that is, metrizable K, this does not give anything new since then
closed split-faces and their complements are Baire sets so that 3.9 can be applied directly.

It follows from 3.12, 3.13 and 3.14 that measure theoretically closed split-faces and
their complements can be considered as direct summands. One can conclude from 3.13
and general facts from § 1 that the smallest o-algebra in B(E+), which contains the closed
split-faces, consists entirely of admissible split-faces. This o-algebra corresponds with a
monotone-sequentially closed subalgebra Z of Z,. The restriction of Z% to V,, g€ E+ is a
weakly closed subalgebra of Z,, with respect to which one can decompose g. This is the
approach which Effros takes in [12] for the case of O*-algebras. Effros relates the obtained
measures with measures on the prime ideal of 4. Using the ideas of Andersen and Alfsen
[1] one can see that this can be done also in this general setting.

In proving the “Extension theorem” in [16] Kadison introduces the monotone se-
quential closure, that is, 4™ is the smallest set of bounded affine functions on K, which
contains A4 and is closed for the taking of monotone sequential limits.

It was remarked by Pedersen [19] that every a €A™ is in the monotone sequential
closure of some separable subspace of A. Using this it is not hard to see that also if 4
does not have a unit, still as in [16], 4™ is a linear space closed with respect to the uni-
form norm of K and A™=(A™)*—(A™)*.

ProPOSITION 3.15. For every T €Zan there is a unique T €Z, such that for all a€A™,
Ta=aoT.
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Proof. Let T €(Zsn)i and h€ E. We define Th by a(Th) =Ta(h), a€A. Then the map
E>h—Th is linear and satisfies 0 <7 <I so that T €Z;. The subspace of those a €A™ for
which the defining equality for 7' holds contains 4 of course and is closed for monotone
sequential limits. Indeed if {a,},< A™ is an increasing sequence with a,(Th) =Ta,(h) and

sup,, {a,} =a €A™ Then we have

0<Ta—Ta,<a-a,
so that T'a=sup, {Ta,} and there follows
a(Th) = sup, {a,(Th)} = sup, {Ta,(h)} = Ta(h).

The same holds for decreasing sequences.

We shall denote Zsm<Z; by Z™ and use it later [4.8]. In [4] Combes studies the space
spanned by the semi-continuous affine function on K and one can prove the same proposi-
tion. Davies [7] considers the sequential closures of 4 and it is not clear whether in general
then the above proposition holds.

It would be worthwhile to find out how far the theory of the centers of these larger
spaces can be pushed in this general setting. The principal aim then should be to show
that these centers are large in some sense (cf. Davies [7] and [8]). It seems probable that
some extra conditions on E or A are needed in order to make things work. An additional
axiom like Ext [4.C] seems to be the least one has to require.

Another closely related problem is to try to obtain, by using a suitable set of split-
faces, a global decomposition of E and realize E either as a measurable or a continuous
direct sum.

We have seen that there might be some interest in decomposing with respect to sub-
algebras of Z, g€ E+ and so we consider a somewhat wider class of measures than the

central ones.

Definition 3.16. Let g€ E+, ||g|| =1. A positive probability measure on K, which re-
presents g, is said to be subcentral if for every Borel-set B< K with 0 <u(B)<1, the resul-
tants of the restricted measures 5 and yg\p are disjoint.

In other words y is sub-central if
O, ()o@, (1—y) forall x=y2€L=(K,p).

ProrosiTION 3.17. Let pu be a positive measure on K, which represents g€K, ||g|j =1.

Then p is subcentral iff ®, maps L*(K, u) isomorphically onto a complete linear sublattice
W, of Z,g.
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Proof. We suppose that @, is an isomorphism onto a complete linear sub-lattice
W, Z,g and let y = y*€L°(K, u). Then inf (@ ,(x), P,(1 —%))=0in Z,g and thus D ,(x) =
Tg with T=T2€Z,. But then @ ,(¥)=Tg4,(I —T)g=g—P,(X) so that u is sub-central.

