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§ 1. Introduction

In this paper we shall consider the limit set of a finitely generated Fuchsian group of
the second kind. In particular, we shall attempt to calculate the Hausdorff dimension of
the limit set. If the group, &, has no parabolic elements this is actually achieved in sec-
tion 4, whereas, if ¢ has parabolic elements we can obtain partial results which are dis-
cussed in section 5. The proof of these results involves the construction of a measure sup-
ported on the limit set, from which, at least in principle, we can obtain a lower bound for
the Hausdorff dimension. This bound is the same as the upper bound found by Beardon [4].

The actual measure which we construct proves to be intimately related to the theory
of the Laplace operator on G\H, and consequently we obtain new insights into both of
these. This allows us, for example, to give a new proof of a theorem of Beardon [4] (see
the Corollary to Theorem 7.1).

Section 2 recalls some well-known, but difficult to locate, results on the description
of the geometry of Fuchsian groups of the second kind. These are used in making various
estimates.

By way of notation, we shall take all Fuchsian groups to be finitely generated, al-
though several of the results will be valid without this restriction (in particular those of
section 3). These groups will be assumed to act on the unit disc A unless stated otherwise.
For a domain D we shall write Con (D) for the group of conformal homeomorphisms of

D onto D. We can, as usual, represent an element g€ Con (A) as a matrix

(; ﬁ) (e BEC, [« ~ B[ =1),

and if this is so we shall write

u(g) = 2(|af2+|B?).
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Likewise, if g € Con (H), where H is the upper half-plane, g can be represented as

a b
(c d) (a,b,¢c,dER, ad— bc=1).
‘We shall write here

{(g) = a®+b% +c24-d2.

The unit circle, 0A, will be denoted by S.

Some of the results of this paper were contained in a Ph.D. thesis submitted to the
University of Cambridge. I would like to express my thanks to my research supervisor,
Dr A. F. Beardon; some extent of my debt to him will be clear from this paper.

§ 2. Geometry of the fundamental domain and the limit set

Let @ be a Fuchsian group acting on A. Then there is an (open) fundamental domain
D in A so that
(a) 0D is a finite collection {u,} of geodesic arcs,

(b) {u,} splits uniquely into pairs w, u) in such a way that there is , €@ so that u,=

yi(ty), the y, are distinct and generate G,

(c) 0€D,
(d) if u;, u, meet at p€S then p is a parabolic vertex; w;=u), and y, generates G,. No other

u, meets G{p}.

A justification of this can be found in [8]. Let L; be the limit set of G.

L is a closed subset of 8. Thus Q=L%(=8\L¢) is open and so is a countable union
of disjoint intervals, say Q=1J,Q, We shall say that Q; and €, are equivalent if there
is g€G so that gQ,;=Q,. It is clear, as L; is invariant under @, that either gQ,=€); or
9Q,; N O =D. Now we have

TrrEOREM 2.1. There are only a finite number of equivalence classes of ;. There is a

hyperbolic subgroup (but no larger subgroup), G, say, preserving £;.

This is proved in [8] but it is not stated formally.

Let 7, n; be the end-points of Q; and let 4; be that arc of a circle lying in A, joining
#;, 1j, making an internal angle « >0 with ;. The collection of all 4, is a figure invariant
under G as G preserves {,}, angles and orientation. Let A;=A(«) be the open region
between 4, and Q) it is lens-shaped and we call it an «-lens. As @ is non-elementary the
Q; have distincet end-points (consider the action of G; on 8§\ ;) and the 4 cannot inter-
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sect if o <z/2. In particular, if «a<s/2 the A,(«) are disjoint and are permuted by G. Let
Ky(o) =AN U ; Aj(a). If a<x/2, Ky(e) is hyperbolically convex.

The next point to note is that D N K (o) has finite (hyperbolic) area and if G has no
parabolic elements D N Kq(a) is relatively compact. This follows as the only infinite parts
of D are those adjacent to free sides (i.e. {Q,N.D}) and cusps. Any free side is in some A;.
All this is a direct consequence of the description of D given above.

Suppose now that G has parabolic elements and let p,, ..., p, be the parabolic vertices
lying on 2D. We call an open disc contained in A and tangent to S at p a horocycle at p.
Construct horocycles C; at p;. Now refer this to H with p, =occ. We know that the dia-
meter of a horocycle g(C;){(g€G, g(p,;) = °) is bounded ([9]) and so we can find C, < Cj,
a horocycle at o so that

(a) C, meets no image of {C;} under G other than C; (and hence no image of {C, C, ...,
C}}, other than C), under G),
(b) if &< (7/2) C; meets no A,{x).
(b} follows as the length of € is clearly bounded by the translation length of G
hence the height of A, is bounded.

We can repeat this argument to each 4. Thus

ProrosiTtioN 2.1. There is a horocycle C, at each parabolic vertex p and a 7/2-lens
A; on each Q; so that

i) {C, A;} are disjoint,

(i) Comy=9(Cy),

(iil) DN(U, C, U U, A)) is relatively compact in A,
(iv) D meets only a finite number of C, and A;.

If p is any parabolic vertex then p =g(p;) for some j; then define C;, =g(C,,). Then the
construetion above is sufficient to imply the proposition.

Now let p be a parabolic vertex. If we conjugate G to act on H with p at o and G,
generated by z+>z+1 then C, becomes {x: Im(z)>d} (d>0). (G, is the subgroup of ¢
fixing p and we have used the same notation for G and its conjugate). A fundamental do-

main for the action of G on this is
{z: Im(2) >d, |Re(z)] <1/2}.

Such a region, or its image in A, we call stendard.
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Furthermore, if we conjugate Q, to be [0, o], (G acting on H) A(«) becomes

{z:0<arg () <«} and G, is generated by an element of the form

zr>explx;)z. (o, > 0).
Then the set
{2:1 <|z|<exp(x,), 0 <arg(z) < a}

is a fundamental domain for the action of &; on A («). This, or its image in A, will be called
standard.

Now let A be a finite set so that the Q,(j € 4) are inequivalent under & and 4 is maxi-
mal subject to this restriction. Let P be a maximal set of inequivalent pérabolic vertices;

this is also finite. It now follows from Proposition 2.1 that the following assertion holds:

ProPosiTION 2.2. Let the notations as be above. Then there is a (possibly disconnected)
fundamental domain D for G of the form

D=K,uUD(xu U Dj

jeA peP

where

(i) K, is relatively compact m A,
(i) D) i3 o standard fundamental domain for G; on Afa), and,

(i) D} is a standard fundamental domain for G, on C,,.

