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w 1. Introduction 

In  this paper we shall consider the limit set of a finitely generated Fuchsian group of 

the second kind. In  particular, we shall at tempt to calculate the Hausdorff dimension of 

the limit set. If the group, G, has no parabolic elements this is actually achieved in sec- 

tion 4, whereas, if G has parabolic elements we can obtain partial results which are dis- 

cussed in section 5. The proof of these results involves the construction of a measure sup- 

ported on the limit set, from which, at least in principle, we can obtain a lower bound for 

the Hausdorff dimension. This bound is the same as the upper bound found by Beardon [4]. 

The actual measure which we construct proves to be intimately related to the theory 

of the Laplace operator on G\H, and consequently we obtain new insights into both of 

these. This allows us, for example, to give a new proof of a theorem of Beardon [4] (see 

the Corollary to Theorem 7.1). 

Section 2 recalls some well-known, but  difficult to locate, results on the description 

of the geometry of Fuchsian groups of the second kind. These are used in making various 

estimates. 

By way of notation, we shall take all Fuehsian groups to be finitely generated, al- 

though several of the results will be valid without this restriction (in particular those of 

section 3). These groups will be assumed to act on the unit disc A unless stated otherwise. 

For a domain D we shall write Con (D) for  the group of conformal homeomorphisms of 

D onto D. We can, as usual, represent an element g E Con (A) as a matrix 

l l=-It l =l) , 

and if this is so we shall write 

, - + /=  2(1 1 + 1,8 
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Likewise, if g e Con (H), where ]1 is the upper half-plane, g can be represented as 

We shall write here 

~u(g) = a ~ + b ~ + c ~ + d ~. 

The unit circle, ~A, will be denoted by  S. 

Some of the results of this paper were contained in a Ph.D. thesis submitted to the 

University of Cambridge. I would like to express my  thanks to my  research supervisor, 

Dr A. F. Beardon; some extent of m y  debt to him will be clear from this paper. 

w 2. Geometry ot the hmdamental domain and the limit set 

Let G be a Fuchsian group acting on A. Then there is an (open) fundamental  domain 

D in A so tha t  

(a) ~D is a finite collection (us) of geodesic arcs, 

(b) (us} splits uniquely into pairs uk, u~ in such a way tha t  there is ~kEG so tha t  uk= 

7k(u'~), the ~k are distinct and generate G, 

(c) 0~D,  

(d) if us, u k meet at  p E S then p is a parabolic vertex; u s = u~ and 7k generates Gp. No other 

u z meets G{p}. 

A justification of this can be found in [8]. Let  i a  be the limit set of G. 
C L a is a closed subset of S. Thus ~ = L G ( = S ~ L a )  is open and so is a countable union 

of disjoint intervals, say ~ = [.Jj~j. We shall say tha t  ~s  and ~k are equivalent if there 

is g EG so tha t  g ~ s = ~ k .  I t  is clear, as L~ is invariant  under G, tha t  either g ~ j = ~  or 

g~ t  I] h a = ~.  Now we have 

T ~ E o ~ r ~  2.1. There are only a /inite number o/equivalence classes o / ~ .  There is a 

hyperbolic subgroup (but no larger subgroup), G s say, preserving ~2j. 

This is proved in [8] but  it is not stated formally. 

Let  ~t, ~ be the end-points of ~s  and let 2j be tha t  arc of a circle lying in A, joining 

~j, ~ ,  making an internal angle ~ > 0  with ~j .  The collection of all 2j is a figure invariant  

under G as G preserves {~j}, angles and orientation. Let  Aj=Aj(~)  be the open region 

between 2j and ~1; it  is lens-shaped and we call it an a-lews. As (7 is non-elementary the 

~ j  have distinct end-points (consider the action of Gj on S ~ s )  and the 2: cannot inter- 
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sect if a ~<zr/2. In  particular, if a ~zr/2 the Aj(a) are disjoint and are permuted by G. Let  

Ka(a ) = A ~  U j As(a). If a <zr/2, Ka(a ) is hyperbolically convex. 

The next  point to note is tha t  D n KG(cr has finite (hyperbolic) area and if G has no 

parabolic elements D N K~(a) is relatively compact. This follows as the only infinite parts 

of D are those adjacent to free sides (i.e. {~j N/)}) and cusps. Any free side is in some Aj. 

All this is a direct consequence of the description of D given above. 

Suppose now that  G has parabolic elements and let p~ ..... p~ be the parabolic vertices 

lying on ~D. We call an open disc contained in A and tangent to S at :p a horocycle at ~0. 

Construct horocycles C~ at  P r  Now refer this to I t  with 1% = ~-  We know that  the dia- 

meter of a horocycle g(C;)(gEG, g(Ps)= co) is bounded ([9]) and so we can find C1___ C~, 

a horocycle at ~ so that  

(a) C 1 meets no image of {C~} under G other than C; (~nd hence no image of {Cz, C~, ..., 

C',}, other than C1, under G), 

(b) if a ~< (~e/2) C 1 meets no A~(a). 

(b) follows as the length of ~k is clearly bounded by the translation length of G~; 

hence the height of Ak is bounded. 

We can repeat this argument to each j. Thus 

PROPOSlTIO~ 2.1. There is a horocycle Up at each parabolic vertex p and a ~/2-lens 

Aj  on each ~ j  so that 

(i) {C~, Aj} are disjoint, 

(ii) Cor 

(iii) D ~ ( U ~  Cp U UjAj)  is relatively compact in A, 

(iv) D meets only a/inite number o] C~ and A i, 

I f  p is any parabolic vertex then p =g(pj) for some j; then define C~ =g(C~s ). Then the 

construction above is sufficient to imply the proposition. 

Now let p be a parabolic vertex. If we conjugate G to act on H with p at  oo and G~ 

generated by ze-->z+l then C~ becomes {x: Im(z)>d} (d>0). (G~ is the subgroup of G 

fixing p and we have used the same notation for G and its conjugate). A fundamental do- 

main for the action of G on this is 

{z: Im(z)>d,  IRe(z)] <1/2}. 

Such a region, or its image in A, we call standard. 
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Furthermore, if we conjugate ~ j  to be [0, o~], (G :acting on II) Aj(a) becomes 

{z: 0 < arg (z) < :r and Gj is generated by  an element of the form 

Then the set 

z~->exp(nj)z. (x~ > 0). 

a <1 1 < exp(uj), 0 <arg(z) < a} 

is a fundamental  domain for the action of Gj on A~(~). This, or its image in A, will be called 

standard: 

Now let A be a finite set so that  the ~ ( ] E A )  are inequivalent under G and A is maxi- 

mal subject to this restriction. Let  P be a maximal set of inequivalent parabolic vertices; 

this is also finite. I t  now follows from Proposition 2.1 tha t  the following assertion holds: 

P~OPOSITZON 2.2. Let the notation~s as be above. Then there is a (possibly disconnected) 

]undamental domain D ]or G o/the/orm 

where 

(i) 

(ii) 

D=K~U U Dj(~)U U D* 
l e a  p e P  

K~ is relatively compact in A, 

Di(:r ) is a standard/undamental domain/or Gj on Aj(~), and, 

(iii) D*~ is a standard/undamental domain/or G~ on C~. 

w 3. The construction oI of a measure 

In  this section G will denote an arbi trary Fuchsian group acting on the unit disc. 

If  z, w E A we set, 

I I -~wl  ~ 
h(z, w)= (1 : IzPi--~l = IQ~" 

From this we form ~the Dirichlet series for z, w EA, 

/Iz, w; s) = Z h(z,Z(w)) -s. (a.1) 
geG 

Let us recall some known facts concerning this series. I t  converges if Re (s)> 1 and 

diverges for Re (s) ~< 0. I t  has an 'exponent of convergence', ~(G); it diverges if Re (s) <($(G) 

and converges if Re (s)>~(G). Trivially (~(G)E[0, 1]. Beardon ([3], [4]) has shown tha t  

(~(G)E]0, 1[ if G is of the second kind and it is ~ classical fact tha t  (~(G)=I if G is of the 
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first kind. We shall in our work require Beardon's  estimate ~(G)> 0, which is the easiest 

part.  Beardon has also shown i n  [3] tha t  if G has parabolic elements (~(G)> �89 

The construction which we are about to perform relies on the following elementary 

lemma. 