Conversely let 4 be sub-central and y € L*(K, u) an idempotent. Then again @ (%) =Ty,
with 7' an idempotent in Z, (we used 1.11). There follows that ®, maps L®(K, u) into Z,g.
If peL=>(K, p) and @ ,(p) >0 then @ ,(¢+) — D ,(¢~) =0 and since D ,(pF)4D ,(¢7), D ,(p~) =0,
so that @, is bipositive. Since, as we have seen, ®, maps idempotents in L®(K, u) onto

idempotents of Z,¢ the conclusion readily obtains.

CorOLLARY. The set of sub-central probability measures, which represent gK, |lg| =1,
18 a complete lattice for Choquet—Meyer ordering. The map u—~W, is a lattice vsomorphism
of the lattice of sub-central measures onto the lattice of complete linear sub-lattices of Z,q and

the central measure is the unique maximal sub-central measure.
Proof. This is an immediate consequence of 3.18 and 3.2.

In order to obtain our next results we remind the reader of the following result of
Cartier—Fell-Meyer ([21, pg. 112]).

TarorEM 3.18. (Cartier—Fell-Meyer). If y and v are positive measures on K then y >v,
iff for each subdivision Xl .iv,=v of v there exists a subdivision X iy, of p such that u,

and v, have the same resultant.
We are interested in the comparison of measures with sub-central measures.

LeMMA 3.19. Let u and v be positive measures on K, which represent g€K, ||g| =1.
If either p or v is sub-central, then y >v iff ® (LK, u){ )2 @ (LK, »)T).

Proof. In general it follows from 3.18 that if y > then @ (L®(K, u){)2 O, (L*(K, »){")-
So now let u be sub-central and @,(L®(K, u)i)2®,(Le(K,v)]). If ¢,€L°(K,»)i and
Zli@; =1, then there exist unique y; € L*(K, u)i with ®,(y;) =®,(p,). Moreover
ZL10,(p;) =g so that Z_; 9, =1 and we conclude from 3.18, u >v.

Next we assume that v is central. If y €L®(K,») is an idempotent we have
D, ()59 —@,(x). Thus there is a @ €L®(K, u)7 with ®,(¢)=,(y). Then @ (1 —¢);D,(p)
and thus ¢ must be an idempotent in L®(K, u). If ¢’ €L®(K, u)i also satisfies O (") =D, (y)
then @ ,(¢")4®,(1 —¢) and so ¢’ has support disjoint from 1 —¢. Because ¢ also has to be
a characteristic function, there follows first ¢’ <g and then ¢’ =g since @ ,(p) =D ,(¢’). In
this way we see that there exists a map ¥: @,(L*(K, »))~>®  ,(L°(K, u)), which carries 1
into 1 and is bipositive. Moreover, we have @ ,(¥(¢)) =®,(¢p) for all p€L*(K, »). We con-
clude easily using 3.18 again that y >».



THE IDEAL CENTER OF PARTIALLY ORDERED VECTOR SPACES 69

CoROLLARY. If u, is a net of sub-central measures increasing in the sense of Chogquet

and (L =sup, fh,, then p is sub-central.

Proof. We have pi,— W, asin the corollary to Prop. 3.17 and if W, =U,W,, (the
o-closure), then W, u’. We have u’ >pu, for all « because of 3.20. Since u >u,, we have

QLK )20, (L™K, p,)T)
for all & and therefore ® ,(L°(K, p)7 )2, (L2(K, p'){) so that u>u’. There follows u’ =p.

ProrosiTION 3.20. Suppose p and v represent g€EK, ||g|| =1, and v is sub-central.
There exists a smallest measure g, , such that g, ,>u,v. Moreover, if also y is sub-central,

Oy, ¥S sub-central.