§ 3. The construction of of a measure

In this section & will denote an arbitrary Fuchsian group acting on the unit dise.
If z, wEA we zet,

1—zwf?
Az, w)= _*L__*__ .
(1= @ =|wl

From this we form ‘the Dirichlet series for 2, w€A,

f(z, w; s) = ZG h(z, g(w))~*. 3.1)

ge
Let us recall some known facts concerning this series. It converges if Re (s)>1 and
diverges for Re (s) <0. It has an ‘exponent ¢f convergence’, §(®); it diverges if Re (s) <d(&)
and converges if Re (s)>d(Q). Trivially §(G)€[0, 1]. Beardon ([3], {4]) has shown that
O(@) €10, 1[ if G is of the second kind and it is & classical fact that 8(G)=1 if G is of the
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first kind. We shall in our work require Beardon’s estimate §(G) >0, which is the easiest
part. Beardon has also shown in [3] that if & has parabolic elements §(G) > 3.
The construction which we are about to perform relies on the following elementary

lemma.

Lemma 3.1. Let X531 a5° be a Dirichlet series with exponent of convergence ¢ >0. There

s a positive increasing function k on [0, o] so that

§ (@n)
n=1 a‘;
has exponent of convergence e and diverges at s=e. Also if ¢>0 is given there is y, so that
for y>y,, x>1
k(zy) < «°k(y).

Proof. By reordering the series we may suppose that (a,) is an increasing sequence
and as e>0, a,~°c. Let (g,) be a decreasing sequence such that ¢,>0, ¢,—>0 as n— oo,
We are going to define a sequence (X,), with X, o, and k on the interval [X,, X, 4]
inductively. Take X, =1 and k(z}=1 on [0, 1]. '

Suppose £ is defined on [0, X,]. Then choose X,,; so that

HX,)

azeem 1. (3.2)
Xn D Xp<ap<Xpi1

This can always be done as X, a;“~* diverges. Now define, for z€[X,,, X, 41,
y 'p D g +:
x\%"
k(z) = k(X,) (f) ) (3.3)
n

With this choice 2k(a,)-a, ¢ diverges as

b o
Zlc(a,,) a, = z z k(X,)- (ap/Xn)e" cayt> z 1
n=1 p:apelXy. Xn+1l i —1

by (3.2). By (3.3) k is positive and increasing.
Suppose we are given &>0. Choose n so that £>g,. Then if x> X, log k() is, by (3.3),
a piecewise linear continuous function of log x and the slope of each component is <eg,.
Hence if y>X,, x>1
log k(xy) —log k(y) <elogx

which is precisely what we want.
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Finally, we have to show that if s >¢ then Xk (a,)-a;° converges. Choose £>0 so that
e+e<s. Then, as p—oe k{a,)=0(aj) by what we have just proved. The convergence of
2k (a,) a,° follows at once. This proves the lemma.

We apply the lemma to the series (3.1). Hence there is a function & with the properties
described in the lemma so that, for fixed o, SEA,

M(s) =g.§; ke(h{e, g(B))) - h(ex, g(B))

has exponent of convergence &(=0(G)) and which diverges at s=4. As the terms are
positive, as s—4,

M(s) » oo,

Let 4, be the Dirac measure at z. For s >0 we define the following measure on A, for
fixed o, SEA,
se=M(s)™ ZG k(h(x, g(8))) b=, 9(B))~*d4p)- (3.4)
g e

4 is a family of probability measures supported on A. We can apply Helly’s theorem; that
is, if (s;) is a sequence s; >3 we can extract a subsequence (s;) so that (u,,) converges weakly
on A. Let u be the limit on some such sequence.

As there are only a finite number of images of § in any closed set in A, and as M(s;)—> oo,
4 is concentrated on the unit circle 8. In fact the same reasoning shows that it is concen-
trated on the limit set L;. As A is compact u is a probability measure.

4 is the measure we have been seeking. In order to investigate its properties we in-
troduce an auxillary function.

Let us define, for €A, €A, the Poisson ‘kernel’,

.12
P, c>=ff_—li%l|2-
Then we define
Fz)= f P(z, {Ydu(?). (3.5)

As py;~p weakly we have
FP(z)=1lim f P(z, {)du,,(£).
=0

But, for z fixed there is a constant ¢ so that, if (€A, |6—s,] <10,

|P(z, £)° — P(z, £)'1] < c(z)- | 5,—6].
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As the u,, are probability measures we have

z)=lim fP(z, CYidus(L).
00
If we take =0 and use (3.4) this becomes

F -—1 .
&)= 10 3(s)) o2 k(z g(ﬂ))s’

Let >0 and y €@G. Then as for any a, b, c€A,

Ma, ¢) < 2h(a, bYA(b, c)
(see [7]) and as k is increasing

1 h(0, g(B))
I-»oo o M (8) gec h(V(Z), By

1 » k(h(0, y9(8)))
o0 M(85) Jec h(z, g(B))¥

1 » k(21(0, ¥(0)) - R(y(0) y9(B)))
M(s)) dec h(z, g(B))"

F(y)=

= hm

hm

Now there is ¥, so that if y>y,, z>1
k(zy) < =°k(y).
For all but a finite number of g€G
k(y(0), vg(B)) = R(0, 9(B)) = Yo-

As M(s,)— oo as j— oo this finite collection makes no contribution to the limit. Hence

» k(h(0, 9(B))) _
0 M(8)) jea bz, g(8))”

F(y(z)) < 2h(0, 7(0)))5 lim = (2h(0, (0)))°F (2).

This is true for any £ >0 and hence
F(y(x)) < F(z).
Apply this with y{(z) replacing z and ! replacing y. Thus

F(y(2)) = F(z).
Hence '

F(y(z)) = F(2)
for any y €G. This proves
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TurorREM 3.1. If u is a probability measure constructed as above then

(i) u is supported on Lg,
(i) F(z)= jP(z, £Ydu(C) is automorphic under G-

The following facts are worth remarking. Firstly this holds for any Fuchsian group,

even infinitely generated ones. Next, .F is infinitely differentiable and satisfies
DF = —-4(1-9)F

where D is the Laplace-Beltrami operator. This follows as P(z, {)° satisfies the same equa-
tion; compare [7]. This means that these problems are susceptible to the methods of Sel-

berg which we shall exploit in later sections.

§ 4. The Hausdorff dimension of the limit set

In this section we use the measure of the last section to calculate the Hausdorff
dimension of the limit set of a Fuchsian grbupv of the second kind without parabolic ele-
ments. There are two ‘reasons for this last restriction. Firstly, the consideration of para-
bolic elements makes the estimates much more difficult alfhough they still can be made.
Secondly the results are not quite as complete in the excluded case.