LE~MA 3.1. Let ,.~n=l~'~176 a-~n be a Dirichlet series with exponent o/ convergence e>0 .  There 

is a positive increasing/unction k on [O, co] so that 

k(an) 
nffil a S  

has exponent o~ convergence e and diverges at s =e. Also i~ ~ > 0  is given there is Yo so that 

/or Y>Yo, x > l  

k(xy) ~ x~k(y). 

Proo/. By reordering the series we m a y  suppose tha t  (an) is an increasing sequence 

and as e>0 ,  a -+oo. Let  (~) be a decreasing sequence such tha t  ~n>0, ~ -+0  as n-+oo. 

We are going to define a sequence (Xn), with Xn--> oo, and k on the interval [Xn, X~+I] 

inductively. Take X 1 = 1 and k(x)= 1 on [0, 1]. 

Suppose k is defined on [0, X~]. Then choose Xn+ 1 so tha t  

k(Xn) Z a~ (e-~) >/1. (3.2) 
X~t  '~ p: x,,<av<~ x n  + l 

This can always be done as Zv a~ ~-~)  diverges. Now define, for x e IX=, X~+I], 

k(x) = k(Xn) ~ x---~ ~.  (3.3) 
\ x J  

With this choice Zk(av).a ~ ~ diverges as 

~k(av) a; e = ~ ~ ( a / i , ) ' o .  a ;  o >>- 
n= l  P: ap E [ ,X~/~ , Xn + l] n - 1  

by (3.2). By (3.3) k is positive and increasing. 

Suppose we are given e >0.  Choose n so tha t  e >en. Then if x ~>X~log k(x)is,  by  (3.3), 

a piecewise linear continuous function of log x and the slope of each component is ~<~=. 

Hence if y > Xn, x > 1 

log k ( x y ) - l o g  k(y) <~ e logx  

which is precisely what we want. 
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Finally, we have to show tha t  if s > e then  Z k  (ap).a~ ~ converges. Choose e > 0 so t h a t  

e +e< s .  Then, as p -~c r  k(aj,)=O(a~) by  wha t  we have  just  proved. The convergence of  

Z k  (a~).a~ ~ follows a t  once. This proves the  lemma. 

We apply  the  lemma to  the series (3.1). Hence there is a funct ion k with the properties 

described in the ]emma so that ,  for fixed ~, fl E A, 

M(s) = ~, k(h(~, g(fl)))" h(~, g(fl))-" 
g~G 

has exponent  of convergence ~(=($(G)) and which diverges at  s=O. As the terms are 

positive, as s~(~, 

M ( s )  ~ ~ .  

Let  (~x be the  Dirac measure at  x. For  s > (~ we define the following measure on /k ,  for 

fixed a, fl E A, 

m = M(8) -1 Y k(h(~, g(fl))) h(~, g(f~))-%(~, (3.4) 
g~G 

~u s is a family  of probabi l i ty  measures supported on ~.  We can apply  Helly 's  theorem; t h a t  

is, if (s~) is a sequence s~ ~ we can extract  a subsequence (sj) so tha t  (/usj) converges weakly 

on/~.  L e t / t  be the limit on some such sequence. 

As there are only a finite number  of images of fl in any  closed set in A, and  as M(sj)-~ c~, 

~t is concentrated on the unit  circle S. I n  fact  the  same reasoning shows tha t  i t  is concen- 

t ra ted  on the  limit set L a. As A is compac t /z  is a probabil i ty measure. 

/~ is the measure we have been seeking. I n  order to  investigate its properties we in- 

t roduce an  auxil iary function. 

Let  us define, for z fi A, ~ fi/~, the  Poisson 'kernel ' ,  

Then  we define 

As ~sj-~# weakly we have 

1-1zl 

But,  for  z fixed there is a constant  c so that ,  if ~E~,  1 8 - s j l  <10,  

(3.5)  



T H E  L I M I T  S E T  O F  A F U C H S I A l q  G R O U P  

As t h e / ~  are  p r o b a b i l i t y  measures  we have  

F(z) = l im f P(z, r162 
d 

If  we t a k e  ~ = 0  a n d  use (3.4) th is  becomes 

F(z) = l im 1 ~ k(h(O, g(fl))) 
j..,~o M ( s j )  g ~  h(z ,  g(fl))~J " 

Le t  e > 0 and  9' 6 G. Then  as for a n y  a, b, c 6 A, 

h(a, c) <~ 2h(a, b)h(b, c) 

(see [7]) and  as k is increasing 

F(y(z))  = lim 1 k(h(0, g(fl)) 

1 k(h(0, 7g(fl))) 
= l i r a  - -  Z 

~<lim 1 k(2h(0,7(0)) .h(7(0)Tg(fl)))  
~ h(z ,  g(~))'~ 

Now there  is Yo so t h a t  if y > Yo, x >~ 1 

k(xy) < ~'k(y). 

F o r  all  bu t  a f ini te  n u m b e r  of g E G 

h(7(0), 7g(fl)) = h(O, a(fl)) >~ yo. 

As M(sj)-~ co as j -+ ~ this  f ini te  collection makes  no con t r ibu t ion  to  the  l imit .  Hence  

. . . . . .  li  1 ~ k(h(O,_g_(fl))) F@(z)) <~ 2h(0, 7tuD) jlm_~ M(ss ) g~a h(z, g(fl))', (2h(0, 7(O)))~F(z). 

This is t rue  for a n y  ~ > 0 and  hence 

F(7(z)) < F(z). 

A p p l y  th is  wi th  V(z) replac ing z a n d  7 -1 replac ing  7- Thus  

F(e(z))/> F(~). 
Hence  

F@(z)) = ~(z) 

for a n y  7 E G. This  proves  

247 

(3.6) 
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T H ]~ 0 ~ E M 3.1. I / f t  is a probability measure constructed as above then 

(i) # is supported on L~, 

(ii) F ( z ) =  j'P(z, $)~d#(~) is automorphic under 

The following facts are worth remarking. Firstly this holds for any Fuchsian group, 

even infinitely generated ones. Next,  :2' is infinitely differentiable and satisfies 

D E  = -(~(1 - ~ )  F 

where D is the Laplace-Beltrami operator. This follows as P(z, ~)~ satisfies the same equa- 

tion; compare [7]. This means that  these problems are susceptible to the methods of Sel- 

berg which we shall exploit in later sections. 

w 4. The Hausd~ff  dimension of the limit set 

In  this section we use the measure of the last section to calculate the Hausdorff 

dimension of the limit set of a Fuchsian group  of the second kind without parabolic ele- 

ments. There are two'S.reasons for this last restriction. Firstly, the consideration of para- 

bolic elements makes the estimates much more difficult although they still can be made. 

Secondly the results are not quite as complete in the excluded case. 

In  order to explain the genesis of this problem we recall some theorems of Beardon 

([2], [3], [4], [5]). In  this series of papers he proves that,  for a Fuehsian group of the second 

kind, 
0 < d(Lc) ~<~(G) < 1 (4.1) 

and the sharper result if G has parabolic elements 

�89 < d(LG) <~ ~(G) < 1. (4.2) 

Here we have denoted the Hausdorff dimension of a set E by  d(E). Clearly, if G is 

of the first kind 

d(La) = 6(G)= 1. 

One would hope tha t  in general d(Lc)=6(G).  

Such an assertion has been claimed, for Selaottky groups, by  Akaza, [1]. The methods 

of both Beardon and Akaza depend on a close, direct analysis of the action of (7 on S. 

In  this chapter we will use the measure/x, constructed in the last chapter, with the methods 

of harmonic analysis on thin sets to solve this problem. 
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THEOREM 4.1. I /  G is o/the second kind and has no parabolic elements then 

d(i~G) = (~( G). 

