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Introduction

Let Q be a ¢ manifold, with boundary 2€. Let E, E’ (resp. F, F') be vector bundles
on ) (resp. #Q). Our aim is to construct an ‘“‘algebra’ of operators:

(0.1) (A K) Cw(QéE) Cw(ﬁ@’)E')
T 9 eeq,m = (2Q, F)

which will contain at least the operator describing a classical boundary problem, and also
its parametrix in the elliptic case. In fact what we construct there is one of the smallest
possible “algebras” that will work. In that respect, our result is less general than that of
Visik and Eskin [10]. The difference lies in the fact that in our problem, the pseudo-dif-
ferential appearing in (0.1) (coefficient A) has to satisfy a supplementary condition along
the boundary: the transmission property.(!) The operators that arise in (0.1) have already
been described in [6] (where we also require analyticity).

In this work, we only require that the operators preserve locally C* functions. The
symbolic calculus is developed further than in [6], and we derive an index formula for
elliptic problems, extending that of [3].

Roughly speaking, the coefficient 4 in (0.1) is a sum 4 =P-+@, where P is a pseudo-
differential operator satisfying the transmission condition (§2), and @ (which we call a
singular Green operator —§ 3) is an operator which takes any distribution into a function

which is O® inside Q (but may be irregular at the boundary): such operators arise for

(Y) With Visik’s notations, the partial indices x; (X', &) have to be integers. This is an important
restriction, since the operators that arise in mixed boundary problems do not usually satisfy it. How-
ever, many problems can already be reduced to this case.
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example to describe the change in the solution of an elliptic boundary problem when the
boundary conditions are modified.

The coefficient K in the matrix (0.1) is called a Poisson operator (§ 3). It serves in
particular to describe the solutions of the homogeneous equation Pf=0, where P is an
elliptic-(pseudo) differential operator, in terms of boundary data.

The coefficient 7T is called a trace operator (§ 3).

It is the sum of the adjoint of a Poisson operator and of classical trace operators
f~Q@% {/oQ), where @ is a pseudo-differential operator on the boundary, and 9, a normal
derivative. (The adjoints of Poisson operators do not seem to have been systematically
used anywhere yet, although of course they arise implicitly in many places. They may be
of interest for boundary problems since they extend continuously to much larger spaces
than the classical boundary conditions—e.g. they are continuous for the L? topology).

The last term @ is a pseudo-differential operator on the boundary.

These operators form an ‘“‘algebra’—i.e. the sum and the composition of two matrices
such as (0.1) is another one if it is defined. '

They also give rise to a symbolic calculus. In fact this is done in two steps. First an
interior symbol is defined: this is just the symbol of the pseudo-differential operator that
appears in (0.1). It is a continuous matrix on the set of non vanishing covectors on €.

Secondly a boundary symbol is defined. This is a Wiener~Hopf operator depending
continuously on a non vanishing covector on the boundary 6Q.

The Wiener—-Hopf operators that we will use are described in §1, and the other para:
graphs depend rather heavily on that. The symbolic calculus is otherwise described in § 4.
The general boundary problem is discussed in § 5, where we prove an index formula ex-
tending that of [3], [4]. The idea of the proof of the index formula the following: first we
check that the index of some “key” elliptic systems are zero (§5,no.2). In the general case,
it turns out that the composition of an elliptic system and one of these can be deformed
into a new system which splits as the direct sum of an elliptic operator on the boundary,
and of an elliptic operator on the interior which coincides with the identity operator near
the boundary ((5.15), (5.18), (5.19)). Then the index formula of [4] can be applied (§ 5, no. 8).

This work is the final version of lecture notes to the Nordic Summer School of Mathe-
matics 1969. T wish to express here my warmest thanks to the organizers, T. Ganelius,
L. Garding and L. Hérmander, for the very profitable time I spent there.
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Notations

Since the notations concerning function spaces on a manifold with boundary are not
very uniform in the existing litterature, we begin by describing those that are used here.

R is the closed half line x>0
R, is the closed half-space x, >0 in R".

Let O be a ¢ manifold with boundary. We denote the boundary by Q, and the interior
by Q (thus Q is the disjoint union Q=Qu Q).

We will usually suppose that Q is embedded in some ® neighboring manifold of the
same dimension (e.g. the double of Q). All the constructions hereafter do not depend on
the choice of this manifold, and we will refer to it as “a neighborhood of Q”.

We denote by C°(Q) (resp. C3°(Q)) the space of functions which are C® up to the
boundary on Q (resp. and of compact support), i.e. every derivative has a limit on the
boundary: such a function can be extended into a C* function near Q.

Similarly, if E is a 0= vector bundle on Q, C°(Q, E) (resp. C{(Q, E)) is the space of
sections of £ which are C® up to the boundary (resp. and of compact support).

We denote by D'(Q) (resp. £'(Q2)) the space of distributions defined in a neighborhood
of Q, and supported by Q (resp. and of compact support). Thus ’(Q) is the dual space of
C5(Q), and £'(Q) is the dual space of C*(Q).(Y) (As usual D'(Q) denotes the space of dis-
tributions on the interior Q. Let us recall that the restriction map D’(Q) -~ D'(Q) is neither
onto nor one to one.)

Throughoﬁt this work, 7'Q will denote the cotangent bundle (this is of course iso-
morphic to the tangent bundle—e.g. through the choice of a C* metric on Q). 7Q is the
restriction to Q of the cotangent bundle of a neighborhood of Q.

In § 5 we use K-theory. For the definitions and main theorems, we refer to [1], [2]. We
will be concerned with K-theory with compact supports only. Thus if Bg and Sg are the
unit ball and unit sphere of 7'Q for some metric, there is a natural identification

K(TQ)=K(Bg)

K(TQ)= K(Bg,2Bg) = K(Bg, Sg U (Bg/oL2)).

(*) In the present article, we are really concerned with the space of currents of order 0 (general-
ized functions), which is the natural extension of the space of functions. Naturally this is identified
with the space of distributions once a measure with C* density has been chosen. And we will not make
the distinction further on.
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1. The Wiener—Hopf algebra

The results in this paragraph are not particularly new or difficult. But it was con-
venient to group them here.

1. Notations.

(1.1) Let H be the vector space of all complex valued functions f(f) on the real line,

which are C® and have a regular pole at infinity, i.e. (z +1)?f (; 1 _I:) is a C° function on
the unit circle |z =1 (including at the point z= —1) for large integral p. Or equivalently
f 18 C* and has an asymptotic expansion

f~ 2 @t (t>o0)
kz-N

and this expansion still holds after any number of differentiations.

(1.2) Let H* be the subspace consisting of those functions f€ H which can be extended
analytically in the lower complex half plane Im ¢ >0, and vanish at infinity (for such func-
tions, the asymptotic expansion (1.1) holds when ¢ - oo, Im ¢<0, and N= —1).

(1.3) Let H~- be the supplementary of H+ in H consisting of those functions which can
be extended analytically in the upper half plane Im ¢ >0: for such functions, the asymptotic
expansion (1.1) holds when ¢ - co, Im £0.

(These spaces have a topology in a natural way: H+ is Fréchet, H and H— are LF.)

(1.4) We will denote by A+ (resp. h~) the projection on H+ parallel to H— (resp. k==
1—ht).

Thus if f is analytic on the real line, meromorphic at infinity, we have

+ c__l_ L(Z)_ i

W= — 5~ YT__tdt (if Im ¢ < 0)
(1.5)

hf) = LY B (RS (if Im ¢ > 0),

2im JyTr— ¢

where y is a large circle in the upper half plane Im 7>0, oriented in the usual way (y is
required to contain ¢ in its interior for the second formula).

If f vanishes at infinity, we also have

RH(t) = lim — —— fm D4,

est0 2t ) _ 0 T—t+1eg
(1.5)’

k7f(t)= lim E:—n J'“"_/(_'Q_ dz.

e—+0 _NT_t_’I:E
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If { is analytic on the real line, and meromorphic at infinity, we set

(1.6) f+f = f+f(t) dt = fyf(r) dr,

where y is, as before, a large circle in the upper half plane Im 7>0.

This linear operation extends continuously to H. Of course [+ = ff is just the ordinary
integral if f is integrable (i.e. vanishes to the second order at infinity).

Let us notice that [+f vanishes if f belongs to H+ and is integrable or if f belongs to
H~. 8o [*fg only depends on h™g (resp. h*g) if f€ H+ (resp. f€H").

Let p€H. Then p has a unique expansion

N +o0 1 —it\*
(L.7) »(t) —zlasts + _Zwak (m) ,
where the coefficients a;, form a rapidly decreasing sequence If € H vanishes at infinity,
it also has a unique expansion
e (-

(1.8) f(t)—_zw% (1)
where the coefficients a, form a rapidly decreasing sequence. In this case, f belongs to
H* (resp. H™) if and only if a,=0 when k<0 (resp. £>>0).

1—it\* (1 —ig)* }.—it)"
In formulas (1.7), (1.8), one can replace (I—H't) (resp. (LTt by e

— it k
(resp. (1+)) where £ is any positive number.

We also have the following result:

(1.9) H+ is the space of Fourier transforms of functions @(x) which vanish for <0 and
are C=(R,), rapidly decreasing at infinity for x>0 (i.e. every derivative tends to zero at in-
finity, faster than any power of z, and has a limit when x > +0).

Proof. First let f€H+, and let ¢ be its inverse Fourier transform. Then ¢ is square
integrable and vanishes on the negative half line. Moreover, the distribution (d]dz)? =%
coincides on the open half line >0 with the inverse Fourier transform of A+{(:*—9£7(d/d&)*f)
which lies in H*, so it is also square integrable. It follows that every derivative of ¢ has a
limit when « ~ +0, and is of rapid decrease when x - -+ oo,

Now let ¢ be as in proposition (1.9), and let f be its Fourier transform. Then f is holo-
morphic for Im £ <0, ¢« up to the boundary, and admits the asymptotic expansion

f~ ZePO) (6™ (¢ o0, Tm §<O).
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Since 2”@ has the same properties as ¢, this expansion still holds after any number of
differentiations. This ends the proof.

