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1. Introduction

Let A be a C*-algebra with identity 1. A physical state is a function p: 4->C which is
a state on each singly generated (C*-subalgebra of A. Here “singly generated” means
generated by 1 and a single self-adjoint element ¢ € 4. The present paper is devoted to a
discussion of whether a physical state g on 4 is linear, i.e. whether it is a state in the ordi-
nary sense. In the proper physical interpretation, this is the problem of linearity of the
expectation functional on the algebra of observables in quantum mechanics, cf. Mackey [8]
and Kadison [6].

Mathematically, the problem is also closely related to the following problem: Let R be
a von Neumann algebra, and let P be the lattice of orthogonal projections in E. A function
p: P=R+ such that 4(0)=0 is called a completely additive measure on P if

M(iezrei) = ieZI‘u(e;-)

for any family {e;};c; of mutually orthogonal projections in P. u is a probability measure
if (1) =1. Given a probability measure x4 on P one may ask whether there exists a positive
normal state ¢ on R such that g|P=y. This question, which poses what we may call the
extension problem for measures (in non-commutative setting), was first suggested by
Mackey. An affirmative solution for the special case where R =L(H)=all bounded linear
operators on a separable Hilbert space H, with dim H >3, was given in an ingenious
paper by Gleason [5]. In the case where the measure is the dimension-function on the
projections of a type II,-factor, the problem of extension is precisely the problem of the
additivity of the trace [7], [9].

The connection between the extension problem for measures and the linearity problem
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for physical states, is established in this way: Let u be a probability measure on the pro-
jections P in a von Neumann algebra R.

For each self-adjoint element a € R we may define

ela)= L( )Mﬂ(ez)

where {e;} is the spectral resolution of a, and g(a) is the spectrum of a. Since every element
€ R may be written z=a, +1a, in a canonical way where a,, a, are self-adjoint elements

of R, we may extend g to all of R by
o(x) =p(ay) + ig(as)-

¢ then becomes a physical state on R, and we have g|P=u. ¢ is linear on R if and only if
it solves the extension problem for . Hence the extension problem is a special case of the
linearity problem for physical states. The latter, in the form it is given above, is due to
R. V. Kadison. .

In § 3 of the present paper we give a complete solution for the case of a physical state
o on a commutative C*-algebra 4. When A is non-commutative, the problem remains un-
solved in general. However, as Gleason’s result indicates, solutions in particular cases may
be found. In § 4 we give a brief outline of methods and results in this direction. A detailed
exposition will be published elsewhere. ‘

We are indebted to R. V. Kadison for calling our attention to these questions, for his
helpfulness through several discussions on the subject, and for his steady encouragement.
We also wish to express our gratitude to J. M. G. Fell, E. G. Effros and C. Akemann for
valuable conversations.

Throughout this paper concepts and results from the theory of C*-algebras will be used
quite freely. Our general reference is the book by Dixmier [4].

2. Physical states and quasi-states

Let 4 be a C*-algebra with an identity 1. A physical state is a function p: 4—>C which
is a state on each singly generated C*-subalgebra of A. Here “singly generated” means
generated by 1 and a single selfadjoint element a € 4.

We start with two simple examples which show how much linearity it is reasonable
to expect from a physical state. First, let A be non-abelian, and let a be a non-normal
element in A (if each element in A is normal, then 4 is abelian, so non-normal elements

exist). Let p be a state on A such that p(a*a —aa*) +0. Define, for any x€4
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01(%) = o(x) +o(x*x —xa*).
Clearly g, =¢ on 4, (=the self-adjoint elements in 4) and on any abelian C*-subalgebra
of A4, so0 g, is a physical state on 4. But g, is not linear on 4.
Next, let A be abelian with two generators a, b€ 4,. Then a +¢b is not contained in any
singly generated C*-subalgebra of A4, so the set N of elements not contained in any singly
generated C*-subalgebra is not empty. There is a state g on A which does not vanish identi-

cally on N, and we define
olz) if x€EANN

Ql(x)z{ 0 if weN

Then g =g, on 4, and on any singly generated C*-subalgebra of 4, but g, is not linear on 4.
Hence, even in the commutative case, non-linear physical states exist. This kind of non-
linearity is not a serious deficiency. What we want, is to show that a physical state is
linear on 4,, since the bounded observables are supposed to correspond to the self-adjoint

elements of 4. However, to avoid trivial technical complications, we introduce the following

Definition. Let A be a C*-algebra. A positive quasi-linear functional is a function
g: A—~C such that

(i) @] B is a positive linear functional for each singly generated C*-subalgebra B of 4.
(ii) o(a) =p(a,) +ip(as), when a=a, +1ia, is the canonical decomposition of a in self-

adjoint parts a,, a,.
If in addijtion

(iii) sup {o(a): a€4; ||a|| <I; >0} =1 then we say that g is a quasi-state on 4.