Proof. We start by supposing that both u and » are discrete, v =27 «;0;, and u =
22180, with f;, h€K, Z,0,=3%;8,=1, a;, f;>0. We have o,f;=T,g, with T.€(Z),
T;=T,and g=X%, ,B,Th, Let T,bh,/||T:h;| =k, for those 4, j with T';h;40 and

Ouy= Zli,iﬁf "Ti hf” 6".’;’

where X’ indicates that we only add over 4, j with 7';k;=0. Obviously if also y is sub-central
then g, , is sub-central. It is clear too that g, , >u, v. Next we assume that g >u, ». There
are @;, ;€L (K, o) with ¢,0>0;0;, 9,0 >p;0,, as we see from 3.18 again. We put kj; =
@, (@sp;). Then T, ;k; =g and X, kj; =B,;h;. We obtain ki <a,f; for j =1, ... m. Since {o;f};
is a splitting of g we have by the uniqueness assertion in 1.10 kj; = T';k;. But then

@0 =Pl Tihyl| bk,

if @iy;=0 and so 7';k;+0. This proves g >, , and thus the minimality of g, ,.

There follows immediately for discrete u’, »* with »" sub-central and u’ >u; v’ >» that
0w, v >0p,v

If u is arbitrary then it is well known that u is the supremum of the net of discrete
measures fig=2,y;0, Wwith y,h=0(y;) with Z,3,=1 and y; = yf €L2(K, u). Moreover,

if v sub-central, the »; are sub-central. We put for g arbitrary and » sub-central
QM,V = Supd,d’@ua.de

Then g, , >us,74 and so » >, v. If u is sub-central, then all u, are sub-central, so that
Q,u. H Q,u. 14 H Ha
Qu,, vy 18 sub-central. We infer from the corollary to 3.19 that then g, , is sub-central. If

o>, v we have g >uy v, and so ¢ >g,, ... There follows ¢ >g, , and we are done.



70 WILBERT WILS

THEOREM 3.21. Let g€ K, ||g]| =1 and u a maximal measure on K, which represents g.

If v is the central measure associated to g then p >v.

Proof. We obtain from 3.20 that g, , >u and so g, ,=u because y is maximal. But

then we see u=p,, , >v.

The idea that the central measure v is the maximal measure with the above property
3.20 is readily proved to be wrong by considering a rectangular cone in R3. For simplices
of course the central measures are maximal and for the case of the positive cone in the
dual of a C*-algebra we shall see that indeed the central measure is the maximal measure
with the property that it is majorized by all maximal measures representing a point g€ K,
9]l =1. [4.10.]

4. Examples

A. Let £ be an order complete vector lattice. Since £ has the Riesz decomposition
property, f&g iff C,nC,={0} for f, g€ E*.

4.1. An element f€8,, E+ iff f lies on an extremal ray of E+.

Plainly if f lies on an extremal ray of B+ then f€2, K+. Conversely let f€0,, B+ and
0<h<f If a=sup{a'>0|a’h<f}, we take O0<a<f<20 and k=pfh—f=k+—k~- with
0<kt<fh, 0<k-<f and k+,k~. Then k++k-<3f so that f=f,+f, with 0<k+<3f,
0<k~<3f, and f,4f, [20, V.1.3]. There follows either f,=k-=0 and fh>for f,=k"=0,
that is, fh <f, which contradicts the choice of 8. Thus f<ph for all §>« and by Archi-

medicity f=ah so that f lies on an extremal ray.

4.2. If every €0, H+ lies on an extremal ray and E+ has a metrizable universal cap K

then K is a simplex and E a vector lattice.

For g€K, |g|| =1 its associated central measure is concentrated on the extremal
points of K and since K is metrizable there follows that every central measure is maximal.
We infer from 3.20 that there exists for g€ K a unique maximal measure and so K is a
simplex (21, § 9).

4.3. If E is a vector lattice with a universal cap K for E*, then every central measure u

18 maximal.

Let g€K, |lgll=1. Then V, is a complete linear lattice and it follows e.g. from 3.2
that Z,g=V, and the conclusion is obvious from 3.2 again.