(A—it)*
(A +at)k+t
polynomial by an exponential:

Exomple; (£>0) is the Fourier transform of the product of a Laguerre

0 if 2<0.

In a similar way, a function f€ H™ is the Fourier transform of the sum of the symmet-
ric of a function ¢ as above, and of a linear combination of derivatives of the Dirac
measure at the origin.

2. The Wiener—-Hopf algebra. We proceed now to describe a family of operators on
H*—more generally of matrices:
H*®E H'QF
+g k
(1.10) (f g ): & - ®
1 F P,

where E, E’, F, F' are finite dimensional vector spaces.

a. Let p€HQL(E, E'). We will denote by h+op (or p as in (1.10) if this does not lead
to confusion) the operator
fEH*Q@E ~ht(p-/)EH*Q E'
b. g¢€L(F, F') is any linear operator.
Let k€H*QL(F, E'). We denote by the same letter k the operator

uEF->k-ucH ' ®F'.
+
Let t€ H- ® L(E, F'). We denote by the same letter ¢ (or —217; f ot if there may be
any confusion) the operator
1 +
JEH"QE—~— f t-fEF'.
2n

c. Finally let g€ Hf § H; ® L(E, E') i.e. g has a series expansion

(1—d&)®  (1+1m)°
(14487 (1 —ap)?tV

(1.11) g(& n)= Zk Y+ Z Bpq

where ks(S)GH”@L(E,E) {s=0,...N)

and the a,,€ L(E, E') form a rapidly decreasing double sequence of matrices.
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+
We denote by the same letter g (or 2i f og if there may be any confusion) the
7

operator

1 [+ ,
fGH*®E—>%f g& ) fn)dn€H' ®F

p will be called a pseudo differential symbol
g will be called a singular Green symbol
p+g will be called a Green symbol

k will be called a Poissoh symbol

t will be called a trace symbol.

(1.12) TEEOREM. The operators (p -th ch) above form an algebra—:.e. the sum and

composition of two such operators is another one if it is defined.
We have the following formulas
(1.13) 1. h*pok=~h*(p-k)
1 [+
2. g°k=ZJ 9(& ) - k(n) dn
3. kogq=k-q
are Poisson symbols
4. tohTp=hk(t-p)
1 [+
5. tog=g- f t(n) - 9(n, £) dn
6. got=gq-t
are trace symbols
1 [+
7. tok=§7—t f £(&) k(&) dé

is an operator of finite rank

pog=nhi[p&)-9(&n)]
9. gop=nrhy, (g5 n) pn)

1 +
10. gi°92:%f g1(&, 8) ga(s,m) ds

2— 712904 Acta mathematica 126. Ymprimé 5 Janvier 1971
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11, kot=Fk(E&)-t(yn)
12. thlpa —h*pyoh* p,= L(p,, 2,)

are singular Green symbols.
We have set

13.  L(py, po) = ki by [(p1 (&) — 21 () (22 (&) — p3 () (86 —im)~"]
with pf =h*(p,), ps =h~ (ps)-

Theorem 1.12 is a consequence of formulas (1.13) 1.... 13. These formulas are all obvious,
except maybe the last one, which we prove now. Let L be the operator of (1.13) 12:

Lf =k*(pyp2 /) — B (2157 (02) = B* (2127 (2 f))-
Since f belongs to H™, it follows that Lf only depends on pi =k*(p,) and pz =k~ (ps).
In a first step, we will suppose that p, and p, both vanish at infinity. Then we have

oy L [ pt@d . (pz ) fm)dy f
M s u—erio o g tin) 2m JOET B M) dn
with
o o1 pi (t)dt
g&m)=bm " lim = f E—E+ic) (7 —t—10)

-~ bm lim — 1(1”1 (€~ ie) = pi (1 ))=—(pf(é)-pf(n))(if—iﬂ)"

e—>40 6—>+0 5—1«‘:—’)74"&5

We have used the identity

1 1 1 1
(C—E+ie) (—t—1i0)  (E—ic—y+10) (t—-§+ie_n—t-—i6)'
Since we have obviously
ki hy (Y (&) — i () Pz (8) (16— )" 1= 0
we finally get as announced

Li=o- [ uem fon dn

with UE, n) = ki hy (01 (E) — i () (22 (8) — p2 () (5 —im) "],
Next we prove formula (1.13) 12, when p, is a polynomial:
Dy () =&

Then if f~> a, £ % ! when £ > oo we have
FEn= 3 aste 3 et [ an

k<qg-1 k<e-1
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(because of the formula a;, = (1/247) { *#* {(y) dn). Using theidentity> &2 * 1o (£2 — 59)/(£ — n)
we finally get

Lf=hg[ f(pz p2(n)f(n)dn]=%tfl(E,ﬂ)f(ﬂ)dﬂ

with UE, )=k [0 (8) (93 (8) — Pz () (& —im) "]
= h{ by [(p1 () —p7 (n)) (P2 () — P2 (n)) (& —in)~"].
(The last equality comes from the fact that (&9-—9/(§—7) is a polynomial with re-
spect to & and 7, so A [pi(n) (§— 7% (i —in)*]1=0 and A; [pf(E)E —n%) (i —in)™"]
=pi(§) (§%—n®) (i —in)™Y).
In the general case, pi vanishes at infinity anyway, and p; is the sum of a polynomial
and of a function which vanishes at infinity. This proves formula (1.13) 12, 13.

It remains to check that the symbol L(p,, p,) that we have just obtained satisfies con-
diton (1.11). This is obvious when p; is a polynomial: then L(p,, p,) is a finite sum

L(py, p2) =D_th2' & pi E)y"

On the other hand, if p, and p, are both bounded:
+ 00 1 —_ i 4
n=Za (7

+00 1_' q
P2=_Z°°ba( 1:6)

1413

we get

(L—48) (L +ip)°
(1.14) L(ps, ps) = Z Cpq (1 +4£)P* (1 —ip)?™?

Cpe= 2k§=:1“17+k bgx
so that c,, is a rapidly decreasing double sequence. We end this paragraph with

+9
¢
Then the inverse a™' is also a Wiener—Hopf operator.

(1.15) ProrosiTiON. Let a=(p l;) be an invertible Wiener—Hopf operator.

Proof. Notice first that a ““singular” operator (i ’;) behaves very much like a compact

operator (in fact it extends continuously into a compact operator on the completion of
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H* for the Fourier transform of the H, norm if s is large enough). Then if a= (p :_ 7 :;)

-1
is invertible, p is already an invertible C* matrix i.e. p~'€ H, and the index of (g g)

-1

r

is zero. Now we can add to 0

’ '
?)) an operator of an finite rank of the form (i, I;,)

p -ty

so that o’ = ( g

t’) is invertible. Multiplying @ by a’, we are thus reduced to the

case where p=1,a=1+ (tg I;)=1+G’.

The reader will check readily that proposition (1.15) is true if G= (f I;) is very

small: then the inverse is a'=1+@ where @ is the sum of the geometric series G’ =
>&(— 16, and its coefficients satisfy conditions b, ¢ of the beginning of this section

(the product rules giving G* are those of (1.13)).

In the general case, G = (‘;’ ch) can be approximated: @=K'T+ @ where K’ is a

column matrix K' = (q,) , T a row matrix T =(f p), and G is arbitrarily small (this fol-

lows immediately from the series expansion (1.11)). Then we get
a=14+G@=(1+&)(1+KT)
with K=(1+G&)'K'.

So we are reduced to the case where G= KT = (g

k .
; q) is an operator of finite rank.
In this last case, if =1+ @ is invertible, its inverse a™! is a polynomial of @ so the result

follows from theorem (1.12).

In view of the symbolic calculus developed in § 4, we introduce the following notation:

(1.16) If NV is an oriented 1-dimensional real line, Hy is the space of measures on N
whose density lies in H+.

Of course, N can depend continuously on a parameter,i.e. be a one dimensional oriented
real vector bundle. In § 4, N will be the normal cotangent bundle (oriented by the inward
normal).

All the constructions of this paragraph can be repeated with HY instead of H+.

2. Pseudo-differential operators. The transmission property

In what follows, we restrict our attention to pseudo-differential operators of type 1, 0
(i.e. the symbol p(x, &) lies in S{, for some d, with the notations of [7]). In §4 and § 5,
we restrict ourselves further to those pseudo-differential operators whose symbol admits
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an asymptotic expansion in homogeneous functions of integral degree of £ (this is a special
case of [9]).

Let p{x, D) be a psendo-differential operator defined in a neighborhood of the closed
half space R?. We are interested in those pseudo-differential operators for which all the
derivatives of the symbol admit an expansion such as (1.7) when z lies in the boundary:

(&) —i&)

a oo
(2.1) (0/ox)* p(x, &) = %: a2, &) &0+ % o (x, &) (&> + &)1

if 2,=0,
where o, € S7¢°, and g, is a rapidly decreasing sequence in S{j.
We have set (&> = (1 +]&[?)E.

(2.2) Definition. We will say that p(z, D) has the transmission property with respect to
the boundary R"' if every derivative of its symbol admits the series expansion (2.1) along
the boundary.

More generally, we will say that a pseudo-differential operator P has the transmission
property, if it is the sum of an operator with O distribution kernel (negligible operator),
and of a pseudo-differential operator p(z, D) as in definition (2.2). Such an operator admits

a Fourier integral representation (as in [8]):
Pf(x)= (Zﬂ)‘”ffe«r—y)‘fp(x’ v, &) f(y) dy dE,

where the function p(w, ¥, £) and all its derivati.ves admit a series expansion such as (2.1)
on the set x=y, z,=0 (because this is true if P is negligible—e.g. if P is defined by the
O kernel ¢(z, y), we have

Pia) = (27) f f D p(as . §) fy) dy di

if we set p(x, y, §) =€V 4 py(E)g(w, y) where po€CF(R™), and [ py(&)dE =(2n)").
Condition (2.1) is equivalent to the following:

(2.1)" For all derivation indices «, f, the function

(z+ 1) pj (w,E', —icgH 1)

z—1

)

where ¢, » p is @ continuous positive function of x' alone (we have set p§=(8/0E)*(0/ox)? p,
and d is the degree of p) or equivalently

is C% on the set ¢, =0, |z| =1, and we have

S<Cp,a, p@) EDITH,

(elo=)" [(z + 1) 7 (x g, -y 2
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(2.1)" For all derivation indices «, f, p§ admits an asymptotic expansion
p§~ Z bk(zzf') é;k
k5=d

when &,— oo, x, =0, and the other variables are fixed, and we have

[PE— 3 B(@, &) &% <ona pla) EDVTIRIEY
—d<k<N

(here again, d is the degree of p)

(We leave the proof of these equivalences to the reader.)