In order to explain the genesis of this problem we recall some theorems of Beardon
([21, [3], [4], [5]). In this series of papers hé proves that, for a Fuchsian group of the second
kind,

0 <d(Lg) <6(G) <1 (4.1)

and the sharper result if ¢ has parabolic elements
3 <d(Lg) <6(G) <1 (4.2)

Here we have denoted the Hausdorff dimension of a set £ by d(E). Clearly, if @ is
of the first kind
d(Lg) = 8(G) = 1.

One would hope that in general d(Lg)=0(G):

Such an assertion has been claimed, for Schottky groups, by Akaza, [1]. The methods
of both Beardon and Akaza depend on a close, direct analysis of the action of & on §.
In this chapter we will use the measure u, constructed in the last chapter, with the methods

of harmonic analysis on thin sets to solve this problem.
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TuroreM 4.1. If G s of the second kind and has no parabolic elements then

The restriction that @ be of the second kind is clearly inessential. If we admit para-
bolic elements we can only prove that d(Lg) =0§(@) subject to 8(@) >2/3, which is unsatis-
factory. The reason for this is that 4 is not the equilibrium measure and if } <6(G) <%
the difference is too great to give the expected dimension. In general we cannot even do as
well as Beardon’s estimate (4.2). We shall return to this point in the next section.

For the proof, which will occupy us to the end of the section, we require the new

auxillary function
Fyz)= f Pz, 0y du(l) (z€A). (4.3)
Note that F(z) = Fs(z).
Prorosition 4.1. (i) If z€A, g€QG then
Fy(g(2)) <pg)* "'F (). (4.4)

(ii) There is a fundamental domain D for G so that d(Lg, D) >0 (d is the Euclidean distance).
Fix such a D. There is ¢, =c,(G, D)>0 so that if z€ D, s€[0, 1}

0 < F,2) <cy(1— 2|2 (4.5)

Proof. We prove (ii) first. The existence of D follows from Proposition 2.2. If €L,
2€D then | —z| =d(L¢, D) and hence there is ¢, >1 so that

P(z, ) < ¢ (1 —|2]?).

On substituting into (4.3) we obtain (4.5).
Now we prove (i). By Theorem 2.1 if g€G

F(g(z)) = F().
Thus as

F(g(z)) = jP(g(z), £ dulC)
= f Pg(2), 9(0)Y'du(g(2))

= fP(z, 0°lg' (D)) dp e g(2)
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it follows that

fP(z, O du(l) = fP(z, O°lg' ()] Pdpog(l).

If we write z=re'® then [P(z, £)*du(l) can be expanded as a Fourier series

+wM1n| 28 . P ino
27 3 TE)[n]! (1~ 2P F@G, 8+ |nl; [n|+ 1 ) fi(n) e

N=—00

(ef. [7, § 2]). a(n) is the nth Fourier coefficient of .
As >0 (by (4.1)) fP(z, {)’du(l) determines i for all n, and hence y also. So, if, g€@G,

pog =|g'|%p.

Observe that here y satisfies the sort of functional equation one would get for a 4-
dimensional Hausdorff measure; this is the first hint that we are on the right path.

Fy(g(=)= ~[1"(9'(2), £y du(l)
= JP(Q(Z), g(&)yduog(l)

= fP(z, O lg' O P du(0).

(4.4) will be a result of this and the following lemma.
LemMMA 4.1. For any g€Con (A), (€S

w(@)t<|g'(Q)| <ulg).
Proof.

Let 9=(E g)
Then, one the one hand

|9 @] =B +a]® <2(|«[2+|B]®) = u(@)
On the other hand, as |«|2—|8]|2=1,

lg'@)] = 1B +al=* < (|| = |B1)* = (| +|B])* <2(||*+ | B]*) = plg)-

This proves the lemma and with it the proposition.
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The remainder of the proof rests on an identity. In order to'express this we need some
notation and preliminaries. Let

_ |dzAdz|
do(z)= ———(1 TR

be the hyperbolic area. Let &, 77, { be three distinet points of 8. Then the integral

f P(z, £y P(z, ) P(z, ) do(z)

converges if

s+t+u>1, s+t>u, t+u>s, uw+s>t. (4.6)

To see this we consider the integral on H with § =0, =1, { =0 and an elementary mani-
pulation shows that the integral is, up to a constant multiple,

00 +00
‘fo f ys+t+u—2(x2 + y2)~3((x - 1)2\+y2)"tdxdy.
-

In 4={(z, y)|(x—1)*+y*<}} the integral is bounded by
ca(9)y T2 ((a -1 4yB)t

Thus the integral over 4, is bounded by (on changing to polar co-ordinates centred at

(1, 0))
12 pr
cl(s)f f (sin 0)s+z+a—2rs+t+u—1drd6'
o Jo

The conditions for this to converge are
s+t+u>1, s+t>wu.

Consider B ={(x, y): (x —1)?+y*>}}. In this region, if t >0, the integrand is bounded
by
Cat)y+ -2zt +42)~* min (1, (22 +52)).

Converting to polars shows that this converges if
s+t+u>1, t+u>s, u+t+s>t.

The case ¢ <0 is incompatible with (4.6).
17— 762908 Acta mathematica 136. Imprimé le 8 Juin 1976
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Thus we obtain (4.6) as the condition for convergence.

ProprosiTioN 4.2. If (4.6) holds there is a function D(s,t,w) so that, if & n, (€S

are unequal,

. wr D(s,t,u)
fAP(z’ 5) P(z: ﬂ)tP(z, Z) da(z) lé—__nlsﬂ—uln _ Clt+u-slc_flu+s—t‘

This is the identity which we require.

Proof: Let
Rz, &0, 0) = |E—n|* Tt g —C| VP L | Pz, ) P, ) Pz, O)*.
If g€Con (A) then one checks that

R(g(2), 9(£), 9(n), 9(0)) = Riz, &, 7, D).

Integrating this over A and using the invariance of ¢ shows that the function

S, 0)= f R, &, 0)do(e),

satisfies

8(g(&), g(m), 9(0)) = 8(&, . ).

But if £, %, (€S are unequal there is g€Con (A) so that {g(£), g(), 9(0)} ={1, —1, i}.
This shows that

S, n 0)=801, -1,% or 8(-1,1,3).
Conjugating shows these are equal and the conclusion follows on setting
D(s, t, u) =8(1, —1, ).