We see that for the vector lattice case the notions which we introduced reduce to
familiar concepts. For the closed split-faces and examples we refer to [1].

Let us next look at the C*-algebra case.
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B. A will denote the self-adjoint part of a C*-algebra 4 and E is the real dual of 4.
The set {f€E+|||f]| <1} is a universal cap for B+ and the setting is as in § 2.

The Gelfand-Neumark—Segal construction [10, 2.4.4] associates to every fE€EE* a
Hilbert space H,, a vector w€H , ||w]|?=||f||, and a representation z;: A—L(H,) such that
7 (A)w is dense in H, and f(a) = (r;(a)w, w) for a € A. It is then well known [10, 2.5.1] that
for g€V, there exists a unique operator § in the commutant z(4)" of 7{(A4) such that
g(a)=(gra)w, w) for a€A. The map g—§ is an isomorphism of ordered Banach spaces
from ¥V, onto the self-adjoint part of s,(4)".

We need the following probably well-known lemma.

44. If A is a C*-algebra with wnit e then the map Z,3T—~Te€A is an isomorphism
onto the self-adjoint part of the center of A.

Obviously every self-adjoint element in the center of 4, operating as a multiplicator
on A, induces an element of Z,.

By using the second dual [10, § 12] we see that to prove the converse it suffices to
consider von Neumann algebras. Then Z, is order-complete and so Z 4 is the norm closed
linear span of the idempotents in Z ,. Thus let P =P2€Z,. We shall show that Pe is a cen-
tral projection in 4. First since inf (Pe, (I —P)e) =0 [1.13] we see that [Pe]?=Pe so that
Pe is a projection. For a€(4)f we have a=Pa+ (I —P)a. But since 0 <Pa<Pe with Pe a
projection we see that Pa commutes with Pe and similarly Pe commutes with (I —P)a

and so with a. There follows that Pe is central, and we are done.
Then every element 7'€ Z, induces an element 7 € Zinay bY Tj= Ty, g€V, and con-
versely. We infer from 4.4 that Z,f=Zf=Z e, with e the identity in L(H,), is the self-

adjoint part of the center of 77,(4)’. We draw an immediate conclusion.
4.5. fe€o,, B+ iff 7, is primary, that is, the center of m(A) consists of multiples of the
identity.

Two representations s, and sz, are said to be disjoint, notation 7,4, if there does
not exist a non-trivial partial isometry U: H,—~H, such that Un/a)=mn,(a)U, a€A. It
can be proven then that sz, 47, iff there exists a central projection p €., ,(4) such that

7, is unitarily equivalent to the restriction of =, to pH,., [10, 2.5.1].
4.6. Two elements f, g € B+ are disjoint iff 7,4,
If f4g, then there exists S =S2€Z,, , with S(f+g)=f, so that f is a central projection

in 7. ,(4) and § is the complementary projection. Because for a €4

(frp @) w, w) = f(@) = (4. 4(a)fw, fw)
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and similarly for g, we see that #; and z, correspond to the restrictions of 7., to respec-
tively fH,,, and §H ., so that 7,4 7,.

Conversely if mq4m, there is a central projection p €z, (4)" such that s, is the re-
striction of m. , to pHy , and similarly for z,. Then there is a P=P2€Z;,, such that
P(f+g)=f and f=p. There follows 1bg.

The second dual 4** of 4 can be identified with the space of all (complex valued)
bounded affine functions on K, which venish at 0 and A** with the subspace of real ele-
ments, since B, =co (K, —K). Then 4™ is again a C*-algebra and 4** is the self-adjoint
part of 4**. We denote the center of 4** by Z. Every f€ E has a natural extension to 4**

as evaluation at f.

4.7. The central measure of f€K, ||f|=1, introduced by Sakai [23] coincides with the

central measure defined here.