Let us also notice that the coefficients «,, @, of (2.1) cannot be arbitrary if p€S§,.
First o, has to be a polynomial of degree d —s with respect to £’: this is seen by descending
recursion on s—knowing it when ¢ <s<d, we get

(0/08)* (0]0&,)'p = 1! (2/08" Yo + O(|&'| 7111 &5%) = O(|£] “1417)

so that (0/0&')2e,=0 if || >d—1¢
Also if p is the sum of the series:
P=2a (&) (&> — &) &> +i&) "

where a, is a rapidly decreasing sequence in S§§', we only have

(&)
o) ¥

So in general we do not have p €8¢, which shows that the sequence a, cannot be arbitrary

<co(a') (&)L,

either.

Suppose now that p(x, §) has an asymptotic expansion (as in (7))
p(,8)~ 2 pi(@, )

ie. p— Jyn i€ Si3 where dy— — oco.

Then if every p, has the transmission property with respect to the boundary, so has p.
(Tn particular, if p(z, ¥, £) is as above, and if P is the Fourier integral operator it defines,
we have P~P'(z, D) where

1] a a
reo~3 5 (2) (&) e

—cf. [8]—so0 P has the transmission property.)
Suppose now that the p, hereabove are homogeneous functions of £, as in [9], and that

the degree of p, is d;. Then by considering Taylor expansions of p,(x, £) near the normal
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covectors &' =0, and using homogeneity to reflect this on the behavior of p(z, &) and the
Pi(x, &) when &, ~ co, we see that condition (2.1) is equivalent to

(2.3) for every k, pi(x, —&)—e"%p,(x, £) vanishes to the infinite order on the set of non
zero normal covectors (z,=0, & =0, &, +0).

(This condition is in fact stronger than necessary for theorem (2.9) to hold (cf. [5]),
except when the degree dy is an integer for every k. If P is elliptic, p,(x, £) cannot vanish, so
the degree d, has to be integral. In § 4 and 5, we assume that the d, are all integers, but this is
not an essential restriction.)

We deduce immediately from the formulas of symbolic calculus developed in [7] or [9].

(2.4) ProrosiTioN. If P and @ have the transmission property and are properly sup-
ported, then the composition PoQ also has the transmission property.
If P is elliptic and has the transmission property, then so has any parameiriz of P,

(2.5) ProrosITION. A partial differential operator with C® coefficients has the trans-
mission property. In particular the multiplication by a C® function has the transmission
property.

(2.6) ProrosiTiON. Definition (2.2) is invariant under a change of coordinates that
preserves the boundary.

As a consequence of these propositions, we see that the transmission property with
respect to the boundary makes sense for pseudo-differential operators acting on the sec-
tions of a C® vector bundle on a C* manifold with boundary.

As a first useful example, we describe the pseudo-differential operators that have the
transmission property in dimension one:

(2.7) TEEOREM. Let P(z, D) be o pseudo-differential operator defined in a neighborhood
of the half line x>0. In order that the transmission property with respect to the origin hold for P,
it is necessary and sufficient that P admits a decomposition P =Py+ P, +P,, where the symbol
of P, vanishes to the infinite order at the origin x=0, P, is a differential operator with O®
coefficients, and the distribution kernel of P, is a function f(x, y) which is C® up to the diagonal
for x>y, and also for x<y.

Proof. Let us first choose P’ 8o that the symbol of P’ satisfies condition (2.1) at every
point, and the symbol of P,=P —P’ vanishes to the infinite order at the origin. This can

be done in any dimension: take for instance
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o

k
p,(x: §)=Z % (a—x_) p(‘”'» 0;5)(p(}'kxn)a

where p €EC$°(R) is equal to 1 near the origin, and the sequence 4, increases sufficiently
rapidly.
Next define p,(x, £) to be the polynomial part of p’(z, £). Finally let p,(z, &) be the

remainder p,=p’ —p; so that py(x, &) admits a series expansion as in (1.8)
+oo Ak
pa(08)= S au(o)

where the a,(x) form a rapidly decreasing sequence in C°(R). Then P,(», D) is a differential
operator with C®] coefficients. The distribution kernel of P, is the function f(z, )
=g(x, x—y) where g{, 2) is the inverse Fourier transform of p,(x, &) with respect to &. It
follows from proposition (1.9) that g(x, z) is C* up to the boundary z =0 for z >0, and also for
2 <0. Conversely an operator Py(x, D) whose symbol vanishes to the infinite order at the origin
obviously has the transmission property. So has a differential operator with C* coefficients.
That a pseudo-differential operator Py(z, D) as in theorem (2.7) has the transmission pro-
perty follows from proposition (1.9) exactly as above. This ends the proof.

Now we introduce other notations.

Let Q be a C° manifold with boundary 6L, and let V be a neighboring manifold.

If feC*(Q) (and more generally if f€C®(Q, E) where E is a 0 vector bundle on V)
we denote by f the extension of f by 0 outside €.

Now let P be a pseudo-differential operator on V. We define a new operator Pg:
Ce@) ~C=(Q) by
28) Pof= P/

Py, obviously depends only on the restriction of P to € (this is a pseudo-differential
operator on the interior Q, that can be extended as a pseudo-differential operator in a
neighborhood of Q).

(2.9) TEEOREM. Let P have the transmission property with respect to 0Q. Then Pq is
continuous OP(Q) ~C=(Q) (i.e. if f is C® up to the boundary, then so is P f).

Proof. The theorem is local, so we will suppose that Q is the half space RB% (x,>0).
We can also suppose that P is properly supported, since the theorem is obviously true if
P has a C= distribution kernel. So P admits a Fourier integral representation. Finally since

P -e™-f also has the transmission property, we can suppose f=e~". Then we have

Pf= (2n)'1fe""5"p(x,0, £,) (1 +1&,)7 d&,,

where the integral represents the one dimensional inverse Fourier transform.
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Now p(z, 0, &,) =p(z’, z,, 0, &,), considered as a function of x,, £, alone, is the symbol
of a one dimensional pseudo-differential operator which has the transmission property with
respect to the origin, and as such depends C* on 2'.

To prove theorem (2.9), it only remains to prove it in dimension one. Then we use the
decompbsition of theorem (2.7): the result is obviously true for all three terms.

To end this paragraph, let us mention without proof the following result: if P has the
transmission property, and its degree is d, then Py extends continuously H™(Q)-
H §°_°d(£_2) if s> —3. If the degree is negative, d <0, then Py also extends continuously
EQ)~D'(Q) (cf. [5]).

3. Poisson operators, trace operators, singular Green operators

0. Negligible operators. Let Q be a C® manifold with boundary 8Q. Let dy (resp. dy’)
be a measure on () (resp. dQ) whose density is positive and C* up to the boundary.

A negligible Poisson operator is an operator K: CF° (9Q) -~ C=(Q) which extends con-
tinuously: &'(0Q) ~C=(Q). Equivalently K is defined by:

Kf(z)= f ko, o) ') A
oQ

where k(z, y') is C® up to the boundary on Q x8Q.
A negligible trace operator of class r is an operator T: C®() - (C=(8Q) defined by:

r—-1
Tf(x')=f @, y) fy)dy + > f 7@, y) [P (v') dy,
Q 0 [i/9]

where ¢ (resp. gy, k=0, ..., r—1) is C® up to the boundary on 8Q x Q (resp. 8Q x8Q), and
1% is the kth derivative of f with respect to some C® normal vector d/on.
If =0, T has a continuous extension &'({2) ~C°(8Q). Otherwise 7' only extends con-

tinuously C5(£2) ~C®@Q) (or HP™()) ~C°(3Q) when s>r—13).
A negligible pseudo-differential operator (or Green operator) of class r is an operator
G: CP(Q) ~0=(Q) defined by

Gf(x)= fg g(x,y) fly)dy + rio fm ky(z,y') [P () dy,

where g (resp. the k,, p=0, ..., 7 —1) is C® up to the boundary (including corners) on QxQ
(vesp. Q x2Q).

If r=0, @ extends continuously: £'(Q) ~C2(Q). Otherwise it only extends continuously
Cy Q) »0=(Q) (or HX™(Q) ~0=(Q) when s>r—4).
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Finally ‘& negligible pseudo-differential operator on the boundary is an operator @:
Cy (0Q) - C*(6Q2) with C* kernel.

(;, g) all the coefficients negligible of class r, and if Q is com-

pact, then there exists a negligible matrix, of class r, 4’, such that (1—4)(1-4")isa

If in the matrix 4= (

projector on the range of (1 —4) (resp. or such that (1—A4’) (1 —A) is a projector on a supp-
lementary of the kernel of (1 —A), containing the range of (1—A4)" if N is large enough);
the range (resp. kernel) of (1 —A4) is closed and finite codimensional (resp. finite dimen-
sional). The proof is easy and left to the reader.

1. Poisson operators. A typical example is the operator that solves the Dirichlet problem
in the half space:

(”él(alaxk)* + (tdfox,)2) F=0

F@',0)=f(z),

where ¢ is a complex number of positive real part Re > 0.
If f€ C(R™Y), the unique bounded solution is:

F@)=n""2T(n/2) f te, (B + |2~y )21y dy'
Rﬂ—l
= @a)' f e ¥ ot || ) dE
Rn—l

= @a) fme"'f(tlf'l+e‘§n>-1f(5') a§

(the last integral represents the inverse Fourier transform, i.e. it is {+ with respect to &,).
Here we will be interested in the last formula.
Now let k(x', &) be a C® function on R™~! x R", admitting a series expansion:
3.1) k(x', &)= OZ a, (&, &) (<€) — i&,)? (&) +1i&,) "7,
where a,(z’, &) is a rapidly decreasing sequence in 8% ,, and where we have set as in § 2
E>=(1+|&]

(8.2) Definition. The Poisson operator K of degree d and symbol k(z', £) is the operator
K:C¢ (R 1) C* (R") defined by:

Kf(z)=(2 n)‘"fdénfe"'e k', &) fEhds ()

(1) We have written z = (z’, x,) where ' €R" ! is the tangential component of z, and , € R
its normal component.
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(the formula hereabove only defines K as a continuous operator: C3’ (R*~!) ->C™ (R}),
where R’} is the open half space; but we show in (3.8) that K is in fact continuous
C& (B™) - C™ (RY)).

