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Let  G be a locally compact abelian group, M(G) the measure algebra on G, and A the 

spectrum or maximal ideal space of M(G). I t  is common knowledge that ,  for non-discrete G, 

M(G) is an extremely complicated Banach algebra with a very large spectrum which 

cannot be satisfactorily described. In  fact, much of the research in the area has 

consisted of constructing measures in M(G) which demonstrate tha t  A fails to have a pro- 

per ty  one might have hoped for. For example, M(G) is non-symmetric and, in fact, A 

contains infinite dimensional analytic structure (el. [28], [18], [8], [19]); also, M(G) has 

a proper Shilov boundary which is not the closure in A of the dual group of G (cf. [20], 

[12]). By contrast, one encouraging result on M(G) is Cohen's Idempotent  Theorem, 

which characterizes the idempotents in M(G) (cf. [4]). 

The purpose of this paper is to show tha t  there is one sense in which M(G) is sur- 

prisingly simple; specifically, the cohomology groups of its spectrum can be quite readily 

computed. In  fact, to compute the cohomology groups of A one needs only to investigate 

the spectra of the algebras LI(G'), where G' rar/ges over all 1.c.a. groups which are con- 

tinuously isomorphic to G. In  degree zero this result is just Cohen's Idempotent  Theorem. 

In  degree one it leads to a characterization of those invertible measures in M(G) which 

have logarithms in M(G). 

The class of algebras M(G) is a subclass of the class of all convolution measure algebras. 

This larger class also contains the algebras M(S) for S a locally compact topological semi- 

group and LI(G) for G a locally compact group. Our main results apply to any commu- 

tative, semi-simple convolution measure algebra. 
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Certain subalgebras of a convolution measure algebra will be group algebras in a sense 

we shall make precise in w 2. Each such group algebra is contained in a unique maximal 

group algebra. Our main theorem states that  the cohomology of the spectrum of a con- 

volution measure algebra is determined solely by the maximal group algebras it  contains. 

TH~OR~.M A. Let ~i~ be a commutative, semi-simple convolution measure algebra with a 

normalized identity (~. Let (~a} be the collection o/maximal group algebras in ~f~, and/or each 

a set ~ =~a i / ( ~  and ~ =~+C(~ i/(~ ~ .  For each ~, let A a be the spectrum o / ~  and 

let A be the spectrum o] ~ .  Then/or any coe]/icient group K, there is a map i*: ~ | H~(Aa, K)-+ 

H~(A, K) o/ cohomology, which is an isomorphism/or p > 0  and is onto ]or p=O. 

This theorem will be proved in w 3. I t  applies, in particular, when ~/J~=M(G). In 

this case the maximal group algebras have the form LI(Ga), where Ga ranges over those 1.c.a. 

groups whose group is G and whose topology is at least as strong as that  of G. Hence, each 

Aa will be the one point compactification of the dual group 0a of G~ or Ga itself if Ga is 

discrete. Thus, for the most interesting groups G, the expression H~(A, K) will be quite 

computable. For example, if G=R (the group of reals) then H~ Z)=Z,  Hi(A, Z )=  

Z|  and H~(A, Z)=APR (the p-fold exterior product of R over Z) for p > 1 (Corollary 

3.15). 

Theorem A has several consequences. For example, the Shilov Idempotent Theorem 

(cf. [17], [13]) implies that  H~ Z) is the additive subgroup of ~)~ generated by the 

idempotents of ~)~. This along with Theorem A yields the following generalization of 

Cohen's Idempotent Theorem: 

THEOREM :B. With ~)~ as in Theorem A, each idempotent #E~)~ has the /orm 

#=nl/~1+.. .  +nk#k, where, /or each i, n~EZ and ~t~ is a group character multiplied by the 

Haar measure in some group algebra contained in ~i~. 

In the case where ~/~=M(G), each ~ut in the above theorem must have the 

form d#i =x~dv~, where gt is a character on G and vt is Haar measure on some compact 

subgroup of G (cf. Corollary 4.1). 

The Arens-Royden Theorem (cf. [1], [15]) implies that  Hi(A, Z) is isomorphic to 

~J~-l/exp (~ ) - - t he  group of invertible elements of ~ modulo the subgroup consisting of 

elements which have logarithms. Hence, applying Theorem A in the case p = 1 leads to: 

THEOREM C. With ~ as in Theorem A, each #E~J~ -1 has a/actorization o/the/orm 

f l = f l l - ) S  f12 96...-)~ flk ~ e V  , where vE~J~ and each/u~ is an invertible element o/an algebra ~ 

with ~ a maximal group algebra in ~ .  
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In case ~ = M ( G ) ,  each/l~ in the above theorem will be an element of LI(G,)+CS0 

for some 1.e.a. group G, formed from G by possibly strengthening its topology (Corollary 

4.2). If G = R then the only such groups are R itself and Ra (R with the discrete topology). 

The cohomology groups of the spectra of LI(R)+C8 and LI(Ra)=Md(G) are known. 

Hence, in this case, we can strengthen Theorem C and obtain: 

COROT, LARY 4.3. If  #EM(R) -1 then #has  a /actorization of the form # = ~ - ~ x ~ e e v  

/or some kEZ, xER, and vEM(R); here ~ may be chosen to be any element of LI(R)+C(~o 

whose Fourier transform has winding number one about zero as a function on R U {oo}. 

The above corollary can be used to characterize the spectrum of each Wiener-Hopf 

operator W~, where W~/(x )=~f ( t )d#(x - t )  for feLl(R+), x>~0, and I~eM(R) (cf. [5]). 

Theorems B and C and their corollaries are proved in w 4. In w 1 we discuss terminology 

and background information, while w 2 is devoted to a characterization of the group algebras 

that  occur in a given ~J~. The critical Lemma of the paper (Lemma 5.1) is proved in w 5; 

this proof is delayed until the end of the paper because it involves speciahzed techniques 

that  are not used elsewhere. 

We apologize to the reader for the fact tha t  the paper is far from being self-contained. 

The machinery developed in [19], [21], [22], and [23] is not  common knowledge, but  is 

used here in an essential way. Also, we assume throughout tha t  the reader is 

famihar with basic commutative Banach algebra theory and harmonic analysis on 1.e.a. 

groups (cf. [13], [9], [16]). In  w 3 we assume the reader has some famiharity with basic 

sheaf theory as presented in the first two chapters of [3]. 

We are indebted to our colleague, R. G. Douglas, for raising the question (when does 

#EM(R) -1 have a logarithm?) which led to this research. 

1. Preliminaries 

This section is devoted to establishing certain terminology and reviewing portions 

of the theory of convolution measure algebras. 

A convolution measure algebra ~ is a partially ordered complex Banaeh algebra which, 

as a partially ordered Banaeh space, is an L-space (cf. [14], [19]) and whose multiplication 

(~t, v)-~# ~+ v satisfies certain conditions; specifically, if/x >70 and v >/0 then #~-v ~>0, [[#~+v]l 

= [[~t H [[v[[, and the closed convex hull of { t t l e ~ :  O~<#l~<tt}~-{vle~J~: O~<~,l~<v } is {co E~J~: 

0~<eo~<#~-v} (eft [19], [24]). 

If X is a locally compact tIausdorff space, then M(X) will denote the complex Banach 

space of all finite, inner regular, Borel measures on X. An L-subspace ~j~ of M(X) is a closed 

subspace such that  # E ~J~, v E M(X), and v absolutely continuous with respect to/z,  imply 
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that  v E ~l~. Any L-subspace of M(X) is a complex L-space. Conversely, a complex L-space 

can always be represented (in many ways) as an L-subspace of M(X) for a locally compact 

Hausdorff space X (cf. [141). The notions of total variation, absolute continuity, and mutual 

singularity can be defined purely in terms of the norm and order relation in ~j~ and are 

independent of any representation of ~ as an L-subspace of M(X). 

If ~j~ is an L-space we shall use the notation "/~ < <v"  for "# is absolutely continuous 

with respect to v", "/~• for "# and v are mutually singular", and " I # l "  for "the total 

variation measure for #" .  

We shall use the term "CM-algebra" to abbreviate "convolution measure algebra". 

An L-subspace (L-subalgebra; L-ideal) of a CM-algebra ~J~ is a closed subspace (sub- 

algebra; ideal) ~ such that  # E ~,  v E ~ ,  and v < </~, imply that  v E ~.  An L-subalgebra of a 

CM-algebra is also a CM-algebra (cf. [191, [241). 

If  S is a locally compact topological semigroup, then the measure algebra M(S) is a 

Ch[-algebra (cf. [19], [24]), as is any L-subalgebra of M(S). In particular, if G is an 1.c.a. 

group then M(G) and LI(G) are CM-algebras. 

The techniques we use to study algebras such as M(G) often involve taking an L- 

subalgebra of M(S) for a semigroup S (possibly G) and representing it as an L-subalgebra 

of M(T) for another semigroup T. I t  is this frequent change of space that  makes it neces- 

sary to define and study the category of abstract ClVl-algebras. The following definition 

describes the morphisms in this category: 

Definition 1.1. (cf. [191, Def. 2.5). If ~ and ~ are CM-algebras, then a CM-map 

90: ~J~-~ is a bounded algebraic homomorphism such that  if 0~</~E~rJ~, then 90#~>0, 

I1~11 =11~11, and 90{vE~J~: 0~<v~<~j~}={roE~: 0~<co~<90#}. 

If S and T are locally compact semi-groups and ~: S-+ T is a continuous homomorphism, 

then the map #-+/~o~-1: .M(S)~M(T) is a CM-map (el. [19], Lemma 1.2). 

If 90: ~)~-~ ~ is a CM-map, then the image of 90 in ~ is an L-subalgebra of ~; this is easily 

proved from the conditions in Definition 1.1. Also, if a CM-map is one to one, then it is an 

order preserving isomorphism-isometry onto its image (cf. [191, Corollary to Theorem 1.2). 

The main representation theorem for CM-algebras is the following: 

PROPOSITION 1.1. (el. [19], Theorems 2.2 and 2.3). 11/~)~ is a commutative CM-algebra, 

then there is a compact topological semigroup S and a CM-map #~/~s: ~J~->M(S) such that: 

(1) the image o//~->/uz is weak-* dense in M(S); 

(2) the set ~ o/all continuous semicharacters on S (non-trivial, multiplicative, complex 

valued/unctions on S) separates the points o/ S; and 

(3) each complex homomorphism o/ ~]~ has the/orm #->fs/d#s /or a unique/E~. 
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Note that  if ~ is semisimple then (2) and (3) above imply that  #-~/~s is an order 

preserving isomorphism-isometry. In any case, the image of/~-~#s is an L-subalgebra of 

M(S) which is isomorphic tO ~ modulo its radical. 

We shall call S the structure semigroup of ~JL 

PROPOSiTIOn 12. I /  ~i~ and ~ are commutative CI~I-algebras with structure semigroups 

S and T respectively, then each CM-map q~: ~ ] ~  induces a continuous homomorphism 

~: S ~  T such that the diagram 

~ --> ?) T 

~M(T) 

commutes, where d,u=,uo~ -1. 

I / the  ad]oint q~*: O~*--->~J~* maps the spectrum o / ~  onto the spectrum o/ ~J~, then ~ is one 

to one. 