Sakai calls a probability measure y on K, representing f, central iff there exists a

weak*-continuous homomorphism ¥: Z->L®(K, u) such that
f(za) = f W()adu, 2€Z, a€A.
K

The representation 7, has a weak*-continuous extension to 4** such that s maps Z homo-
morphically onto the center of z(4)’. Since we have f(za)=(n;)n(a)w, w), 2€Z, a€A
we find that it is sufficient if there exists a weak*-continuous homomorphism ¥’ of the
center of ,(4) onto L*(K, u) such that

f(za) = (72,(2) s (a) w, w)=f W (n;(z)adu a€A, z€Z.

For the measure y’ introduced in 3.3 there exists an isomorphism @ ,: L*(K, u)—=Z,f
such that

a(D,. (p)) = f(padlu' a€A, p€E L™K, u')

and we have ((I\)-;.\(:p) aa) w, w) =a(®, (¢)) = J‘(p(l au’.

~——~—

We put V(D ,(p)) =¢. Then ¥ has the required properties and since the central measure

of Sakai is unique we see that u’ is central in the sense of Sakai.

Feldman and Effros [23] have proved that for separable C*-algebras o, E+NK is a
Baire subset of K so that according to 3.9 for every central measure u, u(2,, £+ N K) =u(K).
This can also be shown by taking for W< V,, the set which corresponds with the self-

adjoint part of a weak* dense separable subalgebra D, {A4)" and proceeding as indicated
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in the remarks following 3.9. The fact that the measure ji, then constructed, is maximal
follows essentially from [10, 2.5.1]. We note that the positive maps from V, into E cor-
respond with the positive linear functionals on the algebraic tensor product 4 @ W. If
Dcm(A4) is as above, then 7 A4)® z D can be identified with a weak* dense subalgebra
of the commutant of the center of 77,(4)’ [16, § 3.1] and this indicates the relation between
the approach taken here and the one of [28] in which the algebra generated by D and
7t;(A) is considered.

The central measure for C*-algebras was introduced by S. Sakai [23] and he proved
existence and uniqueness as well as the fact that it is concentrated on o, B+ N K, using
the von Nenmann decomposition theory for separable C*-algebras. The extension to general
C*.algebras was made in [28], also [29]. Independently Ruelle [22] and Guichardet, Kast-
ler [15] established existence and uniqueness; all using the same method. Similar ideas
are already present in much of the older theory on decomposition theory for von Neumann
algebras, see e.g. Tomita [27].

The relevance of the central measure in statistical mechanies is that if {o;}.r is a
one-parameter group of automorphisms of 4 and K, is the set of states f€ E+, e(f)=1,
where ¢ is the identity of 4, which satisfy the K.M.S. boundary condition, then K, is a
simplex and, by abuse of language, the central measure of f€ K, on K coincides with the
maximal measure on K, representing /. This was established by Takesaki [26] and Emch,
Knops and Verboven [14].

There are several more conditions than separability of 4, which ensure u(é,, £+ N K) =
W(K) for central measures. There is e.g. condition “S” of Ruelle [22] which is pertinent
for applications to locally normal states. A more classical condition is that A4 is generated
by its center B and a separable C*-algebra 4'. Then it is readily verified that o, E+=
{f€ E*| f| is multiplicative} N {f€ E+| f| 4 is primary for 4'}. The complements of both
sets have measure O for all central measures and thus u(o,, E*+ N K)=u(K) for all those
measures. A condition of a different type again is that 4 is of type I. This follows from
[3.9] and {10, 4.5.5 and 4.5.3 and 4.7.6].

A more detailed problem is the measurability of the sets of primary states of type I,
II, IT, or ITT. Tt is possible to prove that if f€ K is of type I, that is, 71,(4)" is of type I,
then the central measure u of f is pseudo-concentrated on the set of primary states of
type I and if f is of type II, then y is concentrated on the set of primary states of type
II,. Just as in the separable case it is not easy to do something for type III or II .