249 

Note  tha t  F(z) = F~(z). 

PROPOSITIO~  4.1. (i) / / z E A ,  gEG then 

F~(g(z)) < ~(q)'s-~'F~(z). (4.4) 

(ii) There is a/undamental domain D/or  G so that d(La, D) > 0 (d is the Euclidean distance). 

Fix such a D. There is c,=cl(G , D ) > 0  so that i / z ED,  sE[0, 1] 

o < F~(z) < ~(1 - Izl~) ~. (4.5) 

Proo/. We prove (ii) first. The existence of D ,follows from Proposit ion 2.2. I f  ~ CL G, 

z e D then ]~-  z I >~ d(La, D) and hence there is c 1 > 1 so tha t  

p(z, ;) < c~(1 - Iz l~ ) .  

On subst i tut ing into (4.3) we obtain (4.5). 

Now we prove (i). By  Theorem 2.1 if gEG 

F(g(z ) )  = F(~) .  

Thus as 

: F(g(z)) 

- fP(g(z), 
g(~) 

J 

The restriction tha.t G be of the second kind is clearly inessential. I f  we admi t  para- 

bolic elements we can only prove tha t  d(La)=(~(G) subject to ~(G)~>2/3, which is unsatis- 

factory,  The reason for this is t ha t  # is no t  the equilibrium measure and if � 89  

the difference is too great  to give the  expected dimension. I n  general we cannot  even do as 

well as Beardon 's  estimate (4.2). We shall re turn  to this point  in the next  section. 

For  the proof, which will occupy us to  the end of the section, we require the new 

auxiliary funct ion 

F~(z)= t'P(z, ~)~dlz(~ ) (zEA). (4.3) 
3 
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f P(z, = JP(z,  ~)~ [-~d# o 
I" 

~)~d/~($) l a'(~) g(~). 

I f  we write z = re ~~ then ,(P(z, ~)Sdlz(~ ) can be expanded as a Fourier  series 

2~ ~ ~ r(~)l~l~ 

(cf. [7, w 2])./2(n) is the n th  Fourier  coefficient of/z. 

As ~ > 0  (by (4.1)) SP(z, ~)Sd#(~) determines/~ for all n, and hence # also. So, if, geG, 

~ ~  = Ig'l'~. 

Observe tha t  here tt satisfies the sort of functional  equat ion one would get for a (~- 

dimensional Hausdorff  measure; this is the first hint  t ha t  we are on the r ight  path.  

F.(g(z)) = fP(g(z), r162 

f P(g(z), g( ~) )~ d~ o g( $) 

= fp( , 
(4.4) will be a result of this and the following lemma. 

L~,MMX 4.1. .For any gECon (A), ~ES 

~(a) -~ < la'(~)l <~(a)- 

Proo/. 

Let  

Then, one the one hand  

ja'(~)l-1 = IB~§ 2 ~ 2(1~12§ Ifil 2) : ~(g). 

On the other  hand, as I cr 12 - }fl]~ = 1, 

Ig'(~) I = I ~ + ~ 1 - 2  <-( l~l  - I ~ l )  -~ = ( l~ l  + I~l )2 .< 2(1~12+ i~l ~) = ~(g). 

This proves the lemma and with it the proposition. 
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The  remainder  of the  proof  rests on an  identi ty,  I n  order to  express this we need some 

no ta t ion  and  preliminaries.  Le t  

d ~ ( z )  = (1 - ] z ]~ )  ~ 

be the  hyperbol ie  area. Le t  ~i ~, $ be three  dist inct  points  of S. Then  the  integral  

converges if 

f P(z, ~)~P(z, ~)tP(z, $)~' da(z) 

s + t + u > l ,  s+ t > u ,  t + u> s ,  u+ s> t .  (4.6) 

To see this we consider the  integral  on I I  wi th  ~ = 0, ~ = 1, ~ = oo and  an  e lementa ry  mani-  

pula t ion  shows t h a t  the  integral  is, up to a cons tant  multiple,  

+ + e ey. 
j-oo 

I n  A = {(x, y) l(x - 1) 2 +y2 4 �88 the  integral  is bounded  b y  

c1(8) y ~+~+~-~. ((2 - l)  ~ +y~)-t.  

Thus  the  integral  over  A, is bounded  b y  (on :hanging to  polar  co-ordinates centred a t  

(], 0)) 
/.112 /,~ 

c,(s) | | (sin O)~+~+U-:r~+~+U-ldrdO. 
j o  j o  

The conditions for this to converge are 

s + t + u  > 1, s+ t > u .  

Consider B = {(x, y): ( x -  1) 3 + y ~ >  ~}. I n  this region, ff t >/0, the  in tegrand is bounded  

b y  

c~(t) yS+t+~-2(x2 + y2)-s min  (1, (x 2 + y~)-t). 

Convert ing to polars shows t h a t  this converges if 

s + t + u > l ,  t + u> s ,  u+s>t .  

The case t < 0  is i ncompa t ib l e  wi th  (4.6). 

1 7 -  762908 Acta mathematica 136. Imprim6 le 8 Juin 1976 
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Thus  we obta in  (4.6) as the  condit ion for  convergence. 

PROPOSITION 4.2. I /  (4.6) holds there is a /unct ion D(s, t, u) so that, i /~ ,  7, $ES 

are unequal, 

f~, t,u) % P(z, 

This is the  iden t i ty  which we require. 

Proo]: Let  

I f  gECon (A) then  one checks t h a t  

R(g(z), g(~), g(V), g(~)) = R(z, ~, 7, ~). 

In tegra t ing  this over  A and using the  invar iance of a shows t h a t  the  funct ion 

S(~, ~7, ~) = f R(z, ~, r], ~) da(z), 
J 

satisfies 

S(g(~), g(7), g(~)) = S(~, 7, ~). 

B u t  if ~, ~1, ~ES  are unequal  there  is gECon (A) so t h a t  (g(~), gO?), g(~)} =~{1, - 1 ,  i}. 

This shows t h a t  

s ( ~ ,  7 ,  D = s ( 1 ,  - l ,  i )  or  S (  - 1, 1, i).  

Conjugat ing shows these are equal  and  the  conclusion follows on set t ing 

D(s, t, u) = S(1, - 1, i). 

Now fix ~E( / )  N S) ~ Observe in passing t h a t  there  is a cons tant  c a > 0  so t h a t  if zED, 

g E G ~ { I }  then  

]z-g(~)] >~ c,, (4.7) 

For  we can take  c a to  be the  smallest  Eucl idean distance to  a n y  side (in A) of D. 
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Suppose s, t, u satisfy (4.6). Then s, t, u > 0  and 

~)~P(z, t ,  

as [ r 1 6 2  [C-n[  <2. Integrating this with respect to d(#| ~1) and using Tonelli's 

theorem (the integrand :being positive) to interchange the order of integration, we obtain 

f Fs(z), F,(z) P(z, ~)~d~(z) >/2"2~D(s, t, u) ( dtt(~ d~ (7) 

where I~(~u) is the k-energy of/~ (cf. [6,: w 

Now suppose s >~ ~, t >~ 8.=Then 

fA F~(z)F~(z)P(z, ~)~da(z= ~o f D FAg(z)) " F~(g(z))P(g(z)' ')aria(z)" 

If g ~=I, by (4.7) 

P(q(z), ~) <~ c; u" (1 - I g(~)l ~) = ~x ~. ]g'(~)[ (~ - I zl~). (4.0) 

~'e  require a lemma. 

LEMMA 4.2. There is cs>0 so that, if z~D, 

Proof. {g-l(co)igeG } lies in {izl >1} and accumulates on La: Thus, as d(io, D)>0 ,  

there is ca>0 so that, if zGD,,gEG 

But  trivially Ig-~(~)-z] ~ Ig-~(~)l - 1. 
Combining these, there is c~ > 0 so that  

I z 1 
a f r o )  

I t  is easy to check that  

&nd the lemma follows immediately. 