Proo/. Let A c ~ *  and B c  ~* be the norm closed linear spans of the sets of complex 

homomorphisms of ~j~ and ~ respectively. Now ~)~* and ~* each have a natural commuta- 

tive C*-algebra structure such that  A and B are closed *-subalgebras isomorphic to C(S) 

and C(T) respectively (cf. [19], w 2). Since ~: ~ - ~  is a homomorphism, ~0": ~*-+~J~* maps 

B into A. Since ~ is a CM-map, ~0": ~*-+~J~* is a *-algebra homomorphism which preserves 

the identity (cf. [19], Theorem 1.2); hence q~*]B: B ~ A  has the same property. Since A and 

B are isomorphic to C(S) and C(T) respectively, we conclude that  there is a continuous 

map ~: S-~T such that  the diagram 

B ,A 

I 1~1o ~ [ 
C(T) , c(s) 

commutes. The isomorphism A-~C(S) maps the spectrum of ~ onto $ and, similarly, 

B-+C(T) maps the spectrum of ~ onto ~ (el. [19], w 2). I t  follows t h a t / o ~ E ~ U  {0) for 
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every /E ~. Since semicharacters separate points in S and T (Proposition 1.1 (2)), we con- 

clude that  ~ is a semigroup homomorphism. 

The isomorphism F-+]: A-+C(S) is characterized by the fact that  F(/u)= S/d/~z for 

# E ~j~ (cf. [19], w 2). This, with the construction of ~, implies that  a(#s) = (~#)r where a(#s) = 

~S o ~-1. 

If ~* maps the spectrum of ~ onto the spectrum of ~rj~, then ]-+/o=: C(T)-~C(S) maps 

onto ~. Since ~ separates points, it follows that  cr is one to one. 

One consequence of the above proposition is tha t  the structure semigroup S and the 

embedding #-+/~s are unique up to the obvious equivalence. 

Throughout the paper we shall work with CM-algebras ~ which are semisimple. Propo- 

sition 1.1 allows us to consider such an algebra to be an L-subalgebra of M(S), where S 

is the structure semigroup of ~ .  Except in certain cases we shall automatically do this. 

If # E ~ then we set 

= L/d  

for ]E~. If we give ~ the weak (Gelfand) topology generated by the family of functions 

( # ' : #  E ~)~}, then Proposition 1.1(3) allows us to identify ~ with the spectrum of ~ and 

#-~#^ with the Gelfand transform. Warning! Convergence in the weak topology does not 

imply pointwise convergence on S. 

The value of Proposition 1.1 is tha t  it allows us to identify the spectrum of ~ with a 

function space ~ which has a very rich structure. For example, if ~, gE~ and ]g~O then 

]gE~; if ] e ~  then its complex conjugate f and absolute value I]I are also in ~. In fact, 

each ] e $  has a unique polar decomposition ]= Ill h, where hE$, ]hI~= ]h I, and h is zero 

exactly on the interior of the zero set of ] (cf. [19], w 3). 

If  S has an identity e, then ](e)=g(e)=](e)g(e)=1 for ], ge$ .  Hence, ]g~O and ]gE~. 
I t  follows that,  in this case, ~ is a semigroup under pointwise multiplication. If ~ has a 

normalized identity ~, then S has an identity e and ~ =~e is the unit point mass at e (cf. 

[19], Theorem 3.1). 

Unfortunately, the above operations on ~ do not generally behave well with respect 

to the weak topology on ~. Conjugation is clearly continuous. However, multiplication is 

separately, but  not always jointly, continuous and the map ]-~ ]]] is not generally con- 

tinuous. For this reason, in w 3 we shall sometimes use a stronger topology on ~---a topology 

under which all the above operations are continuous. 
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2. Group algebras 

In this section we give an abstract characterization of those CM-algebras which are 

CM-isomorphic to group algebras. We also identify, for a given CM-algebra ~J~, an L-sub- 

algebra ~J~i of ~J~ which is made up of the group algebras which ~j~ contains. 

De/inition 2.1. Let  ~ 4(0) be a commutative, semisimple CM-algebra. If ~ contains 

no nonzero proper L-ideal, then ~ will be called an (abstract) group algebra. If ~ contains 

an L-ideal ~0~=(0) such that  ~0 is a group algebra and ~/~0 is a radical algebra, then 

will be called an almost group algebra. 

Note that  if G is an 1.e.a. group and LI(G) denotes the algebra of absolutely continuous 

measures on G, then a closed proper ideal I of Li(G) is annihilated by some character of 

G (el. [16], 7.2). If  I is a proper L-ideal, t h e n / ~ e I  implies ~ e I  for ~ of the form d~=)~d# 

(Z E ~). I t  follows that  every Z E ~ annihilates I and, hence, I =0.  Thus, the concrete group 

algebra LI(G) is an abstract group algebra in the sense of Definition 2.1. 

If Rad Li(G) is the intersection of all maximal ideals of M(G) containing Li(G), then 

toad LI(G) is an L-ideal in M(G) (cf. [21], Lemma 1). If  ~ is an L-subalgebra of M(G) 

such that  L l ( G ) ~ c R a d L i ( G ) ,  then ~ contains Li(G) as an L-ideal and ~/Li(G) is a 

radical algebra. Hence, any such ~ is an almost group algebra in the sense of Definition 

2.1. We shall prove that  every almost group algebra has this form and that  every (abstract) 

group algebra has the form Li(G). 

PROPOSITION 2.1. I /  ~ is an almost group algebra, then the L-ideal ~o o/De/inition 

2.1 contains every L-subalgebra o / ~  which is a group algebra. Also, ~o is contained in every 

nonzero L-ideal o] ~. 

Proo/. If ~ i  is an L-subalgebra of ~ which is a group algebra, then ~ i  f3 ~o is an L-ideal 

of ~i .  Hence, either ~ i f ~ 0 = ( O )  or ~ i c ~ 0  . However, if ~ i f ~ o = ( O )  then ~ -+~ /~0  

maps ~ i - -which  is semisimplc isomorphically into a radical algebra. Since this is impos- 

sible, we conclude that  ~ i c  ~o- 

If ~ is an L-ideal of ~,  then ~ f~ ~o is an L-ideal of ~o- As above, we conclude that  

~o C ~ ,  or ~ ,  = (0). 

The following proposition is the key to this section: 

PROPOSITION 2.2. Let ~ be a commutative, semisimple CM-algebra considered as an 

L-subalgebra o/ M(S), where S is its structure semigroup. Then the ]ollowing statements are 

equivalent: 
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(1) ~ is an almost group algebra; 

(2) S is a group; 

(3) there is an l.c.a, group G, with S as its Bohr compacti/ication, and an L-subalgebra 

~ ' c  M(G), with I 2 ( O ) ~ ' c R a d L ~ ( G ) ,  such that the map i: G ~ S  induces a CM- 

isomorphism #-~#o i-x: M(G)-~M(S) which maps ~ '  onto ~ .  

Proo/. The equivalence of (2) and (3) is the hard part  of the proposition. However, 

this has already been proved in Theorem 2 of [23]. Obviously (3) implies (1). Hence, we 

shall prove that  (1) implies (2). 

To prove that  S is a group, we need only show tha t  1 / 1 ~ 1 for every / e ~. This follows 

from the fact that  ~ separates points in S (Proposition 1.2). However, if / 6 ~  then 

Kr={seS:  ]/(s)[ ~<r} is a compact ideal in S for each re[0,  1]. Since the set ~r of meas- 

ures in ~ which are concentrated on K~ forms an L-ideal of ~ ,  (1) implies tha t  either 

~ r=(0)  or ~ 0 c ~  r for each r. Note that  ~ r . ~ t c ~  ~'t, so that  if ~ 4 ( 0 )  for some re(0,  1) 

then ~ #(0) for all t 6 (0, 1). In  this case, ~ 0 c  ~ ~>0~ ~ =~0. However, this implies that  

/ z ~ [ d #  is a nonzero complex homomorphism of ~ which vanishes on ~0--eontradicting 

the fact tha t  ~ /~0  is a radical algebra. We conclude that  ~ = ( 0 ) f o r  all r < l .  This 

means that  []l =1 a.e./# for each # 6 ~ .  Since / is continuous and ~ is weak-* dense in 

M(S), we conclude that  1/I :--1. This completes the proof. 

COROLLARY 2.3. A CM-algebra ~ is a group algebra in the sense o/ Definition 2.1 q 
and only i/ it is isomorphic via a CM-map to a concrete group algebra LX(G). 

Definition 2.1 and Corollary 2.3 give an alternate characterization of group algebras 

to that  of Rieffel in [14]. 

PROPOSITIO~ 2.4. I] ~ is a group algebra, ~ a semisimple CM-algebra, and q~: ~ j ~  

a CM-map, then q)(~) is a group algebra. 

Proo/. If ~: ~-+~j~ is a CM-map and ~ is a group algebra, then the image of ~ is an 

L-subalgebra of ~rj~, which we may as well assume is ~j~ itself. If ~ '  is an L-ideal of ~ ,  then 

~-1(~,)  is an L-ideal of ~.  Hence, ~-l(~J~')=(0) or ~ - 1 ( ~ , ) = ~  and, then, ~)~'=(0) or 

~rj~, =~yj~. Since ~J~ is semisimple, we conclude that  it  is a group algebra. 

If ~ is a semisimple CM-algebra, then by a group algebra in ~J~ we shah mean an L- 

subalgebra of ~ which is a group algebra. 

The support of a subspace ~ c  ~ ~ l l  be the smallest closed subset of the structure 

semigroup S of ~J~ on which each measure in ~ is concentrated. 
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PI~OPOSlTIO~ 2.5. I /  ~J~ is a commutative, semisimple CM-algebra and 92 is a group 

algebra in ~ ,  then 

(a) every complex homomorphism of 92 extends to a complex homomorphism o/~J~; and 

(b) the support o/ 92 in S is a group which is isomorphic to the structure semigroup o/ 

92. 

Proo/. Par t  (a) follows from the fact that  a group algebra is symmetric and, hence, 

has Shilov boundary equal to its spectrum (cf. [16]; and [13], Corollary 3.3.26). 

For part  (b) let T be the structure semigroup of 92 and 92r the canonical image of 92 

in M(T).  By Proposition 1.2, the injection i: 92-~f)2 induces a semigroup homomorphism 

~: T-~S such that  the map 92r-§ ~ is just # -~# o a  -i. I t  follows that  ~(T) is the support 

of 92. Note that  T is a group by Proposition 2.2. That  ~ is an isomorphism onto a(T) follows 

from part  (a) and Proposition 1.2. 

If K is a group in a compact semigroup S, then K is contained in a unique maximal 

group which is necessarily compact (cf. [27]). 

I~OPOSlTIO~ 2.6. Let ~J~ be a commutative, semisimple CM-algebra with structure semi- 

group S. Then each maximal group in S is either the support o] a unique maximal group algebra 

in ~92 or is a set of measure zero/or each iz E ~)2. Furthermore, each group algebra in 9~ is con- 

tained in a unique maximal group algebra in ~)2 which necessarily has a maximal group as 

support. 

