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Introduction 

In  this paper we study the limit distribution of the solution Y. of the difference 

equation 
Yn=M,~Y,~_I+Q,, n>~l, (1.1) 

where Mn and Qn are random d • d matrices respectively d-vectors and Yn also is a d-vector. 

Throughout we take the sequence of pairs (Mn, Q~), n >/1, independently and identically 

distributed. The equation (1.1) arises in various contexts. We first met  a special case in a 

paper by  Solomon, [20] sect. 4, which studies random walks in random environments. 

Closely related is the fact tha t  if Yn(i) is the expected number  of particles of type i in the 

nth generation of a d-type branching process in a random environment with immigration, 

then Yn = (Yn(1) ..... Yn(d)) satisfies (1.1) (Qn represents the immigrants in the nth genera- 

tion). (1.1) has been used for the amount  of radioactive material  in a compar tment  ([17]) 

and in control theory [9 a]. Moreover, it is the principal feacture in a model for evolution and 

cultural inheritance by  Cavalli-Sforza and Feldman [2]. Notice also tha t  the dth order 

linear difference equation 

Y,= a (1)'n yn-1 + a~)yn-~ ... + a~)yn-a + q, 

can be brought into the form (1.1), if one takes 

Y n  = (Yn+d-1, Yn+a-~ ..... Yn), Q,~ = (qn+a-1, 0 . . . . .  O) 

(1) Research supported by the NSF under grant GP 28109 and by a Fellowship from the John  
Simon Guggenheim Memorial Foundation. 
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O n + d - l ~  � 9  , {Y - I  

lo o (1.2) and  Mn = . . .  . . 

\ 1 

Such r a n d o m  difference equat ions  are  men t ioned  in [0], sect ion 4 and  in [7], pp.  23, 125 

and  181. 

The  solut ion of (1.1) is of course g iven  b y  

Y,, =Q,, + MnQn-1 + M,M,,-1Qn-2 + ... + M,,M,,_I ... M~Qx + MnMn_I ... M1 Yo, 

which for g iven Y0 has  the  same d i s t r ibu t ion  as 

n 

M1.. .  Me-  1 Qk. + MI. . .  Mn Yo" 
k ~ l  

P u t  now for a n y  d-(row) vec tor  x =  (x(1) . . . .  x(d)) and  for  any  d x d m a t r i x  (m = (i, ~)) 

}' 
Ix l  = ~'(0, Ilmll=max~ 

f~l=l 

I t  is known (1) (see [5], Theorem 2) t h a t  if 

E log+llMx[[ < co (1.3) 

t hen  ~ ~ l im 1 log JIM, .. .  M ,  ]] exis ts  and  is cons t an t  w.p.1. (1.4) 
n-->oo n 

We shall  assume t h a t  x <  0 in which case ][M 1 . . .  M, ] [ -~0  exponen t i a l ly  fast ,  and  under  

ve ry  weak  condi t ions on Q,  the  series 

~ M  R =  ~_, 1...Mk_aQk (1.5) 
a 

will converge w.p.1. Then the  d i s t r ibu t ion  of Yn converges  to  t h a t  of R, i nde pe nde n t l y  of 

Yo. W e  note  t h a t  condi t ions  for t he  exponen t ia l  convergence of M x ... Mn to 0 in the  special 

case (1.2) have  been g iven  b y  K o n s t a n t i n o v  and  Nevelson [13]. Spi tzer  conjec tured  for the  

one d imensional  case (i.e., d = 1; th is  is t he  s i tua t ion  of [20]) t h a t  R should  be in the  domain  

of a t t r a c t i on  of a s table  law. F o r  the  one d imens iona l  case th is  is indeed  no t  so ha rd  to  

(,) In [5] Ixl deno~s Zlxl01, and the definition of [Imll is changed correspondingly. But it is 
easily seen that ratio between the present I]Mx ... Mn[ [ and that of [5] is bounded away from 0 and oo, 
so that (1.4) still holds. 
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prove (the long section 2 is only needed for d > 1). A comparatively simple argument (see 

proof of Theorem 4) reduces the s tudy of the tail of the distribution of R to that  of 

'P(ma~X[Ml'"Mnl>t}=P{manx~l~176 (1.6) 

for large t. Since the Mt are independent and identically distributed the behavior of (1.6) 

can be found from renewal theory (see [4], section XI.6). Under reasonable conditions there 

exist K > 0  and ~1>0 such tha t  the probabili ty in (1.6) behaves like Kt -~' as t - , co ,  and 

also 
0 <  lim t~IP{R > t } <  c~. 

t---~ cO 

In  the d-dimensional case the proof in section 3 still goes through, but  now the tail behavior 

of R reduces to tha t  of 

P(maxlxMl""M"l > t } = e  max ~ l~ lxM1...M,-ll (1.7) 

for any given row vector x. This necessitates the development of revewal theory for the 

sequence of sums 
...M,9 

We take this up first in section 2, where we show tha t  (1.7) still behaves like Kt -~' under suit- 

able conditions. The simplest case is when Mn and Qn have only positive entries, respectively 

components. We summarize our results for this situation, using the following notation: 

x = (x(1) ... . .  x(d)) stands for a generic row vector, 

=1, 1 

When x ~= 0 �9 = (x)" = [x [-1 x e Se- r  

#{ } denotes the number  of elements in the set { }. 

When m is a d x d matr ix  m/> 0(m ~ 0 )  means re(i, i)/> 0( > 0) for 1 -< i, j ~< d. When 

m 90 ,  0(m) denotes its largest positive eigenvalue, the so called Frobenius eigenvalue ([6], 

vol. 2, 19.. 53). 

Nx(t) = m i n  {n~>0: log [xM 1 ... Mnl >t} ( =  ~ when no such n exists). 

On the event {Nx(0 < c~} we also define 

14-732907 Acta mathematica 131. Irnprim6 1r 11 D4eembre 1973 
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bution i ~ such that 

and 

Assume also that the group generated by 

{log Q(xe): g = m  1 ... m n/or  some n and m~ Esupp (/~) and ~ > 0 )  

H A R R Y  K E S T E N  

W~(t) =log IxMx ... M~,(,)I - t ,  

g ~ ( t )  = ( xM 1 ... M~(t))" . 

TH~.OR~M A. Let Mx, M 2 . . . .  be independent d • d matrices each with the same distri- 

P { M  1 ~ O) = 1, 

P { M  1 has a zero row} =0, (1.9) 

E log+llMd[ < oo. (1.10) 

(1.11) 

is dense in It. Then, there exists a constant o~ < c~ such that /or  each x E S+ one has w.p.1. 

lim -1 I I M , . . . M , I  I = lim l l x M 1 . . , M n l  = ~. 
n - " ~  oQ n n .--+ ~ 

I]  o:>0, then the limit distribution (as t ~ )  o] Zx(t), Wz(t) exists and is independent of x. 

A l so /or  xES+ and h ~  1 

lira E#  {n: t <~ I x M ,  ...  M= I < th ) = log h (1.12) 

I]  ~ < 0, and i] in addition to the above conditions there exists a x o > 0 for which 

E {nain (~ M x (i, j)))'~* >~ d '~~162 (1.13) 
t i 

and EHMlll  ~o log + IIMIlI< c~, (1.14) 

then there exists a ~ E (0, u0] such that 

lim t" 'P{max I xM~ . . .  M.I >t} (1,15) 

exists and is strictly positive for x E S+. 

T~EOREM B. Let {Mn, Qn}n~>l be independent identically distributed, where the Mn are 

d •  matrices and the Q~ d-(column) vectors. Assume that the M ,  satis]y all hypotheses o] 

theorem A (includinff (1.13) and (1.14)) and that a < 0 .  Assume also 

P{QI=0}<I,P{QI>~0)=I, EIQ,["'<~o, 

/or the z l  o/(1.15).  Then ]or each xES~_ 1 
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lim t"'P(xR >~ t} (1.16) 
t----> ~ 

exists and is/inite. For xES+ the limit in (1.16)/s strictly positive. 

We want  to point out tha t  (1.12) is an analogue of Blackwe]l's renewal theorem (see 

[4], sect. XI.1) for products of random matrices and tha t  the existence of the limit distribu- 

tion of Wz(t ) is the analogue of the existence of the limit distribution of the residual waiting 

t ime in renewal theory ([4], p. 370). 

Theorems A and B, together with some extensions are contained in Theorems 2-4. 

In  section 4 we state without proof analogous results which do not presuppose Mn/>0 

w.p.1. However, if we drop the condition M,>~0 and if d > l ,  then we have to add some 

absolute continuity requirements for the distribution/~ of M 1. None of our results cover the 

following simple example: Let  d=2, ml, m 2 ~ 0  2 •  matrices such tha t  log ~(mx) and 

log ~(m2) generate a group which is dense in R. Finally let m a be a rotation and take 

P(M, =mt} =Pt, 1 <~i <~3, 

for some p~ > 0, Pl + P 2  + P 3  = 1. We pose it as an open problem to prove appropriate forms 

of (1.12) and the existence of the limits (1.15) and (1.16) in this case. Perhaps it will be a 

little easier to solve similar problems for the special situation of [9], section 14. 

Acknowledgement: The author is indebted to Professor L. Gross for discovering a mis- 

take in an earlier proof of Theorem 3 and several other helpful comments. 

2, Renewal theory for products of positive matr ices  

Even though some of the renewal theory of this section is applicable to more general prod- 

ucts of matrices (see Remark  1), the conditions are least cumbersome for products of positive 

matrics and the main results of this section are only formulated for such products. The basis 

for this section is a renewal theorem proved elsewhere [11 ] for (random) functions on a Markov 

chain. To be precise we consider a Markov chain {Xn}n~>0 with stat ionary transition 

probabilities on a separable metric space S. Throughout Pn(x, A)=P{Xk+~EA[X~=x} 
denotes the n-step transition probabili ty for this chain, P(x, A) =Pl(x, A) (1) and $ the 

a-field generated by  the open sets of S, respectively B the collection of Borel sets of R. We 

assume tha t  another sequence {u~}n~> 0 of random variables is defined on our probabili ty 

space such that  the distribution of u, depends only on X, and X~+ 1, and not on the other 

(1) Of course these have to satisfy the s tandard  assumpt ions  t ha t  x ~ P ( x ,  A )  is S measurable  for  

fixed A E S and  zO(x, �9 ) is a probabi l i ty  measure  on S for fixed x E S. Moreover p n  is the n th i terate of P ,  

and  the  r ight  hand  side of (2.1) is assumed to be an  S measurable  funct ion of x 0. 
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Xj or u~ when Xi and X~+ 1 are given. Formally, we assume that  for each x, y ES  there 

exists a distribution function F( - Ix ,  y) such that  for A4E $, B4 E 

P{X4eA4, 0<~ i <~n, u, eB,,  O<~]<nlXo=xo) 

L f.L = IA. (z0) P(xo, dxl) .. PIx,-1, dxn) i-I F(B4]x4, x4+1). (2.1) 
x n 4=0 

The expression F(B Ix, y) in (2.1) of course stands for 

BF(d• Ix, y). 