Applying the lemma to (4.9) we obtain that, ff z~D, g~q'~{I}  
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Recall that  by Proposition 4.1 (i), if s ~>~,~ t~>J,~ 

Combining everything we obtain 

f AF~(z)Ft(z)P(z, ~)~da(z) ~ f o P~(z)F~(z)P(z' ~)~d~(z) 

. _ _ , f  + c~ ~/~(0)  ~+~ ~ ~ F . ( z )~ (z )  (~ -[~[~)~d~(z). 
g$G 

Let ~, z] be two arbitrary distinct points of La. Then  on D~.~s(Z)(resp. ~r is.ma. 

jorized by P(z, ~)~ (resp. P(z, ~?)z)) (Proposition 4.1 (ii)). Thus, by Proposition 4~2 both in- 

tegrals are finite if (4.6) holds. The sum Za~/~(g) ~+~-u-~a converges if s+t-u<O. From 

(4.8) we have,shown that  if 

s+t+u> l, s+t>u,  
then 

s+u>t,  t+u>s,  s>~, t>~(~, 8+t-u<O 

I~+t-~(#) <' oo. 

We will now deduce from this that  if k is such that  0 < k < ~  then 

Ik(/~) < oo. (4.10) 

Suppose first that  ~>�89 Let  8=(~, t=O, u=2(~-/c(>(5). Then s+t+u=4~-]c>3~>~l, 
s + t  - u  =]c >0. The other inequalities are~trivial and  (4.10) follows. 

Now suppose that  ( ~ ,  Set ~s~t=~(I+(~)/4,: u=(1+(~-2k) /2 .  Then s+t+u= 
(2+2(~-2k)/2>1.  s+t-u=]c so that  O<s+t-u<lc. Also 0 < ( 1 - ~ - 2 ( ~ ) / 2 < u .  Finally 

s ~> (~ as (~ ~ �89 This verifies the inequalities, and (4.10) follows again. 

We have shown that  if/c<(~ then Ik(/~ ) < oo. As # is supported on L a this shows that  

d(La)>~O(G), (see [6: w Theorem 5; w Theorem 4'.1]). By!(4.1Od(La)<~O(G). Hence 

d(La) =O(G). This completes the proof of the theorem; 

w 5. Estimates if G has parabolic elements 

Now we shall indicate the modifications necessary if G has parabblic' elements b u t  is 

still finitely generated. We shall make use of the fundamental domain described in Pro- 

position 2.2. An immediate consequence of this proposition is the existence of a constant 

c > 0  with the property that  if ~eLa, zeK~ U [.Jj~A Dj(~) then 

[ z - ~ [  >r 

The method of proof of PropositiOn 4:1 .~ow gives 
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PROPOSITION 5.1. (i) I / z E A ,  gEG then 

F~(g(z) ) <. #(g)lS-Ol Fs(z ). 

(ii) There is c, > 0 so that i/ z 6 K~ then 

0 < Fs(z)<<. % 

(iii) There i s Q > 0  so that q ze  Dj(~) then 

0 < F~(~) < e~(1 -I~]~)  '. 

Our main object now is to supplement this in the cusps. 

PROPOSITZON 5.2: There is ea~O so that i/ zED*k, s < 2 ,  

0 <  Fs(z)< e3(1 - I~ ] ~)~-8-~. 

Proo/. We shall work on H with Pk = co to prove this proposition. On H the function 

corresponding to h is 

ho( z, w) = Iz-Cv]~/(4.Im(z) .Im(w)) (z, w6II) .  

We shal tprove the proposition'first when s=~ .  Equation (3.6) becomes 

F~(z) =!im.M(sj) -~ ~ k(h0(i, g(fl))), h0(z, g(fl))-sJ, 
j...->oO geG 

where 

M(s) = ~ k(ho(i, g(fl))), ho(i, g(fl))-t  
gE G 

Suppose the group fixing co is generated by  zF-~z +~ (t >0). We shall consider, for 

s > 6, the series 

v(z, s) = 7 k(ho(/, g@))-  ho(z, g(~))-~ 

= ~ ~ k(h0(i + m~, g@)) .  h0(~ + ~ ,  g(~))-~. 
g~Goo\G m - - o o  

I f  we fix A > 0  there is a finite number  of cosets of Goo\G so that ,  if g does not  belong 

to one of these then 

Im(g(fl)) < A-L 

We will choose tha t  representative g of a coset Goo 9: so t h a t  

-; t /2 < l~e(a(/~))~< ~/2. 
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Also we shall suppose t h a t  

and  tha t ,  for some fixed d > 0, 

S . J .  P A T T E R S O N  

-~/2 < Re(z) <2/2, 

I m  (z) > d. 

F r o m  the  definition of h 0 it  follows tha t ,  if m #0 ,  

ho(z + rot, g(fl))-" <~ 4' I m  (g(fl))~ I m  (z) ' ( Im (z) 2 + (] m[ - 1)2~2) -s, 

and  tha t ,  

ho(z, g(fl))-~ <~ 4 ' I m  (g(fl))" I m  (z)-'.  

Fu r the r  

ho(i +m$, g(fl)) <~ I m  (g(fl))-l((1 + I m  (g(fl))2 + (] m l + 1)22~). 

B y  [9; p. 88] {Im(g(fl))} is, for  f ixed fl, bounded above.  I t  follows t h a t  there is c4>0,  

depending only  on fl and  so t h a t  

ho(i + m~, g(~) ) < C4ho(i, g(~) ) (m~ + 1). 

Choose s > 0, s < 1. Recalling the  propert ies  of k as described in section 3 it  follows 

t h a t  we can find A so tha t ,  if g is not  in the  finite except ional  set  of cosets G ~ \ G  

k(ho(i + m~, g(/~)) < (C4(m~ + l))*k(ho(i, g@)). 

Thus,  if g avoids one of the  except ional  set  of cosets, 

Z kCho(i + m~, g(t~))) ho(Z + m~, g(fl))-' 
t n ~  --CO 

<<. c~ 4~h(ho(i, g(fl)) I m  (9(fl))' ( Im (z) -~ + I m  (z) 'R(Im (z))), 

where 

R(y) = ~ (m ~ + 1)~ (y~ + ([ m I - 1)~2~)-'. 
m r  

I t  is easy  to  see t h a t  R(y) is bounded  b y  

2 (x~+ 1)~(y~ + (x -  2)~)-'dx. 

Thus  if s > ~ > l / 2  (which we m a y  assume b y  [3]), s<~5, 0 < e ~ l  we see t h a t  there  is c 6 

depending only on ~, d so t h a t  if y > d  

R(y) < csy 1+2~-~'. 
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Gather ing  toge the r  our  resul ts  we obta in ,  for some % 

U(z,s)<~Q(z,s)+cn Im(z)  1+~-~ ~ k(ho(i,g(~)) ) Im(g(fi)) ~, 

where Q(z, s) is the  sum over  t he  set  of exc luded  cosets, c e does no t  depend  on c. Using  the  

e s t ima te  

Im(g(/~)) < cTh0ff, g(~))-l,  
where 

c, = sup(]~ +g(t~) I'), 

and  expand ing  the  f inal  sum to be over  all  g E G we ob t a in  

U(z, s) <<. Q(z, s) +c6c~ Im(z)l~2~-~M(s). 

As Q(z, s) is the  sum over  a f ini te  n u m b e r  of cosets i t  converges in  s > 1 [2. Then  as 

Fo(z) = l im U(z, sj)/M(sj), 

we obta in ,  if I m  (z)>  d, 

F~(z) <~ cec~ Im(z)  x+2~-6. 

The  cons tan t s  are  i ndependen t  of e and  th is  shows t h a t  the re  is c s > 0 so t h a t  

Fa(z) < Cs I m  (z) 1-a. 

This  proves  t he  propos i t ion  if s =~.  

Recal l  t h a t  on A we def ined 

F (z) = f p(z, v ) ' d t , ( v ) .  