Proo/. If K ~  S is a maximal group, let 92 = (# E ~J~: # is concentrated on K}. If 92 4= (0) 

it follows from Lemma 2.1.C of [23] that  92 is an almost group algebra with structure semi- 

group K. Hence, if 920 is the L-ideal of Definition 2.1, then 920 is a group algebra with sup- 

port  K. If  92oc 921 and 921 is a group algebra in ~PJ~, then the support of 921 is a group contain- 

ing K. Since K is maximal, it follows that  921 has support K and, hence, 921c 92. Proposition 

2.1 then implies that  921=920 . Hence, 920 is maximal. 

If 92 is any group algebra in 9)2, then its support K is a group in S. If K i is the maximal 

group in S containing K, then K i is not a set of measure zero for ~ and so K 1 supports a 

unique maximal group algebra 921 . We noted in the above paragraph that  921 contains every 

group algebra with support in K 1. Hence, 92c921. 

PROPOSITION 2.7. I /  921 and 92~ are group algebras in the semisimple CM-algebra 

9~, then the closure o/ 92i ~ 92~ is also a group algebra in 9~. 

Proo/. As in Proposition 2.2, let 921 and 92s be isomorphic to Li(Gi) and Li(Gz) 

respectively. Let  cq: Gv+K1cS  and as: G2-->K2cS be the maps of Gi and G~ into their 
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Bohr compactifications. Then by Proposition 2.2, ~->/~0~11 and v->vo~ t are the iso- 

morphisms LX(Gx)->~tc ~j~ and LI(G~)-+~= ~)~ respectively. Let  fl: G t x G~->S be defined 

by fl(gt, g~)= ~r ~2(g~). Note that  fl is a continuous homomorphism. I t  follows that  

to-+toofl-x: Lt(Gx • G~)->~]~ is a CM-map which maps # • to #'-x-v', where # '  = # o ~  t and 

v' = v o ~ 1 for # ELI(Gt), v ELt(G~). Hence, the image of to-> to o/7 - t  is the closure of ~1 ~- ~ .  

I t  is a group algebra by Proposition 2.4. 

Definition 2.2. If  ~ is a commutative, semisimple CM-algebra, let ~ l  denote the closed 

linear span in ~j~ of the group algebras in ~J~. 

PROPOSITION 2.8. The space ~i~ t above is an L-subalgebra o/ ~j~ such that: 

(1) the structure semigroup S t o/~J~l is a union o/groups, and inversion in these groups 

induces an involution on ~)~t under which it is a symmetric algebra; 

(2) every complex homomorphism o/ ~ t  extends to a complex homomorphism o/ ~J~; 

(3) the injection i: ~J~t->~J~ induces an isomorphism o / S  t onto the support o/~J~t in ~;~. 

Proo/. That  ~J~l is an L-subalgebra of ~J~ follows from Proposition 2.7. 

If S 1 is the structure semigroup of ~ 1  and we consider ~rJ~ 1 to be embedded in M(St), 

then each group algebra of ~ t  is concentrated on a group in S t by  Proposition 2.5. Since ~ t  

is the closed linear span of its group algebras, it follows that  the union of the groups in S 1 

is dense. However, it is also closed (ef. [27]). I t  follows that  S t is a union of groups. 

Now inversion in the groups of S t defines a continuous map 8->s' of S t onto S 1 with 

s" =s  (cf. [27]). If we set #*(E) =/~(E') for E a Borel set of St, then #->#* is an involution 

on M(St) (cf. [19], w 3). Furthermore, ;u->g* maps ~ t  into itself. In fact, if K =  S 1 is a maxi- 

mal group and ~ is the group algebra in ~J~l supported on K, then K is the Bohr compacti- 

fication of G, where G->K induces the isomorphism LI(G)->~. I t  follows that  LI(G)-->~ 

is a *-isomorphism (preserves involution). Hence, each group algebra in ~J~t is closed under 

*and so is ~1.  Now Theorem 3.4 of [19] implies tha t  ~==(#*)" for ;uE~J~ t and ~)~t is a 

symmetric algebra. This proves part  (1). 

Par t  (2) follows from the facts that  a symmetric Banach algebra has Shilov boundary 

equal to its spectrum and that  every element of the Shilov boundary of ~ 1  extends to ~9~ 

(cf. [13], Corollary 3.3.26). Then part  (3) follows as in Proposition 2.5. 

Definition 2.3. We shall call a CM-algebra ~J~ small if there exists # E ~  such that  

~< < #  for every vE~)~. 

I t  is easy to see that  in an arbitrary CM-algebra the small L-subalgebras are directed 

upward and have union all of ~J~. However, in w 3 we shall need the stronger result that  this 
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is also true of the small Z-subalgebras ~ whose group algebras are exactly the 

intersections with ~ of the group algebras of ~ .  

PROrOSITION 2.9. Let ~j~ be a commutative, semisimple CM-algebra. Let ~ be the/amily 

o/small Z-subalgebras ~ o / ~  such that ~ = ~ N ~J~. Then ~ is directed upward under in- 

clusion and [J ~ = ~i~. 

Proo/. First note that  if ~ is a group algebra and ~ '  is an L-subalgebra of ~,  then ~ '  

is also a group algebra if and only if it is closed under the natural involution on ~.  In fact, 

if ~=LI(G) and 0 # ~ ' c ~  with (~ ' ) * =~ ' ,  then the support of ~ '  in G must be a closed 

subgroup of positive measure--hence, an open subgrouir--and ~ '  must consist of all ele- 

ments of ~ supported on this subgroup. I t  follows that  if ~ c  ~ is an L-subalgebra, then 

~1 = ~ f3 ~ 1  if and only if ~ N ~ 1  is closed under the involution on ~ l -  

Let  #e~f~ with #~>0 and I1 11 =1. If v = ~ 2 - ~ #  ~ then { (oe~:  co< <v} is a small L- 

subalgebra of ~ containing/~. I t  follows that  every element of ~J~ is contained in a small 

L-subalgebra. 

Now if {~'} is a nested sequence of small L-subalgebras with ~ '  = {ve~l~: v < <#4} 

for 0 ~<#~ e ~j~ with ]]#,l] = 1, then v = 52-~/~ is a measure such that  ~ = {co e ~j~: ~0 < <v} is 

a small L-subalgebra containing each ~t  with (J ~ dense in ~.  Similarly, if ~1 and ~ are 

two small L-subalgebras of ~rj~, then the L-subalgebra generated by their union is also 

small. 

Let  ~ be any small L-subalgebra of ~l~. We let ~1 be the L-subalgebra generated by 

and (~ fl ~J~l)*. We define a sequence { ~ }  inductively by letting ~+1 be the L-subalgebra 

generated by ~ and ( ~ f l  ~J~l)*. Note that  ~ ~ + 1  and ( ~ N  ~)~1)*c ~ ~+1 for each i. 

Furthermore, each ~ is small. If ~ is the closure of [J ~ ,  then ~ o  is a small L-subalgebra 

containing ~ and such that  ( ~ N ~ ) * ~ ( ~ N ~ J ~ I ) .  I t  follows that  ~ r  ~1  and 

~ e ~ .  
We conclude from the above that  each # fi ~ is contained in some member of ~ and that  

for any pair ~ ,  ~ there is a small L-subalgebra ~ with ~1, ~ and an ~ 3 ~  

such that  ~ c  ~3. The proposition follows. 

3. The main theorem 

In the initial portion of this section (until Proposition 3.13) we shall use the blanket 

assumption that  ~ is a small, commutative, semisimple CM-algebra with a normalized 

identity. The structure semigroup of ~ will be S, ~J~l will be the closed linear span of the 
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group algebras in ~ ,  and S 1 will be its structure semigroup. By Proposition 2.8, we may 

identify S 1 with the support of ~1  in S. 

We let i A: ~ - ~ 1  be defined by i A/=/]s,. Note that  ff we identify ~ and ~1 with the 

spectra of ~ and ~rJ~ 1 respectively, then i ~ is the map between the spectrum of ~ and 

the spectrum of ~J~l induced by the injection i: ~J~v+~cJ~. By Proposition 2.8, i ̂  is onto. 

Since we have assumed that  ~J~ has a normalized identity, it follows that  S has an 

identity e and that  Oe is the identity of ~J~. Since @~e is a group algebra, we have eES~ and 

8e is an identity for ~ 1  as well. We also have that  both ~ and ~1 are semigroups and are 

compact spaces in their respective Gelfand topologies and that  i^: ~-+~1 is a continuous 

homomorphism. 

If K is a given coefficient group, we shall be studying the map i*: H~(~l, K)-~H~(~, K) 

induced on cohomology by i*: ~ x .  Here we are refering to sheaf eohomology relative to 

the constant sheaf with stalk K (cf. [3]). This is equivalent to Ceeh and to Alexander- 

Spanier eohomology in our situation (cf. [3], Chapter 3). Our object will be to show that  

i* is an isomorphism for all p. We shall do this by proving that  i'-1({/}) is a connected set 

with trivial cohomology for each ] E ~1 and then applying the Vietoris mapping theorem 

(of. [3], II .  11.2). 

Since we have assumed that  ~ is small, we can find #e~J~, F~>~0, []#]] =1 such that  

v <  < #  for each ~E~r)~. We use the measure # to define a metric on ~. 

De]inition 3.1. F o r / ,  g e ~  set d(/, g )=~[ / -g]d# .  We shall call the topology that  d 

induces on ~ the strong topology. 

PRO]?OSITION 3.1. The strong topology on ~ is a complete, metric topology which 

dominates the weak (Gel/and) topology o/~.  Furthermore, (/, g)-+/g: ~ • ~ , ~ ,  /---> I/[: ~ $ ,  

and ]~]: ~--->~ are all continuous maps in the strong topology. 

Proo/. I f /~-~/s t rongly  in ~, then [ / - /~ [  4 2  for each n and ~[/- /~]d#~O.  I t  follows 

that  /~-+/ in the weak-* topology of L~ Hence, ~ ̂  (/~) = ~/~d~ ~ ~/dv = v ̂  (/) for every 

< </~, i.e., for every v 6 ~ .  Thus, the strong topology dominates the weak topology. The 

other assertions are obvious. 

We denote {/e~: /~>0} by ~+. Note that  if ]>~ge,~ +, then d(/, g )=~( / -g )d#= 
~-(/)-~^(g). 

The next  proposition is the key to the section. Everything that  follows is just technical 

manipulation. The main ingredient (Lemma 5.1) of the proof is delayed until w 5. 

PROPOSITIO~ 3.2. I /  / ~ +  then there is a unique minimal h6~  + such that his, =/Is~. 

Furthermore, h~=h and / and h are joined by an arc ~: [a, b]->~+ such that 
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(a) q~(x) ~<q~(y) /or x<_y; 

(b) /~'@(x))=x /or all xE[a, b]; and 

(c) ~ ( b ) = ]  and ~ ( a ) = h .  

Proo/. Recall  t h a t  S 1 is a union of groups (Proposit ion 2.8). I t  follows t h a t  if g E ~ ,  

then  g(s)=0 or 1 for each sES1; i.e., g~=g. In part icular ,  (/]s,)~=/Is,. 

The set  {g E~+: g ls~ =/Is~} = (i') -~ (i'(/)) N ~+ is a weakly  compact  subsemigroup of 3 +. 