Further  notations and definitions to be used are as follows: :~ denotes the a-field 

generated by the X~ and u4, i ~>0. Px is the unique measure on :~ for which 

P~{X4eA 4, O<i<n, u j e B  s, 0 <?'<n} 

is given by the right hand side of (2.1). Ex denotes expectation w.r.t. P~. 

d(. ,-)  is the distance function on S, 

n- -1  

V. = Z u4 (V0 = 0), (2.2) 
4=0 

N(t) =min  {n t>0: Vn >t)  ( = oo if no such n exists). (2.3) 

On the event {N(t) < oo} we take 
W(t) = VN,~-t ,  (2.4) 

Z(0 = XM,,  (2.5) 

Ck = (x e S: Px{ Vm >1 mk -1 for all m >~ k) >~ ~}. (2.6) 

The following definition reduces to Feller's ([4], p. 362) when S is a one point set. 

Definition. A function g: S • R-~R is called directly Riemann integrable if it is S • B 

measurable and satisfies (with C O = 9~) 

+ o o  

5 (k+l)sup{Ig(x , t )]:xeek+,~Ck,  l<~t<~l+l)<~176 (2.7) 
k=O I = - o o  

and if for every fixed xES and 0 < L <  oo the function t-+g(x, t) is Riemann integrable on 

[ , L ,  +L].  

Finally, if [ is any function from II~=0(S • R) into R and e>0 ,  we put  
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/e (X  O, V O, X l ,  Vl . . . .  ) 

= lim sup {/(Yo, Wo, Yl w~, , . . ) :  d(xi, Yi) + ]vi - w, [< e for i ~< n}. 
n---> oo 

Note  tha t /~  is automat ical ly  measurable w.r.t, l-[t~0($ • B). 

We also need the  following set of conditions: 

1.1. There exists a probabil i ty measure q0 on $ such tha t  qgP =q0 and 

P~:{Xn E A for some n} = 1 for all xE S and 

open A with ~(A) >0 .  

1.2. f ~(dx, f P(x, dy) f l~l F(d~ lx, y)< 
- - =  1 n-1 

and l im Vn l i r a -  ~ u t  
n~r  n n - - ~  Tb 0 

1.3. There exists a sequence (r ~ R such tha t  the group generated by  {r is dense in, 

R and  such t h a t  for each ~ and 8 > 0  there exists a y =y(v, ~) ES  with the following p r o p e r t y :  

For  each s > 0  there exist an A E $ with r  and integers ml, m2 and  a v E R  such that~ 

P,{d(X~,,  y ) < s ,  I vm,-vl <~}>o, (2.8)~ 

P,{d(Xm,, y )<e,  I (2.9)j as well as 

whenever x E A. 

1.4. For  each fixed x E S, s > 0  there exists an  r o =to(x, s ) > 0  such t h a t  for all functions: 

f: IIt>~o(S •  for which / (Xo,  11o, X1, V 1 . . . .  ) is an  :~-measurable function,  A.nd far a l l  

y'_with d(x, y ) < r  o one has 

Ex/(xo, Vo, Xl, v l  .... )<E~t~(xo, vo, x , ,  v ,  .... )+esup Ill 

and  E~/(Xo, Vo, X , ,  V~ . . . .  ) < E , / ~ ( X  o, V o, X , ,  V,  . . . .  ) + e  sup ]/].  

I n  this setup the  following theorem was proved in [11]. 

THEOREM 1. I /  condition I . l - I . 4  are satisfied, then there exists a finite measure yr 

on $ such that/or every bounded, jointly continuous/unction g: S • (0, oo)~ R and every x E 8 

(1) We say that an event A occurs almost surely (a.s.) if Pz(A) = 1 for all xES. 
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lim Exg(Z(t), W(t)) 

(2.10) 

Moreover, 

any x E S  

i/ g: S x R - ~ R  /s jointly continuous and directly Riemann integrable, then /or 

V lim Ex g(X~, t -  Vn)  = O~ -1 cf(dy) 9(Y, s) ds. (2.11) 
t--~oO ~=0 oo 

Despi te  the  forbidding appearance  of conditions I Theorem 1 is useful when dealing 

with  products  of independent  matr ices  (and p robab ly  for r andom walks on more  general  

semigroups as well), as we proceed to  explain. Le t  {Mn}n~>l be a sequence of r andom d • d 

matr ices  and  pu t  
IIo = I ,  H,=M1M2 ... M~, n>~l. 

Unless otherwise indicated all our  vectors  will be row vectors.  I f  x is a d-vector,  [ x [ denotes  

its Eucl idean norm,  and  if m is a d • d mat r ix ,  [[ml[ denotes its l 2 opera tor  norm,  i.e., 

For  a n y  x q R d wi th  [ x [ # 0, we pu t  ~ = ] x ] -1 x. When  the  expression for  x is complicated 

we also use (x)" instead of ~. 

To app ly  Theorem 1 we take  for our  s ta te  space a closed subset  S of the uni t  sphere 

d 

Sd_l  = ( x  = (~(11 . . . . .  x ldl) :  I~1 ~ = Y ~ ( i l  = 1}. 
1 

We define {X=, un},~>o as the  following functions of X o and  {Mn},~>x: 

X n = { ( X o I I n ) ' = ( X o M x . . . M n )  ~ if X 0 I I n * 0  

if X o I I ,  = 0, 

I x o n ~ + l l  
u . = l o g  [X 0II,`[ ( = - ~  if X o I I ~ = 0 ) .  

Note  t h a t  for XoESd_I 

~-1 [ X0 l-i, I IXoM1... M=] �9 V~ = ~ u= = log = log 
,~ IXol 

(2.12) 

(2.13) 

(2.14) 

Thus  we are real ly  looking a t  the  act ion of the  successive products  of the  matr ices  M1, Ms, 

on d-space; Vn measures  the  size of the  vec tor  af ter  n steps and  Xn its direction. The  
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p robab i l i t y  measure  is def ined in t e rms  of a measure /x  on the  set  of d • d matr ices ,  a ~ ~> 0, 

and  a func t ion  r(x)>0 on S sa t is fying 

= fl~(dM)IxM[ ~ r((xM)~), xES. (2.15) r(x) 

F o r  th is  to  make  sense, we shall  of course require  t h a t  for all  xES, /a{M:xM=O or 

(xM) ~ ~ S} = O. W e  now wan t  

P {M~+I E A I(x~, u,)t< ~-1, X ,  = xn} 

- r(x,) ~ala(dM) Ix, Ml"r((xnM)~). (2.16) 

B y  v i r tue  of (2.15) th is  defines an  hones t  p r o b a b i l i t y  d i s t r ibu t ion  for Mn+i. The M ,  are  

i ndependen t  of each o ther  and  the  preceding X~ in the  case where/~  is a p robab i l i t y  mea-  

sure, u = 0 and  r(~) - 1; the  more  genera l  case descr ibed  here will be used la te r  in th is  section. 

W e  shall  s l ight ly  abuse  no t a t i on  a n d  wr i te  Px for the  condi t iona l  measure  given X 0 = x  

govern ing  {Xn, u,)n>~o and {M,}n~. I .e. ,  ff ~ is t he  Borel  field in the  space of d • d matrices,(~) 

t hen  we t h i n k  of Px as a measure  on YI~>o($ x ]~ x ~ )  r a the r  t h a n  on II~>o(S • B). Ex will  

st i l l  denote  expec ta t ion  w.r. t .  P~, and  in accordance  wi th  (2.12), (2.13) and  (2.16) we have  

for a n y  posi t ive  measurab le  f u n c t i o n / :  (S • R) ~+~ (0, :r  x E S and  Dr E ira(~) 

E~{/(X o, u o, X~, u~ . . . . .  Xk, uk); M~ED~, 1 ~ < i < k +  1} 

-lfD,/x(dM1)r(x) "'" f~.+l ~(dM~+l)lxII~+il~r((xII~+l)') 
. IxrI l - I rt +,lk (2.17) 

! log I nd, log I n,) . . . . .  log-vh ). 

I t  is no t  ha rd  to  check t h a t  for D i = set  of all  d • d matr ices ,  (2.17) agrees wi th  (2.1) for sui t-  

able  F and  t r ans i t ion  opera to r  

P(X.+IEA [X. = x )  = P ( x ,  A) 

1 f( #(aM) IxMl"r((xM)~). 
-~r(x) ,M) ~Ea 

Of course P{X,+kEA IX~=x} will again  be given b y  Pk(x, A), the  k th  i t e ra t e  of P .  

(1) The space is just R a' and ~ is generated by the open sets in this space. 
(~) For any set of conditions C, Ez{/; ~} denotes the integral of / w.r.t Pz over the set where 

is satisfied, i.e., Ez{]; C} = Ez]Ic. 
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We introduce one more concept to help us obtain the aperiodicity condition 1.3. 

We call a d •  matrix g/easible if there exists on n and m 1 ..... m, Esupp (/x) such that  

re =mlm2... ran, and if in addition ~ has an (algebraically) simple eigenvalue ~(g) >0 which 

exceeds all other eigenvalues of 7~ in absolute value (i.e., if ~t # ~(g) is an eigenvalue old,  then 

12] <~(~)). If this is the case we call ~(~) a/easible eigenvalue and the corresponding right 

and left eigenvectors of unit length eg'(rt) respectively ~(7t) ]easible eigenvectors (the prime 

in a' denotes transposition; a' is a column vector). Note that,  by definition d' and b are the 

unique solutions of 

7ea'= Q(~) a', ]a] = 1, b:~=~(zt) b, ]b I =1. 

PROPOSITIOI~ 1. Let S be a closed subset o/S~_~ such that 

tt {M: xM=O or (xM)" r  x E S .  (2.18) 

Assume/urther that r: S ~  (0, r satis/ies (2.15), is continuous and bounded away/ tom 0 and 

co, and that/or all x E S  (and Px as in (2.i7)) 

Pz{3C>0 with Ixn=l CllH=ll ]or aU n } = l .  (2.19) 

Finally, let the group generated by 

be dense in R, and 

(log e(~t): ~t /easible and min ly~'(~)l >0} (2.20) 
yES 

f/~(dM) IIMI? log + IIMII < co. (2.21) 

Then, there exists a probability measure q) on S such that conditions 1.1, 1.3 and 1.4 are/ul- 

filled and such that 

f qo(dx) f P(x, dy) f ~+ F(d~ l x, y) = f ~(dx) Exu~ 

= fq~(dx)~f~(dM),xMl~r((xM)')log+]xMl< ~, (2.22) 

as well as 

lim Vn f - -  = o: =- ~(dx) Exuo 
1l--->o0 n 

(However - c~ ~< a ~<0 is possible.) 
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Remark 1. The conditions (2.18)-(2.20) are somewhat  awkward.  However ,  as we shall 

see in Theorems 2 and  3, things become easy when/~ is concent ra ted  on the  set of posi t ive 

matrices.  Of course, once we have  an  S for this si tuation,  then  we can also handle  the  ease 

where /x  is concentra ted  on matr ices  of the  fo rm A-1BA, B(i, j)>~0, for some fixed non 

singular A. For  then  we only have  to  replace the  former  S b y  {(xA)':xES}. Another  case 

in which (2.18) and  (2.19) hold, and  in which every  ~ t = m  1 ... m, ,  m , E s u p p  (g) is feasible, 

occurs when  all m E s u p p  (/x) are of r ank  one, i.e. of the  form m(i, ~) =a( i )  b(]) for some 

d-vectors  a and  b, and  when 

inf{~bl(1)d~(1):mi=(al(i)bl(~) ) and 

m2=(a2(i ) b~(])) are in supp (/z) for some al,  b~/>O. 