Now fix £€(D n 8)°. Observe in passing that there is a constant ¢, >0 so that if €D,
gEG\{I} then
|z—9(0)] > cx (4.7)

For we can take ¢, to be the smallest Euclidean distance to any side (in A) of D.
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Suppose s, ¢, u satisfy (4.6). Then s, f, #>0 apd .
f Pz, EYP(z, p)tP(z, L) do(z) = 272 D(s, t, w)| £ — {719,
A

as |&—¢|, |C—n| <2. Integrating this with respect to d(u®u)(&,7) and using Tonelli’s
theorem (the integrand being positive) to interchange the order of integration, we obtain

fA Fy(z)- Fi(2) Pz, {Y*do(z) = 272 Ds, t, u) J‘?g(:{?#—m =272 D(s, t, u) Lo i u(p) (4.8)

where I,(u) is the k-energy of u (cf. [6,:§ 1I1]).
Now suppose s >3, t >8. Then

L F(z) Fyz) P(z, () *do(z = g; LF (9(2)) - Filg(z)) P(g(2), {)*do(z).
If g1, by (4.7)
P(g(z), ) <ci® (1 |g(2)|?) = ca* |¢' ()| (1~ |2]?). (4.9)

We require a lemma.

LeEMMA 4.2. There is ¢;>0 so that, if z€D,

l9'(2)] < o5 pig) 2.
Proof. {g=Y(°)|g€G} lies in {|2|>1} and accumulates on L;. Thus, as d(Lg, D)>0,
there is ¢4 >0 so that, if z€D, g€@
[g72(o0) ~2] = ¢,
But trivially |gY(oo) —2z] > |g-1(ec)] —1.
Combining theése, there is ¢, >0 so that

z
g}(o°)

Ze,.

It is easy to check that
4

2 2
2+ﬂ<y)}g“1(oo>"1] ’

lo' @)=

and the lemma follows immediately.
Applying the lemma to (4.9) we obtain that, if z€ D, g€\ {1}

P(gz), £) < e plg) (1 — [2{2).
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Recall that by Proposition 4.1 (i), if s =d7¢>8;

Fi9(=)- Filg(z) < pulg)"+ "2 F(2) F(2).

Combining everything we obtain

f Fy(2) Fy(2) Pz, £) do(z) < f F(2) F(z) P(z, £)“da(2)
A D

+es g—ZG J0) fDF s(@)Fy(2) (1~ [2[*)*doz) -

Let &, 5 be two arbitrary distinct points of Le. . Then on D F(z) (resp. Fy(z)) is. ma-
jorized by P(z, &) (resp. P(z,7)") (Proposition 4.1 (ii)). Thus, by Proposition 4.2 both in-
tegrals are finite if (4.6) holds. The sum X ¢cu(g)* ™t * % converges if s+¢—u <4d. From
(4.8) we have,shown that if

s+t+u>1, s+t>u, s+u>t t+u>s, $=206, t=6, s+t—u<4
then
Is+t—u(,“) < oo,
We will now deduce from this that if k is such that 0 <k < then
I(p) < oo. (4.10)

Suppose first that 0>4. Let s=9, =8, v=20—%(>05). Then s+t+u=40—-k>35>1,
s+t—u=k>0. The other inequalities are trivial and’ ;(4.10) follows.

Now suppose that d<}. Set s=t=(1+0)/4, u=(1+0—2k)/2. Then s+i+u=
(2+20~2k)/2>1. s+t—u=Fk so that 0<s+t—u<k. Also 0<(1+8—26)/2<u. Finally
§>0 as d <}. This verifies the inequalities and (4.10) follows again.

We have shown that if k<4 then Ik(p) <oo. As 4 is supported on L, this shows that
d(Lg) >(@), (see [6: § III, Theorem 5; § IV, Theorem 4.1]). By'(4.1) d(Ls) <d(G). Hence
d(Lg) =0(G). This completes the proof of the theorem:

§ 5. Estimates if G has parabolic elements

Now we shall indicate the modifications necessary if G has paraboli¢ elements but is
still finitely generated. We shall make ﬁse of the fundamental domain described in Pro-
position 2.2. An immediate consequence of this proposition is the existence of a constant
¢>0 with the property that if (€L, z€K, U U cq D,(a) then

|z—¢] >e.

The method of proof of Proposition 4.1 mow gives
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ProrosiTIioN 5.1. (i) If z€EA, g€G then

F(g(z)) <p(g)'* 1 Fy(2).
(ii) There is ¢, >0 so that if zEK, then

0< Fy(z) <c,.

(iii) There is.co,>0 so that if 2€ D (a) then

0 < Fiy(z) <cy(1—|2]2).
Our main object now is to supplement this in the cusps.
ProOPOSITION 5.2: There is ¢, >0 so that if € D}, s<2,

0-< Fy(2) < eg(1 — | 2| 2)2—-1,

Proof. We shall work on H with p, = to prove this proposition. On H the function

corresponding to & is

ho(z, w) = |z—w|?/(4-Im (2)-Im(w)) (2, w€EH).

Fife) =lim M(s)™ 3. Boli, 9(B)) - ot 9(8)
where

M(s)= QGZG k(hofi, (B))) - holi, g(B))™°.

Suppose the group fixing oo is generated by z=z-+A4 (1>0). We shall consider, for

§ >0, the series
Ulz,8)= gg; k(ho(3, 9(B))) - ho(z, 9(B8))

[eo]

= 2 o2 klholi+md,g(B)- holatmd, g(B) .

g0eGao\G m=—

If we fix 4 >0 there is a finite number of cosets of G, \G so that, if g does not belong
to one of these then
Im (g(8)) <47~

We will choose that representative g of a coset @, g so that

—~2/2 <Re(g(B))-<A/2.
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Also we shall suppose that
~A2 <Re() <42,

and that, for some fixed d >0,
Im(z) > d.

From the definition of &, it follows that, if m =0,

ho(z+ma, g(8))~* <4°Im (g(B))* Im (2)*(Im (2)2 + (| m| —1)242)~,
and that,

Ro(z, 9(8))~° <4 Im(g(B)) Im (z)~".
Further

hofi+mi, g(B)) < Im (g(8))((1 +Im (g(B)?+ (|m| +1)222).

By [9; p. 88] {Im(g(8))} is, for fixed §, bounded above. It follows that there is c,>0,
depending only on f# and so that

ho(s+ma, g(B)) < eghi(t, 9(B)) (m? +1).

Choose ¢>0, e<1. Recalling the properties of k as described in section 3 it follows
that we can find A4 so that, if g is not in the finite exceptional set of cosets G, \G

k(ho(i +mA, g(B)) < (cq(m? + 1))°K(hq(3, 9(B))).