Since glg~ <~gl and glge <~g2 it follows t h a t  this set  is directed downward.  We conclude t h a t  

i t  has a m in imum h. Since h 2 ~<h and h~is , =hls, we have  h =h 2. 
We set a =/~" (h) and  b =#'(/). I f  e > 0 and c E [a, b], let (I)(c, ~) be the  set  of all functions 

~v: [c, b]-+~ + such t h a t  ~v is nondecreasing, ~v(b)=/, #'(~v(c))=c, and ] # ' ( ~ ( x ) ) - x ]  ~<s 

for all xE[c, b]. We shall prove  t ha t  (I)(a, s ) # O  for each e > 0 .  

For  fixed e > O  let c0=inf  {c: (I)(c, e ) 4 • }  (note t h a t  (I)(b, s ) # O  trivially).  Choose se- 

quences {c,} and {~v,} such t ha t  c, 4 c o and  ~, E (I)(c~, e). Since ~+ is weakly  compact ,  there  is 

a funct ion ~v: (Co, b ] ~ 3 +  such t h a t  on each [% b] the  sequence {~vt}~zj clusters pointwise 

(in the  weak topology) to ~v. Since each ~v~ is nondecreasing, so is ~v. Clearly, ~ v ( b ) = / a n d  

hm~__>oo+/z'@(c))=lim,#'(e~(ct) ) =l im,  c,=CO. Since ~ is nondecreasing, g=limo_~0+~v(c) 

exists in ~+ and f i (g)=c  0. Hence,  we m a y  ex tend  ~v to [c 0, b] by  set t ing ~(CO)=g. The  in- 

equal i ty  [# '@~(x ) ) -x ]  ~ s  holds on [c~, b] for each i and,  hence, I # ' @ ( x ) ) - x l  <~  holds 

on [c 0, b]. Thus, we have  proved  t h a t  ~Ed)(CO, s) and  {cE[a, b]: O(c, s ) # O }  contains a 

m in imum c o . 

Suppose t h a t  the  n u m b e r  c o above  is not  a. Choose ~vEO(CO, e) and  let F(CO)=g. Now 

p(g) = c o > a =p(h) .  Hence,  g ~ h and  the  set U = {s E S: g(s) > h(s)} is nonempty .  Since h ~ = h, 

either  h(s)= 0 or h(s)= 1 for each s E S. I t  follows t h a t  U = {s E S: g(s)> 0 and h(s)=0} and 

U is an ideal in the  subsemigroup {s E S: g(s) > 0}. Fur thermore ,  U contains no points  of S1 

since g<~/and/Is~=h[s~. At this point  we invoke L e m m a  5.1, which implies t h a t  there  is a 

g ' E ~  + such t h a t  g'<~g and 0 < / ~ ^ ( g ) - # ' ( g ' ) < m i n  {e, Co-a }. I f  # ' ( g ' ) = c ' ,  we define q ' :  

[c', b] b y  q '=~v on [c 0, b] and cv '(x)=g'  for xE[c', Co). Clearly, ~v'E@(c', s) and c'<CO. This 

contradicts  the  min imal i ty  of c o and  proves  t h a t  co=a. 
We now have  t h a t  (I)(a, s ) 4 ~  for each e > 0 .  Clearly each O(a, e) is compac t  in the  

topology of weak pointwise convergence and the  O(a, s) are nested downward.  Hence,  

N~CP(a, s) # ~ .  I f  ~vE [7 ~(P(a, s) then  q satisfies (a) and (b) of the  proposi t ion and ~v(b)=/. 

We mus t  show t h a t  ~v(a)=h. 

I f  ~v(a)Is~ # / I s ,  then  there is a max imal  group K of posi t ive/~-measure in S~ such tha t  

~v(a) [ ~ = 0 a n d / ]  ~ = 1. However ,  ~v is nondecreasing and each ~v(x) is ei ther one or zero on  K.  

Hence,  the  funct ion # ^ @ ( x ) ) = x  mus t  have  a j u m p  d i scon t inu i ty - - a  contradiction.  We 
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conclude that  q~(a)[z,=/is,. Since h is minimal with this property, we have h<~(a). 

However, # ' (h)=a=#^(~(a)) .  We conclude that  h=~v(a). This completes the proof. 

De/inition Z2. ~f g e $ ,  we set ag= i - - , ( {g } )={ / e$ :  !l~,=g}- ~f ~ = h e $ +  and hl~,= 

]g I, then we set A~ = {[ E a~: I/] 4 h}. 

A tree in ~g will be a set A such t h a t / E A , / ~ e a g ,  and Ih] ~< ]!] imply tha t /~eA.  

Our object is to show that  ~lg has trivial eohomology. Roughly speaking, we shall do 

this by first showing that  there is a point ~ E gig such that  every A~ is contractible to 

and then showing that  ~lg can be approximated in a strong sense by finite unions of the sets 

AL 

~ R o P o s m o N  3.3. I /  k is the mini .~ l  e~ment o/ t ~  set {!e~+: / l~ ,= Igl}, then 
b.~g={~} where ~E~g and ]91 <~1[I /or every [Etlg. Necessarily, ~ is in every tree in t'lg 

and, in particular, in every A~. 

Proo]. Since k 2 = k (Proposition 3.2) it follows that  U = {s E S: k(s) > 0} = {s E S: k(s) = 1 } 

is an open-compact subsemigroup of S. Let G be its kernel (minimal ideal). We shall prove 

that  G ~ S x. Let G 1 be the kernel of U I3 $1 and let p and Pl be the idempotents in G and G 1 

respectively. Since GI= U, we have pp~=p. If p +Pl  there exists hE~ such that  h(p)=0 

and h(pl)=l, since ~ separates points in S. We may assume he$+. I t  follows that  h = l  

on G~ and, hence, h = 1 on U N S 1. Thus, hk I s, = k I s, = ]g [ and hk ~< k. I t  follows that  hk = k 

by the choice of k. However, k(p)= 1 while h(p)=0--a contradiction. We conclude that  

P=Pl and G=GI=S 1. 

Now since GcS1, we have /11c=/2 ] ,=9]~  for every/1, [~Eglg. However, spEG for 

every sEU. Hence /l(s)=/l(ps)=/~(ps)=/2(s) for ]1, ]~E~lg and sEU. Since k = 0  on 

S ~ U ,  we have k/l=k/~ for all/1,/~E~lg. Thus, the set {k/: [E ~-lg} consists of a single ele- 

ment 5. Since k/Is, = I gig =g for /E ~ ,  we have ~ E gig. Clearly, ~ is the unique element of 

minimal absolute value in ~-lg. 

PROPOSITION 3.4. Let A be a compact tree in ~g which is contained in A~ /or some h. 

Then A is contractible to the point ~. Hence, A is connected and HP(A, K ) = 0 / o r  p > 0  and 

arbitrary coe//icient group K. 

Proo/. We have h2=hE$ + and his ,= Ig]" By Proposition 3.2, there is a map ~: 

[a, b ] - ~  + such that  ~(a)=k (the minimal [E~+ such tha t / I s ,=h[s~  = [g[) and ~(b)=h. 

Furthermore, ~ is nondecreasing and/~'(~(x)) =x.  I t  follows that  ~0 is strongly continuous. 

Consider the map O: [a, b! •  defined by (~(x,/)=q~(x)./. We have O(a,/)=k/=~ for 

all ]EA and (~(b, / )=hi=/  since A c A ~ .  Furthermore, IO(x, [)1 = [~(x)]] <~hl[ I ~< ][[ and 
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e(xl)l~,=~(x)ll~,=kl~,.ll~,= Ial~=a. Since A is a tree in ~, ,  i t  follows that O(x , / )EA 

for each x. 

To complete the proof that  ~) is a homotopy, we must show that  it is continuous. If  

xa~x~[a,  b] and / a -~ /weak ly  in A, then for each v~j~ 

I ~ e(x, h d~ - ~ e(x~,/~)d~l < I ~(!- /~)  ~ (x) d~l + I ~/~(~(x) - ~(x~)) d~l 

< I S(I - t~) ~ (x) d~l + S I ~(x) - r I d~-~ O. 

Hence, 0 is weakly continuous. This completes the proof. 

COROLLARY 3.5. Each tree in f~g is connected. In  particular, f~g is connected. 

Proo/. If A is a tree in f~g a n d / EA,  then limn_~ ]/]1/n =h is an idempotent in ~ such 

that  his ̀  = Ig]" Also,/EA~ N A which is a tree in A~. By Proposition 3.4 A~ N A is contrac- 

tible to {~}~ A. I t  follows that  A is connected. 

De/inition 3.3. Let Hg={he~+:  h~=h and his ,=ig]}.  If heH~ and e>0  let 

PBOPOSITIO~r 3.6. For hEHg and s>0 ,  the set A~(e) is a compact tree. Furthermore, 

N~>0A~(~) =A~. 

Proo/. If /EA~(s), /1E~a, and 1/1] ~ l/ i ,  then I /1-] lhl  = I/~l la-hl ~< I /11~-hl  = 

I l -  ~hi. Hence, /1 E A~(e) and A~(~) is a tree. The statement ~ I / - / h l d #  ~ e is equivalent 

to ]v^(/)-v'(/h) I = I~(/-/h)dvl <e for all v e ~  v~th I~] <ft. Thus, A~(~) is weakly closed, 

hence, compact. Note that  for /E~a,  /E N~>0A~(s) if and only if /=/h.  Since h~=h it 

follows t h a t / = / h  if and only if ]/I ~<h. Hence, N~>0A~(e)=A~. 

P a o P o s ~ o ~  3.7. Let (~a: hEH~} be an arbitrary collection o/positive numbers indexed 

over H~. Then there exists a finite set {h i ..... h~} ~ H a such that 

4=1 

Proo/. Suppose that  {eh: hEHg} is a collection for which the proposition fails. Let 

9~ be the directed set consisting of all finite subsets of Hg ordered by inclusion. By assump- 

tion, for each a={h  1 ..... hn}Eg~, we may choose /aE~a~O~=lA~'(eh~). 

For each ~ we choose h a E Hg such that  t/aI < ha (this can be done as in the proof of 

Corollary 3.5). Let kE~ + be a weak cluster point of the net {ha}. Note that  kiss= ]gI since 

haist= IgI for each ~. If h=limn k iln then hEHg. However, note that  
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(ylf=-hf=ld )=  SIf=l=d  yih=-hh=l=d <  y(h=-2hh=+hh=)d  
= ~(h:, - hh=) d# = g^(h=) - #~(hh,), 

and {#" (h=)-#" (hh=)} clusters to zero since {ha} clusters to k ~<h. I t  follows that  ]= E A~(ea) 

for a cofinal set of ~'s, hence, for some ~ with h E ~. This contradicts the choice of the net 

{/=} and completes the proof. 

At this point we begin our final assault on the proposition that  ~ has trivial coho- 

mology. We shall assume the reader is familiar with basic sheaf theory as presented in 

Chapters 1 and 2 of [3]. 

We shall define a class of sheaves on g2~ containing the soft sheaves and the constant 

sheaves and satisfying a two out of three theorem. We then prove that  each sheaf in this 

class is acyclic on ~a by an induction argument. 