Then  we m a y  take  

S = e l o s u r e  of {~: 3 a such t h a t  m=(a(i) b(]))Esupp (/z)}. 

Proo/ o/ Proposition 1. We first  prove  condit ion 1.4. For  xES, ~ > 0  let 

E(x, r k ) = ( ( m  I . . . . .  ink): ms d •  matr ices  such t h a t  

Ixml ... m,I ~>Dllml ... m, II > 0  for l < l < k } ,  

E(x, ~)={{mn}n~>l: (ml . . . . .  m~,)eE(x, ~, k) for an k}. 

Then  for l y - x l  <~1(~ and  (m 1 . . . . .  mk) EE(x, ~, k) and  T ~ k : m  I .. .  m k we have  

(1 --~1) I~,~1 < I~,~1 - l y - ~ l  II~,,ll 
< ] Y ~ k  [ < (1 -{- (~1) [ ;~:7~k) (2.24) 

as we l l  as  [ (Y~k)" - (~rk)" ] 

1 
ly~kl I ( I ~ l -  I y ~ l ) y ~  + ly~l (u~ - ~ )1-<  2~1. I~1  

I n  other  words, for any  sample  p a t h  with Xo=y , [y-x[  <~1~, and  (M 1 ..... M~)EE(x, ~) 
we have  for sufficiently small ~1 and  k >/0 

[Xk--(xIIk)'l=[(yH~)---(xHk)'l< 26l, IVk-logixIIklt=]loglyII~l 2~1. (2.25) 

Consequently,  for a n y  bounded  and  :~-measurable / (X  0, Vo, X 1, V, .... ) and  ] y - x  I < 
~l~(EC(x, ~) is the  complement  of E(x, ~)) 
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E./(Xo, Vo, X.V,  . . . .  ) < sup I/[ e : { ~ ~  ~)} 

+ E~U<Xo, Vo .... ); E(x, ~) < sup I/I PAE=(z, ~)} 

+E~/2$'(x, O, (xII,) ~, log [xH,[ (xl-[,)-, log lxII~l . . . .  ); E(x, 8)}. (2.26) 

But from (2.17), (2.24) and (2.25) we see that  for Ix -y l  <~5,~ and D E ~  k 

1 
fE #(dM,) .#(dMk)lyIIkl~r((yIIk) ~) Pu{E(x, (~, k) A D} = r ~  (~.~.k)nD "" 

r . r(~,)l ' r~-7~I. mm - -  ( 1 - 5 , ) "  la(dM,) #(dMk) Izn.l"r((zn.)-) >-" " ' "  

r . r ( z l ) ] *  
: m l n  - -  (1 - 5,):P,{E(x, 5, k) fl D}. ( 2 . 2 7 )  

Since r is uniformly continuous on the compact set S, and since P:{E~(x, 6)}~0 as 5-~0 (by 

(2.19)) it follows that  for every e > 0  and xES we can choose ~>0,  ~ ,>0  such that  for all 

y e s  with l y -x l  <5,5 

P~{E(x, 5)} = n m  P : { E ( x ,  5, k)} > / (1  - e)  P:{E(x, 5)} 
k--~ oo 

and P~{EC(x, 5)} ~< e +Px{EC(x, 5)} ~< 2e. (2.28) 

Estimates similar to (2.27) and (2.28) show that  for l y - x l  <515 also 

E~{ff'(x, 0, (xH1)', log I . n , ]  .... ); E(. ,  5)} 

<-<E={/2~'(Xo, Vo . . . .  ); E(~, 5)}+~E={I/~'(X0, V0 . . . .  )1; E(x, 5)} 

~<E:/2O'(Xo, Vo, X,, V, .... ) + (e + P:{Er 5)} sup I/I- (2.29) 

(2.26), (2.28) and (2.29) together imply the second inequality of 1.4 and the first one is 

proved in the same way. 

Next we prove 1.1. For fixed m the map x+(xm)" is continuous from S+S at every x 

with xm * O. I t  follows easily from this fact, (2.18) and (2.21) that  

x-~ Ex/(X1) = f P(x, dy) /(y) 

is bounded and continuous whenever/ :  S-~S is bounded and continuous. But then one 

easily proves (see [18], theorem IV.3.1) that  for any yoeS any accumulation point of the 

sequence of measures 
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1 ~ pk(yo,. ) (2.30) 
n k = l  

is an  invar iant  measure for P.  I n  order to satisfy the  recurrence condition in 1.1 we choose 

Y0 in a special way.  Le t  ~ be a feasible mat r ix  with feasible r ight  and left eigenveetors 

d '  =d ' (g) ,  respectively b(~t). B y  bringing zt into its Jo rdan  canonical form it is easy to see 

(compare [12], pp. 1466-7) t ha t  we can then  find a multiple a of d such t h a t  ~a' = 1 and t h a t  

with this normalizat ion 

lira = a ' ~ .  

Since ~z is feasible, ~z = m l . . .  m ,  for some n and m~ E supp (Ft). Thus also ~ is a p roduc t  

of m'~ s, m~ E supp (~u) and for any  x 

lim xztk - (xa') ~. (2.31) 

I f  now d(~) is such tha t  
min ]y~ ' (g)]  >0 ,  
~ s  (2.32) 

then xa '#  0 for x E S and it follows t h a t  

lim (x~tk) ~ = b. (2.33) 

Moreover, by  (2.18) ( x ~ ) ' E  closure of S = S ,  so tha t  g(~t)ES whenever  (2.32) holds. One 

easily checks tha t  in this case the  convergence in (2.31) and (2.33) is uniform in x ES, and 

consequently,  for any  neighborhood U c S of g there exists a k =k(U) ,  neighborhoods U~ 

of m~ and a ~ =~(U) > 0  (k, U, and ~ depend on ~t as well, bu t  ~ is fixed for the  moment)  

such tha t  for all x E S 
P={X~ E U} 

>1 Pz{Mrn+~ E U~, 1 < i  < n, 0 ~< r < k} 7> 6(U) > O. (2.34) 

This, together  with the extended Borel-Cantelli L e m m a  ([1], exercise 5.6.9), shows 

Pz{XtEU for some t } = l ,  xES. (2.35) 

We now fix a specific feasible z such tha t  d(~to) satisfies (2.32) (such ~o exist because (2.20) 

generates It) and take  Yo in (2.30) equal to  b 0 = b(zt0). For  q we take now any  weak accumula- 

t ion point  of (2.30) (with yo=bo). As remarked we then have q P = q  and by  definition of 

q~ PZ(b o, A)>0 for some 1 whenever A is open and q ( A ) > 0 .  I t  is not  hard  to see from 1.4 

tha t  for such A there even exists a neighborhood U o c S of b 0 such tha t  

inf Pt (y, A) >0 .  
y~LT0 
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(Apply 1.4 to ](X 0, V 0 . . . .  ) =g~(Xl) where g,: S-~ [0, 1] is a sequence of continuous functions 

which increases to IA and such tha t  (1) g~(Xz) <-Ia(Xz).) The strong Markov property then 

shows tha t  for any x 

Px(XtE A for some t)>~P~(Xte U o for some t} inf pZ(y, A)= inf P~(y, A)>0 
yeUo  YeUo 

(by (2.35)). Again the extended Borel-Cantelli Lemma shows tha t  Px{Xt EA for some t} = 1, 

x E S, thus proving 1.1. 

The same sort of arguments establish 1.3. To see this, let ~ be a feasible matr ix  for 

which (2.32) holds, and let e > 0  be given. Again using the uniformity of the convergence in 

(2.31) in (2.33) we can find an l=l(rl) such tha t  

] (X:71~/)~ --  b(:7~) ] < ~ ,  ] (XY'~I+I) ~ --  b(:7~) ] < 2 

for all xeS, and (because ~a'= 1) 

Ilogl b~ ' l -  ~ log e(-)l < ~, [logl ~ + '  I -  (z + ~)log e(~)l ~ ~. 

(2.36) 

Then we can find a neighborhood U c S of b such tha t  for j = 1 or (l + 1) and xE U 

2e (2.37) I logL x~J[ - j log ~(~)[ < ~. 

I f  ~ = m 1 . . . . .  mn with m~ E supp (/~) then (2.34) again holds for this U and suitable/~ and 

0(U). Thus, also for any t>~0 

pt+~ (bo, U) = fP~ (b 0, dy) Py (Xk, E U} >~ ~(U) > 0 

and consequently also P(U) >/~(U) > 0. (2.38) 

Moreover, as in (2.34), we deduce from (2.36) and (2.37) tha t  there exist neighborhoods U~ 

of m~, l~<i~<n such tha t  for xeU, ]=l or ( /+1)  one has 

Px{lXj,-g(~r)[  <e  and I Vj.-iloge(~)l <e} 

>~Px{Mrn+~fi U,, 1 <~i <n, O~<r < / } > 0 .  (2.39) 

(2.38) and (2.39) give us (2.8) and (2.9) if ~v=log~(~),  y=~(~), and A= U, ml=In, m~= 
(l + 1)n and z = l  log Q(~). The ~v which can occur in this way run through the set (2.20)so 

tha t  1.3 has been proved. 

1In (a) In  accordance with  the  definit ion of 1~ we mean by  gn (Xz) sup {gn(X): d(x, XZ) <n-X}. 
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Last ly  we prove (2.22) and (2.23). The measure ~ on ~ defined by  

= f~(ax)  P= {x,  ~ A,, u, ~ B, 0 < i < k} 

is invar iant  under  the shift. Moreover, by  (2.21), 

j =..z,o~ ~ ~,(dM)IIMII" log + IIMII < o o .  

This is (2.22); bu t  more impor tan t ly  it  allows us to  apply  Birkhoff 's  ergodie theorem ([8], 

p. 18) (after a t runca t ion  argument  as in [1], p. 116) to give us 

1 n - 1  
lim 1 Vn = lim - ~ u~ exists a.e. [~]. 

n - + ~  • n - - - ~  ~ | = 0  

and hence, Pztlim Vn-= lira 1 log I Xo II . I  exists} 1 =  (2.40) 
( n - + ~  n n.---)-r n 

for almost  all x w.r.t. ~0. We do not  ye t  know tha t  (2.40) holds with x = b 0, bu t  assume 

Then  there  exist r and e > 0 and for each 11 an l~ > 11 with 

Pbo{~<~r--2e<r+2e<~ Vn---'n2 forsomenx, n~E[ll, 1,]}>~2e. (2.41) 

L e t / :  R • R ~  [0, 1] be defined by  

/(c,d)=~l if c<~r-2e and d>~r+2e, 
lo otherwise. 