Thus, if ¢ avoids one of the exceptional set of cosets,

2 klho(i+ml, g(B))) ho(z+mi, g(B)~*

<5 %h(ho(i, 9(B)) Tm (g(8)) (Im (2)* + Im (2)°R(Im (2))),

where

R(y)= Zo (m®+ 1) (" + (|m| - 1)°A%)°.
m#
It is easy to see that R(y) is bounded by
2 f (@ +1y @+ (x—2)?) da.
0

Thus if s>6>1/2 (which we may assume by [3]), <5, 0<<¢<1 we see that there is ¢

depending only on 6, d so that if y>d

R(y) < 66y1+2a—2s'
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Gathering together our results we obtain, for some ¢
Ulz, 9) < Q2 8) + ¢ Im(2) ™70 3 k(hy(3, g(8))) Im (g(B))’,
g6Goo\ G

where ()(z, s) is the sum over the set of excluded cosets. ¢, does not depend on ¢. Using the

estimate

Tm(g(B)) < ez ho(3, g(B)) 1,

where

o, =sup(|i+g(B)|*),
and expanding the final sum to be over all €@ we obtain
Ulz, 8) < Q(z, 8) +cgcs Tm (2)1 %0 M (s).
As Q(z, s) is the sum over a finite number of cosets it converges in s>1/2. Then as

Fo(z) =lim Ulz, s;)| M(s)),
we obtain, if Im (z) >d,

Fy(2) < cgel Im (2)1+270,
The constants are independent of ¢ and this shows that there is ¢g>0 so that
Fy(z) < ¢g Im (2)1-4.

This proves the proposition if s=4.
Recall that on A we defined

F(z)= fP(z, ) du(m).
Assume that p,=1. Using the map
A: H-> A; w—(w—3)/(w+1),
we can transfer this definition to H. Let, for w€H, x€R

Pyw, 2) =Im(w)/|w—z|?

Py(w, o) = Im (),

be the Poisson kernel on H. Then we find

F(A(w))= fPo(w, 2)* (2 + 1)°dp(A(x)).
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Let
dpo(x) = (1 +22)du(A()).

As F; is automorphic g, is periodic with period A. As u is a probability measure y, has
finite mass on each period. By abuse of language we shall write F (w) for F(A(w)). Let
Ho(o°) be the mass at co. Then

+00 A
Fyw)=py(oo) Im (w)*+ > J Py(w, x+mA) ((x +mid)?+ 1) O duy(x).

m=-004J0

By comparison with the corresponding integral we deduce that if Im(w)>d then, if
22s8>38>1/2 there is ¢,>0 so that

+00

2 Pyw,z+ mA) ((x+mA)2 + 1) ° < ¢y T (w) 5%,

m—=co
But, also
Fyw) > gl o) Im ()"

As we have already shown that the proposition is true if s =3 we deduce that

po(>) =0.
Thus

F (w) < Acg Im (w)l+5-28,

This gives the proposition as stated when we reinterpret it on A.

Now we can proceed as in section 4. We have, if .,

st+t+u>1, s+t>u, t+u>s, wu-+s>t,
that

27D, t, w) Ly p-ul) < EG DFs(g(zi) Fy(9(2)) P(g(2), n)*“do(z),
where as before 7 is a fixed point of (D N S)°. Now let
W= 2wy Py, n)"
Then by Proposition 5.1 (i), if s, £ >4,

27%D(s, ¢, u)Is+t—u(ﬂ)<f Fy(z) Fyfz) Wz, 7)do(z). (5.1)
D
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It is convenient to specialize now. We choose
s=f=4, u>4>12.
Now we require bounds on W (z, %).

ProPoSITION §:3. (i) There is a constant ¢yy>> 0 so that if

M
2€K, U U Dja)
=1

then
Wz, 1) < e Pz, ) + Zgee plg) (1 — |2]2)%).
(i) There is a constant ¢y, >0 so that, if
N
€U D}
k=1
then

Wiz, n) < e(Zgeaplg)™(1 ~ |2|3)*).

Proof.- (i) is essentially proved in section 4. (ii} is long and. we postpone it to the end
of this section.
From Proposition 5.3 the right hand side of (5.1) is finite if

20+u>1
28> u >0
u > 224,
Just as at the end of section 4 we deduce from these that

d(L¢) = min (4, 46~ 2),
As
d(Lgy <6

we have now proved
TarorEM 5.1. If G has paraboli¢ elements and 8= 2[3 then
d(Le) = 0(@).
We shall now complete the proof of Proposition 5.3.

Proof of Proposition 5.3 (ii). This proof is rather similar to that of Proposition 5.2.

We prove the corresponding statement for H.
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The series to be considered becomes, by abuse of notation
W(z,m)= z(:; Py(g(z), n)",
ge

where now z€H, 7 €R and oo is a parabolic fixed point of G. Suppose that G, is generated
by z+>2+A(1>0). Let 2= +iy. Then clearly W is a periodic function of = with period A.

Thus W can be expanded as a Fourier series

+00

W)= 2 w,(y,n, w)-exp (2minz/A).

R =

An easy calculation shows that
Ly, mu)= 3 exp@uig™ ()]G @)]*vay, w),

where

0y, ©) =7*Vy(nfA)* V2K oy p(2reny/R).

We assume that Im (z) >d for some fixed d >0. By the asymptotic expansion of the
Bessel function it follows that there are constants ¢y, ¢,3>0 so that if # =0 then

'@’n(% u)l < €1z €XP(—C13ny)
(see [12; p. 374]). On the other hand

vo(y, u) = B(1/2, u—1/2)y*~*.
Now let

T(n, w) =geG§\G lg’m)|“.

Combining all our results to date shows that, for a suitable constant ¢,, >0
W(z, 1) < cq(1 +Im (2)1%) T'(n, ). (5.2)

We must now obtain bounds for T'(n, ). To do this let us consider a single coset
G g. Suppose that ¢ can be represented as a matrix

a b
( ), (¢>0,ad—bc=1).
c d

As 7 is an ordinary point there is a constant c¢,; >0 so that

[n—g71(0)| > 5
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From this it follows that there is a constant ¢,>0 so that
[g'()| < eyglc®+d?)2. (5.3)

It is a classical fact (see (9: p. 88]) that there is a constant ¢,; >0 so that, for all g€G

ct+d? > ¢y, (5.4)
Let
o )
= .
01
Then an easy calculation shows
p(r"g) = (2 +d2) (nd + )2+ (¢ +d?) + (¢ +d?) 2, (5:5)

where
T = (ac+bd)[(c® +d?).

From (5.4) and (5.5) it follows that there is a constant ¢,3>0 so that
2 u@ng) T > eyl +d) v
Combining this with (5.3) shows that

Tn,u)< (ci‘e/cla)gZG ulg)™".

This and (5.2) together constitute proposition 5.3 (ii) which is thereby proved.