Assume t h a t  Pk = 1. Using the  m a p  

A: H - * A ;  wF->(w-i)/(w+i), 

we can t ransfe r  th is  def ini t ion to  t I .  Let ,  for w e l l ,  x e R  

P0(w, x) ~ I m  (w)/[w-  x [2, 

po(w, co ) _- I m  (w}, 

be t h e  Poisson kernel  on I t .  Then  we f ind 

F~(A(w)) = ~Po(w, x) ~ (x 2 + 1)~dp(A(x)). 
J 
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Let  

S . J .  P A T T E R S O N  

d/~o(x ) = (1 § xZ)$dl~(A(x)). 

As F a is au tomorph ic  #o is periodic with period 4. As # is a probabi l i ty  measure/~o has  

finite mass  on each period. B y  abuse of language we shall write F~(w) for  F~(A(w)): L e t  

#0(c~ ) be the  mass  a t  ~ .  Then  

B y  

2 >~s > 8  > 1/2 there  is % > 0  so t h a t  

But ,  also 

F~(w) =#o(~) Im(wy+ ~ Po(w, x+m,t)~((x+m2)2+ 1)~-~d#o(X). 
m =  --00 

comparison with  the  corresponding integral  we deduce t ha t  if I m  ( w ) > d  then,  if 

§ 

Po(w, x + m2)~((x + m2) 2 + 1) ~-~ < % I m  (w) 1+~-~. 
m -  =oo 

Fs(w ) >1 I~o( ~ ) I m  (w) ~. 

As we have  a l ready shown t h a t  the  proposi t ion is t rue  if 8 = 8 we deduce t h a t  

~o(~) =o. 
Thus  

F~(w) < ~% I m  (w) 1+~-2~. 

This gives the  proposi t ion as s ta ted  when we re in terpre t  it on A. 

Now we can proceed as in section 4. We have,  if, 

s + t + u > l ,  s + t > u ,  t + u > s ,  u + s > t ,  
t h a t  

2-2UD(s, t, u)Iz+t u(/~) <- ~ ~ F~(g(z/) Ft(g(z))P(g(z), ~)Uda(z), 
geG J D 

where as before ~ is a fixed point  of (/) N S) ~ Now let 

w(z, ~) = Z ~(g)~-~+~-~P(g(z), ~)~. 
g~G 

Then  b y  Proposi t ion 5.1 (i), if s, t >8,  

t, u) I~+~_ u (#) <~ ~ F~(z)Ft(z) W(z; ~) da(z). 2-2UD(s, 
JD 

(5.1) 
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I t  is convenient  to specialize now. We  choose 

Now we require bounds  on W(z, ~). 

PBOPOSlTIOlq 513. (i) There is a constant ~lo>Oiso that i] 

M 

zeK~ u O D~(~) 
t=1  

then 

W(z, v) < cl0(P(z, v) u + ~ , ~ ( g ) - u ( l  - J z J~)U)! 

(ii) There is a constant c1!>0 so that, i] 

N 

z e  UD~ 
k = l  

then 

W(z, ~) < c11(Z~t t (9)-~(1  - Izl ~F-1). 

Proo]. (i) is essentially proved  i n  section 4. (ii) is long and: we postpone it  t o  the  end 

of this section. 

F r o m  Proposi t ion 5.3 the  r ight  hand  side of (5:1) is finite if 

2 ~ + u  > 1 

25 > u > 

u > 2 -  2(~. 

J u s t  as a t  the  end of section 4 we deduce f rom these t h a t  

d(~LG) >~ rain (($, 4(~ -: 2), 
As 

d(L~) << ~ 
we have  n o w  proved  

THE 0 R 1~ M 5.1. 1t/ G has parabolic elements and ~ >~ 2/3 then 

d(La) -~ ~( G). 

We shall now complete  the  proof of Proposi t ion 5.3. 

Proo] o/Proposition 5.3 (ii). This  proof is ra ther  similar t6 t h a t  of Proposi t ion 5.2. 

We prove  the  corresponding s t a t emen t  fo r ' I t .  
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The series to be considered becomes, by abuse of notation 

w(z ,  ,~) = Y~ Po(a(z), ~)u, 
g E G  

where now z6H, ~/ER and co is a parabolic fixed point of G. Suppose that GoO is generated 

by z~->z+2(l>O). Let z = x + i y .  Then clearly W is a periodic function of x with period I.  

Thus W can be expanded as a Fourier series 

+ c o  

W(z, 7) = ~ wn(Y, 7, u)" exp (2~inx/t). 
n - -  = o o  

An easy calculation shows that  

i . w ~ ( y , ~ , u ) =  ~ exp(2~ig-l(~)/~)[(g-~)'(,~)l~.v,(y,u), 
geG \ Goo 

where 

vn(y, u) = gU~(n/ t )  u- l12Ku_l12(2~ny/~ ). 

We assume that  Im (z) > d for some fixed d > 0. By the asymptotic expansion of the 

Bessel function it follows that  there are constants c12 , cla > 0 so that  if n :~0 then 

I vn(y, u) I < c~2 exp ( - clany ) 

(see [12; p. 374]). On the other hand 

vo(y, u) = B(U2,  u -  U2)yl -" .  

Now let 

T(V,~)= 7 Ig'(~)l ~ 
gEGoo\ G 

Combining all our results to date shows that, for a suitable constant c14 > 0 

W(z, 7) <~ el4(1 + I ra  (z) l-u) T(~, u). (5.2) 

We must now obtain bounds for T(~, u). To do this let us consider a single coset 

Goo g. Suppose that  g can be represented as a matrix 

As ~ is an ordinary point there is a constant c,~ > 0 so that  

1'7-g- ' (~176 I > c~. 
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F r o m  this it follows t h a t  there  is a cons tant  c16 > 0 so t h a t  

I a'(~) I < c16( c~+ d2) -1. (5.3) 

I t  is a classical fact  (see [9: p. 88]) t h a t  there  is a cons tant  cxT>0 so tha t ,  for  all g q G  

c 2 + d  2 > c17. (5.4) 

L e t  

Then  an  easy  calculat ion shows 

/~(~ng) = ( C 2 + d2) (n,~, -I- T) ~ -I- (c ~ -b d ~ ) -P ( c ~ + d2) -1, 

where 

"r = (ac + bd)/(c ~ + d~). 

F r o m  (5.4) and  (5.5) it  follows t h a t  there  is a cons tant  Cls > 0 so t h a t  

~_, l~(~"g) -~ > cls(c ~ + d~) - ' ,  
n 

Combining this with (5.3) shows t h a t  

T(V, u) < (c':6/c18) ~. /~(g)-~. 
geG 

This and  (5.2) together  const i tute  proposi t ion 5.3 (ii) which is t he reby  proved.  

(5.5) 

w 6. Some estimates 

I n  section 3 we in t roduced the  funct ion 

/(z, w; s) = ~ h(z, g(w))-'. (6.1) 
geG 

This funct ion will p lay  an  i m p o r t a n t  role in the  rest  of this  paper .  I n  order  to  use it  we 

need various est imates.  Le t  us assume hencefor th  t h a t  s~<2; this is for  convenience only. 

We shall continue to  use the  fundamen ta l  domain  in t roduced in section 2; we shall also 

use the  no ta t ions  in t roduced  there.  F ix  ~ ~<~/2. Le t  

and 

M 

D,., = K,~ u U Dj(=), 
J=l 

N 

Pc= UD~. 
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The object of this section is to prove the following proposition. The methods of proof 

are much the same as those of Propositions 5.2 and 5.3. 

P R o  P o s I T I o N 6.1. Suppose s is such that (6.1) converges. Then there are constants c I, c2 .... 

so that the/ollowing statements hold. 

(i) /(z, w; s)>~ co(1 -]z]2)s(1 -Iwl2)s~Ea#(g) ~ .  