As applications of the theory of central measures we point out that e.g. the general
Plancherel theorem of Dixmier [10] can be proved using central measures. Also the in-

variants which Kadison gives for quasi-equivalence [16] can be formulated entirely within
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the frame work of central measures on K, instead of with the set of all extensions of states
on A to measures on K. We shall not go into these matters and rather derive another pro-
perty and characterization of central measures for the case of separable C*-algebras.

We remind the reader of the monotone sequential closure A™ of 4 and Z"< Z; [3.15].
If A is separable then A™ contains the function |- || on K. Let e denote the linear exten-
sion of ||-|| to E, then e acts as a unit for A™. It is proved by Kadison [16, pages 317,
318] that A™ is a J-algebra and Pedersen [18, th. 1] showed that A™ actually is the self-
adjoint part of a C*-algebra. Every x€A4™ has a central support. Indeed if x€A4™, then
the separable algebra generated by x4, has a countable approximate identity. The supre-

mum of this monotone sequence is the central support of  in A™.

4.8. Let A be a separable C*-algebra and f€ BY. Then (Z,){ f=(Z™)f.

Note that Z™ is defined globally, i.e. Z™ operates on all of E and Z, operates only on V.
Obviously (Z™{f< (Z,)1f. Let T=T?€Z,. Then %f is a central projection in 77,(4)’. Because
A is separable, H, is separable and so the identity operator on 3, is countably decompos-
able for @, (4)". We infer from [16, pp. 322-323] that there is a a €4™ with n,(a)zTNf.

Let p be the central support of @, then s/(p)=n a). It follows from 4.4 that there exists
T'=T"2€Z s with T"e=p. In total we have for b€ 4 with w as before and using 4.4 again

B(TY) = (T (b)w, w) = (v (p)pb)w, w) = (g pb)w, w)
= (7t (T"b)w, w) = (T"b)(f) = b(T"}).
Consequently 7f=T'f and (Z™)7f contains the idempotents of (Z){f. Since Z” is closed

for monotone sequential convergence the statement of 4.8 follows:

4.9. Let A be a separable C*-algebra and f€K, ||f| =1. Then the central measure u on

K representing f is the unique minimal measure representing f and concentrated on 0, E+ N K.

Suppose » >0 represents f and »(8,, B+ n K)=1. We see from 3.19 that we have to
show that @,(L2(K, »){)2(Zf)i =(Z™)if. Take T€(Z™).

If g€, E+ then Z,g is trivial and thus Tg=A47(g)g for some constant 17(g). We have
e(Tg) = Te(g) =Az(g) e(g) with e(g) +0 for g +0. There follows Az is the restriction to 8,, B+ N K
of a Baire function on K. We also have 0 <<Az<1. Armed with this knowledge we note
that for a€ 4.

(Ta) () =a(Tf) = f Tady.

K

Now » is concentrated on 9,, £+ N K and there (Ta)(g) =i%(g9)a(g) so that

a(Tf) = f Az ady.
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We found ®,(A7) =Tf and we can get all of (ZHi in this way. There follows » >y and we
are done.

In order to balance this characterization of central measures as minimal measures
we give now a last description of central measures for C*-algebras as maximal measures.

If B=x(A4) is an abelian von Neumann algebra then the self-adjoint part B of B
corresponds with a complete lattice in ¥, so that 3.1 applies. We denote the corresponding
measure with uz. Exactly as in 3.9 it is possible to prove that a measure u representing
f satisfies u<pp iff ®,(L°(K, u){)< Bf. Also Tomita [26] showed already long ago that
pe is maximal if B is maximal abelian. A proof of this fact follows by using again the
techniques of 3.19 and 4.4.

4.10. If v is a measure on K representing f€K, ||f|| =1 and v<p for all maximal measures

u representing f then y<, where i is f’'s central measure.
Proof. Since v<pg for all B, B maximal abelian, ®,(L*(K, u){)< By for all such B

and so @, (L*(K, v)T)<Z7 because Z is the intersection of all maximal abelian BS g (A4)’.
We conclude with the help of 3.19, v<f.