De/inition 3.4. A sheaf $ on ~g will be called semisoft if 

(1) the restriction map F(~g, $)-~F(A, $) is onto for each compact tree A ~  ~g; and 

(2) $]A is acyelic if A is any compact tree contained in a set A~ for hEHg. 

PROI'OSITION 3.8. SO/t sheaves and constant sheaves on s 9 are semiso]t. 

Proo]. Property (1) holds for all soft sheaves by definition. If ~ is the constant sheaf 

with stalk K, then F(~g, ~ ) =  K = F ( A ,  ~ )  for each compact tree, since ~g and A are 

connected. I t  follows that  (1) holds for constant sheaves. Property (2) holds for constant 

sheaves by Proposition 3.4 and for soft sheaves by II.9.8 of [3]. 

PROPOSITION 3.9. I /  0 ~ S ~  $ ' ~  $"~0 is a short exact sequence o/sheaves on ~o and 

$ is semisoft, then/or each compact tree A c  ~g we have 0-~F(A, $)~F(A,  S ' )~F(A,  $")~0 

is also exact. 

Proo/. We must prove that  fl* is onto. Note that  if h E Hg then A N A~ is a tree contained 

in A~. By definition, SIAnA~ is acyclic. Hence, Hi(AN A~, $)=0 and fl*: r ( A n  • s ' ) ~  

F(A N A~, S") is onto. 

~f V"er(A, S") then for each hEH~ choose ~ A E F (  N A~, S') such that  fl*~ =~" [Ana~. 

We may assume that  ~h EF(Uh, S') and fi ~]h =~1"1 vh for some Weak neighborhood Uh of 

A N A~ in A (cf. [3], II.10.4(e)). I t  follows from Proposition 3.5 that  there is an eh>0 

such that  AN A~(eh)c Uh. By Proposition 3.6 we may choose {h 1 .... , h~}~H o such that  

g2g= ( i n  A~(eh~). Let K~=A~(e~,) N A andAj = U~_IK~ and note that  each A~ is a compact 

tree in A and A~ = A. 

We proceed by induction and suppose that  we have defined an element ~]s' E F(Aj, $') 
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! 

such that  fl*vi;=~"lA F Let ~e;=~j;]Aj--~h~+l]~qn~,+ 1 and note that  fl*~'j=O. Hence, 

there is an element ~ E F(Aj fl Kj+ 1, $) such that  ~*~j = 4;. Since S is semisoft and Aj n K~+ 1 

is a compact tree, we can extend ~j to an element ~r S). Note that  ~ = ~ j + l +  

on Ajn Kj+I and, hence, there is a section  ;+le r ( h . .  S') such that 
! I @ P _ II and ~j+~ [ Kj = r/hj+~ + ~*~j. Clearly, fl ~J+l - ~ I At+ ~. By induction, there is an ~ '  e F(A, S') 

such that  fl*~' =~7". Hence, fi* is onto. 

PROPOSITIO~ 3.10. I /  O ~ S L S ' L S " ~ O  is a short exact sequence o/ sheaves on ~a 

and S and S' are Semisoft, then S" is also semisoft. 

Proo/. That $" is acyclic on each compact tree in A~ follows trivially. If A is a compact 

tree in ~g and ~" eF(A, $"), then Proposition 3.9 implies that  there exists ~/' eF(A, $') 

such that  fl*~'=~". Since S' is semisoft there is a section ~ 'ElP(~,  S') such that  

~']A=~'- If  ~"=fl*~' then ~"eF(a~, S") and ~" lh=y" .  Hence, S" is also semisoft. 

PROPOS~XO~ 3.11. Each semisoft shea/ on f ~  is acyclic. 

Proo]. Let $ be semisoft and let S z C ~  be a soft resolution of S (cf. [3], I][.1.1.). 

We set :K~=Ker 3i for i=O, 1 ..... Note that  0-* Y(~-+ C~-+~i+l-+0 is exact for i=0 ,  1 .. . .  

and S~:K ~ is an isomorphism. Since S is semisoft and each C ~ is semisoft, we conclude by 

induction that  each :K t is semisoft. Hence, by Proposition 3.9 we have 0-+P(f~e, ~ ) - +  

F(s C~)-+F(g2~, ~+~)-+0 is exact for each i. I t  follows that  0~F(f2~, S)-+F(f~, CO) -+ 

F(fl~, C~)~... is exact. Hence, S is acyclic (cf. [3], II.4.1.). 

PROPOSITIO:N 3.12. I /  K is any coe//icient group, then the map i*: ~ - + ~  induces a 

map i*: H'(~I, K)-+H~(;~, K) which is an isomorphism /or each p. 

Proo]. By Corollary 3.5 and Proposition 3.11, we have that  for each g ~  the set 

i'-l({g}) =~2~ is connected and has trivial cohomology for any constant sheaf. That 

i*: H~(~I, K)-+H~(~, K) is an isomorphism in each degree now follows from the Vietoris 

mapping theorem (cf. [3], II.11.2). 

Our next step is to remove the assumption that  ~j~ is small. We do this by using 

Proposition 2.9. 

P ~ o P o s ~ o ~  3.13. Let ~ be a commutative, semisimple CM-algebra with a normalized 

identity. Let ~j~ be the closed linear span o/the group algebras in ~J~. Let S and S~ be the struc- 

ture semigroups o/~J~ and ~2f~ respectively. I / i ^ :  ,9 -+ ~q~ is the map induced by i: ~J2i~ -+ ~2f~, then 

the map i*: H~(~, K) -+H' (~ ,  K), induced by i ' ,  is an isomorphism /or each p and each 

coe/]icient group K. 
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Proof. Let {~}aGu be the collection of algebras which are in the set ~ of Proposition 

2.9 and contain the identity, indexed by a directed set in such a way that a ~<fl implies 

~ c ~ .  For each fl~<~ let )'~p: ~ - ~ c  8 and j~: ~-->~j~ be the injections and j~ :  ~ - + ~  

and j~: ~-~$~ the corresponding induced maps on the spectra. We let It=z, $~, ]c~, and ~a 

be the corresponding maps for ~ and ~ =~J~l fl ~ and their spectra ~ and ~ .  Note 

that {$~, ?'~} and {~,  k~} are inverse limit systems of compact Hausdorff spaces with 

lira ~ =~  and lim ~ - - ~ ,  since [J ~ = ~J~. Furthermore, the diagram 

k: 
,8T 

commutes for each ~ since ~ = ~J~l, ~ ~ -  If we pass to cohomology we have H*(8, K) = 

lim H*(~ ~, K) and H*(~x, K) =lira H*(~,  K) (el. [3], II.14.4). Also, the diagram 

H*(~, K), H*(~% K) 

i* 

k* 
H*($~, K) , H * ( ~ ,  K) 

commutes. Since each ~ is small, we have each i* is an isomorphism by Proposition 3.12. 

It  follows that i* is also an isomorphism. 

The above proposition reduces our main theorem (Theorem A) to the case where 

~J~ = ~1 is a sum of maximal group algebras. We need one final proposition before proving 

Theorem A. 

P R 0 P 0 S I T I 0 ~ 3.14. Let A be a commutative Banach algebra with identity e and spectrum 

A. Suppose A =AI |  where A 1 is a subalgebra containing e and A~ is an ideal. Let A~ = 

A~ + Ce. I / A  1 and A~ are the spectra o / A  1 and A~ respectively, and ii : A->A1 and i~ : A-+ A~ 

are the maps induced by the injections i1: AI  ~ A and i~: A~ ~ A,  then iX and ~ induce maps 

i*~ and i~ o/cohomology such that i*~ + i~: H~(A1, K) | HP(A~, K) -~H~(A, K) is an isomorphism 

/or each p > 0 and surjeetive for p = O. 
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Proo/. Since A =AI |  s with A s an ideal, the injection i1: A ~ A  has a left inverse 

~: A ~ A ~  with kernel A s. Hence, ii: A-~A~ has a right inverse ~ ' :  A~-~A. If we identify 

A1 with g" (A~) ~ A, then i" : A-~ A1 c A is a retract  of A onto A~. I t  follows that  the eoho- 

mology exact sequence for the pair (A, A1) splits into short exact sequences 

0 -+ H;(A, A1; K) -~ H'(A, K)~H~(A~, K) -~ 0 

with i~: H~(A1, K)-~H~(A, K) a right inverse for g* in each degree (cf. [6], p. 50). 

Now the map i~: A-~A s is one to one on A~A~ and maps A1 to a single point p. I t  

follows that  i~: H~(Ae, {p}; K)~H~(A, A1; K) is an isomorphism. However, H~(As, {p};g)-~ 

H~(A s, K) is an isomorphism for p >0  and injective for/o =0.  The proposition now follows 

from inspection of the commutative diagram: 

0 ~ H~(A2,{p}; K) -~ H~(A2, K) -~ H~({p}, K) -~ 0 

t k  

0-~ H'(A, A1; K) -~ H'(A, K)~--~- H'(AI, K) -~0 

THEOREM A. Let ~ be a commutative, semisimple CM-algebra with normalized identity 

and spectrum A. Let (~a} be the collection o/all maximal group algebras in ~)~. I f  (~ E ~ set 

~'~ = ~  and i/(~(~a set ~ ' ~ = ~  +C~. Let Aa be the spectrum o/~'~ and i~: A->Aa the map 

induced by the injection i~: ~ - ~ ; ~ .  I/, /or each a and each coe//icient group K, i*: 

HP(A a, K ) ~  HP(A,K) is the corresponding map o/cohomology, then the map i*: ~a| K) 

-+H'(A, K) induced by {i*} is an isomorphism/or p > 0  and onto/or p=O. 

Proo]. By proposition 3.13, we may assume without loss of generality that  ~ is the 

closed linear span of its maximal group algebras, i.e., tha t  ~fJ~=~J~r 

Since ~ = ~)~1 the structure semigroup S of ~ is the union of its maximal groups. Each 

such maximal group is uniquely determined by the idempotent it contains. If Pl . . . . .  P= 

are finitely many idempotents, then they generate a finite subsemigroup of S. I t  follows 

that  any finite collection of maximal groups is contained in a subsemigroup of S which is 

the union of finitely many maximal groups. Hence, any finite collection of maximal 

group algebras of ~)~ is contained in an L-subalgebra of ~ which is a sum of finitely 

many maximal group algebras (Proposition 2.6). I t  follows that  the L-subalgebras of ~)~ 

which are finite sums of-maximal group algebras form a directed (upward) set whose union 

is dense in ~rJ~. We conclude by a limiting argument, as in Proposition 3.13, tha t  Theorem A 



214 J.L. TAYLOR 

is true if it is true when ~j~ contains only finitely many maximal group algebras. We shall 

complete the proof by induction. 

The group algebra C~ may or may not be maximal. We induct on the number n of 

maximal group algebras in ~ which are different from C5. If n = 1 then either ~ = ~ is a 

(discrete) group algebra or ~ = ~  + C~ for a group algebra ~ with ~ ~ .  In  either case, 

~'= ~J~ and the theorem is trivially true. To complete the induction, we will show that  if 

n > 1 then ~[~ = ~)~1Q ~2  with ~)~ an ideal and each of ~1  and ~ = ~ 2  + C~ a stun of fewer 

than n maximal group algebras different from C8. In view of Proposition 3.14, this will 

complete the proof. 