More; generally, we will call Poisson operator the sum of a negligible Poisson opera-
tor as in definition (3.2).

We will also denote by X% the set of functions satisfying (3.1); by X~ * the inter-
section K~° = N K% We write k~ > k; if k— > 7' k,€ X% where d,,~ — oo, It will follow
from (3.8) that the Poisson operator of definition (3.2) is negligible if and only if 2~ 0,
ie. ke X >

(3.3) Example; Let P be a pseudo-differential operator defined near R", and satis-
fying the transmission property. The operator Kp: Cy (R"™') - C* (R%) defined by
K ()= P(f- 0(x,))/ B

is a Poisson operator.

(Here d(x,) represents the Lebesgue measure on the boundary R"1)

Proof. We can always write P as a sam P=P,+P,xz,+P,, where P, is negligible,
and P,=p,(z D), where the symbol py(z, £) does not depend on z, (so both P, and P, have
the transmission property).

Then Kp, is a negligible Poisson operator, Kp, =0 (because z,6(x,) =0), and we have

(3:4) Kpof(2)= (2m) " f L@ 8 € d

+
= @)™ f ds,.f P @8 [E)aE
R%—
where we have set p; (¢, &) =hi p,(, &): since p, satisfies (2.1), ps obviously satisfies (3.1).
Conversely we have the following result:

(3.5) PrRoPOSITION. Every Potsson operator can be defined as in the example above.
Proof. Let R be the Seeley extension operator (R. T. Seeley—Extension of O functions
defined in a half space. Proc. Amer. Math. Soc., 15 (1964), 625-626):
Ef(x)=2 a,f(—nz) when <0,
1

where a, is a rapidly decreasing sequence, and X n*a, =(—1)* for every k.

N\
Let £ be the Fourier transform of E: £f=Ef. Then £ is continuous: H* -~ %; we have
h+(Egp)=g; and £ commutes with homotheties.
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Let K be the Poisson operator of definition (3.2), and set
p(, E) = Eink(x’, E)

Then p belongs to 875’ and has the transmission property (it is a rapidly decreasing
function of &, when the other variables are fixed). Since we have k(z’, &) =hi. p(x, &), it
follows from (3.4) that K, p, =K.

Now proposition (3.5) is obvious for negligible Poisson operators and this ends the
proof.

As a first consequence we see that any Poisson operator K admits a Fourier integral

representation:

Kf(@)= <2n)‘"f dé f f S, of | £) (o) dy dE,

where k(x, y', &) admits a series expansion such as (3.1).

Conversely if in the formula hereabove, k(z, y’, £) admits a series expansion such as
(3.1) for all x, y*, then the Fourier integral operator K it defines is a Poisson operator;
to see this, we just repeat the proof of proposition (3.5). In particular, modulo a negligible
Poisson operator, K always admits a Fourier integral representation as above, where the
function k(z, y’, &) only depends on y'.

We also have the following result:

(3.6) aLk(x', &) and (10/08,)°k(x’, &) define the same Poisson operator.

(3.7) CoroLLARY. Definition (3.2) is invariant under a change of coordinates that
preserves the boundary.

(3.8) CorOLLARY. A Poisson operator K is continuous: O (R"™1) - C=(R") and
extends continuously £ (R*1) -D'(R") n C=(R") (1).

If fe E'(R™!) is C® near a point x€ R™" 1, then Kf is C® up to the boundary near z.

Proof of (3.8). Let P be a pseudo-differential operator satisfying the transmission
property, such that Kf=P(fd(x,))/R". First we see that Kf is well defined and is C® in the

open half space z,>0 if f€ £'(R""). Since corollary (3.8) is obvious for negligible Poisson
operators, we can always assume that P is properly supported. Then we have

Kf=(P-d/ox,)q - @

() D (B1) N ¢®(R}) denotes the space of distributions supported by the closed half space
%, >0, which are C*° in the open half space x, > 0.
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where @(z) =@(’, 2,)=f(") (p belongs to C°(R%), and its restriction to R*™! is f). So it
follows from theorem (2.9) that Kf is C® up to the boundary if f is C® (or at any point near
which f is C%).

Now let us suppose that P is precisely the pseudo-differential operator constructed
in the proof of (3.5). Then the symbol of P does not depend on z,, and is a rapidly de-
creasing function of &, when &, > co (the other variables remaining fixed). It follows that
if f€ E'(R™Y), P(fo(x,)) =g(x', x,) is a distribution of &' which depends C® on z,. So if we
set Y(z,)=1 if 2,20, 0 if x,<0, the product Y(z,)g(x’, x,) makes sense, and
[~ Y(x,) g(', x,) is the continuous extension of K announced in (3.8).

It follows from corollary (3.7) that we can define a Poisson operator acting on the
sections of O vector bundles on a C® manifold Q with boundary #Q. It is a continuous

operator
K: C=@Q, E) - C=(Q, F)

(E is a C* bundle on 8Q, F a O« bundle on Q). It extends continuously as in (3.8).

To end this section, let us mention without proof the following result (cf. (5)):

If K is a Poisson operator of degree d, then K extends continuously: HP%T, (0Q2) —
H, Q).

2. Trace operators. The classical trace operators are those which take f€C0§ (Q) into
Tf=Q(f**/0Q), where @ is a pseudo-differential operator on the boundary, and f* some
derivative of f. To these we add the adjoints of Poisson operators, and we finally get the

following definition.

Let ¢(a', £) be a O function on R"~! x R" admitting the following series expansion:

r—1 0
(3.9) ta', &) = % o (@, &) &+ OZ a, (&', &) (C&'> + 08, )P (KE') — i&,)"

where «, belongs to S75°, and the a, form a rapidly decreasing sequence in S%4'.

(8.10) Definition. The trace operator T of degree d and symbol t(z’, £) is the continuous
operator: O3 (R") ~(C*(R"?) defined by

Tf(z')= (2 n)‘"fe”"s'df'f ix', £)1(£) dé,

(here f is the Fourier transform of the extension of f by 0 outside of the half space R7).

We will say that T is of class r if r is the integer limiting the first sum in (3.9).
To these operators we add the negligible trace operators.

The following assertions are immediate consequences of those of section 1:
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(3.11) ProrosiTION. T is a irace operator if and only if it can be written as a sum
Tf=Z QP f/oQ),

where the Q, are pseudo-differential operators on the boundary R"™%, P, are pseudo-differential
operators satisfying the transmission condition on Q= R",

(If T is of class 0, then there exists a pseudo-differential operator satisfying the trans-
mission condition P such that 7'f=P f/0Q. But this is not the case for a ‘‘classical”
trace operator: Tf=Q(f*/0Q) can be represented in this way only if @ is a partial differ-
ential operator.)

(3.12) ProrosiTioN. Definition (3.9) is invariant by a change of coordinates which
preserves the boundary.

As a consequence, we can define trace operators acting on the sections of 0 bundles
on a C® manifold with boundary.

(3.13) PROPOSITION. A irace operator T is continuous CF (Q) ~0=@Q). It extends
continuously H™ (Q) - s_a_3(0Q) if 8>r—} (where d is the degree of T, and r its class).
If r=0, it also extends continuously &' (Q)— D’ (9Q), and if f is O up to the boundary near
a point x€0Q, then Tf is C® near .

The limitation on s comes from the “classical” trace operator contained in 7' (which
involves the restriction to the boundary of normal derivatives of order smaller than r—1).
We also have

(3.14) t(x', &)-2% and (—10/0&,) iz’ &) define the same trace operator.

3. Singular Green operators. Let g(x', &', &,,7,) be a C®function on R"" ' x R* 'x Ex R
admitting & series expansion:

(&> =&  (KED+im)
(K> +3EPH (K> —imp)™

r-1
(315) g(x’, E': §m 777:) = g ks (z’$ 5,7 'fn) "7; ngoa’pa(x,: E') +
a>0

where k,€ X% * is the symbol of a Poisson operator of degree d — s, and a,, a rapidly de-

creasing double sequence in S¢§.

(3.16) Definition. The singular Green operator G of degree d and class r defined by the
symbol ¢ is the operator G: CF (R") - C* (R") defined by:

Gf(x)= (2 ﬂ)‘""fdﬁ'f e“'edfnf 9@, &, &) F(E ) Ay

(here [ is the Fourier transform of the extension of f by 0 for x,<0,
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To these operators we add the negligible Green operators.
An equivalent definition is the following: there exists a rapidly decreasing sequence
of Poisson operators K, of degree d, and a rapidly decreasing sequence of trace operators

T, of degree 0 and class r, one of the two sequences beeing uniformly properly supported,
such that

G—2X K, T, is a negligible Green operator,
Using formula (3.15), we see that we can in fact choose 7, so that its symbol does not
depend on 2, and so that only a finite number of them are not of class 0. In this case the
composition K ;T is clearly a singular Green operator That KT is a singular Green operator
for general Poisson operators and trace operators (one of which is properly supported)
follows from the fact that the composition of two pseudo-differential operators on the
boundary is another one, and of formulas (3.1), (3.6).

The following assertions are immediate consequences of sections 1 and 2 of this para-
graph:

(3.17) ProrosiTioN. Definition (3.16) is invariant under a change of coordinates which
preserves the boundary.

Since the composition of a Poisson operator (or trace operator) with the multiplication
by a C® function is another one, it follows that we can define a singular Green operator
acting on the sections of a C® vector bundle on a € manifold with boundary.

(3.18) ProrosiTioN. A singular Green operator of degree d and class r is continuous
Ce(Q) > C*(Q) and extends continuously; HP™ (Q) ~ H', (Q) if s>r+13.