Then  by  (2.41) and 1.4 there  exists an ro--ro(bo, e) such tha t  

Euff ( min Vn, max Vn I >1--e+Eb,[( min Vn, max Vnl >~ e (2.42) 
\l~t~n<~l~ n ll<~n<~l I 95 ] \ l t ~ r l ~ l g  T~ l l ~ n ~ l  I Tb ] 

whenever  l Y -  bo[ < ro. Because 
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1.( min max V ]=O 
\ l l ~ n ~ l  , n I x ~ n ~ l  s ~ ] 

min V n ~ r - e  or 
l t ~ n ~ l  a n 

(2.42) yields for each I 1 and [ y -  bol < r o 

PvlinfVn<~r-e<~r+e<~sup~}>~ 
~n>~l I T~ n>~l x 

max V---hEr+e, 
ll<<n<~l , Tb 

l imE~]~( min Vn, max F" / 
is_._~ ~ \ l l ~ n ~ l ~  ~ l l ~ n ~ l  ~ n ] 

This implies for any xES 

for all n >/ll} >~ e, 

for all n >~ 11}/> e. 

a.e. [Px] on the set where I Xk-b01 <%. From the martingale convergence theorem (see 

Cot. 5.22 in [1]) and the fact that  (see 1.1 and (2.43)) 

Px {mik -  5o m < ro infinitely often} = 1, 
it now follows that 

(2.44) 

f inf Vn V ]  
Thus, Py ~lim < lim sup "n} >~e 

whenever ly -bo l  <%. Since (see (2.38)) 

~{y: ly-b0)<r0}>o, (2.43) 

this contradicts the validity of (2.40) for almost all x. Thus (2.40) holds with x=b o. Now 

assume that lira n -x Vn is not a constant a.e. [P~,]. As before we can then find r, e > 0  and 

11 such that for l~ >~ 11, 

p ~Vn } 
b~ ~ < r - 2 e  for all l l ~n~ l  ~ >~2e, 

p IV-_ ~ } ~~ >~r+2e for all 114n<~l t >~2a. 

As above this will imply for all y with ] y - bo[ < r o 
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Pz {lim iI l f -~ ~< r -  e} = 1, xES.  

Similarly Px{lim s u p - ~  ~> r -  e} = 1, x e S .  

These equations again contradict (2.40). Thus for some a, 

Pb~ Vn=a}  = I ' L ' ~  n 

Once again this shows for all e >0 and [ y - b 0 l <  ro(b o, e) 

Pu e-e~<liminf--~<limsup-~-~ ~<~+e ~ > l - e  

and a repetition of the argument following (2.t4) gives for all xES 

p~ {~ _ e <~ lim inf V~ V,, } = 1 .  lim s u p - -  < ~ + e 

Since e > 0 is arbitrary this finally proves (2.23) except for the identification of a. However, 

we already know from the ergodic theorem (see [8], p. 18) that  

f lim~ d#= f %d~= f ~(dx) m, uo, 
which completes the proof of Proposition 1. �9 

Proposition 1 now leads quickly to the next two theorems for positive matrices which 

constitute the main results of this section. We precede these theorems with some notation. 

Throughout all vectors are d-vectors and matrices of size d • d. For a vector x = (x(i) ..... 

x(d)) we write x 90  and x ~ 0  when x(i)>~0 respectively x(i)>0 for all i E [1, d]. Similarly 

for a matrix zt, z~>~0 and ~r)-0 mean ~(i, j)~>0 respectively 7t(i, j ) > 0  for all 1 <-i, j<~d. 

If g>~0, then we know from the Perron-Frobenius theorem (see [6], vol. 2, p. 53) that  there 

exists an (algebraically) simple eigenvalue p(~t) of z such that  p(~)>0, and right and left 

eigenvectors a respectively b of zr corresponding to ~(z) can be chosen such that  a ~ 0  and 

b~0 .  p(z) exceeds all other eigenvalues of ~ in absolute value, and if a and b are normalized 

such that  ba' =Eb(i) a(i)=1 then (2.31) holds for all row vectors x. As before we consider 

the process (Xn, Un)~>~l of (2.12), (2.13) and define V~ by (2.14). In the present situation it is 

somewhat nearer to view the N(t), Z(t), W(t) of (2.3)-(2.5) as functions of M1, ..., Mn with 

the initial point as a parameter. Thus we put (1) 

(1) The definition (2.45) for Nx(t) is the mos t  na tura l  one in the f ramework  of Proposi t ion 1. One 

should note, however,  t ha t  it is the first  t ime IxMn[ exceeds e t, ra the r  t han  t. This is w h y  there is a 

factor e glt in (2.62), r a the r  t h a n  t gl as in (2.63). 
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N~(t) =rain {n~0" loglxM1 ... M~I >t} =mi~ {n~0" IxM1 ... M~ I >e'}, (2.45) 

W~(t) = log I X M l  "" MN~(t) I - t ,  (2.46) 

Z~(t) = (xM 1 ... MN~a)) ~ .  (2.47) 

In  the next theorem we use P without subscript for the measure governing the sequence 

{Mn}n>~l, i.e., the product measure IIF~u; E is expectation w.r . t .P .  These should not be 

confused with the Px and Ex of (2.17). 

THWOREM 2. Let M1, M2 .... be a sequence o/independent d • d matrices, each distrib- 

uted according to the same probability measure #. Assume that 

P ( M ,  >~O}= I, (2.48) 

P ( M  1 has a zero row} =0, (2.49) 

E log+llMall < ~ ,  (2.50) 
and that the group generated by 

{ l o g e ( ~ ) : ~ = m l . . . m  n / o r s o m e n a n d m t e s u p p ( l ~ ) ,  and ~ > 0 }  (2.51) 

is dense in It. Then there exists a constant ~ < + o0 such that a.e. [P] 

lim l l o g  IIM1...M,~II = lim l log lxM1. . .  M,l=~x 
rt--o-oo n n . .~oo  n 

/or all x E S + - - { x = ( x ( 1 )  . . . . .  x(d)): Ixl=l,x>~O). 

I/~z>O then/or every bounded and ]ointly continuous function g: S+ • (0, oo)-+R 

lim Eg(Zz(t), Wz(t)) exists/or all xES+ and is independent o] x. (2.52) 
~l ---> O0 

Also i] a >0 there exists a probability measure ~v on S+ such that/or every ]ointly continuous 

]unction g: S+ • R-+ R which satisfies 

q - o r  

sup {Ig(y,t)l: y e S + , l < t < z +  1}< ~ (2.5a) 

one has lim E ~. (g((xH~) ~, t - l o g  IxII~l)} 

= o: -1 g(y, s) ds, xES+. (2.54) 
oo  



RANDOM D I F F E R E N C E  E Q U A T I O N S  AND R E N E W A L  T H E O R Y  225 

In particular ]or x E S+, h ~> 1, 

E#{n: t< ]xM~ ... M~I <th} = 1 log h. (2.55) lim 
t--~ oO 0~ 

Proo/: We merely check that  the conditions of Proposition 1 hold and that  (2.53) implies 

direct Riemann integrability of g. The theorem is then immediate from Proposition 1 and 

Theorem 1. For S we take S+ and in this theorem ~=0 ,  r ( x ) = l  for all xES+. Clearly 

xM(j) >7 0 when x E S+ and M(l, j) >1 0 for 1 ~< 1 < d, and even xM(j) > 0 for some j when no row 

of M is zero. Thus (2.18) is immediate from (2.48), (2.49). As we pointed out already, if 

~ 0 ,  then we may take a right eigenvector a' corresponding to ~(~) such that  a'~,O. For 

any such a', 
d 

min xa' >1 min rain a (i) ~ x0") > 0 
XGS+ XeS+ i tffil 

so that  the set (2.51) is contained in (2.20) and the group generated by (2.20) is indeed 

dense in R. (2.21) reduces to (2.50) and finally (2.19) is proved as follows: Firstly, for any 

x E S+ and matrix g ~> 0 

d 

I x:~l >~ d-  �89 ~ x~(i) >~ d-  j rain x(1) ~ g(j, i) >~ d-  ~ rain x(l) Ilzl[. 
t ~ l  l j , t  l 

Thus (2.19) holds for any x ~ 0  with C=d -�89 rain z(l). Now, since (2.51i generates a dense 

group in R there is an n o such that  

P {II , .>0} > 0. (2.56) 

Thus T = rain {n i> no: M,,_,,+lMn_n,+2... M . > 0 }  

is finite with probability 1. Moreover, x H r ~ 0  for all xES+ when T <  oo. Thus, for any 

xES+ and n>~T 

Ixn l = I (xM1 ... Mr)Mr+~ ... M,I  

/> d - t  min (xMI... Mr) (l)UMr§ . . .  M.U 
l 

/> d-~(llM1... Mrl[) -I rain (xMx... Mr) (l)II n. l l .  
l 

Since also (by (2.18)) for any fixed xES+ 

P{min  IxlInl (11 .11) -1 >0} = 1, 
n<<. T 

(2.19) holds for any x ES+. Thus all hypotheses of Proposition 1 have been checked. (2.52) 
1 5 -  732907 A c t a  ma the ma t i c a  131. Impr im~  le 11 D~p~embre 1973 
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now follows f rom Theorem 1. Las t ly  we deduce the  direct R i emann  integrabi l i ty  of g f rom 

(2.53). We a l ready know f rom Proposi t ion 1 t h a t  for each x ES+ 

P { l i m  1 log [xYIn[ = ~} = 1. (2.57) 

Since we assumed a > 0 we can find a k 0 such t h a t  for the  coordinate vectors  

e~= (0,0 . . . . .  1,0 . . . . .  0)ES+,  1 <.i<.d, 

(the non zero componen t  of e~ is the i th one) 

P{logle ,  I I , . l> lmkol+�89  for all m~>k o and l<~i<~d}>~�89 

Also for xES+ 
I x n  1/> m a x  x/l) rain [e i H m I >~ d "  ~ m i n  l e~ 1-I m I" (2.58) 

We conclude f rom this t h a t  Ck is all of S+ as soon as k >~ k 0 (see (2.6) for the  definition of C~). 

Thus  (2.53) implies (2.7) and  the  ord inary  R iemann  integrabi l i ty  of g(x,.  ) on finite in tervals  

for fixed x is implied b y  the  cont inui ty  of g. Again (2.54) follows f rom Theorem 1. (2.55) is 

obta ined  if one takes  if(y, s ) =  1 for - l o g  h--<s ~<0 and 0 otherwise.(1) 

We add one commen t  as to  why  

lim l- log I]M,... M.II = l im l l o g  [xM 1 ... M.I, xe8+. 
n--->oO n n - . - ~  n 

Clearly the  left hand  side is no less t h a n  the  r ight  hand  side in this equation.  On the  other  

hand,  
HM1... Mnn < d �89 m a x  [el M , . . .  M ,  I 

l ' 

which together  wi th  (2.57) and  (2.58) yields the  desired equali ty.  