If  ~ = ~1| ~2 with ~1 and ~z maximal group algebras and ~ E ~1, then necessarily ~2 

is an ideal and we automatically have the required decomposition of ~ .  If this is not the 

case, but  n > l ,  then ~ contains at least two maximal group algebras which do not 

contain 8. I t  follows that  there are idempotents p ~=q in S with ID ~=e ~=q (e is the identi ty 

of S and ~ = ~e)- If ] E~ separates io and g, then V = {s E S: [/(s)[ = 1} is an open-closed sub- 

semigroup of S with S"-xU={sES: ]/(s)[ =0} an ideal. Each of V and S ~ U  contains at  

least one maximal group of S different from {e} (U contains either p or q but  not both). 

I t  follows that  ~)~I={#E~: # is concentrated on U} and ~ = { # E ~ :  # is concentrated 

on S ~  U} yields the required decomposition of ~[~. This completes the proof of Theorem A. 

We should mention that  the cohomology groups of the spectrum of an algebra ~'= 

~§  for ~ a group algebra, are quite computable. In fact, if ~=LI(G) then the 

spectrum of ~ '  is the one point compactification of the dual group G. By the structure 

theorem for 1.c.a. groups (cf. [9], [16]), G has an open-closed subgroup of the form R ~ • H, 

where H is compact. Hence, the cohomology of ~ tJ {oo} can easily be computed if one knows 

the cohomology of H. However, the cohomology of any compact abelian group is computed 

in [10]. 

If  ~ =M(G) for an 1.c.a. group G, then it follows from Lemma 2.4 of [23] tha t  each 

maximal group algebra in ~J~ has the form L~(G'), where G' is an 1.c.a. group continuously 

isomorphic to G. For the real line R, the only such groups are R itself and Ra (R with the 

discrete topology). Hence, the only maximal group algebras in M(R) are L~(R) and 

Ma(R) = LI(Ra). The dual group of R is R and its one point compactification is the circle. 

The dual group of R~ is the Bohr compactification of R. The integral cohomology groups 

of the Bohr compactification of R are just the groups A~R (the lo-fold exterior product of 

R considered as a Z-module) by Hofmann's results in [10]. Hence, we have the fol- 

lowing Corollary to Theorem A: 

COROLLARY 3.15. I] A is the spectrum o] M(R), then H~ Z) =Z, H~(A, Z ) = Z |  

and Hv(A, Z)=A~R ]or p > l .  
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4. Applications 

In this section ~J~ will denote a commutative, semisimple Cl~I-algebra with a normalized 

identity ~. The collection of maximal group algebras in ~J~ will be denoted ( ~ a } ~ ,  and for 

each ~, ~"  will be ~ if (~ e ~= and ~ + (~ if ~ ~ a .  The spectrum of ~"  will be A~ and 

the spectrum of ~J~ will be A. 

Recall from Theorem A that  the injections i~: ~ : -~ j~  induce maps i*: H~(A~, K)-~ 

H~(A, K), for each coefficient group K, such that  the resulting map i*: ~| K)-~ 

H~(A, K) is an isomorphism for p > 0  and is onto for p=O. If we apply this when K = Z  

and p = 0  we obtain a generalization of Cohen's idempotent theorem (cf. [4], [16]). 

THEOREM :B. ]/ /~E~ is an idempotent, then #=nff_~l +...+nk/~k, where ]or each i, 

n~ e Z  and d/u~ =z~dv~, where ~ is the Haar measure in a group algebra in ~ and X~ is a character 

on the corresponding group. 

Proo]. The group H~ Z) is naturally isomorphic to the additive group of continuous 

integer valued functions on A. If  #2=#E~J~ then #^ is such a function. By Theorem A, 

/2 =i*(/1Q ... | =i:,/1 + ... +i*~/; for a set/1 ..... /j with each/~ a continuous integer valued 

function on A~. By  the Shilov idempotent theorem (cf. [17], [13]) each/ t  is v; for some 

v~E~'~ with v~ a linear combination, with integer coefficients, of idempotents in ~'~. I t  

follows that  Theorem B is true if it is true for each algebra of the form/fl(G) § C~. However, 

this is trivial (cf. [16], Chapter 3). 

COROLLARY 4.1. (Cohen's Idempotent Theorem). I / G  is an 1.e.a. group, then each idem- 

potent in M(G) has the/orm nff~l §247 where/or each i, n~EZ and dvi=zid/~,  where 

v~ is the Haar measure o / a  compact subgroup o] G and Z~ is a character o /G.  

Proo/. I t  follows from Lemma 2.4 of [23] that  each maximal group algebra in M(G) 

has the form LI(G'), where G' is an 1.c.a. group whose group is G and whose topology 

is at least as strong as the topology of G. Since a compact subgroup of G' is also a compact 

subgroup of G, the corollary follows from Theorem B. 

We obtain another application by applying Theorem A in the case p = 1. We denote 

the group of invertible elements of ~)~ by ~-1 .  

i 1 THv, O~V.M C. I/#E~)J~ -1 then # =/~v)e /~2 ~ ... ~ /un ~ e ~, where v E~)~ and each #~ E ( ~ ) -  

or 8 o m e  oQ. 

Proo]. By the Arens-Royden Theorem (cf. [1], [15]), Hi(A, Z) is naturally isomorphic 

to ~j~-l/exp (~rj~). Hence, there is a natural onto homomorphism 7: ~J~-I-~HI( A, Z) with 
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Ker 7 = e x p  (~0~). Similarly, there are maps ~ :  (9~')-~-~H~(A~, Z)wi th  Ker  ~,~ =exp(9~).  

The naturali ty of the Arens-Royden isomorphism implies that  

97~ -~ _, ~ - ~  

H ~ ( A ~ , Z )  - , H~(A,Z)  

is a commutative diagram for each ~. I t  now fo~Jows from Theorem A that there are indices 

~1 .. . . .  ~ and elements ~u~ E (~'~)-1 such that  /~ ~- (/~1"... ~/z~) -~ E Ker  ~ = exp (~J~). This 

completes the proof. 

C O R O ~ Y  4,2. I /  G is an l.c.a, group and /~EM(G) -~, then/~=luv)e...~e#~e" with 

~,EM(G) and each ~ an element o/ (L~(G~) +C~0) -1 /or  some 1.c.a. group G~ whose group is (7 

and whose topology iz at least as strong as the topology o/ G. 

We are currently working on a paper in which we shall use Corollary 4.2 to 

develop methods for determining the spectrum of a measure in M(G). We can use these 

methods, for example, to prove tha t  if/z ~M(G) and the powers of/~ are mutually singular 

and singular with respect to any group algebra in M(G), then the spectrum of ~u is exactly 

the unit disc. 

COROLLARY 4.3. H /~EM(R) -~ then [~ =~k~e6~e~ /or some vEM(R), yER,  and kEZ, 

where ~ is any element o/ LI(R) +C(5o such that ~" has winding number one about zero as a 

/unction on R U {~} .  

Proo/. The only 1.c.a. groups continuously isomorphic to R axe R and Ra (R with the 

discrete topology). Hence, by Corollary 4.2, # =/~1~-/~2~-e ~ with/~1E (LI(R) + (~80) -1 and 

/~EMa(/~) -1. However, by  results of Bohr (cf. [2]), / t 2 = ~ e  ~* for some y E R  and 

eczEMa(R). Also, since the spectrum of L1(R)+(35o is the one-point compactifieation of 

the line, (Lx(R) + C~0)/ex p (LI(R) + C(~o) ~ Z and is generated by any element whose Fourier 

transform has winding number one about zero. Since the measure ~ above has this 

property, we conclude that  /z l=~k~e ~' for some kEZ and r . If  we set 

v=~o+eo~+eo 2 the proof is complete. 

COROLLARY 4,4. J~/ ~EM(_I~) -1 then [~ ~an be [ac~ored a~ [~=[~l-)~[~$-yv~I~-)~ x with 

kEZ, xER,  ~ as in CoroUary 4.3, and/~IEM(R+)-I,/~2EM(R-) -1. 
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Proo/. We write #=~/k~Sx~(-e" as in Corollary 4.3. If vl=ulR+ and v , = v - v l ,  then 

/t~ 1 = e ~' and/~2 = d '  yields the above faetorization. 

If  ju E M(R) then the Wiener-Hopf operator W~:/2(R+)-~/2'(R +) is defined by Wi,/(x) = 

~ / ( t )d /~ (x - t )  for  xER +, /EL~(R+). I t  is easy to see that  W~ will be invertible (for any 

p >~ 1) provided # = /z~- /~  with Iz~EM(R+)-~ a n d / ~ E M ( R - )  -~. By Corollary 4.4, this will 

be true of/~ E M(R) -~ provided k = 0 = x. Since the k and x of Corollary 4.4 can be computed 

for a given #, Corollary 4.4 yields strong information about the spectrum of a Wiener- 

Hopf operator. This is discussed more fully in [5]. Our conversation with R. G. Douglas 

concerning this problem led to the research presented here. 

5. The key lemma 

This section contains the core of the proof of Theorem A-- the  missing ingredient in 

the proof of Proposition 3.2. Throughout the section, ~}~ will be a CM-algebra which is 

commutative, semisimple and has a normalized identity (~. 

L E M MA 5.1. Suppose there exists # E ~ with # >~ 0 and / E ~+ such that sup {#" (g): g E ~+, 

g ~</, g =k/} <ju^(/). Then/~ =/and  there ks a group algebra in ~1~ supported on the kernel o/the 

open-closed subsemigroup U={sES: /(s)=l}.  Hence, the kernel o/ U is contained in S 1. 

The proof of Lemma 5.1 relies heavily on machinery developed in [22] which gives a 

relationship between spectral properties of n-tuples of measures in a CM-algebra and the 

existence of absolutely continuous measures. Unfortunately, the results of [22] do not 

apply directly, since in [22] it is always assumed that  ~)~cM(G) for an 1.c.a. group G. 

However, the techniques of [22] can be extended to cover our present situation. 

Note that  if sup {#'(g): g~/ ,  g4 / ,  gE~+~<~u'(/), then /~=1; otherwise, /r4=/, / r< / ,  

and / fEB+ for r > 1, and hmr_~l+/r =/, uniformly, so that  hmr_,l+#" (/') =#" (/). I t  follows 

that  we may as well assume that  / =  1 since, otherwise, we may replace ~J~ by the L-sub- 

algebra (vE~j~: v is concentrated on V}, where U=(sES: / ( s )=l} .  Also, we may as well 

assume/z is normalized. Hence, throughout the remainder of the section, we shall assume 

that  ju ̂  (g) ~< k < 1 =/~" (1) for all g E~ + with g ~: 1. Our object will be to prove that  the kernel 

of S supports a group algebra in ~J~. 

We shall first identify an 1.c.a. group G whose Bohr compactification is the kernel of 

S and whose group algebra, LI(G), stands a chance of being embedded in ~j~. 