If r=0, it also extends continuously &'(Q) ~D'(Q). If f is C up to the boundary near a
point x, then so is GYf.

(3.19) ang(x’, &, &,, na)xs and 7-%(0[0L,)? (8/on,)%g(...) define the same singular Green
operator.

4. Symbholic calculus

Let Q be a C* manifold with boundary as before. A general Green operator on €2 is
a matrix (as (0.1) in the introduction):

_(Pa+@@ K
‘(4.1) A= ( T Q) ,
where P is a pseudo-differential operator (defined in a neighborhood of Q), satisfying the

transmission property with respect to 6Q2; @ is a singular Green operator, K a Poisson
operator, T' a trace operator, and @ a pseudo-differential operator on the boundary.
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These operators form an ‘“‘algebra” as was announced in the introduction (i.e. if 4
and B are two such operators, the sum 4 + B is another if it is defined, and the composition
Ao B is another if 4 or B is properly supported and the composition is defined). To prove
this we examine first the case where Q is the half space R, and the symbols of the coeffi-
cients of 4 and B do not depend on « (or z’): in this case we get:

(4.2) 1. Pof = (0(&) (&)
2. Gf =@n) f 9(E Enr o) 1E 72)
3. Ku=k(E, &) u(E)

b T} =@m f HE, £) (€, £,) dE,

N ’ '
5. Qu =g(&)af).

(In these formulas, if f is a function on the half space R”, f denotes the Fourier transform
of the extension of f by 0 on the complementary half space x, <0.)

So in this case the assertion follows from § 1.

With this as starting point, the fact that the composition of two Green operators such
as (4.1) is another one is proved exactly in the same way as the fact that the composition
of two pseudo-differential operators is another one, where the starting point is the case of
two translation invariant operators (cf. [7], [8], [9]), and we will omit the proof.

From now on, we will suppose that the symbols of the coefficients of 4 in (4.1) admit
asymptotic expansions in homogeneous functions of integral degree of &.

Then we define a principal symbol corresponding to the leading term in the expansion.
In fact we define two symbols: first we define the interior symbol oq(4). This is just the
principal symbol of the pseudo-differential coefficient in 4:

oa(4)=po (@, §).

It is a bundle homomorphism on the unit cotangent sphere Sq, of Q, the coefficients of whose
matrix are C® up to the boundary and satisfy the symmetry condition (2.3).

Conversely, by examining first the case of an operator on the half space RB?, and then
patching together by means of & partition of the unity, we see that any bundle homo-
morphism py(z, £) on S whose coefficients are as above is the interior symbol of a pseudo-
differential operator satisfying the transmission property on Q.

The interior symbol map is a homomorphism, i.e. we have
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oal{d + B)=0q(4) + oa(B)
oq(d o B)=gq(4) o gq(B)

whenever the sum or product is defined.

Next we define the boundary symbol o3q(4). This is & Wiener-Hopf operator (as in
§ 1) depending C*® on a unit cotangent vector on the boundary, whose matrix is (with the
notations of §1)

n + nyffn k n
(4.3) O'an(A)=(Zf)) (&ns70) q(& ))

(we have written p(£,) instead of py(x’, &, &,) eto. ...)
It operates from EQH;® F to B'QH} @ F', where HY is defined by (1.16) (N is the
normal cotangent bundle, oriented by the inward normal). (The resaon for interpreting
% as a space of measures rather than a space of functions is the following: if Q is the half
space R", the Fourier transforms f of f€C$*(R")and % of u€C®(R"?) are really measures
on the dual space of R" (resp. R"'); the reader can check by making a linear change of
coordinates preserving the boundary that the interpretation of Hy as a space of measures
on N leads to the right formula for the behaviour of the symbol under a change of co-
ordinates).

The interior symbol map is also a homomorphism, i.e.
doa(4 + B)=0oa(4) + 0sa (B)
oon(4 © B)=0pa(4) © 6pa(B)

whenever the sum or product is defined.
This is proved exactly as for the principal symbol of pseudo-differential operators,
the starting point being the case of operators on the half space E? whose symbols do not
depend on z or #": in this case the assertion follows from (4.2) and § 1.
Of course, the boundary and interior syml;cols of a Green operator A are related: the
p+g

coefficient p(£,) in the matrix gyq(4)= (t q) is the restriction to the boundary of the

interior symbol an(4).
: n_(P+gk , N
(4.4) Conversely, if p(£) and a(f') = ; . are respectively an interior and a
boundary symbol, we will say that they are compatible if p’ is the restriction of p to 2Q:
if p and a are compatible, there exists a Green operator 4 such that og(4)=p, osq(4)=a.

(4.5) ProrosiTioN. Let P (resp. G, K, T, Q) be a pseudo-differential operator of de-
gree d on Q, satisfying the transmission property (resp. ...). Then P (resp. ...) is compact:
3 — 712904 Acta mathematica 126. Imprimé le 5 Janvier 1971
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Hm Q) - H,(Q) for large s (resp. same, resp. H%%(0Q) - HY (Q), HE™ (Q) -~
00u-12(0Q) for large s, HE™ (9Q2) - HY, (9Q) if and only if its principal symbol is 0.

Proof. The condition is sufficient because the operator is really of degree d—1 if the
principal symbols vanish identically. That the condition is necessary is known for P and @
(then the principal symbol must vanish inside Q resp. Q). The assertion then follows for
the other operators: if the principal symbol of K (resp. T', G) does not vanish identically,
it follows from the composition formulas (1.13) that there exists a compactly supported
trace operator 7' of degree 0 and class 0 (resp. K of degree 0, resp. K and 7' of degree 0)
such that the principal symbol of @=70K (resp. same, resp. ToGoK) does not vanish
identically.

5. Boundary problems. The index formula

In this paragraph, we suppose Q compact. Otherwise, results concerning symbolic

calculus only hold locally.

P
1. LetA=( e K
T Q

As in § 4, we will suppose that (in some coordinate patch) the complete symbols have

) be a Green operator as in (4.1).

asymptotic expansions in homogeneous functions of integral degree of &, so that the degree
d and the (principal) interior and boundary symbols are well defined.

We will say that A is elliptic if it admits a both sided parametrix A’ of degree —d
(ie. 1—44’ and 1—-A4'4 are negligible operators in the sense of § 3.0). (We do not in-
vestigate here the case where there exists a both sided parametrix of the wrong degree.
One such case is easily reduced to the case studied here: this is when the bundles on the
sections of which A operates are split in direct sums, and 4 has different degrees in dif-
ferent directions but is elliptic in the sense of Agmon, Douglis and Nirenberg (Comm.
Pure Appl. Math., 17 (1964), 32-92); in fact the results of this paragraph remain valid in
this case, provided the principal symbols are redefined conveniently).

(6.1) THEOREM. 4 1s elliptic if and only if both its interior and boundary symbols are

tnvertible.

Proof. The condition is obviously necessary. Conversely if 0g(4) and oy(4) are both
invertible, their inverses are compatible, so there exists a Green operator A" such that
0a(A") =00(4), Gaa(A”) =0aa(A) (of. (4.4)).

Then B=1—A40A4" is of degree —1.

Now let A’ be a Green operator such that
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! 17 x
A'~4"03 B,

N
(where as in (7), ~means that the degree of A'— A" o> B* tends to — oo when N — oo,
. 0

That such an operator exists is proved just as in (7)). Then 1—A4o04’ is a negligible
operator, so that A’ is a right parametrix to 4. In the same way one proves that there
exists a left parametrix, and it follows that 4’ is already a both sided parametrix.

2. An example.

P+@ K = . S
T Q) and suppose that P is elliptic near €}, i.e. the interior symbol

is invertible. Then 6yq(4) is a Fredholm operator depending continuously on & € Syn

LetA=(

(Ssn denotes the unit contangent sphere on 9Q). So it has an index bundle: (1)
(6.2) Definition: j(A)€ K(Spa) ts the index bundle of the Fredholm operator can(4)
{when 6 (A4) is invertible).

(This depends only on the boundary symbol a of 4, and we shall also write it j{a)
when convenient.)

Quite obviously we have
(6.3) i(A® B) =j(4) +j(B)
j(AoB) =3j(A4)+7(B) when Ao B is defined.

In particular, if 4 operates on the bundles E, E’, F, F’ as in (0.1), and if  is the
projection of the cotangent bundle onto 8Q, we have:

(5.4) §(4) = j(Po) +7*F —n*F"

Example. Let us first choose a metric on £, so that Q is isometric to 8Q x E, near
the boundary. Let « be a smooth function near 8Q, equal to 1 near 8Q and to 0 out of a
small neighborhood of @Q. Finally let @(¢) be a smooth function of one variable, such that
0<@<1, ¢(t)=0 near t =0, and @(t) =1 if £ >¢ (¢ will be chosen small later on).

Now let us set:

C=(E+i|E | @|&]]1ED) 2 E~51€ | 91 ]]]E]))-

(}) This bundle is also used in [11] in a more general situation. It is the bundle M * of [31
when A is a partial differential operator. For the definition of the index bundle, we refer to [2]
and its bibliography.
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(The normal and tangential components £,, & of & correspond to the isometry between Q
and 8Q x R, near 9Q, so that ¢ is well defined and smooth when £ -0 near dQ —say near
the support of «.)

Let E be a vector bundle on 2Q, and let E+ be a complementary bundle, so that
E @ E*+ ~C"is a trivial bundle. Then we define an interior symbol y; by

(6.5) ye=Cpp+1—pg

(pe is the orthogonal projection on E, 1 —p; is the orthogonal projection on Et. i is at
first only defined near 6Q, and we extend it by the identity of C¥=E @ E+ where a=0).
If £ is small, { is very close to

Lo=nti|& )2 E—3[E])-

Now the kernel of the Wiener Hopf operator on H+ defined by {, is the line of functions
proportional to (§,—¢|&'|)~%, and the cokernel is 0. So it follows that we have

(5.6) jtye) = B.

(Notice that we can always choose a pseudo-differential operator I'z with interior symbol
6a(T'z) =y so that it has the transmission property (2.3), and so that it coincides with the
identity operator out of a small neighborhood of 2€.)