T~EOREM 3. Let M1, M 2 .. . .  be a sequence o/ independent  d • d matrices, each distrib- 

uted according to the same probability measure # which is such that the group generated by 

(2.51) is dense in R. Assume also that (2.48)-(2.50) are saris/led, but this time 

/ 

lim 1 log IIM1 ... Mni] = lim 1 log IxM,  ... Mn] = ~ < 0 
n---~r ~ n--->c~ n 

a.e. [P]. Assume in addition that there exists a Uo > 0 / o r  which 

(1) This g is not continuous so that strictly speaking this coice is not allowed for g in (2.54). However, 
following a common technique, we apply (2.54) to increasing and decreasing sequences of continuous 
functions which converge to the present g. 
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E ( m i n  (~  M~ (i, j))}u./> duo,,, 
t 1 

EIIMlll u0 log + ]]mll I < oo. 
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(2.59) 

(2.6o) 

Then there exists a glE(0, g0] and a continuous, strictly posi t ive/unct ion r on S .  such that 

r(x) = f ]xMl lr((xM) ~) = EIxMllU'r((xM1)~), x6S+.  (2.61) 

I n  addition, /or any bounded and jointly continuous /unction g: S+ • (0, oo)-~R there is a 

/inite constant K = K (g ) such that /or  t ~ oo(1) and x 6S+/ ixed  

eU' t E(g(Zx(t), W~(t)); Nx(t ) < c~ } ~ K(g)r(x). (2.62 

When g(z, s ) > 0 / o r  all (z, s)E S+ x R then K (g) > 0 and in particular there exists a 0 < K 1 < co 

such that /or  all xES+ (') 

t ~ ' P ( m a x  [xM 1...  M , [  > t } ~  Klr(x) ,  t-~ oo. (2.63) 
n 

Remark 2. As the proof will show it suffices to take  e~ltg(x, t) bounded,  instead of  

g(x, t) itself. 

Proo/: Again this theorem will follow easily f rom Proposi t ion 1 and Theorem 1 once we 

have found the desired ul and funct ion r. This, however, is complicated and  will be done  

in a number  of separate steps. 

Step 1. Define the linear operator  T~ on C, the space of continuous functions on S+, b y  

T J ( x ) =  EIxM~I  ~ I ( ( x M 1 ) ~ ) ,  /EC,  xES+. 

I t s  adjoint  T* is a linear operator  on the signed measures on S+ and is determined b y  

f T*~(dx) /(x)= f~(dx) T./(x)= fv(dx) E,xM~,U/((xM~)-). 
We show tha t  for 0 ~< u ~< u0 there exists a probabil i ty measure vu on S+ and a number  

Qu, such tha t  

0 < E[d-  �89 min (5  M1 (i, i))] x < eu < E IIM~H u (2.64) 

and * T~ ~ = Quvu. (2.65) 

The existence of ~ follows from Theorem 3.3 of [14] or Theorem 7 of [10]. We repeat  the  

short  proof, which will at  the same t ime give us the est imate (2.64). We already showed in  

Theorem 2 tha t  (2.48) and (2.49) imply  (2.18). Moreover for any  matr ix  m, the  maps  X-~xm 

(1) See footnote p. 223. 
(2) E. Arjas, Adv. Appl. Prob. 4 (1973) 258-270 can be used to obtain an expression for th~ 

Laplace transform of max IxM1 -'- M,I but it does not seem easy to obtain (2.63) from this. 
n 
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and x~(xm) ~ are continuous at each point where xm:#O. Thus x - - > ( x M 1 )  ~ is continuous 

with probability one, and from this one easily sees that  T~ takes C into C. As a mat ter  of 

fact, if we put  
llIll = s u p  

XES A. 

then even []T~[[= sup T~/ <~supE[xM,[~<~E[[Mz[[ ~ 
Ig = 1 xeS+ 

fGC 

so that  Tg is a continuous operator on C. I t  is also a positive operator, and if we put  e(x) - 1 
on S+, then by (2.18) Tge(x)>0 for all xES+. I t  follows that  

T*~(dx) [ f ~ (dx) Txe (x)] -Z T*~ ~ 

defines a continuous map from the set C of probability measures on S+ into itself, when C 

is given the weak topology, i.e., ~n converges to ~ if and only if 

fz+/( x) vn (dx) ~ fs+/(x) v(dx) 

for eve ry /E  C. C is a compact convex set (see [14], [3], Sect. V.4 or [16], Sect. II.6) and by 

the Schauder.Tychonoff fixed point theorem ([3], Theorem V.10.5), ~ has a fixed point 

~ in C. This proves (2.65) with 

Clearly min E [xM, [~ <. ~ <. E [[M,[[ ~. 
xE$+ 

This proves (2.64) since with probability 1 (see (2.49)) 

I xMa I >1 d- ~ ~ xM x (i) >1 d- �89 ~ x(1) min ~ M 1 (i, i) >/d- �89 min ~ M 1 (i, i) > O. 

We note that  (2.64) and (2.59) imply 

~0=1, ~,>~1. (2.66) 

Step 2. With ~ = Q~ as in Step 1, define 

r(x,n)=r~(x,n)=~ZnE[xIIn[~=~znT~e(x), n>~O, xeS+. 

Let  n o and T i> 0 be such that  



R A N D O M  D I F F E R E N C E  E Q U A T I O N S  A N D  R E N E W A L  T H E O R Y  229 

p = - P { I I , ~ ~  for all l~<i , j~<d}>0;  (2.67) 

such an n o and T exist because the set (2.51) is not empty. Then for all x, yES+, n>~ n o 

~ ~  ~ ~ <~ r~(x, n) <~ ~ "~~ d~/2T-x (2.68) 

and for x, yES+, n>~O, 

] r~ (x,  n )  - r~ (y,  n) [  ~< (u + 1) eZoP -~ d~'z ~ -  ~ I x - y [=m TM ~). (2 .69 )  

To prove these estimates observe first that  

TZ /(x) ~ E {I xn~ I~/((~n~)-)}, 

(use induction on n) so that  

e:= f (<T:).,~) (dz)= f,~<dz) ElzIIn[ x 

But if 

then for n ~> n o 

xES+, /EC (2.70) 

>~minE{lzII~[~;II. ,(i , j)>~v fora l l  l < i , j < d } .  (2.71) 
z~8+ 

II~o(i,j)>~z for all l<~i,j<~d, 

IzH,~[ ~ d-�89 E zII.o(i) M.~ ... M.( i ,  j) 
i, 1 

d-�89 E Mn,+l ... Mn(i , j)  >~d-+~llM~.+: . . .  M.II. 

By means of the independence of 

(2.71) and (2.72) tha t  

This implies the right hand inequality in (2.68), because 

E l ~ n . l ~ < ~ l l n . l l  ~ 

If  0 ~<~ ~< 1 (2.69) follows from the inequality 

I I=l=-I t~l~l<l=- t~l  ~, ~,flER, O<u~<I, 

which implies 

(2.72) 

Hno and M n 0 + l  . . .  M n and (2.67) we conclude from 

(2.73) 

(2.74) 
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Similarly,  for 1 ~<u ~<Uo (2.69) follows f rom 

I max (I g -l, 

As for  the  left  hand  inequal i ty  in (2.68), we have  as in (2.71)-(2.73) 

and  clearly (see (2.71) 

~'~ = ~ '  (jv(dz) EIzHn_,~ <~,~176 ~ . (2.75) 

Step 3. There  exists a sequence n z ~ co such t h a t  

1 m 
r~(x) - ~im nz +~ j~o r~(x, j) exists, xES+. (2.76) 

r~(. ) also satisfies (2.68) and  (2.69) (with r~(x, n) replaced b y  r~(x)) as well as 

~ rx(x ) = T~ r~(x) = E I xM11 ~ r~( (xM1) ~ ). (2.77) 

The  existence of the  l imit  in (2.76) for suitable n z follows f rom the  Arzel~-Ascoh theorem 

([3], Theorem IV.6.7) because the  family  of funct ions 

1 n 
x-~ ~ ~ r~(x,i), n~>0, 

n 4- x t = o  

on S+ is equicont inuous (see (2.69)). I n  fact ,  we see t h a t  the  convergence in (2.76) is uniform 

because S+ is compact ;  consequent ly  

/ . 1 nz 
T~r = T~ / h m  - -  Z e~ j Tie ! \z-~,  nl 4- 1 Jr0 

1 nt 
~ lim ,~ ~--J--l~rT/+l~ _ _  

which is jus t  (2.77). Clearly r~(. ) also satisfies (2.68) and  (2.69). 

Step 4. Here  we find our desired r(.  ) b y  showing t h a t  e~ = 1 for some Ul E (0, u0]. r~  

then  has all the  desired properties.  More precisely, we show t h a t  log eu is a convex funct ion 

of u on [0, u0], which is cont inuous on (0, u0] and  such t h a t  log e~ < 0 on (0, ~1) for some 

~1>0- In view of (2.66) this  will be more  t h a n  sufficient. 

We  s ta r t  wi th  the  formula  

log Q~ = lim 1 log E [[ Ha[[ x 
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which is immedia te  f rom (2.74) and  (2.75). Bu t  one easily checks (by differentiat ing twice 

and  appeal ing to Schwarz 's  inequali ty)  t h a t  n - i  log EIIHnH ~ is a convex funct ion of ~ on 

[0, ~0], and hence, so is its l imit  log ~ .  This a l ready shows t h a t  log Q~ is a cont inuous func- 

t ion of ~ on (0, ~0) and  tha t  there  can only be a discont inui ty  a t  ~0 if lim~t~ . Q~<Q~~ To 

show t h a t  this is impossible we use (2.73). For  any  e > 0 we can first  pick an n ~> n o such t h a t  

{pd-"~ V'EI] II._n.ll"~ TM >~ Q~,(1 - e) 

and then  u so close to  u0 t ha t  for  this n 

pd-"/2z~'Ell I I . _ J  ~ >~ (1 - e)pd='W~z~"E II IIn-n.H ~'~ 

For  such a u one has ~ / >  ~ ,  (1 - e )  2 so t h a t  ~u is indeed continuous a t  u 0. 

Last ly ,  we observe t h a t  b y  Theorem 2 

P{2imo 1 log [[II,[[ = ~} = 1  , 

and that  ~-~ log§ is uni formly  in~grab le .  Indeed, 

o~<-1 log+llii.ii < 1 ~ log+llM, i I 
n ~ = 1  

while b y  the  Z 1 form of the  s t rong law of large numbers  (see [8], p. 22) 

E 1,=,~ log+llM, ii_Elog+llM~ll[_+ 0 (n+~).  

Thus, b y  Fa tou ' s  l emma 

lim E 1- log IIn.II < ~< o. 

Now fix n 1 such t h a t  E log [[IIn,[l < 0. Another  appl ic ta ion of F a t o u ' s  l e m m a  shows t h a t  

[~a EllrI..,l~] =lim EllrI''ll~-l--<EloglltI.,'l<0. 
ta~ J u=O u~O 

Since El[n~,ll0= a this shows t h a t  for  some ~1 > 0  and 0 < ~ < ~ x ,  

Ellrln.ll=< 1 and logQ~=l im  ~ l o g  E I I n , J l ~ . < l l o g  EIIrI..ll=<0 (2.79) 
l-->~ nl 

as desired. 
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Step 5. In this step we complete the proof of Theorem 3 by showing that  Proposition 1 

applies with Px defined by (2.16) and (2.17) with ~1 for u and r~ for r. We already showed 

that  (2.18) holds and that  (2.20) generates a dense group in R in the proof of Theorem 2, 

and (2.21) is implied by (2.60). r~l(.) is continuous and bounded away from 0 and co and 

satisfies (2.15) by  step 3. Finally the proof of (2.19) given in Theorem 2 still goes through, 

provided we can show 
P ~ { T  < ~}  = 1. (2.80) 

(T is defined just below (2.56).) For this purpose we introduce the events 

Ek={Mk+i ... Mk+,~ (i, j )>v  for all 1 ~ i ,  j ~ d } ,  

for the ~ of (2.67). Let x E S+ and m~ >~0 positive matrices, and use the abbreviation 

r(x, m~, Ms) =r , , ( ( xm 1 ... mkMk+l ... M~+,, m k + n , + l  . . .  i n ) m ) .  