§ 6. Some estimates

In section 3 we introduced the function
{2, w; 8)= 2 hiz, g(w))~". (6.1)
geG

This function will play an important role in the rest of this paper. In order to use it we
need various estimates. Let us assume henceforth that s <2; this is for convenience only,
We shall continue to use the fundamental domain introduced in section 2; we shall also
use the notations introduced there. Fix a<n2. Let

M
i=1
and

N
D,= U Dt

k=1
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The object of this section is to prove the following proposition. The methods of proof

are much the same as those of Propositions 5.2 and 5.3.

PrOPOSITION 6.1. Suppose s is such that (6.1) converges. Then there are constants ¢y, c,, ...
so that the following statements hold.

(0) flz,w; 8) = eyl = |2]%)* (1= [w]®)* Zoectslg)™"-
(i) If z, wE€Dy then
fz, w; 8) <ea(l = 2?2~ |,.WI“’)‘(g.g;ﬂ(g)_s + (L= e[ {w])~™).
In particular if w€K,
fle w3 8) S es(1 = ]2 (A= |0l 3 plg)™
(iii) If 2z€ Dy, w€ D, then
fz, w; 8) <ey(1 =2 (1= |w|2)3"lg§; w9~
(iv) If z, wE D}, then |
fz, w5 8) < o(1 2% (1 — ] )" Zall(g)"s +max (1 - l2]% 1 = ]w]?) 7).
9e
(v) If z€ D}, w€D}, j+Fk, then
flos w3 9) < ol =37 (U= [0l 3 i)
Note that the inequality in'(v) is not symmetric. This i§ because' it is not the best

possible result. The other inequalities are best possible of their kind although this will not

be proved now.

Proof. From the definition of the function % and the series (6.1) for f 'we obtain the

following expansion

e 8= (L [0~ a3 |01 20 ©2)

Considet’ & ‘particular ‘group element ¢€G. Suppose that g is'represented by the mattix

(Z 2)(|a|2—|‘b|2=1). Then

lg'(w)| = [bw+a| =2 > 1/(2(|a|+ []2) = ulg)™ (6.3)
Also
|1-z-g(w)|2 <4 (6.4)

(6.2), (6.3) and (6.4) together imply (i) which is now proved.
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Suppose now that w€Dy: As
l9' ()| =|a] 2|1 -2g72(0)| 2, (6.5)

and as Dy is a positive distance from the limit set it follows that there is a constant ¢, >0
80 that
9" )| < cqlualg)- (6.6)

Suppose now that z, w€ Dy. It follows from the description of D, given in section 2 that
there is a finite subset R of @ and & constant ¢g>0 so that for every element of @ except
perhaps one element of R we have

|g(w) —2z] > ¢, (6.7)
There is then a constant ¢y>0 so that for all g such that (6.7) is true
|1 —g(w)z| > c,. (6.8)
On the other hand there is ¢;,>0 so that for the one possible exceptional case
|1 —g(w)Z] > cyo(l — 2] |w]). (6.9)

Substituting (6.6), (6.8) and (6.9) into (6.2) gives (ii). It is obvious that the second asser-
tion of (ii) is a direct consequence of the first.
It is easy to check that, if ¥ €Con (A), 2, w€A then

h(?(z): y(w)) = h(z, w),
that is, & is a point-pair invariant. From this it follows that
f(z, w; 8) = f(w, z; 8). (6.10)

Now we shall prove (iii). Suppose that z€ Dy and that w€ D} for some k. Then by the

results of section 2 there is ¢;, >0 so that
[1—g(w)z]| > cyy. (6.11)
Consequently, if % is an ordinary point in S there is ¢,, >0 so that
19" (@)} (1 —w|»/|1 —g(w)2]? < e1aP(w, 7). (6.12)

The conclusion follows from Proposition 5.3, equations (6.2) and (6.12).
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Now let us prove (iv). We look at the corresponding series on H which is (see the
proof of Proposition 5.2)

UZ: Im (2)° Tm (g(w))*/|2 - g(w) |**. (6.13)

We are abusing notations here but it should cause no confusion. Let us suppose that oo
is the parabolic fixed point in question and that the parabolic subgroup of @ fixing o is
generated by zi->z+41. We may suppose that

= {z: |Re(2)| <1/2, Im(z)>d}. (6.14)
Recall that s>4d(G)>1/2.
The function represented by the series. (6.13), which we shall also call f(z, w; s), is
clearly periodic in both z and w. Thus there is an expansion of the form

J2,w;8) =3 ¢, o(Im (2), Im (1), 5) FHcmBo+ nReCo), (6.15)

The Fourier coefficients, ¢, ,, can be easily calculated.

Cnl(®, Y, 8) = O, _»(Im (2) Im (w))* Im (z + w)* "> D(m Im (z + w), s)
. (2H(ma=1(00) + ng(e0))

6\Gi6  |e(g)]*

X (Im (2) Im (w))'~*D(m Im (z), n Im (w), 1/¢(g)? Im (2) Im (w)), s). (6.16)

In this formula § is the Kronecker symbol. ¢(g) is defined as follows. If g€G take a

representative matrix

a b
( ) (c>0,ad —bc=1).
\e d

¢(g) is the “¢” in this matrix. In the second term the summation is taken over all double

cosets except the one to which the identity belongs. The two functions D are defined as

follows.
+00
D(y, s)—f exp (— 2mizy) (1 + %) *dux. (6.17)
+00 Azni(pr+ay)
Diz,y,u,s - dpdyq. (6.18)
puo=| f (g~ 1+ 0+ (p—0))

By partial integration one can show thdt, for any integers M, N >0, as s >4(G) there

are constants ¢y, ¢,, >0 (c,4 independent of «) so that
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Dy, s) < eggly| V|s|¥, (6.19)
Dz, y, u, s) <cyg)x| M|y| ¥|s|M. (6.20)
Combining (6.16) to (6.20) we obtain, if we also assume that s<2

Tm (2)° Im (w)®
Im (z +w)* !

flz, w; 3)<015( + (Im(z) Im(w))]‘SZIC(g)lﬂzs)

The technique used in the proof Proposition 5.3 shows that for a suitable constant ¢,4>0

"B -, 6.21
recatirna, ) S 2 p9) (6.21)
Combining the last two inequalities gives the assertion of the proposition.

This only leaves (v} to be proved. We continue to work on H. We do not use the full
power of our assumptions but merely assume that 2z € D} (as defined by (6.14)) and Im (w) <d.
We require an asymptotic estimate for Im (w) small. Applying (6.15) to (6.20) we obtain

I ST s
fz, w; 8) < cyq (-%ég + (Im(z) Im (w))l—s Im (W)"zi [c(g)l_zs) :

Reinterpretating this on H gives the assertion. This completes the proof of the proposition.