Observe that if 4 has an identity, then (iii) is equivalent to the condition o(1)=1.
We may also note that if two positive quasi-linear functionals ¢ and y coincide on each

singly generated C*-subalgebra of 4, then g =y by (ii). Clearly (i) implies that g is real on

self-adjoint elements, so by (ii) it follows that p(a*) =p(a) for all a€ 4. Let us use the nota-
tion
llel| =sup {o(a): a€4; ||a]| <1; a>0}

It is easily seen (by [7], 2.1.5 (vi)) that if 4 does not have an identity, then a positive quasi-
linear functional ¢ may be extended to a positive quasi-linear functional ¢ on 4 (=the
C*.algebra obtained by adjoining an identity to 4) by defining g(1)=K; if K> |o[. In
particular a quasi-state on A extends to a quasi-state on 4.

We shall use the following notation: If 2€4,, A(z) is the C*-subalgebra generated by
z (and 1 if 4 has an identity).
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3. Quasi-states on abelian C*-algebras

THEOREM L. Any positive quasi-linear functional ¢ on an abelian C*-algebra A is linear.

The proof of this theorem is rather lengthy and essentially measure theoretic. It is
obtained through a sequence of lemmas. Without loss of generality we may assume that 4
has an identity 1, and that g(1)=1.

Lemma 1. If 0<a, 0<b; a, b€A and ab=0, then there is c€ A, such that a, b€ A(c).

Proof. Let B be the C*.subalgebra of 4 generated by o, b and 1, and let ¥ be the set
of pure states on B, regarded as a compact Hausdorff space. It is sufficient to show that ¥

is homeomorphic to a compact subset of R. For p€ ¥ we have
0 = p(ad) = p(a)p(b),

pla) if pb)=0
—pb) if pla)=0.

80 we may define

wm={

Clearly ®(p)=0 if p(a)=p(b)=0. Let p=4q, p, q€Y. Since p(1)=¢(1)=1, we must have
pla) +q(a) or p(b) +q(b), which shows that @ is one-to-one. The range of @ is compact. Let
p,~p in Y; we may assume p(a)=+0, p(b)=0. Then p,(a)—>p(a), so there is an index v,
such that ¥ =>v, implies p,(a) =0 and hence also p,(b) =0. It follows that ®{p,)~>D(p),s0 P

is continuous and therefore a homeomorphism.

Some notation. Let X be the set of pure states on 4, regarded as a compact Hausdorff
space. We identify A and C(X)=the space of all continuous complex functions on X.
For each a € 4,, let a(a) =a(X) be the spectrum of a. 6(a) is a compact subset of R and there
is an isometric isomorphism of C(c(a)) into 4 with range A(a). If j€C(c(a)), the map
f—f(a)€A(a) is given by

fla)(s) = Ha(s)), s€X.

Let a € 4,, and suppose that  is a quasi-state on 4. Then p| A(a) is a state, and deter-
mines a state g, on C(o(a)) by
e.(f) =o(f(a)), f€C(o(a)).

By Riesz’ theorem p therefore gives rise to a unique regular Borel-measure u, on o(a) such
that
o(f(a)) = f )l(l) duq(3), A€ola),
ola
for all f€C(o{a)).
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In the sequel, we let C, F, K denote compact sets, and we let U, V, W denote open
sets without necessarily further mentioning that they are compact or open respectively.
For any set 4, the interior of 4 is denoted by A4°.

LEMMa 2. Let a€d,, K<o(a). Suppose a (K} U< X. Then there is an open set
V<o(a); V2K, such that a{(K)Sa Y(V)< U.

Proof. K'=a(X\U) is compact and disjoint from K. Hence V=o(a)\ K’ satisfies

the conditions of the lemma.

Lemwma 3. Let p be a quasi-state on A and @ a state on A. For each a€A,, let p, be the
measure on o(a) determined by o, and let u be the regular Borel measure on X determined by ¢.

Then o =g if and only +f
#a(K) = p(a(K)) *)

for each a € A, and each compact set K < g(a).

Proof. Suppose g =g¢. Take a€A4; and K So(a). Choose £¢>0. There is a continuous
function f: g(a)—[0, 1] such that f(A)=1 for 1€ K, satisfying o,(f)= Sota FOua <po(K) +e.
Now f(a): X—[0,1] and f(a)(s)=1 for s€a=Y(K), so u(a=Y(K))<@({(@) =0(f(@)) =eu(f) <
Ha(K) +e. Since £>0 was arbitrary, it follows that u(a(K)) <y,(K). On the other hand,
for £>0 we may choose U2a 1K) such that u(U\a1(K))<e. We then take V as in

Lemma 2, and a continuous function g on o{a) satisfying yx <g<yxy. Then

#a{K) < 0a(9) = 0(9(a)) = (g(a)) < u(U) <pla~(K)) +e.

It follows that u,(K)<u(e~'(K)) and (*) holds.