We claim that  for k ~ n -  n o 

fEk""  f # ( d i k + i )  ... /~(dMk+,,) r(x, m,, i s ) [ x m i  . . .  mkMk+ l �9 Mk+,~ ... m,]  ~' 

~pd-u*12Tg' { E  H l-[no[[u*) -1 min r~, (y) (max r~, (z)} -1 
yeS+ zeS+ 

• f... (2.81) 

To see this, observe that  the integrand in the right hand side of (2.81) is at most 

max r~, (z)[xml.. .  m~[ x' HMk+I ... Mk+~,H ~' IImk+,~ m,H ~', 
zeS+ 

whereas the integrand on the left hand side is at least 

m i n  r~, (y) { d-�89 ~. x m ,  . .. mkMk+ , . . . Mk+n, mk+n,+ l ... m~ (i)}~' 
y~8+ S 

~> min r~ (y) d-~'l~ ~ ~ { Z  x m l  . .. m~ (l) Z m~+,~ l . . . mn (], i)}~' 
yES+ l 1, S 

~> min r~, (y)d -~1/2 ~ '  Ixml ... ink[ ~' [[mk+,.+l ... mnH ~'. 
yG3+ 

Thus (2.81) follows from P { E k }  = p  (see (2.67)). Now put 

q = 1 -pd-~'~2 ~ ~' {E I[ 11 n~ a'} min ra, (y){ max rx, (z)} -~. 
yeS+ ze8+ 

Then, one easily sees from (2.17) and (2.81) that  
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Px{E~ does not  occur I M~, i ~ k and k + n o < i ~ n} ~< q. Consequently 

Px{T>lno}<~Px{Ejn~ does not  occur for any  0~<j<l}<ql ,  

which implies (2.80). 

Thus Proposi t ion 1 applies and we shall be able to use Theorem 1 once we show t h a t  

the ~ in (2.23) is s tr ict ly positive, or t ha t  for some x lira n-lV~ > 0 a.e. [Px]. Bu t  by  (2.79) 

there exist some 0 < ~ < 1, 7 > 0 and constant  K S < ~ for which 

Consequently,  for any  xES+ 

p { [ x I I .  I ~> e-r"} < p{llII . l[  n/> e-~"} < K~e -2r" (2.82) 
and also 

1 
- r~ , ( x )  E{IxIInl~ 'r~ ' ( (xn~) ' ) ;  IxII. I <e'~? ''} 

1 ~1 n $r < - -  max r~. (y) [e-" + E {I z n .  I '; e - ~  < J~n ~ I < e ~ ' ~ } ]  

1 
~< - -  max  r~, (y) [e -~x'n + e~'~K2e-2r~]. 

I t  now follows from the Borel-Cantelli l emma tha t  V~ = log I xHn ] ~> n y ~  ~ eventually,  a.e. 

[P,], so tha t  1.2 holds as well. We m a y  now apply  (2.10) to the  funct ion 

g* (x, t) -- [r~, (x)] -1 e -~'~g(x, 0, 

which is bounded and continuous in (x, t). This yields the existence of 

K(g) = lim E,{[r(Z(t))]-~ e-~'~'(t) g(Z(t), W(t))} 

for some K(g), independent  of x. Because 

E~ {[r( Z(t) ) ]-l e-~'W~~ g (Z(t), W(t))} 

oo 
_ 1 ~oE{ixi i~l~,r((xi i , )~ ) (r((Xiin)~))_le_X, no~lzrl, l_tj 

r(x) : 

xg((~H,,) ~, log I ~II,  1 - 0 ;  N:(0  = n }  

~E{g(G(0 ,  �9 - w = ( 0 ) ,  N : ( t ) <  ~}, 
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this proves (2.62). (2.63) is obtained by specializing 9 to 9(x, t) -= 1 (and replacing t by 

log t). The explicit formula (see (2.10)) 

K (g) = ~- ' f w(dy) f ~(o.~ )PA X~(o) e dz, VN(o) e dX ) f o<~J*(z, s)ds 

immediately shows K(g) > 0 whenever g(z, s) > 0 for all (z, s), so that  the proof is complete. �9 

EXTENSION OF T~EOa~M 3. Assume that the hypotheses o/ Theorem 3 are satis/ied 
and that g: Se_ 1 • (0, ~ ) ~ R  is bounded and (]ointly) continuous. Then/or each xESe_: 

lim e~'tE{g(Zx(t), Wz(t)); Nx(t)< ~ }  exists and is/inite. (2.83) 
t-->~ 

(Note that  the definitions (2.45)-(2.47) for Nx, Wx and Z~ need no change for x E Se_:/S+. 
Of course (2.83) is already asserted by Theorem 3 if x ES+.) 

We shall not prove this extension. I t  is proved by a reduction of (2.83) for general 

xESa_ 1 to (2.62) for xES+. This is done by means of a generalization of Lemma 3 in [5]. 

This lemma states that  the directions of the rows of II~ for large n differ very little (with 

high probability). If  all rows of I I .  had exactly the same direction for some n 1, then Hn, 

would be of the form Hn,(i, ])=a(i)b(j) for some d-vectors a~>0, b>~0. But  then also, for 

any xESe_: and n>~nl, 
xII,  = (~ x(1) a(1)) ]b] ~) M~,+~ ... M,. 

l 

Thus, after time n: the sequence xI I ,  is a constant multiple of bM,,+: ... M,.  If the factor 

Yx(g) a(/)lb I (2.84) 
l 

is zero, then ]xIIn] will not exceed large values of t at all. If, however, (2.84) is not zero, 

then given n:, a, b, the conditional probabihty of max [xH= [ > exp t equals for large t 

P {max ] bl-I= ] > ]Sx(1)a(1)l -:]b] -let}, 

whose asymptotic behavior we know from (2.63), because g E S+. Similarly the conditional 

expectation of g(Z~(t), W~(t)) over N~(t) < oo woUld reduce to 

E{g( + z:(t*), w~(t*); N:(t*) < ~ }, (2.85) 

where t* = t  - l o g  (] Y~x(l) a(/)[ I bl ), 

and the sign in front of Z~ (t*) in (2.85) is the sign of (2.84). The burden of the proof is to 

estimate the errors which arise because the rows of IIn, only have approximately the same 

direction for large n:, rather than exactly the same direction. 
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3. Solutions of random difference equations; positive coefficients 

In  this section we study the limit distribution of the solution Yn of the difference 

equation 
Y~=M~Yn-I  +Qn, n>~l, (3.1) 

where the Mn are positive d • d matrices and the Yn and Qn are d dimensional column 

vectors. For given Y0 the solution of (3.1) is of course 

Y~ =Q,, + M,Q~_ i + ... + (Mn ... Ms) Q~ + (M, ... Mx) Yo. 

We assume throughout tha t  the {Mn, Q~}~>~I are independent, identically distributed. 

In  this situation Y n -  (Mn ... Mi) Y0 has the same distribution as 

R ~ -  ~ M1.. .Mk_IQk 
k=l 

(the term corresponding to k = 1 is Qi). If  

1log IlM~....M.II+~< 0 w.p.1, 
n 

and EIQiI~< oo for some y >0,  

then P {] Q, ] ~ e- �89 ~" eventually} = 1 

and R n converges w.p.1 to R = ~ M I . . .  Mk-IQ~. 
kffil 

Therefore, under the conditions of the theorem below the distribution of Yn in (3.1) con 

verges to tha t  of R for every fixed Y0. The burden of Theorem 4 is tha t  if the M= are 

positive matrices, then this limit distribution is in the domain of attraction of a stable law. 

THEOREM 4. Let {M,, Q,},>~l be independent identically distributed, and assume that 

the distribution 1 a o / M  i satis/ies the conditions o/Theorem 3 (including the condition ~<0) .  

I / i n  addition 
P{Qa = o} < 1, (3.2)  

E ] Q x  [~, < o% (3.3)  
andQ) 

P(Q~ >~ 0} = 1, (3.4) 
then/or each row vector x E Sa-i 

lim t~' P {xR >~ t} exists and is/inite. (3.5) 
t--> ~ 

(1) F o r  co lumn vec tors  q, the  no ta t ion  q ~ 0 again means  t h a t  all componen t s  of q are positive.  
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There exists a 0 < K s < oo such that the limit in (3.5) equals K sr(x) /or all x E S +. I n  particular, 

the limit in (3.5) is strictly positive/or x E S+. 

COROLLARY. I / the  conditions o/Theorem 4 hold with u~ 4= 2, then R is in the domain o/ 

normal attraction o /a  (d-dimensional) stable law o/index min  (~1, 2). I /~1 =2 and R1, R e ... 

are independent random vectors each with the distribution el R, then 

1 ~ (R~ - ER) 
V og n x 

converges in law to a normal distribution with zero mean on R a. 

Remark 3. E v e n  though  we insist here on posit ive M= (see (2.48)), i t  is no t  necessary to 

have  Qn positive. (3.5) and  the  corollary remain  val id if (3.4) is replaced b y  the  condit ion 

t h a t  there  exist  possible points  (m, q') and  (m,q") for (M1, QI), and  m, Esupp/x,  i~<n 0, 

such t h a t  ~ = m 1 ... m~, > 0  and  such t h a t  b(g) (q ' -q~ )  4 = 0, where b(~) is the  left  e igenvector  

of ~ corresponding to  its Frobenius  eigenvalue 0(g). I n  this s i tuat ion the  l imit  in (3.5) will 

still be s t r ic t ly  posit ive for some x E Sa-1, but  not  necessarily for all x E S+. 

Proo]: Again we shall b reak  up  the  proof  into a n u m b e r  of steps. The  first  5 steps show 

in essence t h a t  xR  > t for large t occurs only  if I xM1 "'" M .  I > 5t for  some n and  suitable 

small  ~ > 0. This will allow us to  app ly  Theorem 3 in s tep 6. We repea t  some of the  mos t  

f requent  convent ions f rom section 2. 

II~ =M1 ... M, ,  

;~=]x[--lx for 04=xER g, 

eo=(d - t  ..... d - j )  (note eoES+). 

Note  t h a t  for a n y  column vector  q wi th  components  q(i)>/0 

d"eoq '= : 'q(i)' >~ 'q' = { ~+ l q2(i)} �89 'eoq'. 