§ 7. An analysis of F

In this section we shall only consider groups of the second kind for which 6(@) >1/2.
In this case, by the results of sections 3, 4, 5, F = F, is in LA(G\A) and is an eigenfunction
of the Laplace-Beltrami operator. In [10] A. Selberg showed how eigenfunctions of the
Laplace-Beltrami operator could also be characterised as eigenfunctions of certain integral

operators. The integral operatorsin question are those with a kernel of the form

2 k(x, 9(y)),

geG

where k is a point-pair invariant. He gives a method of calculating the eigenvalue.
We may apply the considerations to the kernel f(z, w; s) and the eigenfunction F(w).
Using Propositions 4.1, 5.1, 5.2 and 6.1 the following integral converges absolutely.

f f(z, w; 8) F(w) do{w).
D
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Carrying out the prescription of [10] we obtain

f 1z, w; 8) F(w) do(w) = C(s) (s — 8) ['(s — (1 — 8)) F(2), (1.1)

where
C(s) =41'(1/2) (s —1/2)/T'(2s — 1) ['(s).

All we need to know about C(s) is that it is an entire function.

Equation (7.1) contains a great deal of information. For instance Proposition 6.1 gives
an upper bound for f. Substituting this into (7.1) with 2 fixed shows that there is a con-
gtant.¢; >0 so that, for 2> s>8(G)

EG mg)~* = ¢f(s — 8(@)). (7.2)
ge
If we use Proposition 6.1 (i) we see that there is a positive function ¥ on A x A so
that.
f(z, w; 8) = Yz, w)/(s —6(@)). (7.3)

On the other hand Proposition 6.1 (i) gives a lower hound for f. Substituting this into
(7.1) shows that there is a constant ¢, >0 so that

2 1(g) S el(s— (@) (7.4)

geG
Using the rest of Proposition 6.1 shows that there is a positive function Z on A x A so that
1z, w; 8) < Z(z, w)(s — (@) (7.5)

The inequalities (7.2) to (7.5) are rather striking. They show that, if we regard f as an
analytic function of s it behaves almost as if it has a pole at s=4§(@). In particular in the
c¢onsiderations of section 3 it appears that in this case (i-e. §(G)>1/2) that the introduction
of the function k& was unnecessary. Thus the results of section 3 can be simplified. In
particular, from equation (3.6) we now see that ¥ can be defined as follows. There is a se-

quence s;—>d(G) so that (up to a constant factor), for some fixed w,

F(z)=1lim (s,— 0(G)) f(z, w; 5,). (7.6)
3

The arguments that we use at each point show even that given a sequence s;—0d(G)
there is a subsequence s; on which the limit (7.6) exists.

Suppose s and s are two sequences decreasing to 6(G) on which the limit on the
right hand side of (7.6) exists. Let F, and F, be the respective limit functions.
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Taking the limit of (7.1) along the sequences s and s (this is justified by our esti-
mates and the Lebesgue dominated convergence theorem) we obtain
f Fi(2) Fi(z)do(z) = C(S) (20 — 1) Fy(w). (7.7)
D

Recall that w is a fixed point. From (7.7) it follows that

L (F1(2) — Fy(2))*do(2) = 0,

and so
F (2) = Folz) (a.e).

By equation (3.5) F; and F, are real-analytic functions of z. Hence
Fy(2) = Fy2).

We have now shown that given any sequence s; decreasing to §(@) there is a subse-
quence s; so that
fimm (57— O(@) f(=, w; 87) = F(2).

From this it follows that

lim (s— (@) f(z, w; s),
$»3(G)

exists and is equal to F,(z). This is true for each fixed value of w. Thus there is a function
Gz, w) on A x A so that
lim (s ~6(@)) f(z, w; s) = Gz, w). (7.8)

Clearly @ is an eigenfunction of the Laplace-Beltrami operator in both variables. Indeed,
from (7.8) we have
Gz, w) = Q(w, 2). (7.9)

Also @ is automorphic under G in both variables. Let us state these results formally.
THEOREM 7.1. There is a strictly positive function G(z, w) on A x A so that

lim (s —8(&) f(z, w; 8} = G{z, w).

5~>8(G)
COROLLARY. If G is of the second kind then

8(G) <1.
18 —~ 762908 Acta mathematica 136, Inprimé le 8 Juin 1976
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Proof. If 6(G)=1 then it would follow that f(z, w; s) diverged at 1. But it is a classical
fact (see [9: p. 178)) that f converges at s=1. Hence 6(G) <1.

This corollary is due to A. F. Beardon {see {4]}). His method, which involves a close
analysis of the action of G on A, is completely different from our own. The assertion of
the theorem, that the series diverges at its exponent of convergence is a much finer result
than any classical method is capable of producing.

We shall resume the investigation into the nature of F. On passing to the limit in (7.1)

we now obtain

f Gz, w) Flw) do(w) = C(6) I'(20 — 1) F(2). (7.10)
D

From Proposition 6.1 we see that there are constants c;, ¢, so that

Gz, 2) S 65(1—|2|2)®D, (2€Dpy), (7.11)
G(z, 2) <oyl —|2|2*D2, (z€Dy), (7.12)
From these it follows
f G(z,z)do(z) < co. (7.13)
D

Now let E; be the Hilbert subspace of LA(G\A) of eigenfunctions of the Laplace-Bel-
trami operators with eigenvalue —d(G){1 —8(G)). As G(z, w) as a function of z is in K; it
follows that the map

fr f G-, w) f(w) do(w);, LG\A) > LH(G\A), (7.14)

maps L¥@\A) into E,;. By (7.10) this map on Ej is a constant multiple of the identity.
By (7.13) it has finite trace. Thus Ej; is a finite dimensional space.

Let us now go back to the methods of section 3. Recall that there we introduced the
functions F only after having found a certain measure. Now we may redefine this measure
and investigate it somewhat more closely.

Let w, v be fixed points in A. Then define
MHs,w,0= f(w: CH 8)—1 ZG h’(ws g(v))_sda(v)- (715)
ge

We find that if s, is a sequence decreasing to §(G) so that us;,o,» converges weakly to wy
say then

fP(z, )’ dus(n) = lim f(z, v; 5,)/{(0, v; 5;) = G(z, v)/G(0, v), (7.16)
i
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The function on the right hand side here does not depend on the sequence s;. As we have
already remarked during the proof of Proposition 4.1 u% is completely determined by the
left hand side; and hence the right hand side of (7.16). Thus all such weak limits of y, 4 ,
are the same. On the other hand for any sequence s; decreasing to §(G) there is, by Helly’s
theorem, a subsequence s; along which g, , , converges weakly. Consequently u, , , con-
verges weakly to u} as s decreases to 8(G).