Since yy is an elliptic symbol, it follows that given any virtual bundle F on 2Q, there
exists an elliptic pseudo-differential operator P satisfying the transmission property, such
that j(Pg)==*F.

Next let E be a bundle on Q. Then there exist two elliptic pseudo-differential operators
of degree 1: A% and Az with interior symbol:

6.7) oa(Ag) =25 =(&—¢|& | @& [E))* & 1
oa(Ap) =4z =&+ & (€ 1/|ED)* €' 1g
(p, , and the metric on Q are as above).
For the same reason as in (5.6) we get:
(5.8) jAz)=E
(5.9) j(Az)=0.
Now let T, denote the Dirichlet data: 7', f =f/0€2. We introduce the four following

systems (Green operators):

(AE)n) - (AE)O ( (PE)Q )
(5'10) (To' lE (AE)Q (To' IE) To * Pe
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(Ag is the Laplace operator on the sections of E. Its interior symbol is — |£|?- 1. In the
last case, E is a bundle on 8Q as in (5.4), not necessarily the restriction of a bundle on Q,
P is the projection on E, parallel to E+ and Iy is as above).

If & has been chosen very small, A+ (resp. 1-, y) is very close to &, —4|&’| (resp. &, +|£€'],
(Ent+e|&|) 1 (E,+4]E])), and it follows from theorem (5.1) that these four systems are
elliptic. We also have:

((AE)Q ) is homotopic to ((AE Ja O) o ((AE )n)
Ty 1z 0 1 T, 1g
(5.11)
- -1 AL
((FE)Q ) is homotopic to 1, @ ((AE)Q O) o (( E)g)
To pE 0 1 TO . lE

(in these formulas, A-! represents a parametrix of 4).
Since we suppose that Q is compact, the four elliptic operators of (5.10) are Fredholm,

and have an index.

(6.12) THEOREM. The four elliptic systems of (5.10) have index 0.

Proof. The result is known for the Dirichlet problem((AE)ﬂ ) So in view of (5.11)

Ty 1
Tzl ) is 0. We can choose I'y so that it
Ty ps
coincides with the identity operator out of a small neighborhood of €, so we will suppose
Q=0Qx R,. We will also forget the bundle & (the index of the identity operator on the

sections of ¥ is 0).

it is sufficient to prove that the index of (

Let A% be a second order self adjoint operator on the sections of E on #Q, with symbol
—|£|2- 1z, all of whose eigenvalues are negative (we suppose that O metrics on 9Q
and F have been chosen). Define 'z (on Q x R) by

Iz=0)ow, +V — A%)* (09/ox, — V — A).

Taking expansions with respect to the eigenfunctions of Az and a Fourier transform

Tz

is an iso-
T, lE)

with respect to the normal variable x,, one checks immediately that (
morphism: H,(Q, E)~H,(Q, E)® H, (5Q, E).
To prove theorem (5.12), we will construct a homotopy of Fredholm operators from
H,(Q,E) to H,(Q, E)® H,(6Q, E) connecting ((PE)Q ) to ((Fi)n )
Ty 1z Ty 1z
First let us set

P=(0)ox,+V — Az - @ (VAZ/AR)) (0o, — V — Ak - ¢ (VAZIAL)
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(we have set Ap=(9/0x,)2+Aj and ¢ is as in (5.5)) i.e. if —1Z(4,>0) and f,(z’) are the eigen-
values and eigenfunctions of Az, and if %(£,) is the Fourier transform of u(x,) with respect
to x,, P is defined by its partial Fourier transform:

Plfi(®) w(@,)]= (& + ihe (A (A% + E2) 7 (&, — idep (e (Ak + £2)7H)) fu(2) (&)

P is an z,-translation invariant pseudo differential operator on the sections of £ on o€ x R.
Its symbol is ¢(P) ={, and P induces an isomorphism of H,(0Q x R, E) onto itself,

We choose the function « of (5.5) so that it only depends on z,. Let f, y € C°(R) be such
that 0<B<1, 0<y<1 g=1 near supp «, 8 =0 for large z,, and 2 +y2=1. We will suppose
that 'z is defined by

[z= B P(z, D)» B + o2
(where the power P« js defined by taking the determination of {* which is real positive when

£&=0, £ n>0).
Our first homotopy is given by:

P, = gpeowtid-e@ag Lypty  (0<t<1).
Our second homotopy consists in translating Py to the left:
P,=P,(x,—t+1) (1<t<ty)
so that P, and P coincide near the half line z, >0.
Our third homotopy consists in replacing @ by 1 in the formula defining P:
piu) = —t) +(1 —t+&)p(u) (F<t<iy+1).

(Pa
To 1g

That it remains a Fredholm operator in the third homotopy is seen by taking expansions

The Green operator 4,= ( ) depends continuously on ¢ in the norm topology.

with respect to the eigenfunctions of A; and a Fourier transform with respect to x,, as
above. It remains a Fredholm operator during the second homotopy: then P, remains un-
changed for large z,, and its symbol is constant, so that if B;, is the inverse of 4, it is also
a quasi inverse of 4, (1<¢<#,) (i.e. 1 —4,B,, and 1 — B, A4, are compact operators). That
it remains a Fredholm operator during the first homotopy is a consequence of the fact that
we have chosen P so that it induces an isomorphism of H,(0Q x E) and of the following
lemma (the proof of which we leave to the reader):

LemMmA. Let P be an x,-translation invariant pseudo-differential operator of degree 0
on 0Q x R, and let ¢ be constant for large x,. Then Pg—@P induces a compact operator on
H,(02Q x R).
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Knowing this, let B; be any parametrix of 4,, and let £, " be two C® functions such
that f’=1 near supp g, ' =0 for large z,, and g2+y"2=1.

Then B,=fB;f'+y' (Pt 0)y’ is such that 1 —4,B, and 1— B, A4, are compact op-
erators on H,(Q, E)® H,(8Q, E) and H,(Q, E) respectively (because 82— 4,5 B;B and
y2—Aiy' (P70}, and also f2—f'Bif' A, and y'2—y'(P~*, 0) y'A, are compact opera-
tors, We have written as a row matrix an operator from H,(Q)® H(8Q) to H,(£2)).

3. The index bundle j(4). We investigate the bundle defined in (5.2) a little further.
Let P be an elliptic pseudo-differential operator satisfying the transmission property.

A= (gﬂ +e 2) is any elliptic system associated to P, then the boundary symbol of 4

is invertible, so we must have j(4)=0. Then, by (5.4) j(Pq) =#*F’' —a*F has to be the pull
back of a virtual bundle on Q.
From now on we will suppose that 4 is of degree 0. If this is not the case, we replace

- -d
{)&E)Q (AP)*) where d is the degree of 4: by (5.9) and (5.12) this does
F

not change the index bundle j(4), nor the index.

A by A’=Ao((

The interior symbol p =0n(A4) is an isomorphism of bundles: E~ E’ over the cotangent
sphere S, and it satisfies the symmetry condition p(r) =p(—v») on the normal bundle €N,
so that it can be canonically extended on the normal bundle N: Then it defines a virtual
bundle

d(p)€ K(TQ, N)= K(Bg, S5 U N)

(Bg is the unit ball of 7Q, Sg the unit sphere, for some metric).
Now let us consider the following commutative diagram:

KQ xRy ‘= K@)

{ ¥
(5.13) K(TQ) —+ K(TQ, N) > K(TQ[oQ, N) ~ K(Saq x R?) ﬁ; K(83q)
¥ ¥ ¥ { y

K(TQ)~K(TQ) —KTQleQ) ~KYTQ) ~ K'(TQ).

In this diagram, we identify 7Q/0Q and T9Q x R by taking the inward orientation
of the normal bundle. The isomorphism K{(TQ/0Q, N)~ K(S,q % R?) is defined by the map
which takes (&, &,) into (£/|&'|, &,, Log |&'|). B is the Bott isomorphism, i.e. the multi-
plication by the difference bundle d(C, C, &,+¢ Log |&'|)€K(R?) =K~ (point).

In the diagram, the columns are exact, and so are the rows at the second place

(K(TQ, NV), K(TQ)) (this is just the exact sequence of K-theory).
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Now the image of d(p) € K(TQ, N) in K(Syq) is precisely j(Pg) (cf. (2), where it is shown
that the map which takes f€ K-1(X x R)=K3X) (i.e. f is a continuous matrix on X x R,
such that f(x, + oo)=1) into the index bundle j(f) of the Wiener—Hopf operator defined by
f is inverse to the Bott isomorphism: here the matrix f corresponding to d(p) is precisely
the interior symbol p(&’, £,)).

This proves the necessary part of

(5.14) THEOREM. In order that there exist an elliptic Green operator with interior symbol
oa(Pg), © is necessary and sufficient that j(Pq) be the pull back of a virtual bundle on 0Q,
or equivalently that for large N, 1.8 @oq(P) may be extended as an isomorphism on the full
boundary of BQ (i.e. 9Bg =S5\ (Bg/o<2), where Sg is the unit sphere, Bg the unit ball of TQ).

The sufficiency will follow from section 4.

Theorem 5.14 remains true if the degree of P is not 0, since the symbol of A~ can
obviously be extended.

The second condition is equivalent to the following: there exists a homotopy of elliptic
pseudo-differential operators connecting 1..®.P to an operator P’ which coincides with the
identity near 6Q (we identify the two bundles E and E’ on the sections of which P operates
by ¢a(P)(») on Q). However, such a homotopy will usually not preserve the symmetry
condition o(r)=0(—v). In view of the exactness of the middle row in (5.13), we have:

(5.15) ProPos1TION. There exists a homotopy of elliptic pseudo-differential operators
satisfying the transmission condition, connecting lea@P to an operator P’ which coincides
with 1 near 8Q if and only if j(Pg)=0.

(The exactness of the middle row of (5.13) only insures that there exists a continuous
family of elliptic symbols p, satisfying the symmetry condition p,(») =p,(—v»), and such
that py=1c®oq(P), p; =1 near 8Q. But then it is immediate to regularize p, so that it is
C= and satisfies the transmission condition.)