I n  addi t ion we introduce 

R ' =  ~ M~+I. . .Mk-IQe 
k = n + l  

(the t e rm  corresponding to k = n + 1 is Q=+I)- We often use the  re la t ion 

R = R .  + II~ R=; (3.6) 

and the  fact  t h a t  R n is independent  of (Rn, IIn) and  has  the  same dis tr ibut ion as R itself. 
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Step 1. There  exists a K 4 > 0 such tha t  

P{[R I >t}>~g4t -x', t~ l .  (3.7) 

This will be immediate  from Theorem 3 because all the  Qn and Mn are positive (see (3.4) 

and (2.48)). Moreover, for suitable ~ > 0  and n o (2.67) holds, whereas for some T I > 0  and 

i 0, by  (3.2), 

P{Ql(i0) >0.  

I f  [e0II ~ ] > @~1)-1t and Mn+l ... M~+n0 (i, j) >~ for all i, i and Q~+,.+l(i0) ~>vl, then  

I R[ >/leeR[ >~ [eol-I,Mn+l ... M,~+n~ >~ [eol-[n]vr,>t 

so t ha t  

P{IRI {there is an n with leon.I 
M=+I ... Mn+n,(i, ]) >~ for  all i, ], Q,+n,+l(i0) ~>'r 

>~ P {max leo I I ,  [ > (zzl)- l t} p P {Q1 (to) >~ vl} ~> g 4 t -K: (3.8) 
n 

for some K 4 > 0  (see (2.63) and (2.67)). 

Step 2. For  some K 5 > 0 one has 

P{ IRI  >2t}>>-KsP{IRI >t}. (3.9) 

This is almost  immediate  f rom (3.7) and the  posi t ivi ty of R n, because, essentially as in 

(3.8) 
P{IR[  >2t}>~P{eoII~+noRn+~o>2t for  some n} 

~>P {for some n[eoIIn] > 2 v  -1, M~+I ... M~+~.(i, j) ~>~ 

for all i, i, IRn+n'l >t}>~KsP{IR] >t} 

with K s > 0. 

Step 3. Define the ladder indices ~ by  

~:o=0, ~ ,+l=min {n>~, :  I[Mr ... M,I  I >1}. 

We take  ~ i + l  : co, when ~ = oo or when no n exist which satisfies the  condition in the  

definit ion of ~t+1, and we pu t  

= m a x  {i: < oo}. 

Then,  for  eve ry  e > 0 there  exists a k = k(e) such t ha t  for all x E Sa-1 and t > 0 

P{~>~k and [xRn[>et f o r s o m e  n<<.~r }. (3.10) 
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To prove (3.10), let 

T(x, s) = min (n/> 1: ]xR n ] > s) 

Then the left hand side of (3.10) is at most 

But  

( = ~ if no such n exists). 

,,~1 {~'-l<T(x'et)<'~'=l)P{~i+k< ~ I~'=/)" 

P(~,+k < ~ I~, =l) =P( there  are at least k finite ladder 

indices in the sequence U Mz+l ... M=H, n > l) 

<P(llrI.II >1 for some n>>-k), 

and consequently the left hand side of (3.10) is at most 

(3.11) 

(3.12) 

P{$>~k and 

b u t  m a x  [xII,]  < St} < eP{]R[ >t). 
l<~n-1 

ixRn ] >_t2 for some n~<~g_k}~2P{IRI > t )  

To prove (3.15) we note first that  by (3.10) 

P{T(x, et)<c~).P(llIInH >1 for some n>~k) 

~P(]Rnl >et forsome n}P(l l I Inl l>l  forsome n>~k). (3.13) 

Since I RI >~]R~I the first factor in the right hand side of (3.13) is at most 

l+lOg 
P{[R I >et) <,.(Ks)- ~P{lR]>t} (see (3.9)) 

and the second factor can be made arbitrarily small by taking k large, because 

1 
- l o g  [[II~ll-~a< 0 w.p.1 (3.14) 
n 

(see Theorems 2 and 3). (3.10) is immediate from this. 

Step d. For every e > 0 there exists a 80(e ) >0  and to(e ) < c~ such that  for Mix  E S a-l, 

< ~o(e), t >1 to(e) 

P (there exists an n wi th [  xRn I> t (3.15) 
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for a suitable k =k(e). Therefore it suffices to prove that  for any fixed k and ~1 =~(e) > 0 

sufficiently small and to(e ) sufficiently large 

as well as 

P{$<  k, T(x, t)< ~ }  <~3P{IRI >t}, t>~to(e), 

{ '} P T(x,t)< ~ ,  max Izl-Izl<~lt, ~>~k, max IxR~.l<.~ 
l< T(x, t) n< ~__ ~ 

~<3P{IRI >t}, t>~to(e ). 

(3.16) 

(3.17) 

Let us fix x and k and abbreviate ~c-k to merely ~e for the remainder of this step. Then, when 

the event between braces in the left hand side of (3.17) occurs one has 

and hence necessarily 
T(x, t )>~ (see (3.11)) 

t 

T(z. t) t t 
/ffi~+l 

In turn, (3.18) is only possible if 

... I Ixnel  IRel = Ixl] el SUPn>$ l~+l M f + I  M'-IQ' >-2" (3.19) 

Thus, the left hand side of (3.17) is bounded by 

P{0< Ixnel <~,t  and (3.19) occurs}, (3.20) 

and we shall show that  (3.20) is at most 3-1eP{ I R l > t}. The same method which estimates 

(3.20) will handle (3.16) (actually (3.16) follows from (3.22)) so that  we concentrate on 

(3.20). We break up (3.20) according to the value, i say, of ~ - k .  This shows that  (3.20) 

equals 

p ~ < oo, there are exactly k ladder indices in the sequence 
i=O J O<s<~6at I, '} lime,+1... Mall, n >t , ,  Ixrte, I e d~ and slR~'l > 

= =~ofo<8<~.tP{,,< ~ . ,x l I , , lEds}P{s lRl>2,  , = k } .  (3.21, 
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To est imate the  sum of the  measures appearing in the  right hand  side of (3.21) we pick 

n~ such tha t  
Pz - P {ll II,]] < 1 for all n ~> n2} > 0; 

this is possible by  vir tue of (3.14). Clearly, if ~t< oobut  

IIM~,+l... M~,+nll < 1 for all n/> n 2 

then  ~i+n,+l = oo or ~ ~< i + n z. Therefore  

f=O 

= ~ P{$,< ~,lIMe,+~...Me,§ for n>~n~,lxlIe, l>~s} 
l = 0  

o o  

t = O  n 

< (n  2 + 1) ~ P {~: = 1~, m a x  I~,II. [ >~ 4 = (n~ + 1) P {max I~n. I > *} 
1=0 n n 

4 (n~+ 1) P { m a x  I~0 n , I  >~d-�89 4 K ,  s-~" 
n 

for  some K6<  oo, independent  of z (see (2.63)). Therefore,  if we replace 

by y~su>tP{IRl~ du, ~=/c} 

and integrate  over  u first in the right hand  side of (3.21) we get a t  most  

oo  

P{lRledu, r E P{~:< oo, I~ne, I >/(2u) 't} 
>~(2~D - 1  t = 0  

<ps ~=  k, IRI > (2(~1)-1} �9 

This bound for the left  hand  side of (3.17) can be made  small w.r.t ,  t -~' and hence w.r.t. 

P{IR[ >t} (see (3.7)) by  choosing Ox small, provided 

E{IRl~' ;  ~ = k}< oo. (3.22) 

The last task is therefore to  prove (3.22) for  any finite k. Now, on {~ = k}, ~+1 = oo and 

thus 
k 

I R l <  Y. ] I I ,_ lQ, ]4Zl i I I$~l l  ~. IIM~j+l...MHII[Qzl �9 
l<~k+ 1 j=O ~j<l<~t+ 1 
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I t  follows that  
k 

E{IRI~'; ~= k} < (k + lr , jEoEIInJ~,E{X JIM1 ... M,-1]I J Q,[ I[I ~< ~1]} ~'. (3.23) 

Furthermore, 

EHH~jII~'~<{ rain r(y)}-'d~':E[eon~+I~'r((eoII~,)'), 
YESd_ 1 

and by (2.61) the sequence 

leolI,[~'r((eoII,,)~), n>~O, 

is a positive martingale, so that  for any stopping time N (and in particular for N = ~r 

E leo IINI ~' r((e 0 HN)~) < lim E le o II~t,, , .m I ~'r((eo IIm~(,.m)~) = r(e0) 
n---~oo 

(compare [15], V.T28 and its proof). Thus 

EIIHr o~. 

The expectation of the sum over 1 in the right hand side of (3.23) has to be treated dif- 

ferently for gl > 1 and zx ~< 1. We only do the case gl ~> 1 in detail; when xx < 1 the esti- 

mates are similar (but somewhat simpler) and based on the inequality 

la+bl~'<-<laI:'+lb[ ~', x l< l .  
For xl > 1, 

[E{2  II n,_,ll IQ, I I[z -< ~,]}-,]", .< 2 [E {ll n,_,ll l e, I z[~ -< ~,]}-']"~' 

=Y[EIQ:I~']"~'[E{IIH,_.III~,;I<a:}] ''~,. (3.24) 

By definition of ~,, IIn,-,ll-< ~ for l~<~: so that  for the y and K:  of (2.82) 

E{IIH,-IlI::; z-< aJ-< e-~: '"-l '  + 1P{ e-7(/-l, ~< IIn,-,ll-< 1} 

4 e-7~,(l-1) + K2e-2~cz-l~. (3.25) 

Since y > 0  in (2.82) and E]Q] ~' < co (see (3.3)) the expression in {3.24~ is finite. This proves 

(3.22) and completes step 4. 

Step 5. As in (2.45) let 

N=(s) = rain {n/> O: log I~n. I >,}- 

Then for every e>O there exists a a2=a,(e)>O and t1(e)< co such that  for all Xr 
0 <t~ ~<~2, t ~> tl(e) 

16-732907 Acta mathematica 131. lmprim6 le 11 D6eembre 1973 
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P{N = Nx(log (0t)) < o~and xlINRN>t(1 +e)} -- eP  {IRI >t} <. P {xR >t} 

<.eP{IR I >t} + P { N = N x ( l o g ( 0 t ) ) ~ o o  and xIINRN>t(1--s)}. (3.26) 

We shall only prove the second inequality in (3.26), leaving the first one to the reader. 

By step 4, if ~ >0, 0s -1 ~<ci0(~), st ~>t0(~), then 

P (T(x, st) <N~ (log (0t))} 

~<P(there exists an n with IxRnl >st but  max IxI]~l ~<0s-l(et)} 
l<~ n - 1  

< riP{IRI >st).  (3.27) 

2flow choose ~/=~7(s) so small that  

rlP (] R ] >st} <.sP {l R I >t} 

(this can be done by (3.9)) and take O~=eOo(rl). Then, since xR>t  implies T(x, st)<<. 
T(x, t )< oo for s < 1, we have for O <~, t >~s-lto07) 

P {xn > t} =P {xn > t, T(x, st) < oo} 

~<P {N z (log (0t)) < T(x, st) < c~, xR >t} + e P  {[R[ >t}. (3.28) 

But when N = N  x (log (0t))< T(x, st) and xR >t then 

IxRNI<st and xR=xRN+xlINRN>t, 
hence 

xlI~rRN> (1 --s) t. 

Thus the first term in the right hand side of (3.28) is at most 

P { N = N ,  (log (0 t ) )<~  and xFINRN> ( 1 - s )  t} 

which, together with (3.28) proves the second inequality of (3.26). 