LeEMMA 7.1. Let vy, v,€A. Then u3, is absolutely continuous with respect to u,.

Proof. Let @ be a continuous function on A. Then ¢ is uniformly continuous. Choose
€>0. There is 7>0 so that, if |2, —z,| <r then |p(z;) —p(2,)] <e.
Now we find a finite subset 7 of G so that, if g¢G\ T,

lg(v1) —g(va)| <.
Recall the inequality

h(zys 2} b2y, 25) 2 B(2y, 25).

f‘P(Z) A, 0. 5(2) = f(0, ;) QZG 10, g(v))"* p(g(v)),

we see that

i flp(z) dfts,0,v,(2)

=10, vy; 8)—1;@ 10, g(v1)) " p(g(v1))]
<f(0,vy;8)7" gg 10, 9(v0))"* [p(g(en)) — @(g(v2))|
+ (0,033 8) " h(vy, vz)“gez(; 7(0, 9(v2) | p(g(v2)) |-

Let us examine the first term as s—>8(G). As f(0, v,; 8)—> o0 as s—>4(F) it follows that the

first term is

10,0587 geg\T O, g(v))  @lg(vy)) ~ @lg(wa)) | + 0(1)
<ef(0,v;8) T A0, g(vy)) F+o(l) =e+o(1).
geG\T

Let ¢ be a positive function. Then from the inequality above we obtain as s—6(@)

fqv(z) s, (2) < hivy, v5)° (G(0, v,)/G(0, vy)) ftp(z) dps, (@) +e.

18* — 762908 Acta mathematica 136, Inprimé le § Juin 1976
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& was an arbitrary positive number. So we obtain the above inequality with ¢ =0. This
proves the lemma.

From the lemma and the Radon-Nikodym theorem there is g €LY (u3 ) =Li(u3,) so
that uy, =q-u3,. If g€G then, as we showed during the proof of Proposition 4.1

teog =19’ °u,.
Hence

909 =4¢.
Suppose A4, ..., Ag are disjoint subsets of L so that
pLA)>0 (1<j<K),

and so that the 4; are invariant under @. Let u, be the restriction of 3, to 4;. Then, as

A4, is invariant under @G, for any g€G we have

g =g’ |’ns
Thus

H(e)= f Ple, 1) dusy), .17

is a member of E;. On the other hand, the measures y; are linearly independent as the sets
A are disjoint. So, as the integral on the right hand side of (7.17) determines u,; completely
it follows that the f; are linearly independent.

We have shown, however, that E; is a finite dimensional space. Thus there is a maxi-
mal finite set Bj, ..., B, of disjoint G-invariant subsets of positive uj -measure (at least
up to sets of zero uj -mass). Clearly every G-invariant subset of L is, up to a set of u},
measure zero, a union of some of the B,

Let m, (1 <j<L) be the restriction of yy, to B,. As B,, ..., B, is a maximal set we have,

up to a set of uj, measure zero,

L
L,=U B, (7.18)
=1
From this it follows at once that
L
He =gl my. (7.19)

Recall that we had shown that
Bow= iz,
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Likewise there is a function ¢, so that

Hoa= o ;- (7.20)
Clearly u3,-almost everywhere
7°¢p=1
On the other hand both ¢ and g, are G-invariant. Let I, be the characteristic funetion of
B;. Then there are constants a(f), ay(j) (1 <j <L) so that

L
q= Z a’(j) II;
j=1

and
L

o= 2. o) 1,

J=1

As g-¢y=1 we have that
a(f)ae(j) = 1.

As p3; is a probability measure we have that the a(j), ao(j) are finite. As both u7, and u3,
are positive measures a(j) and a,(j) are both positive. We conclude that

0 < ay(f) < oo. (7.21)

From (7.18), (7.19) and (7.20) we conclude

lu:a =2 aq(j) m;. (7.22)

i=1

We can summarise what we have just shown in the following way. For 1 <j<L de-

fine

Fy(z)= fP(z, ) damy(). (7.23)

This is a strictly positive element of E;. Let v€A. We have then shown that there are L

strictly positive functions @,(v) so that, in view of (7.186),

L
G(z,v) :gl F(z)p,v). (7.24)

We shall now deduce that L=1. Suppose that L>1. By (7.10), applied to F(z) we
see that

f G(z, v) F,(v) do(v) = C(8) [(26 — 1) F, (z). (1.25)
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If we let

by = L Fj(v) pi(v) do(v), (7.26)

then from (7.24) and (7.25) we find
L
2 b, Fi(z) =C(0)T(20 = 1) F, (). (7.27)
k=1

As F, and ¢, are both strictly positive, from (7.26),
b, > 0. (7.28)

(7.28) implies that (7.27) is a non-trivial linear relation between the F,. This is impossible

for suppose we had a relation of the form

L
2 - Fz)=0.
k=1
Let
Lz
M= 2 ¢ my,
k=1
which is a signed measure so that

[P, mpanam o
During the proof of Proposition 4.1 we remarked that this implied that 3 =0. From the
definition of the m, this shows that, for all %,
Ck = O.

Thus L=1. This completes our investigations; the conclusions are expressed in the

next theorem.

TarorREM 7.2. Let G be a finitely generated Fuchsian group of the second kind with
0(G)>1/2. Then there is one, and only one, probability measure u supported on Lg so that,
for every g€Q@,

nog =|g'|%.
The space Ey of square-integrable eigenfunctions of the Laplace- Beltrami operator with eigen-

value —8(G) (1 —0(G)) is one-dimensional and is generated by

F(z)= f P(z, 7)™V du(n).
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There is a constant y so that if G(z, w) is the function appearing in Theorem 7.1
Gz, w) =y F(z) F(w).
If Q is a subset of Lg which is G-invariant up to a set of y-measure zero then

w(@) =0 or 1.

We shall conclude this paper by a few general remarks. If we carry out the construc-
tion of y in the case of a finitely generated group of the first kind we see that it is the or-
dinary Lebesgue measure on S. The eigenfunction is a constant function. The fact that as
s—>1 (s —1)f(z, w; s) converges to a constant corresponds to Tsuji’s “fundamental theorem”
([11]). The classification of G-invariant sets corresponds to the “easy” ergodic theorem
([9: p. 321]). This paper gives a new proof of these classical theorems.

The results of this paper admit of extensions in two different ways. Firstly, it is very
desirable that the relation between the measure that we have constructed and the distri-
bution of orbits of points under the group be clarified and sharpened. It appears that even
for groups of the second kind it would be profitable to study the spectral decomposition
of the Laplace operator. I hope to deal with this topic later but the reader should consult,
on this point, the very interesting papers of Elstrodt [7].
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