4. Reduction to the boundary. In this section, we show how one can reduce the study of
the ellipticity conditions to a problem concerning pseudo-differential operators on the
boundary. (This technique has been used number of times—cf. A. P. Calderon: Boundary
value problems for elliptic equations, Ouilines of the joint Soviet-American symposium on
partial differential equations, Novosibirsk 1963, 303-304; L. Hormander—Non elliptic
boundary problems, Ann. of Math., 83 (1966), 129-209; R. T. Seeley—Singular integrals
and boundary value problems, Amer. J. Math., 88 (1966), 781-809.)

‘We begin first by studying the symbols: let P be an elliptic pseudo-differential operator,
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satisfying the transmission property, and let @ be a singular Green operator (of the same
degree), operating both from the sections of E to the sections of E'. Then the boundary
symbol p +g=0q(Pq +G) is a Fredholm operator depending C® on &'. It follows that given
any compact set = < S (if 6 is compact we will take E =Spq, otherwise we only have a
local result), there exists a Poisson symbol (depending C® on &') k: F -+ E’® Hy such that
(p+g)®k is onto if &€ E. The null space of (p+¢)®kis a C° bundle O EQH; @ F.
If we replace &k by k@ k%, where k, is a Poisson symbol: F, - E'® Hy, then @ isreplaced by
O, ~DF,.

Now let a= (1: g I;) be the boundary symbol of a Green operator associated to P.

ptg kK
Notice that @ and a' = ¢ g O ) are simultaneously one to one or onto. So we can
0 01

always suppose that the Poisson symbol % is precisely the one we have just constructed
{i.e. the first line of a is onto), Then the Green symbol ¢ is an isomorphism if and only if
its second row is an isomorphism of @ onto F' (F” is the bundle in which ¢ and ¢ take their
values).

It is usually practical to realise @ as a subbundle of a trivial bundle OV (or of the pull
back to Syq of a bundle on 6Q)). This one can do as follows: in any case, there always exists

a surjection ky: OV -+ ®, where k is a Green symbol of the form (I;), and a Green operator
ty (of the form (¢q)): EQH{ @ F —~C" such that kyf, is a projector on @, and hy=t,k, is

the projector on ®,=t,®, parallel to ker k&,
Now let A be a Green operator with interior symbol 6o(P), and boundary symbol a.

(5.16) ProprosiTION. With the notations above, A 1is elliptic if and only if the
boundary symbol 650 ((T @Q))ok, is an isomorphism of ®,=range of hy onto F'.

(Of course, if X, is a Green operator of the form (1;) whose boundary symbol is k&,
(T @)X, is a pseudo-differential operator on 2Q.)

When ( is compact, the same constructions can be carried out globally with the
operators themselves (and not the symbols):

(5.17) ProrosiTiON. Let P be a an elliptic-pseudo differential operator satisfying the
transmission property, and G a singular Green operator. Then

1) There exists a Poisson operator K such that (Po+ @) ® K = A, is onto.
2) We can choose the left inverse By of A, in such a way that (i) 1— By A, =K, T, is
a projector on Ker A,, which is the composition of two (vector valued) Green operators X, of the
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form (g) T, of the form (T Q). (ii) A4, K,=0, so Hy= Ty XK, is a pseudo-differential pro-

jector on €.

3) Withthese notations, A = (P atd K

T Q
(which is a pseudo-differential operator on the boundary) is an isomorphism of the range of
oaa(Hy) onto F' (F' is the bundle in the space of the sections of which T and Q take their values).

) is elliplic if and only if the symbol of (T Q) X,

This could be deduced from (5.16), but since it is not longer, we give an independent
proof.

We \will use several times the two following facts (the proof of which we leave to
the reader):

—if A4 is a very small Green operator of degree 0, then 14 is invertible, and the

inverse is also a Green operator.

—any singular Green matrix § = ( T g) can be arbitrarily approximated by a com-
position X J, where X is a column matrix of the form (g) , and J a row matrix of the

form (T Q).
Now let P’ be a parametrix to P. Then we can approximate

G, =1—(Pq+G) Py
by a composite operator of the form K, T, so that
1-G,=1-G,+K,T,

is invertible. Then B = (;f)) (1-Gy™?
i3 a right inverse to A= (Pq+GK)).
Now L;=1~B; 4, is a projector on Ker 4,, of the form ( g g) . We can approxi-
mate it by a composition X, J, as above, so that 1 — G, =1~ L, — X, T, is invertible.
Let us set Ko=(1-G) 'K,
so that we have A1-L)=1(—G,) (1 — K. Ty).
Finally let us set Xo=L, X

Bl =(1- J‘o 70) Bi-

Then we get as announced

A, B, =A4,(1-K,T)Bi=1—-A4,L, X, Ty B1=1
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(because 4, L, =0). It follows that
KoT,=1—B, A,
is a projector on ker 4,. Finally we have
A1 Xe=0, s0 KyToKo=(1—B A) K=K,
and Wo=Ko Ty Ko To=KoTo=Hy

which ends the proof.

We will use (5.16) to end the proof of theorem (5.14). Notice that if @ is the kernel
of 650{(Pa+G K)), we have j(Pg) =® —n* F (as above 7 is the projection S;q ->0€2). Suppose
now that j(Pg) is a pull back: then there exists a bundle F’ on 6Q and a C* isomorphism
q(&'): D@ M~ F' (if M is large enough). Then (with the notations of (5.16)), a Green op-
erator with same interior symbol as Pg and with boundary symbol:

osal{d)=0cs((Pa+ G K))®¢E) (l,® Ocx)

satisfies the condition of (5.16), so it is an elliptic Green operator associated to P.

All these constructions can be done exactly in the same way when the operators
depend continuously on a parameter €X (where X is a compact space). Then the index
bundle §(Pg) is a virtual bundle on Sjq x X. Theorem (5.14) can be restated as: there exists
an elliptic Green system A* (depending continuously on z € X) associated to P? if and only
if j(Pg) €K (Ssq x X) is the pull back of a virtual bundle on 6Q x X.

We will be specially interested in the case where X is the interval [0, 1] (or the square
[0, 1}?). Then we get:

(5.18) Let Pt (0<t<1) be a continuous family of elliptic pseudo-differential operators
Po+G K
T Q
associated to P°. Then there exists a continuous family of elliptic systems A*, with gg(4%)=
oa(P?), and A°=AD 1.

(satisfying the transmission property) on Q, and let A= ( ) be an elliptic system

In other words, an elliptic “boundary condition” associated to P can be continued
to Pt

Proof. Let us first continue K9, G® arbitrarily into K?, (. Choose K as in (5.17) so that
it works for every ¢ (i.e.0pq((Ph+G* Kt K)) is a surjection for every ¢). Let ®¢ be the kernel
of oa((P4+G* Kt K)): this is a C° bundle on S,q x [0, 1]. Now 05 ((T° @° 1.u)) is an iso-
morphism of ®° onto #*F' @ CM. But this can be extended as a C® isomorphism of ®*
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onto the pull back of F' @ C™ to S;q x [0, 1], and because ®F is finite dimensional, such an
isomorphism is the restriction to ®* of a boundary symbol o3 (T @*)), where we can choose

() e-(¢ 1)

6. The Agranovié-Dynin formula. We will say that two elliptic systems 4 and B
are equivalent and write 4 ~ B if there exists a homotopy of elliptic systems connecting
A®1 to Bd1. The class of 4 for this equivalence relation depends only on its interior and
boundary symbols, so we can speak of the class of a symbol as well as of the class of an

operator. Quite obviously 4 and B are equivalent if their symbols are close enough to each

A A A4 0
A~(0 1)~(A" 1)'

Now let 4, and A, be elliptic and have the same interior symbol. Then the interior

other. Also we have

_symbol of B=A4,4;7"is 1 (we write A7* for any parametrix of 4,). So the boundary symbol
of B is of the form:
1+¢ Ic)

oasa(B) = (t q)

We can always approximate g by a composition £'t’. So we deduce all information on
the difference between the classes of 4, and 4, from the following result, which generalizes
the Agranovié-Dynin formula (Dokl. Akad. Nauk SSSR 145, no. 3, 511-514).

(6.19) ProrosiTioN. We have

(I—K'T’ K (I—T'K’ —T’K)
T Q ~-TK' Q-TK

where the second operator is a pseudo-differential operator on the boundary.
Proof. We have
I-E'T K 1-K'T" K' K 1, K K 1 0 . 0 ,
(T ) ~[0 1 0 )~|T1 O0|)~|T 1-T'K ~-TK|.
Q T 0 @ T 0 @ T -TK Q-TK

The first equivalence is obvious. The second follows by multiplying on the right by

1 00
(T' 1 0)~l,
0 01
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and the third by multiplying on the right by

1 -K' —-K
(0 : 0)~1.
0 0 1

This construction can be done just as well when 4 = (1 ¢ K

T Q
) ~ Q'%, where Q'* is a pseudo-differ-

) depends continu-
1+G* K*
T &

ential operator on o) depending continuously on 2. In particular we get

ously on a parameter z€ X; then we get (

1+& Kt

(5.20) Let A*= ( - p

) be an elliptic Green operator depending continuously on

1 10
t€[0,1], where A°= (0 0 Q'

T =0). Then there exists a homotopy of elliptic pseudo-differential operators on 9Q connecting
Q'®1 with 1.

(1)) is the identity operator and A1=( ) (i.e.G*=0,K'=0,

7. The classical case. The constructions of the preceding sections become fairly sim-

ple when 4= (1;0), where P is an elliptic partial differential operator. We repeat these

simplified constructions here.
Let m be the degree of P, and let E and E’ be the bundles on the sections of which
P operates. Define G: C* (2Q, E)" D' (Q, E')

Gyt =P(f)— Paf,

where f is the extension of f by 0 outside of Q, and we have set Yl = (8]0, YeF[0Q) -0, ... m—15
8/6x, = normal derivative near 8Q.