Step 6. We now complete the proof of Theorem 4, by an application of Theorem 3. 

Firstly, by (3.26) and (3.9) 

P{IR[ >d~t} <P{eoR >t} < � 8 9  >t} 

+ P{Ne, (log (Oat))< ~ }  ~< �89 >dtt} + P{max [eo II.] >Oat} 
n 

for some 0a >0. I t  now follows from (2.63) and (3.7) that  for suitable KT< cr 
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Kat-"' <P{IRI >t} <~ KTt- ' .  (3.29) 

Next  fix e > 0 and let h be a positive continuous function with support  in [1 - e, 1 + el 

and such tha t  

f h(2) d2 = 1. 

Then clearly fh(2) d2P{xR >4(1 - e)-lt} ~< P{xR >t}  

~< fh(2)  d2P{xR >4(1 + e)-It} (3.30) 

and we now use (3.26) and (3.29) to estimate the extreme members of (3.30). E.g. to obtain 

an upper bound for sufficiently large t we apply (3.26) with t replaced by 2(1 +e) -1 t and ~ by 

4-1(1 + e) Oa, where (1 - e) -a (1 + e)64 < 62 (e). 

This yields the bound 

P{xR >t} ~< e_fh(2) dXP{IR ] >2(1 + e)-at} 

+ fh(2)d2P{N = N~ (log ~at) < cr xIINR N >4(1 - e) (1 + e)-lt}. 
J 

(3.31) 

The first term in the right hand side of (3.31) is a t  most  

eP  {] R[ > (1 - e) (1 + •)-1 t} ~< e(1 + e) "' (1 -- e)-~'g7 t -~' (see (3.29)). 

Now in the notat ion of section 2 (see (2.46), (2.47)) 

log ]xIIN] -- log ((~,t) = W~ (log ~4t) 

and (xHN) ~ = Z~ (log (04t)). 

The second term in the right hand  side of (3.31) can therefore be writ ten as 

fh(2) d2P{N N~(log O,t)< o~, (1 e) (1 (xII~)~R N > 2 ( ~  -1 + 

= fh(2) d2 E {P { Z~ (log 84 t) R* > 2~; 1 (1 - s) (1 + s )-1 exp - ' W ,  (10g 5it)} ; N~ (log Oa t) < ~ } 

= E{g(Zx(log O4t), Wx(log Oat); Nx(log Oat)< co}, (3.32) 

where  R* has the distribution of R; but  is : independent of all (Mn,Qn} ~ >~ 1 ; ,and 

g(y, s) = fh(2) d2P{yR >2~4"1(1  --  e) (1 + e)-le-S}. 
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Since h is continuous with compact support it is not hard to see that  g( . , . )  is bounded 

and continuous on S~_ 1 • R. Therefore by Theorem 3 and its extension 

�9 e ~ l s  lim E{g(Zx(s ), W~(s);Nx(s)< o~}=K(x,g) (3.33) 
s -~oo 

for some finite K(x, g), xES~_ 1. I t  follows from the above estimates that  

lira sup t~'P{xR >t} < e(1 + e) ~' (1 - e)-~'K7 + ~ ' K ( x ,  g). (3.35) 
$--> cO 

In  exactly the same way, using the left hand rather than right hand inequalities in (3.30) 

and (3.26) (now replace t by  2(1 - e ) - l t  and ~ by 2-1(1 +e)~(1 -e)-1~4) in (3.26)), we obtain 

liminfP'P{xR>t}>~ K(x,g). (3.36) 

Since the bounds in (3.35) and (3.36) can be brought arbitrarily close together, (3.5) follows. 

Note, however, tha t  it is not meaningful to say the limit equals ~ '  K(x, g), because h(. ) 

and g(. ) depend on e. Still, for fixed e and h(. ), we know from (2.62) that  

K(x, g)=K(g)r(x) for xeS+ 

from which we easily see that  the limit in (3.5) is K3r(x ) for xES+, and some K s < c~. K s > 0  

because of {3.7) and 

P{eoR >t} >~P(IRi >~d~t}. �9 

The Corollary is immediate, because if x 1 > 2 then E I R ] 2 < c~, and if ~1 < 1 and R1, R 2 .. . .  

are independent copies of R, then (see [4], Ch. XVII.5) 

--1 n 

n 
1 

converges in law to a (one-dimensional) stable distribution of index x 1 for each xESa-1. 
For some x the limit law may be degenerate and concentrated on 0 only, but  in any case, 

for any y E R a 

l i m E e x p  in -" f~y  j - - l i m E e x p  i l y l n  " ~  j 

exists and is of the form 
exp (- ly]~ ' |  (3.37) 

for a suitable function 0 on S~_ r Thus the limit of the d-dimensional characteristic func- 

tion of 
--1 n 

1 
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exists and is clearly stable; (3.37) is even strictly stable in the terminology of [4], Def. 

VI.I.1.  The same argument  applies to ~ffil (R j -  ER1) for 1 <u l  ~<2, but  for ul = 1 we need 

a special trick. Let  R[, R~ .. . .  be independent, and each with the distribution 

P{R~eA} = �89 [P{ReA} + P { -  ReA}]. 

Then E e ty'R; = Re E e t~'~, 

and again by  [4], Ch. XVII .5  we get from (3.5) with ~1 = 1 

lim E cxp ( in - ly~  R~j I =exp(- ]y] ~(~)} 
n---> oo \ 1 / 

for suitable ~). Thus R[ is in the domain of normal at t ract ion of a stable law of index 1. 

By  Theorem 4.2 of [19] or the multidimensional analogue of [4], Ch. XVII .5  this implies 

0 < lim t P{[R~[ >t} < oo, (3.38) 
t-->oO 

and lim P{IR~I > t , R [ e A }  [P{IR~I > t } ] - '  =H(A) (3.39) 
$--~ oO 

in the weak sense for a suitable finite measure H on Sd_ r However,  P{IR~l > t} = P { I n I > t} 
and, since P{ R  1 ~>0} = 1 under the conditions of Theorem 4, we also have 

P{IR~I >t,  l~eA} = �89 I >t,  R e  A} 

for all A in the positive orthant  of S~_ 1. I t  follows tha t  (3.38) and (3.39) hold with R~ 

replaced by  R and H(A) by 2 H(A N positive orthant).  Now we can use the sufficiency par t  

of Theorem 4.2 in [19] to conclude tha t  the distribution of n-1 ~TRj-K~ converges to a 

stable law of index 1 for suitable vectors K~. 

Remark 4. The proof of the corollary in the case ~1 = 1 used the fact tha t  R >70 w.p.I.  

I t  would still work if R were concentrated in an open half space, i.e., if P(xoR >0} = 1 for 

some x o E Sd_I. However, in general one cannot conclude tha t  n -1 ~ R j - K  n converges in 

distribution to a stable law of index 1 from the existence of lira tP{xR>t}, xESa_l only. 

4. Solutions of random difference equations; general coefficients 

As in section 3 we want to find the asymptot ic  distribution of Yn defined by  (3.1), 

but  now without the restriction Mn>~0. Again we are interested in proving (3.5). In  the 

one dimensional case (d = 1) there is no difficulty in generalizing Theorem 4 because the  

basic results (2.62), (2.63) and (2.83) can be obtained directly from Theorem 1 or other 
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renewal theorems. (S O consists only of the two points + 1 and - 1  and we therefore only 

have to do renewal theory for functions on a ]inite Markov chain.) However, for d > 1 the 

proof of (2.62) and (2.63) breaks down in several places when we drop the condition M ,  >/0. 

(Most notably in the verification of condition (2.19) in the proof of Proposition 1.) Never- 

theless it is possible to derive appropriate  forms of (2.62), and (2.63) and (2.83) if we make 

assumptions on the absolute continuity of the distribution # of M 1. This does, however, 

require an alternate form of the renewal Theorem 1. Such an alternate theorem was stated 

in [11]. We state here without proof the results which can be obtained for d = 1 by  means 

of Theorem 1 and for d > 1 by  means of the alternate renewal theorem. 

THeOReM 5. (d= l ) .  Let M ,  and Q~, n >~l, be (real valued) random variables such that 

the pairs (Mn, Qn), n >~ 1, are independent and identically distributed. Assume that 

E log IMll <0,  (4.1) 
but that/or some ~1 > 0 

E [ M 1 ] ~ ' = I ,  {4.2) 

ElM1 ]u, log+ [ m  1 [ < oo, (4.3) 

0 < E ] Q I [ ~ ' <  o~. (4.4) 

I /  in addition log IMll  does not have a lattice distribution(i) and QI is nora constant times 

( 1 -M 1)  , i.e., 
P {Q1 = (1 - i l ) r  } < 1 (4.5) 

/or each fixed r, then the series 

R = ~ M1.. .  Mk-lQk 
k=l  

converges w.p.1, and the distribution o/the solution Yn o/(3.1) converges to that o /R ,  inde- 

pendently o/ Yo, Moreover 

lim t~'P{R >t} and lim t~Ip{R< - t} (4.6) 
~--~o0 t-->oO 

exist and are/inite. 

At  least one o/the limits in (4.6) is strictly positive. 

We need one further piece of notation for the general d-dimensional case. I f  M is any 

d x d matr ix  and M '  its transpose, then M M '  is symmetric and positive definite. We put  

2(M) = (smallest eigenvalue of MM')  �89 

We also remind the reader tha t  we defined the te rm "feasible" just before Proposition 1 in 

section 2. 

(1) In the present situation - ~  may be a possible value of log[Ms[. If this is so, the condition 
here means that the possible values of log [Mx[ which are not -c~ generate a dense group in R. 
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THEOREM 6. Let M n and Q. be d x d matrices, respectively d column vectors such that 

the pairs (Mn, Qn), n >1 1, are independent identically distributed and assume 

E log + HM, II < oo. (4.7) 

Then ~ = l i m  1 log [III~H exists and is < + o~ w.p.1. 
n-->v~ n 

I / ~ <  0 and (4.9) below holds, then the series 

R =  ~ MI . . .M._IQ  n 

converges w.p.1 and the distribution el the solution Y~ o/ (3.1) converges to that o / R ,  in- 

dependently el Yo. I / i n  addition the conditions (i)-(vi) below hold, then/or some xl E (0, x0] 

lim f " P { x R  >t}  (4.8) 

exists and is strictly positive/or all xESa_I. 

Here are the conditions (i)-(vi): 

(i) P {M 1 is singular} = 0. 

(ii) For  every open U c S a_ 1 and x ESn_ 1 there exists an n with P{(xIIn)-E U } > 0 .  

(iii) There exists an n, a cube C c R  a" and a y 0 > 0  such tha t  the distr ibution of [In 

has  a nonsingular (w.r.t. Lebesgue measure on R a') component  with a densi ty  at  

least Y0 on C. 

(iv) The group generated by  {log ~(g): ~ feasible} is dense in R. 

(v) For  every fixed column vector  r P {Q1 = ( I - M 1 )  r} < 1. 

(vi) There exists a x0 > 0 such tha t  

E[2(M~)] ~. ~> 1, 

EIIM~II"' log + IIM~II < ~ ,  

and 0 < E IQ 11 s~ < ~o. (4.9) 
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