The first one to have been considering measures on the state space of a (*-algebra
in connection with decomposition theory is I. Segal [25]. The idea of using a construction
like in the first part of 3.1 to decompose states can be found in practically every article
on desintegration of von Neumann algebras since 1949.

A last remark concerning this example is that the name “ideal center’ is taken from
Effros [12] and Dixmier [11]. The algebra A’ in [11, th. 8] can be constructed by using
the regular representation of 4 and Z,< End (4), just as is done in adjoining an identity
[10, 1.3.8). For the connection with the ideal center of Effros we refer to [12] and the

remarks following 3.14.

€. Another example can be found in the realm of positive definite functions on groups.
Also one could try to find motivation for studying central measures in the theory of func-
tion algebras. Another direction would be applications to weakly complete cones. On none
of these subjects very much is known in this connection and I should rather like to indicate
the relevance for a classification theory of a condition, which is satisfied by both examples
discussed so far.

Let E be a partially ordered vector space with as usual K =Et—E+. We suppose
that the following axiom is satisfied.

Ext: If b, f,g€E" and g=h+f with hLf, then g =g, +g, with ¢.45g9, and g2k, g = .

Plainly Ext is satisfied in the lattice case. For the C*-algebra case Ext follows from
19, A15] and some standard reasoning as in B. The disjointness relation behaves very nicely

in the presence of Ext.
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4.11. If {,f ,h€E" and f&h, f &b, then f+f &h.

The proof is simple algebra as in 1.7. A consequence is
4.12. {h€E+|h g} =K, is a face of B+, g€ B+.
We introduce the following definition.

4.13. Definition. If h, gEE+, we write h<<g iff &k for all k€ E+ with g4 k. Also
H,={h€E+|h<<g}.

4.14. H, and K, are complementary split-faces of E+.

Suppose fEE+ and let T'=T2€Z,,, be minimal so that Tg=g. Then (I - T)f4g. We
want to show Tf<<g. Suppose E+3k,g and let T’ be the smallest idempotent in Z,
with 7"g=g. It follows from Ext and 1.5 that 7"k =0. The restriction of 7" to V,, satis-
fies T"g =g so that 7" >T and T'f > T}. Consequently Tf k and H,+ K,=E+. If by, €K,
and hy, hs € H, satisty hy +hy—h]+hy then it follows from the definition hy, h1bhs, ks and
from 1.8, hy =hi, hy=hs. This ends the proof.

Thus Ext has a consequence that local splitting extend to global ones. The effect of
Ext can be seen by considering examples in finite dimensional spaces. An interesting problem
is e.g. whether a proposition like 4.10 holds in general in the presence of Ext.

A statement like f<<g iff H,< H, or f&g iff H,,H, isreadily verified and shows that
<< defines a preorder on E+. The resulting equivalence relation should be called guasi-
equivalence.

For the lattice case H, is just the band generated by ¢ in E+ and K, the complementary
band. For the C*-algebra case H, must be interpreted as the pull-back to E(=A4’) of the
restriction to s, (A4) of the normal linear functionals on C(},) and then H, serves as invariant
for quasi-equivalence [10, 5.3]. This is e.g. the point of view in [16, th. 2.2.5]. The represen-
tation 7, roughly corresponds with the restriction of 4 to H, and the sandwiched algebras
pr(A)’p with p a countably decomposable projection in 7,(A4)" are the “restrictions” of
the set of all bounded affine functions on K to C;, f€EH,. It seems certain that quite a
bit more than Ext is needed to obtain the results of [16] in a general setting.

Ext however is sufficient to give a good definition of the equivalent of the quasi-
spectrum as for C*-algebras [10, 7.2]. A decent Borel structure on this object as e.g. defined
by Davies [8, § 4] by means of the center of A™ is again a big problem. The same applies

to the measurability of &,, E+, which is a connected question.
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