(ii) I / z ,  w E . D  H then 

/(~, w; s) < c~(1 -Izl~)*(1 ~ ]wl ~)~(5 ~(g)-~ + (1 - ]z l  Iwl)-% 
geG 

I n  particular i / w  E K~ 

l(z, w; 8) <c3(1 -:,lzl?)~(1 - I w l ~ )  * ~ re(g)-*. 
geG 

(iii) I / ZE DH,  w e D  c then 

t(z, w; s) <c4(1 --I~l~)'(~ - I w l ~ )  ~-~ 5 ~,(g)-~. 
ge(; 

(iv) I / z ,  w e D *  then 

/(z, ~; s) <c~(1 - I  zl ~)*-'(1 -I~l~)~=' ( 5 #(g)-~ + max (] -I~l  ~, ] -J w] ~)~-:s). 
geG 

(v) 1 / z e D ~ ,  w e D S ,  j~, k, then 

/(z, w ; s ) <  ce(1-n0J2) Iw[2) ~-~ E/~(g)-~. 
geG 

Note that : the  inequality in'(v) is not symmetric. This is because it is :not the best 

possible result. The other inequalities are best possible of their kind although this will not 

be proved now. 

Proo/. From the definition of the function h and th6 series (6.1)for/*'we obtain the 

following expansion 

/ ( ~ , w ; s ) = ( ~ - I ~ l ~ ) * ( ~ - I w l ~ )  ~ v. Ig ' (w) l * / l~-eg(w)[  ~*. (6.2) 

Consider*~ a particular ;group element g EG.:Suppose tha t  g l s  :repreSented by tt~e m a ~ x  

(a  b) 
a ( l a l ~ - I b i S = l ) "  Then 

Ig'(w)l = I~w+,~l -~  ~> l / ( 2 ( l a l ~ +  Ibis)) = Z-'(g) -~. (6.3) 
Also 

11 -~ .g (w) I  ~ -<< 4. (6.4) 

(6.2), (6.3) and (6.4) together imply (i) which is now proved. 
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Suppose now tha t  w E D~, As 

[g'(w) I = I~ 1211 -~g-~(o) I-~, (6.~) 

and as /)H is a positive distance from the limit set it follows tha t  there is a constant c 7 > 0 

so t h a t  

Ig'(w) l < ~7/~(g). (6.6) 

Suppose now tha t  z, w E DH. I t  follows from the description of D~ given in section 2 tha t  

there is a finite subset R of G a r ~  a constant cis>0 so t h a t  for every element of G except 

perhaps one element of R we have 

[g(w)-~l  >%- (6.7) 

There is then a constant % > 0  so tha t  for all g such tha t  (6.7) is true 

l l  -g(w)~l > c9. (6.8) 

On the other hand there is c10 > 0 so that  for the one possible exceptional case 

l l  -g(w)~l > ~o(1 - Izl Iwl), (6.9) 

Substituting (6.6), (6.8) and (6.9) into (6.2) gives (ii). I t  is obvious tha t  the second asser- 

tion of (ii) is a direct eonsequenc~ of ~he first, 

I t  is easy to check that,  if ~ECon (A), z, wEA then 

h(r(z) ,  7(w))  = h(z, w), 

tha t  is, h is a point.pair invariant.  From this it follows tha t  

/(z, w; s) =/(w,  z; s). (6.10) 

Now we shall prove (iii). Suppose tha t  z E DH and tha t  w E D~ for some ]r Then bY the 

results of section 2 there is c n > 0 so tha t  

l1 -g(w)5[ > c1~. (6.11) 

Consequently, if ~ is an ordinary point in S there is C12 > 0 so t h a t  

I g'(w) } (1 -- ]W}~)/I 1 -g(w)~ l  2 ~< cz~P(w, ~). (6.12) 

The conclusion follows from Proposition 5:3, equations (6.2) and (6.12). 
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Now let us prove  (iv). We  look a t  the  corresponding series on l I  which is (see the  

proof of Proposi t ion 5.2) 

Im(z)  8 I m  (g(w))~/[~ - g(w)[2,. (6.13) 
geG 

We are abusing nota t ions  here bu t  it  should cause no confusion. Le t  us suppose t h a t  oo 

is the  parabol ic  f ixed point  in quest ion and  t h a t  the  parabol ic  subgroup of G fixing o~ is 

genera ted  b y  z~-->z + 1. We  m a y  suppose t h a t  

D~ = {z: IRe(z)] < 1/2, Im(z)  > d } .  (6.14) 

Recall  t h a t  s ~>0(G) > 1/2. 

The funct ion represented b y  the  se r ies  (6.13), which we shall also call ](z, w; e), is 

clearly periodic in bo th  z and  w. Thus  there  is an expansion of the  form 

](Z, W; S) = ~ Cm.n(Im(z), I m  (w), s) e ~(mae(z)+~Re(w)). (6.15) 
m,n 

The  Fourier  coefficients, Cm. n, can be easily calculated. 

Cm, n(x, y, s) = (~,.. _ ~(Im (z) I m  (w)) ~ I m  (z + w)l-2SD(m I m  (z + w), s) 

§ ~ e2nt(ma-~(~176 na(~)) 

• (Ira(z) Im(w))l-~D(m Im(z) ,  n Im(w) ,  1/c(g) ~ Im(z)  I m  (w)), s). (6.16) 

I n  this formula  ~ is the  Kronecker  symbol,  c(g) is defined as follows. I f  g E G take  a 

representa t ive  ma t r ix  

c(g) is the  "c"  in this matr ix .  I n  the  second t e rm  the  summat ion  is t aken  over  all double 

cosets except  the  one to  which the  iden t i ty  belongs. The  two funct ions D are defined as 

follows. 

D(y, s) = f + ~ e x p  ( - 2~ixy) (1 + x~)-Sdx. (6.17) 

f +QO f +CO ~-2~l(px+qy) 
D(x, y, u, ~) = j _ ~  a -r ((Pq + 1 + u) ~ § ( p "  q)2)~ dpdq. (6,18) 

B y  par t ia l  in tegrat ion one can show tha t ,  for any  integers M,  N >~0, as s >~(G) there  

are constants  cla, c14 > 0 (ca4 independen t of u) so t h a t  
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D(y, s) <~ cla I Y l -N[ s I N, (6.19) 

y, u, ,) cl lx3-Mly I -"181M+N. (6.20) 

Combining (6.16) to (6.20) we obtain, if we also assume that  8<2  

j im  (z)* Im ( w ) ' , )  
l(z, w; ,) ~< c15 \Ira (z + w) 2.-~- • (Ira (z) Im (w)) ~-' ~ I c(g)I ~2' . 

The technique used in the proof Proposition 5i3 shows that  for a suitable constant c1~ >0  

c(g) -~ < c1~ Y ~(g)-~. (6.21) 
geGoo\ G l Goo g~G 

Combining the last two inequalities gives the assertion of the proposition. 

This only leaves (v) to be proved. We continue to work on It. We do not use the full 

power of our assumptions but merely assume that  z E D* (as defined by (6.14)) and Im (w) <d. 

We require an asymptotic estimate for Im (w) small. Applying (6.15) to (6.20) we obtain 

/ Im im-(z-:~(z)' Im ~2~--~(w) ~ (w)-2 5 I c(g)lT~) �9 ](z, w; s) ~< ci~ t + (Ira(z) Im (w)) 1-' Im 

Reinterpretating this on H gives the assertion. This completes the proof of the proposition. 

w 7. An analysis of F 

In this section we shall only consider groups of the second kind for which (~(G) > 1/2. 

In  this ease, by  the results of sections 3, 4, 5, F = F~ is in L2(G\A) and is an eigenfunction 

of the Laplace-Beltrami operator. In  [10] A: Selberg showed how eigenfunetions of the 

Laplace-Beltrami operator could also be characterised as eigenfunctions of certain integral 

operators. The integral operators in question are those with a kernel of the form 

k(x,g(y)), 
geG 

where k is a point-pair invariant. He gives a method of calculating the eigenvalue. 