PROPOSITIO~ 5.2. With the Gel/and topology on ~, the group H=( /E~:  l/l =1) is 

open in ~ and ks an 1.e.a. group. 
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Proo/. By  the strong topology on ~, we shall mean the topology in which/~-~] if and 

only if S [ / - /~]dv->  0 for every positive v E ~I~. Note tha t  the weak and strong topologies 

agree on H. In  fact, i f / a - ~ / w e a k l y  in H and vE~)~ +, then 

and weakly. Hence, Tl/-/=ld  0 and strongly. Since 
multiplication in 3 is jointly strongly continuous and conjugation (which is inversion in H) 

is weakly and strongly continuous, we have tha t  H is a topological group. To show tha t  H 

is locally compact we shall show tha t  i t  is open in ~ - - a  compact space. 

I f  fEH and gE3~H,  then we set dv=[d# and note tha t  

Iv^(/)-,, (g)l=lS(l-g)td ,l> Slll d ,-I dd ,l Slll d -Slqld  
= ~ ' ( 1 )  - ~ ^ ( g )  > / 1  - k > 0 .  

I t  follows tha t  H is weakly open in ~ and is an 1.c.a. group. 

Let  G be the 1.e.a. group whose dual group is H. Since the kernel of S is a compact 

group whose dual group is H with the discrete topology, it follows tha t  the kernel of S 

is G-- the  Bohr compactification of G (cf. [16], Chapter 1). Let  ~: G-~GcS be the natural  

map of G into its Bohr compactification. 

We shall now construct a new semigroup S o and an embedding ~i~-+M(So) such tha t  

S o has most of the properties of the structure semigroup of ~j~ except tha t  it is only locally 

compact. This new semigroup will have G as its kernel rather  than  G. 

Consider the locally compact topological semigroup S • G. We set So=((s, g)ES • G: 

ps =~(g)), where :pEG is the idempotent in the kernel of S. Since g: G-+G and s-+ps: S-+G 

are continuous homomorphisms, it  follows tha t  S o is a closed subsemigroup of S • G. Hence, 

S o is a locally compact topological semigroup. 

Note tha t  the map g-+(~(g), g)EG • G~S  • G is a topological isomorphism of G onto 

an ideal in S 0. I t  follows tha t  we may  identify G with the kernel of S o via this map. Also, 

the projection (s, g)-+s: S • G--->S is, when restricted to So, a continuous one to one homo- 

morphism /3: So~S with the property that/31~ is the map ~: G-~G. Furthermore,  the 

image of/3 in S is exactly (sES: psEa(G)). We shall prove tha t  every measure in ~J~ is 

concentrated on this subset of S. 

I f  vE~j~ then ~p~e~EM(G) and for ]EH, (~p~-v)" ( ] )=/(p)v  ̂  ( / )=v ' ( / ) .  Since v" is con- 

tinuous on H, it follows tha t  O ~ e v = w ~ a  -~ for some w~M(G) (cf. [16], 1.4.3). I t  follows 

tha t  there is a countable set (K~)~a of compact subsets of G such tha t  ~-)ev is concentrated 

on U ~ ( K ~ ) .  Hence, v is concentrated on U~=~L~cfl(So), where L~=(s~S:ps~(K~)}. 
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The sets L~ are not only in the image of fl but  f l - l (L , )  = {(s, g) ~ S0: g ~ K,} is compact in S 0. 

I t  follows tha t  each measure v ~ ~ has a unique pre-image v' in M(So) such tha t  v =v '  off -1. 

Hence, there is an L-subalgebra ~J~'c M(So) such tha t  v'-~v'ofl -~ is an isomorphism of ~ '  

onto ~ .  

Now if F is a complex homomorphism of ~J~, then F(~)= ~s]&' = ~s./ofld~' for s o m e  

/EN. Since/off  is a bounded, continuous semieharacter on So, we have tha t  each complex 

homomorphism of ~J~' is given by  an element of No, where N O denotes the set of bounded, 

continuous semicharacters on S 0. I f  we identify ~ with ~J~', we have proved: 

P~OPOSITIOhr 5.3. There is a locally compact topological semigroup So, with kernel G, 

such that ~i~ may be identi]ied with an L-subalgebra o/M(So) in such a way that each complex 

homomorphism o/ ~J~ has the ]orm ~:->~:'([)=Ss./d~: /or some [EN o. 

Note tha t  the semieharacters on S O of the form /off f o r / E N  separate points in S 0. 

This follows since fl is one to one and ~ separates points in S. 

In  passing from S to S O we m a y . h a v e  lost, in addition to compactness, another 

property of the structure semigroup: conceivably }}J~ may  fail to be weak-* dense in 

M(So). Hence, the functions ~(/)=Ss~ for ~E~J~ may  fail to separate points in N 0. If  

/, gEN o we w r i t e / ~ g  if ~^(/)=v'(g) for every ~ e ~ .  Since each complex homomorphism 

of ~ has the form v~v^(/ofl) for some /E N, each g E N 0 will be equivalent mod ( ~ )  to some 

/off with ]EN. 

Our hypothesis tha t  ju ~ (])~< k < 1 for all /EN+ with / 4 1  becomes, after embedding g)~ 

in M(S0) , #^ (/) ~< k < 1 for all / E N~ with / + 1. 

Since file is the natural  embedding of G in its Bohr compactification C4 and since G 

is the kernel of S o and G is the kernel of S, the map /->]off is an isomorphism of 

{/EZ: I/] = l }  onto {gEN0: Igl =1}. We shall, henceforth, call the latter group H. Recall 

tha t  it is the dual group of G. We shall denote by  g 0 the set {[EN0: I/I ~ 1}={/EN0: ]"~g 

for some gEH}. Since each element of H has the form ]off f o r / E N  with I/I =1,  it follows 

tha t  {~': r E ~ }  separates points in H. 

PROPOSITION 5.4. I /  p is the idempotent o[ S o contained in G, then {c}~-~v: ~E~J~} 

is weak-* dense in M(G). 

Pro@ Clearly ~ e ~ J ~ = { ~ - v :  ~E~J~} is an L-subalgebra of M(G). I t  will be weak-* 

dense if and only if its support T in G is all of G, i.e., if and only if no open set in G is a set 

of measure zero for all of ~p ~ ~J~. Now, since ~p ~-~J~ is an L-subalgebra of M(G), T is a closed 

subsemigroup of G. 

If /EH={hENo: ]h I =l}=d, then ( ~ ) ' ( / ) = / ( p ) v ' ( / ) = ~ ' ( / ) .  Since {u':~E~J~} 
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separates points in H, it follows tha t  T cannot be contained in a proper closed subgroup of G. 

I f  T # G  then by  Lemma 2 of [24] there is a continuous homomorphism ?: G-+R such tha t  

(0) # T c  R +. However, this implies tha t  for each x >0  the map Fx, Fx(v)=Se-~v(P~)dv(s), 

is a complex homomorphism of 93~. I f / ~ E $  0 is the semicharacter such tha t  F~(v)= S/~dv, 
then clearly / x E ~  and / x + l .  However, lim~_~o+#'(/x)=limx_,o+~e-ZV(VS)dl~(s)=l. This 

contradicts our assumption tha t  sup {#" (/): / E ~ ,  / + 1 } < 1. Hence, T = G and the proof 

is complete. 

I f  we can prove tha t  some nonzero measure v E ~j~ is concentrated on G, then the proof 

of Lemma 5.1 will be complete. In  fact, it will then be the case tha t  when ~ is represented 

as an algebra of measures on S, the kernel G of S is not a set of measure zero for v; by  

Proposition 2.6 this implies tha t  G is the support  of a group algebra in ~j~. 

By the structure theorem for 1.c.a. groups (cf. [16], Chapter 2), G has an open 

subgroup G i such tha t  G 1 ~ Rnx  K for some n ~> 0 and some compact group K. Since G i 

is open and ~ ~-~j~ is weak-* dense in G, the open subsemigroup S 1 = {s E So: ps E GI} is not 

a set of measure zero for ~ .  I f  92 is the L-subalgebra of ~J~ consisting of measures con- 

centrated on Si, then we shall prove tha t  92 and S i satisfy the same conditions we have 

concerning ~ and S 0. Note tha t  G i is the kernel of S 1. 

P R O B O S I T I O N  5 .5 .  (a) Each complex homomorphism o/92 has the/orm v->v'(/)=~ /dv 
/or some/E~i; 

(b) there exists/~E92 + such that sup {~i(/): / E ~ ,  / +  1}< 1 =#i(1) ;  and 

(c) ~( -92 is weak-* dense in M(Gi). 

Proo/. (a) We shall prove tha t  a complex homomorphism of 92 has the formv-+~s~/dv 
for some /EG 0. Then /Is, will be the required element of H i. Now the set of complex 

homomorphisms of 92 of the form v-+~s,/dv (/EGo) is a compact subset of the spectrum of 92, 

since it is the image under restriction of the spectrum of 992. To show tha t  this set is the entire 

spectrum of 92 we must  show tha t  if vl ..... v=E92 and vi(/) ..... vL(J) do not all vanish for 

any /EGo, then the equation 

Vl-~-~O 1 "~ ... "~- Vn-)(- (.0 n : ~ (*) 

has a solution for eo i ..... w~E~. However,  since G 0 determines the spectrum of 9)2, (*) 

does have a solution for to I ..... eo.E~r)~. I f  eo~=og, lz, then ~ E ~  and (~o~-eo~)~h is 

concentrated on So~S  i for each i. Note tha t  S i. ( S 0 ~ S i ) c  So~S  1 and S i. S i c  S r Since 

S i contains the support of ~ (which is the identi ty of So), we conclude tha t  vx~ew~ + ... + 

vn%eo~ =8 as well, and (*) has a solution in 92. This completes par t  (a). 

(b) Suppose tha t  sup {~u~(/): ]E~I+, /+ l}=ju~(1)  for all ~u1E92+. Since ~ - ~ ' ( / )  is a 



COHOMOLOGY OF T H E  SPECTRUM 221 

complex homomorphism of ~ for ]E~.~I, w e  have v'(/)--~'(g) for all u E~  for some gE~ 0. 

I t  follows that  sup (#i(/): / E ~ ,  / +  1}=/~i(1) for a l l /~IE~ +. This implies there is a net 

( /a}c ~ with/~ 4 1 for each ~ and/~i(/~)-~#i(1) for all ~ I E ~  +. Without loss of generality 

we may assume that  (/a} converges t o / E ~  in the weak topology determined by ~ on 

~0. I t  follows that  / =  1 on the support of ~ in S 0. 

Let  T be the support of ~ in S O and note tha t  T is a closed subsemigroup of S 0. 

Furthermore, if Tx=TN (sESo: psExG1} for xEG, then Proposition 5.4 implies tha t  

Tx ~: O for each x E G (recall that  G 1 and, hence, each xG 1 is open in G). Note that  Tp = T fl S 1 

is the support of ~ and T x. T~c  Tx.y for each x, yEG. 

If sET  then sET  x for some x. If we choose tETx-1, then stET~ and, hence , / ( s t )= l .  

However, / E ~ then implies that /(s)  =/(t) = 1. Hence, / = 1 on the support of ~ .  This implies 

that  l im#'(/~)-~#'(/)=l which contradicts our original assumption that  sup(# ' (g) :  

g E ~ ,  g+  1}<1. This completes part  (b). 

(c) Since G 1 is an open subgroup of G, part  (c) follows immediately from Proposition 

5.4. 