By Green’s formula Pf — Pg { is a distribution supported by &, of the form
1 Pk. 14 (x,» a/axl) ((a/azn)kf/ag) 6(xn)(l)

Ok +Ism—

(the definition of the product is relative to an isomorphism Q~8Q x B+ near oQ, and
x, € R+ is the normal variable in this isomorphism).
It follows that § is well defined and ranges in the space of distributions supported
by Q.
Now define K, by
Kyu =P'(Gu)/Q.

where P’ is a parametrix of P, so that K is a Poisson operator.
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Then we get oa(Pa PR)=1 oq(Pq Pa)=1
ooa(Pa'Pa)=1 0sa(Pa Po)=1—0sa (Ko ym)-

So that in this case, we can take the symbols &, and £, of (5.16) to be those of K,
and y,,.

hy= a0 (Kyy,) is then the symbol of the Calderon-Seeley projector on the Cauchy
data of the kernel of Pg.

Application of (5.16) to 4= (IT)Q), of course, gives back the Lopatinsky covering

conditions.

IfA4,= (1;0) and 4,= (1;,“) are two elliptic systems associated to the same elliptic
1 2

operator P, and if B,= (Pg+ G, K,) is a parametrix to 4,, we get

10
anadsB)=(; )
with qd=0an (T2 Kl)
So we have 4, B, ~Q=T,K,, and in particular

index (4,) —index (4;) = index (@)
which was the formula stated by Agranovitch and Dynin (loc. cit.).

8.. The index of an elliptic boundary problem. Let us first recall the index formula when
there is no boundary (cf. (4)): if f: X =Y is an embedding of ¢° manifolds, we have the
Thom map f: K(TX)~K(TY). In particular the Thom map #: K(70Q)~K(TQ) is well
defined if Q is the interior of a C® manifold with boundary Q (because Q is isomorphic to
a neighborhood of Q, and we can choose the isomorphism to be homotopic to the identity
of Q).

The Bott periodicity theorem states that the Thom map is an isomorphism if X is a
point, and ¥ =R"

If £€ K(TX), the topological index of £ is defined by

X(&)=141},(£)€ Z= K (point),

where f is an embedding X -~ B, and ¢ the inclusion point < R™,
If P is an elliptic operator on X, the index formula states that

index (P) = x([p]),

where [p]=d(E, E', p)€K(TX) is the difference bundle defined by the symbol p of P.
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(5.21) THEOREM. There exists one and only one map A —[A] which to an elliptic Green
operator A on Q assigns a virtual bundle [A]€ K(TQ) in such a way that

(1) [A] depends continuously on A (i.e. [A]=[B)] if there exists a homotopy of elliptic
operators connecting A and B).

(2) A-{A] ts a homomorphism, i.e. [A® Bl=[A]+[B], and [Ao B]=[A]+[B] if the
composition is defined.
Py 0

(3) [A]=[Pql +t[@Q] of A= ( 0 Q) where P coincides with the identity near 8 (so that

[P] 28 well defined as an element of K(TQ)), and ¢ is the Thom map: K(TeQ) ~K{(TQ).
(4) [A]1=0 if A is one of the elliptic operators of (5.10).

Proof. We prove the uniqueness first: suppose that

A=(PQ+G K

T Q) 1 0°(Q,B)®C*(0Q, F) > C*(Q, B'Y®C™ (2Q, F')

and the degree of 4 is d. Then we must have

-d
[4]= [AO(OE (g )*) ] So we can suppose d =0.
F

Next let j(Pg) = n* (D — ®’), where @ and @’ are two C* bundles on 9Q (and 7 is the
projection S3q —8Q). Then we must have

(qu)n) ((Pcp)n) _1]

1= [40(7*0) 0

1= [40(g0) o 750

(we have taken the same notations as in (5.10)). So we can suppose j(Pq)=0.

Now in view of lemma (5.15), there exists a homotopy connecting P to P’, where
P'=1 near 2Q. Then (5.18) and (5.19) show that there exists a homotopy connecting

A®1 to a Green operator of the form (ﬁn 3,), where P’ =1 near Q. So by (1) and (8)

we must have

[4]=[P]+1[Q].

To prove the existence, we have to show that the bundle just constructed does not
depend on the choice of homotopies hereabove, or equivalently: if 4 (0<¢<1) is a homo-

topy of elliptic systems connecting A4°%= (Po 0 ) where P0=1 near 8€) to A*=1, then we

0 ¢
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have [P?]+¢[Q"]=0. This will be proved in section 9 (it is useless for the proof of the in-

dex formula).
(5.22) THEOREM. Let A be an elliptic Green operator on Q. Then we have
index (4) = x([4])

(where y: K(TQ) ~Z s the topological index).
P o

Proof. This is just the index formula of (4) when 4= ( 0 @

),Where P is the iden-
tity near 8€2.

If A is one of the operators of (5.10), the formula is true by section 2 (then index (4)
=0). The formula in the general case then follows immediatetly: every construction in
the proof of theorem (5.21) preserves the index. This ends the proof.

Let us also observe that this index formula still holds if Q is not compact, but 4 coin-

cides with the identity operator out of a compact set.

3 t
9. End of the proof of Theorem (5.21). Let A= (;,)?J“ & Ié,

family of elliptic systems, such that A*=1 for ¢t>1, and

“~(; ¢)

) (t> 0) be a continuous

where P°=1 near oQ.
We first choose an isomorphism z—(z',%,) of a neighborhood of 6Q in Q onto

2Q x R*. Then we define a new symbol p" by

P, ) if t<1
P, ) ={p" (5, 8) i 1<i<2
1 if t=2.

where p° is the interior symbol of Pf, and (pEC‘”((_Z) is such that 0 <@ <1, ¢ =0 near 9Q,
and ¢ =1 when «,>1 and away from 2Q.

Then we obviously have [P0]=[p'®]=[p"].

Next define a new elliptic system A" by

t 0
(fm”;o 150) if 0<t<1
A,t = P’t + Gt—l Kt—l .
(Tt—l Qt—l) lf t>1

where p is any pseudo-differential operator with interior symbol p". Then gq(4") is
constantly equal to 1 when ¢>1 and z,>1.
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Replacing 4* by A'*™*, we see that we can always suppose that the interior symbol of
At is the identity when x,>1 or ¢>>1, and so we will also suppose Q =2Q x B+.
Now let us introduce the following commutative diagram (where Q=0Q x R+)

K(@Q x R}, (TQoQ x {0}) U (N x B}))

+a
— d ot
(5.23) K(TQ[oQ x B, N x B) ~ K(Ssq % Rz x Bz x Ry) Iil K(S3q x R})
b %] %
_ e Bt
‘e
K(TQ).

In this diagram, IV is as usual the cotangent normal bundie.
a is the restriction to 8 (it is an isomorphism because the inclusion
(TQ/2Q x B+, TQJoQ x {0}) < (TQ x R+, (TQ/eQ x {0}) U (N x B+))

is a homotopy equivalence of pairs: the second can be retracted on the first by rotations)

b  is the natural restriction map

¢ is induced by the map ¢ ->=,.

d is induced by the map (&, 1) ~(&'/1&'|, |&'], &, ¢)
e isinduced by the map &~ (£, &,)

0

is the boundary map of the exact sequence of K-theory:

K-(8p0) = K(S50 x B+) ~ K(ToQ)
$, 1is the multiplication by the difference bundle d(C, C, &,+4 Log |&'|) €K (R} x Bz,)
B; is the multiplication by the difference bundle d(C, C, Log t +4&,) € K(R;, x Rf)

B+ is the closed half line, R+ is the open half line. The subscript (B}, Re,, etc.) indicates
which variable varies in which factor:

The last square on the right would be commutative if we had replaced 8, by §, in the
second row of (5.23). It still commutes as it stands because the permutation (|1€], & 1)~
(¢*, Log t, |€’|) is homotopic to the identity. v

The composition coboa equals the restriction to {0} = B+:

K(TQ x R+, ..) - K(TQ x {0}, TQ/6Q x {0}) = K(TQ)
because the maps {€ R+ (0, t) € B2 or (¢, 0) € B+* are homotopic.
The composition coe™'0f2 is the Thom map: K(72Q) -~ K(TQ).
Now the interior symbol p*=0q(4" is a bundle homomorphism satisfying the sym-

metry condition p*(») =p*( —») (where » is any normal covector on 2Q), so it defines a virtual
bundle

4— 712904 Acta mathematica 126. Imprimé le 5 Janvier 1971
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d(p)EK(TQ x B, TQ x{0}U N x E).

The image ¢ of d(p') in K(Spq x Bf)=K-1(S3q) in diagram (5.23) is the index bundle
j(p%) as in section 3. So we have

(5.24) [P']1=t[q] (g=17(p")EK(SeQ x R{)and [¢q]=0oq=difference bundle defined by g¢).

Let us first suppose j(p*)=0€K(Syq x Bf). Then by proposition (5.15) (with para-
meter) we can deform the continuous family 4*@1 into a new family A’ (without changing
A*®1 or A°@®1) so that on(A*)=1 near 0Q for every ¢. In this case [oy(A%)] is defined,
and equal to 0, for every ¢, and it follows from (5.20) that we also have [@%]=0.

It remains to check [P?]+4{Q®] =0 for one continuous family A* as above, with given
g=3(p").

So let g€ K(Szq X B*) =K 1(85q). We represent ¢ by a 0% matrix q(£'): S3o—> GL(N).

Let M, (0<u<oo) be a homotopy connecting (?) ;_1) and 1 (i.e. M, is a C%

2N x 2N matrix on Sy, depending continuously on %, and such that M= (g :_1),

M,=1 for large u) .

We define a continuous family of elliptic symbols p* by
& qiv% 0 -1
(5.26) P, &) =M., (& [E]) o 1) M=

(where £, « are as in section 2) (p* is at first only defined for £0, but we extend it by 1
when & =0. It is the identity when &' is small, or when x, +¢ is large).

Then p!(p®)~! is a continuous family as above, and we have
i@ @) = 30" — j(#°) = (M, - O") — (C") € K(Spn X R*),

(where we write OV for the first factor in C); this is precisely the bundle defined by g¢.
Now we follow the boundary condition: as in section 2, if T, is the Dirichlet data,
Pt

and I the projector on the first factor C* in O2¥, Bt= (H M.T,

matrix (P is such that g (P?) = p').
Then A*= B*(B*) !is as required: we have A*=1,and 4°= (f;o g“) with 650(@%) =

) is an elliptic column

-1

q
Finally, by (5.24), we get in this case [p®] + [Q®] =#[g] + {[¢"*]= 0. This ends the proof.
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