We may apply the considerations to the kernel/(z, w; s) and the eigenfunction F(w). 
Using Propositions 4.i,  5:1, 5.2 and 6.1 the following integral converges absolutely. 

f D/(z, w; s) F(w) da(w). 
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Carrying out  the  prescription of [10] we obtain 

fD/( Z, W; S) F(W) da(w) -- C(s)F(s - ~) F(S - (1 - ~)) F(z), 

where 

(7.1) 

C(8) = 4s-1I~(1/2) l~(s - 1/2)/r(2s - 1) I~(s). 

All we need to  know about  C(s) is t ha t  it is an  entire function. 

Equa t ion  (7.1) contains a great  deal of information.  For  instance Proposit ion 6.1 gives 

an  upper  bound for /. Subst i tut ing this into (7.1) with z fixed shows tha t  there is a con- 

s t a n t  c 1 > 0 so that ,  for 2 ~> s > ~(G) 

~(g)-~ >1 cl/(s - ~ ( a ) ) .  (7 .2)  
g~G 

I f  we use Proposi t ion 6.1 (i) we see tha t  there is a positive funct ion Y on A • A so 

t h a t  

/(z, w; s)  >t Y(z, w)/(s-~(G)).  (7,3) 

On the other  hand  Proposi t ion 6.1 (i) gives a lower bound  for {. Subst i tut ing this into 

(7.1) shows tha t  there is a constant  c 2 > 0  so tha t  

Z ~(g),' ~ cJ(s- ~(G)). (7.4) 
g~G 

Using the rest of Proposi t ion 6.1 shows tha t  there is a positive funct ion Z on A • A so tha t  

/(z, w; s) <. g(z, w)/(s-~(G)) .  (7,5) 

The inequalities (7.2) to (7.5) are ra ther  striking. They  show that ,  if we regard 1as  an  

analyt ic  funct ion of s it behaves almost  as if it has a pole at  s =O(G). I n  par t icu lar  in t h e  

considerations of section 3 it  appears t h a t  in this  case (i,e. O(G) > 1/2) t ha t  the in t roduct ion 

of the funct ion k was unnecessary. Thus  the results of section 3 can be simplified. I n  

particular,  f rom equat ion (3.6) we now see tha t  F can be defined as follows. There is a se- 

quence s j -~ (G)  so tha t  (up to a constant  factor), for some fixed w, 

F(z) = Jim (sj - ~(G))/(z, w; sj). (7.6) 
J 

The arguments  t ha t  we use at  each  point  show even t h a t  given a sequence s~-~O(G) 

there is a subsequenee s'j on which the  limit (7.6) exists. 

Suppose s~ 1) and s~ 2) are two sequences decreasing to  ~(G) on which the limit on the  

r ight  hand  side of (7.6) exists. Let  ~ F 1 and F~ be the respective limit functions. 
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Taking the limit of (7.1) along the sequences s(j ~) and s~ ~) (this is justified by  our esti- 

mates  and the Lebesgue dominated convergence theorem) we obtain 

fDFt(Z) Fi(Z )da(z) C(~) 1)Fj(w). F(26 (7.7) 

Recall tha t  w is a fixed point. From (7.7) it follows tha t  

f ~) - F2(z))~dq(z) = (Fl(z) 0, 

and so 

Fl(z) = F~Cz) (a.e.). 

By equation (3.5) F 1 and F~ are real-analytic functions of z. Hence 

Fl(z) = F 2 ( z ) .  

We have now shown tha t  given any sequence sj decreasing to ~(G) there is a subse. 

quence s~ so tha t  

lim (s'j -- ~(G)) [(z, w; s~) = Fl(z). 
1 

From this it follows tha t  

lira ( s -  8(G))/(z, w; s), 
s--~(G) 

exists and is equal to Fl(z ). This is true for each fixed value of w. Thus there is a function 

G(z, w) on A • A so tha t  

lira (s-~(G)) l (z ,  w; 8) = G(z, w). (7.8) 

Clearly G is an eigenfunction of the Laplaee-Beltrami operator in both variables. Indeed, 

from (7.8) we have 

G(z, w) = G(w, z). (7.9) 

Also G is automorphie under G in both variables. Let  us state these results formally. 

THEOREM 7.1. There is a strictly positive ~unction G(z, w) on A • A so that 

lim (s - ~(G)) ](z, w; s) -~- G(z, w). 
s-~(G) 

C O R O L L A R Y ,  I[  G i8 o/ the second kind then 

~((~) < 1. 
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Proo/. I f  8(G) = 1 then it would follow tha t / (z ,  w; s) diverged at  1. But  it is a classical 

fact  (see [9: p. 178]) tha t  ] converges at  s = 1. Hence 8(G)< 1. 

This corollary is due to A. F. Beardon (see [4]). His method, which involves a close 

analysis of the action of G on A, is completely different from our own. The assertion of 

the theorem, tha t  the series diverges at  its exponent of convergence is a much finer result 

than  any classical method is capable of producing. 

We shall resume the investigation into the nature of F. On passing to the limit in (7.1) 

we now obtain 

fDG(Z, w).F(w)da(w) = F(23 1)F(z). C(~) (7.10) 

From Proposition 6.1 we see tha t  there are constants ca, c4 so that  

G(z, z) ~<ca(1-Izl~) ~z(G), (ze DH), 

a(z, z) ~<c,(1-Jzl2) 2ac)-2, (zEDc), 

From these it follows 

(7.11) 

(7.12) 

f G(z, z) da(z) < ~ .  (7.13) 
D 

Now let E~ be the Hilbert  subspace of L~(G\A) of eigenfunctions of the Laplace-Bel- 

t rami operators with eigenvalue -~(G)(1-(~(G)).  As G(z, w) as a function of z is in E$ it 

follows tha t  the map  

] ~ J(D G(., w) ](w) da(w); L2(G\A)--)- L~(G\A), (7.14) 

maps L2(G\A) into E 8. By  (7.10) this map  on E$ is a constant multiple of the identity. 

By  (7.13) it has finite trace. Thus E~ is a finite dimensional space. 

Let  us now go back to the methods of section 3. Recall tha t  there we introduced the 

functions F only after having found a certain measure. Now we may  redefine this measure 

and investigate it somewhat more closely. 

Let w, v be fixed points in A. Then define 

#8. ~. ~ = / ( w ,  v; s) -1 ~ h(w, g(v))-~Sa(v). (7.15) 
geG 

We find tha t  if sj is a sequence decreasing to ~(G) so tha t  #8~.0.v converges weakly to tu* 

say then 

f P(z, ~)adtz *~(~) /(z, v; sj)//(O, v; s~) = G(z, v). lira v)/G(0, (7.16) 
1 
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The function on the r ight hand  side here does no t  depend on the sequence s~. As we have 

already remarked during the  proof of Proposi t ion 4.1 #* is completely determined b y  the 

left hand  side; and hence the  r ight  hand  Side of (7.16). Thus all such weak limits of /~ .~ . ,  

are the same. On the  other  hand  for any  sequence s'~ decreasing to ~(G) there is, by  HeUy's  

theorem, a subsequence s~ along which/~ .~ . ,  converges weakly. Consequently/~s,~. ~ con- 

verges weakly to  #* as s decreases to  (~(G). 

L ]~ M MA 7.1. Let vl, v~ E A. Then #*~ is absolutely continuous with respect to #*~. 

Proo/. Let  ~ be a continuous funct ion on A. Then ~0 is uniformly continuous. Choose 

s > 0. There is r > 0 so that ,  if I z l - z  21 < r then I~(zl)-~(z2)I  < s. 