Now that  we have proved Proposition 5.5 we will forget about ~,  $1, and/~1 and simply 

assert that,  without loss of generality, we may assume that  our group G has the form G = 

Rn• K for some compact group K and some integer n. 

If it were true that  n =0, i.e., tha t  G-=K, then the dual group H of G would be a discrete 

open subset of the spectrum of ~J~. The Shilov idempotent theorem would then im- 

mediately imply that  the Haar measure of G was an element of ~rj~, and we would be 

finished. The fact that  n may not be zero forces us to resort to a combinatorial procedure 

introduced in [22]. 

We define a map ~: So~R  ~ to be the map 8-+p.s: SonG followed by the projection of 

G onto R' .  

De/initon 5.1. If A is a compact subset of R n, set ~A(s) =sup (e-X'~ xEA} for each 

sESo, and ~0~(s)=~_-~(s)=inf (e-X'~ xEA} (el. Definition 2.2 of [22]). 

Several of the remaining propositions will not be proved here. They have proofs which 

differ in no essential way from the proofs of similar propositions in [22]. In  each case, the 

only difference is tha t  in [22] the underlying space was a group, whereas here it is the semi- 

group S 0. In particular, the following proposition is proved essentially as in Lemma 2.1 

of [22] (it is trivial in any case): 

PROPOSITION 5.6. I] A and B are nonempty compact subsets o /R  n, xER n, and s, tESo, 

then: 
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(a) ~VA is continuous on So; 

(b) qJA(S't) <~qJ~(s)qvA(t) and q/A(st) <~ q~'A(S)q~A(t); 

(C) ~ =~<A>, where <A> is the convex hull o] A; 

(d) B c  A implies ~ <<-~'B <~q~, <-q~A; 

(e) q~nuB = m a x  @A, ~S); and 

(f) ~A+x(s) =e-x ~(~)~As). 

De]inition 5.2. (cf. Definition 2.3 of [22]). (1) Le t  ~fJ~lor denote the linear space of 

(possibly infinite) measures v on the ring of bounded Borel sets of S 0, such tha t  v I c E ~)~ 

for each compact  set C c So; 

(2) for v E~J~lor set [Iv[[A =SVA(s)dlv I (s) and Ilvll; =.fr (s) for each compact  set 

A ~ R~; 

(3) for each compact A c R ~  set ~(A)={~e~loo: [N[~< ~ )  and ~ ' (A)=  

As in L e m m a  2.2 of [22], the  properties of ~o~ and ?~ described in Proposit ion 5.6(b) 

can be used to prove tha t  the  convolution product  v ~+ to exists and is in OJ~'(A) i f v  6 FA(A) 

and t o O l ' ( A ) .  ~n fact  II~*toll~ ~< II~hlltoll~- Furthermore, if bo th  v and to are in  ~J~(A) 

then v~+to E ~ ( A )  and II~*tollA ~< I1~11~ Iltoll~. I t  follows tha t  ~E(A) is a Banach algebra and 

~J~'(A) is a Banach module over ~ ( A ) .  

I f  A and B are compact  sets in R ~ with B ~ A ,  then Proposi t ion 5.6 (b) implies t ha t  

Y2i~(A)~J~(B)c~J~'(A). Hence each ~ ( B )  for B ~ A  is a submodule of the ~T~(A)-module 

FA'(A). Also, since ~v i =~<~>we have ~(A)=~)~(<A>) and we m a y  as well restrict a t tent ion 

to convex subsets of R =. 

The next  proposit ion follows from Lemmas  2.6 and 2.7 of [22], which also hold in our 

present situation. 

PROI 'OS]T]ON 5.7. I] A is a compact, convex subset o/ R ~, then the correspondeffce 

B ~ f ~ ( B )  (B compact, convex in A) de/ines a convex stack o/ submodules o/ the ~j~(A)- 

module ~ ' ( A )  in the sense o/ De/inition 3.4. o/ [22]. 

I f  #x . . . . .  # ~ ( A )  then  the equation 

/ ~ - v ~  + ... + / ~ - v ~  = 5 (1) 

m a y  have a solution v~ ... . .  v~ E~9~(B) for some compact,  convex sets B ~  A and not  for others. 

I f  x 6 A  we say (1) is locally solvable at  x if (1) has a solution v~, ..., v~E~J~(AO V) for some 

compact  neighborhood V of x. 

PROrOS~T~O~ 5.8. I f  x ~ A and A is compact and convex in R ~, then/or#~ ..... ~ ~ ~)~ ( A ) 

the equation (1) is locally solvable at x i/ and only i/ /or each ] ~ o ,  ~ e-~~(~)/(s)d/~(s) #0  

/or  some i. 
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Proo/. If we set dTxv =e~'~d~ , for v E ~ ,  then T x is clearly an isomorphism-isometry of 

=~)J~({0}) onto ~J~({x}) (cf. [22], Lemma 2.4). Since each complex homomorphism of ~J~ 

has the form v~v ' ( / )=~/dv  for some/eGo,  it follows that  each complex homomorphism 

of ~J~({x}) has the form v - ~  e-~'Q/dv. Hence, if for each lEG 0 there is an i such that  

e-~'e/d#~40, then equation (1) will have a solution in ~({x}). I t  now follows as in 

Lemma 2.5 of [22] that  (1) has a solution in ~J~(A N V) for some neighborhood V of x. 

If yEtiS(A) then we set v(x, / )=~ e-~'q/&, for xEA,  lEG o. If u has compact sup- 

port then ~,(x,/) is defined for all ( x , / ) eRnxGo . Recall, if H0={/EG0: I/I N1} then 

H =H0/( ~ ) is the dual group of G. Thus, each element of H 0 is equivalent to a function 

s-+e-*~e(~)y(ps) for some y E R  n and 7~/~. Hence, for /=e-*~ 'eTEHo and z = x + i y  we have 

~(x,/) =v'(z, ~)= ~e-~q(s)y(p.s)dv(s). If v has compact support then obviously the func- 

tion v'(z, y) is a holomorphic function of zEC n for each 7E/~. 

PROPOSXTIO~ 5.9. Each /unction on C~• which is holomorphic on C~• /or 

each ~ E I~ can be uni/ormly approximated on compact sets by/unctions o/ the /orm v ~ with 

v E ~ with compact support. 

Proo/. Note that  v~(z, 7)=~nn• k), where w = ( ~ v E M ( G ) = M ( R n •  

is just the Laplace transform of r As in Lemma 1.3 of [22], the space of all Laplace trans- 

forms of compactly supported measures on G is dense in the space of holomorphic functions 

on C ~ • Hence, the proposition follows from the fact tha t  {v~eSv: v ~J~} is weak-* dense 

in M(G) (Proposition 5.4) (el. Lemma 2.8 of [22]). 

PROPOSITION 5.10. There exists an n-simplex A c R  ~, with 0EA, and measures 

~tl, ..., ~t~E~J~(A) such that ~1(0, 1)=.. .  =/~n(0, 1)=0,  but ~1 ..... ~ do not vanish simultane- 

ously at any (x,/) with xE~A or with / E G o ~ H  o. 

_Proo/. Recall tha t  [.~/d#[ ~ S [ / [ d # ~ < k < l  i f /EGo~Ho ,  and S l d # = l .  Since # is inner 

regular, we can replace # with a measure # '  E ~J~ which has compact support and satisfies 

] ~/d#'l < k' < 1 for / E G0~H 0, and f ld#'  = 1. I t  follows that  there is a compact neighbor- 

hood V of 0 in R n such that  I/~'(x,/)] < k ' < l  for x E U  and ~eGo\go .  We choose ~ =  

~ - # '  and note that  I~(x,  /)] > l - k ' > 0  if / e G o \ H o  and xEV,  but  ~(0 ,  1)=0.  Since 

G 0 is compact, it follows that  the set N = {(x,/) E V • G0: ~l(x,/)  =0} is a compact subset of 

U •  0. 

Let  W={(z ,~)ECn•  RezEin t  U} and V={(z ,~)EW: /~(z ,~)=0}.  Then V is an 

(n-1)-dimensional subvariety of W (cf. [7], III.c.), (0, 1)E V, and V has compact closure 

in C" • I t  is a simple matter  to choose functions/3 ..... /~, holomorphic on C n • such 

that  V N {(z, 7) E W:/~(z, ~) -= ... =/~(z, ~) =0} is a finite set containing (0, 1). By Proposition 
1 5 -  7 1 2 9 0 5  Acta mathematica 126. I m p r l m 4  le 13 Avr i l  1971 
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5.9, we can find/~2 . . . . .  # n E ~ ,  with compact support, such tha t  each #~ approximates/~ 

sufficiently close on V tha t  (O, 1) E V N ((z, ~) E W: /~ (z, ~,) =... = #n(Z, ~) = 0~ is compact 

in V. I t  follows from III .B.17 of [7] tha t  this set will also be finite. I t  is now a trivial 

mat te r  to choose an n-simplex A with 0Eint  A c A c i n t  U such tha t  no common zero 

(z, ?) of/~i . . . .  , #~ has Re z E hA. Hence/~1 ..... /~  do not have a common zero (x,/) E ~A • ~0. 

We already have tha t  ~1 does not vanish on A • (So~Ho). This completes the proof. 

Proo/o/Lemma 5.1. Let  A and/~1, ...,/~n be as in the above proposition. Since ~l(x,/) ,  

.... /~(x, / )  do not vanish simultaneously for xE~A, Proposition 5.8 implies tha t  equation 

(1) is locally solvable at  each x E ~A. However, since ~1(0, 1)=. . .  =/~n(0, 1)---0, equation (1) 

is not locally solvable at  0 and, hence, is not solvable in ~)~(A). By Theorem 4.2 of [22], 

there is a measure 2E~)~J~'(A) such tha t  for eoE~(A) the equation 

/~1-)(- ~1 Jr ... - ~ - ~ n - ~ n  = (1) (2) 

can be solved in ~J~(A) if and only if o~e~ =0.  I t  follows tha t  2:~0 but  ~ e 2 = 0  for each i. 

I f  /E~  o set d/~=/d#~ and d2~=/d~. The fact tha t  ] is a semicharacter implies tha t  

#f ~e Z = (/~ ~- ~)~ = 0 for each i. However, if / E $ o ~ H o  then I gh ] + 1 for g E ~0 and (#~)" (x, ~) = 

/~(x , /g) .  I t  follows tha t  (/~) ' ,  .... (#~n)- do not vanish simultaneously on A • Hence, 

by  Theorem 4.1 of [22], the e q u a t i o n / ~ e V l + . . .  +/~n~ev~=~ can be solved in ~ ( A ) .  This 

implies tha t  ~f=v, ~ (#~ ~ 2~)+... +v~ ~ (#~ ~e 2 ~) = 0. We conclude tha t  the support  of 2 in 

S o is a subset of (sESo: / ( s )=0  i f / ~ g e $ o \ H 0 } .  Since ~o separates points in S o and G 

is the kernel of S 0, it follows tha t  G = (s E So:/(s) = O if / N g E ~o~Ho}. We conclude tha t  ~ is 

concentrated on G. Since 21 c E ~ for each compact set C, it  follows tha t  there is a nonzero 

element of ~ concentrated on G. We noted earlier tha t  this suffices to prove tha t  G c  S is 

the support of a group algebra in ~ .  
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