Now we find a finite subset T of G so that ,  if gCG~.T, 

As 

we see t h a t  

Recall the inequal i ty  

Ig(v~)-g(v~)l <r .  

h(z. z~)h(z2, za) >1 h(z. z3). 

f ~(z) d~..o. .(z) --/(0, v; 8) -~ Y. h(O, g(v) )-~ q~(g(v) ), 

{ f q)(z)d[b~s,o, vl(z) I ~ ] / (0,  v1"~8)-10~ G h(O, ~(Vl))-s~(O(Vl))  I 

</(o,  vl; s), ~ ~ h(O, g(v~)) -`[q~(g(v`)) - ~(g(v2)) I geG 

+/(o ,  vl; s ) - lh(v ,  v2) ~ Z h(0, g(v~))~'l~(g(v~))l. 
geG 

Let  us examine the first te rm as s~5(G). As/ (0 ,  Vl; s ) - ~  as s ~ ( G )  it follows t h a t  the  

first term is 

/(o, v~; 8) -1 Z h(0, ~(v~))-l l~(q(v0)-  ~(g(v2))l + o(1) 
gEG\T 

<s/(0, vl;s) -1 ~ h(O,g(vl))-~§ 
g6G\T 

Let  ~ be a positive function. Then f rom the inequali ty above we obtain as s-~6(G) 

f~(z)  h(vl, (G(O, v2)/G(O, vO) Je(z) d~*~(z) ~. d~ *l(z) V2) 6 + 

18" - 752908 Acta mathematica 135. Inprim5 lc 8 Juin 1975 
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e was an a rb i t ra ry  positive number.  So we obtain the above inequal i ty  with e =0 .  This 

proves the lemma. 

F rom the lemma and the Radon-Nikodym theorem there is q E/~(g*,) 1 * = L  (#v,) so 

that/t*~ = q./x*=. I f  g E G then, as we showed during the proof of Proposi t ion 4.1 

~ , , ~ o g  = Ig I/%. 

Hence 

qog = q. 

Suppose Az .. . . .  AK are disjoint subsets of Lq so tha t  

~*,(A~) > 0 ( I < j < K ) ,  

and  so t h a t  the A s are invar iant  under  G. L e t / ~  be the restriction of F*, to  A r Then, as 

A t is invariant  under  G, for any  gfiG we have 

z,~ =lg'l%. 
Thus 

/j(z) = ~ P ( z ,  ~l)'~ d~(~]), (7.17) 
d 

is a member  of E a. On the other  hand, the measures/~j are linearly independent  as the sets 

A t are disjoint. So, as the  integral on the r ight  hand  side of {7.17) determines F] completely 

it follows tha t  t h e / j  are linearly independent.  

We have shown, however, t ha t  E~ is a finite dimensional space. Thus  there is a maxi-  

mal  finite set B 1 .. . . .  BL of disjoint G-invariant  subsets of posi t ive/x ' i -measure  (at least 

up  to  sets of zero #v,-mass). Clearly every G-invariant subset of L a is, up to a set of #*, 

measure zero, a union of some of the B r 

Le t  m s (1 ~<?'~<L) be the restriction ofF*  1 to  B s. As Bx, ..., BL is a maximal  set we have, 

up to  a set of #*, measure zero, 

L 

La = U Bs- (7.18) 
1=1 

From this it follows at  once tha t  

Recall t ha t  we had shown t h a t  

L 

/z~,*-----~ m~,. (7.19) 
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Likewise there  is a funct ion q0 so t h a t  

Clearly ~u*,-almost everywhere  

271 

q'qo = 1. 

and 

As q'qo = 1 we have  t h a t  

On the  o ther  hand  bo th  q and  qo are G-invariant .  Le t  I j  be  the  characteris t ic  funct ion of 

Be. Then  there  are constants  a(/), %(i) (1 ~<j < L )  so t h a t  

Z 

q = Y a(i)-r,, 

L 

qo = Y ao(i)Ij. 

a(j )ao( j )  = 1. 

* is a p robab ih ty  measure  we have  t h a t  the  a(j), a0(j) are finite. As bo th  #*, and #*~ As #re 

are posi t ive measures  a( j )  and ao(j) are bo th  positive. We conclude t h a t  

0 < a0(j) < 0o. (7.21) 

F r o m  (7.18), (7.19) and (7.20) we conclude 

L 

#*. = :~ ao(j) % .  

f i n e  

= f P(z, ~?)~ dmj(~]). (7.23) 

This is a s t r ict ly posi t ive element  o f  E a. Le t  v E A. We have  then  shown t h a t  there  are L 

str ict ly posit ive functions qj(v) so tha t ,  in view of (7.16), 

L 

G(z, v) = ~ Fj(z) ?j(v). (7.24) 
J=t 

We shall now deduce t h a t  L = 1. Suppose t h a t  L > 1. B y  (7.10), apphed  to  Ej(z) we 

see t h a t  

f .  a(z, v) Fj(v) da(v) = 0 @  r ( 2 a  - ) ~j  (z). (7.25) 1 

(7 .22)  

We can summar ise  wha t  we have  just  shown in the following way. For  1 ~<}~<L de- 

# *  * = qo#v.  (7.20) 
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If  we let 

b~ = f D $'j(v)q~k(v) da(v), 

then  from (7.24) and (7.25) we find 

(7.26) 

L 

Z bk Fk(z) = C(~) F(2(~ :- 1)Fj  (z). (7.27) 
k = l  

As F j  and ?k are both  str ict ly positive, f rom (7.26), 

bk > O. (7.28) 

(7.28) implies tha t  (7.27) is a non-trivial linear relation between the  Ft .  This is impossible 

for suppose we had a relation of the form 

Let  

which is a signed measure so t h a t  

L 

Z e,. F,,(z) = o. 

L 

M = ~ v k �9 m k ,  
k=l  

f P(z, rl)a dM07)= O. 

During the proof of Proposi t ion 4.1 we remarked t h a t  this implied tha t  M = O. F rom the  

definition of the mk this shows that ,  for all k, 

C k ~ 0 .  

Thus L = 1. This completes our  investigations; the conclusions are expressed in the 

next  theorem. 

THEOREM 7.2. Let G be a ]initely generated ~'uehsian group o/the second kind with 

(~(G)>l/2. Then there is one, and only one, probability measure # supported on L a so that, 
/or every g E G, 

 og=lg'P . 

The space E 8 o/square-integrable eigen/unctions o/the Laplace-Beltrami operator with eigen- 

value -~( G) (1 -~(  G) ) is one-dimensional and is generated by 

F(z) = f F(z, V)~(~?d#(~). 
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There is a constant y so that i /G( z ,  w) is the /unct ion  appearing in  Theorem 7.1 

G(z, w) = ~,F(z) F(w). 

I] Q is a subset el Lo which is G-invariant up to a set el It-measure zero then 

# ( Q ) = 0  or  1. 

W e  shall  conclude this  pape r  b y  a few general  remarks .  I f  we ca r ry  out  the  construc-  

t ion  o f / t  in the  case of a f in i te ly  genera ted  group of the  f irst  k ind  we see t h a t  i t  is the  or- 

d i n a r y  Lebesgue measure  on S. The e igenfunct ion is a cons tan t  funct ion.  The fact  t h a t  as 

s-+ 1 ( s -  1)/(z, w; s) converges to  a cons tan t  corresponds to  Tsuj i ' s  " f u n d a m e n t a l  t h e o r e m "  

([11]). The  classif icat ion of G- invar ian t  sets corresponds to  the  " ea sy"  ergodic theorem 

([9: p. 321]). This  pape r  gives a new proof  of these  classical theorems.  

The  resul ts  of th is  pape r  a d m i t  of extensions  in two different  ways.  F i r s t ly ,  i t  is ve ry  

desirable  t h a t  t he  re la t ion  be tween  the  measure  t h a t  we have  cons t ruc ted  and  the  distr i-  

bu t ion  of orbi ts  of po in ts  under  the  group be clarif ied and  sharpened.  I t  appears  t h a t  even 

for groups  of the  second k ind  i t  would  be prof i t ab le  to  s t u d y  the  spect ra l  decompos i t ion  

of t he  Laplace  opera tor .  I hope to  deal  wi th  th is  topic  l a te r  b u t  the  r eade r  should consult ,  

on this  point ,  the  ve ry  in teres t ing  papers  of E l s t rod t  [7]. 
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