Conversely, suppose that (*) is valid for all a€ 4, and K S g(a). Take an ¢ €4, and let
@, be the restriction of ¢ to 4(a), and let v, be the corresponding measure on o(a). Then,
by the first part of the proof, v, (K)=pu(a2(K)) for each K So{a). By (*) it follows that
vo(K) = u,(K) for all K, and hence by regularity », = u,. But then ¢, =g| 4(a), so ¢ coincides
with ¢ on each singly generated C*-subalgebra, i.e. ¢ =g. The proof is complete.

Hence, to prove that the quasi-state g is linear on 4, it is sufficient to construct a
regular Borel measure y on X satisfying (*) of Lemma 3. Let J denote the collection of
compact subsets of X, and let X’ denote the sub-collection of compact sets of the form
a—YK); a€A;, K <o(a). We start by defining ¢ on X by

W(K) =inf {pla): a€A4,; a>= yg}.

Then y is a set-function on K, u(@)=0, u(X)=1and K, S K, implies u(K,) <u(K,). Itis
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clear that in taking the inf above for a given K, we may assume a <1. Indeed, since a € 4,,

min (a, 1)€ A(a) so g(min (a, 1)) <g(a).
Levma 4. For K€ X and £>0 given, there is F € X' such that K < F° and u(F) <u(K) +e.

Proof. We first note that if a€4, and C Sa(a), then u(@=1(C)) < u,(C). Indeed, choose
f€C(0(a); 10 such that gu(f)<p,(C)+e. Then f(a)>gao, so pla-Y(C))<g(f(a))—
0a(f) Suo(C) +& which proves the claim. Now let K€X and let ¢>0 be given. Choose .
a€4,; yg<a<1 such that p(a) < u(K) +&. Then choose § >0 such that u,([1 -, 11N o(a)) <
U ({1}) +¢, and put F=a([1-4,1]No(a)). Then K< F° and

U(F) < po([1 -6, 11N o(a)) <u,({1}) +8<f( )).d,ua(l) +e=p(a) +e<u(K)+2¢

from which the lemma follows.
Lemwma 5. For any a€A, and K S o(a) we have p,(K) = u(a*(K)).

Proof. By the first part of the proof of the preceeding lemma, we already know that
that u(a=Y(K)) < p,(K). Now let K, =a-1(K) and choose, for £ >0 given, F < X such that
K,S F° and p(Fy<u(K,)+¢ (Lemma 4). By Lemma 2 there is an open set V S g(a) such
that K, Sa~Y(V)<S F°. Let f€C(o(a)) satisfy yx <f<yy. Then yg, <f(a) <yp. Let b be any
element of A4, satisfying y»<b<1. Then (1 —b)f(a) =0, so by Lemma 1, f(a) and b belong
to the same singly generated C*-subalgebra. Since 0 <f(a) <b it follows that g(f(a)) <p(b).
Thus o(f(a)) < u(F) by the definition of u. Hence u,(K) <g.(f) =po(f(@)) <u(F) <p(aYK)) +e,
80 po(K) < pu(a2(K)). This, together with the opposite inequality, finishes the proof.

LeMma 6. Let K€X. For each U2 K and each >0 there is a € A, satisfying yx <a<yy
and o(a) <u(K)+e.

Proof. Let KU and £>0 be given. By Lemma 4 choose F €X' such that K< F°
and u(F)<u(K)-+e. Then pick an a€4, such that yx<a<yyng. The same argument as
in the proof of Lemma 5 shows that p(a) <g(b) for any b satisfying y-<b <1, so that p(a) <
w(F)<u(K)+e, and the proof is complete.

Lemma 7. If K,, K,€X, and K N K,=0, then u(K U K,)=u(K,) +u(K,).

Proof. Since K, N K,=@, there are open sets U,2 K,, U,2 K, such that U,n U,=0.
By Lemma 6 we may choose a, b€ A, satisfying yx, <@ <yu,, xx: <b <xu, and p(a) <u(K,) +¢,
o(b) < u(K,) +¢. Now ab=0, so by Lemma 1

MK, U K;)<ela+b) = p(a) +o(b0) < u(K,) + u(K,) +&
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proving that w(K,U K,)<u(K;)+u(K,;). On the other hand, Lemma 6 tells us that
WK U K,) =inf {o(c): ¥x,ux, <¢<yy} for any open set U2 K, U K,. We may therefore take
U=U,UU, as above, and choose c€ A4, such that o(c) <p(K,U K,)+¢, Xr.ur. SC< Y0
Then c=a+b, with ab=0 and yz, <a <y, rx. <0<yy. s0

Ky +p(Ky) <g(a) +0(b) = o(¢) <u(K,U Ky) +e,

which gives us the opposite inequality and finishes the proof.
Now defined, for U open € X

W) =1-u(X\U)
If U is also compact, this is consistent with the previous definition of 4 on X, by Lemma 7.

LeMmA 8. For each U,
w(Uy= sup w(K).

Proof. Let K'=X\U. If KSU, KNK' =0, so u(K)+u(K')=u(KU K')<1. Hence
WK)<1—u(K')=pu(U) for each KSU.

By Lemma 4 there is FE€X' such that F2 K’ and u(F)< u(K’)+¢ for any preas-
signed £¢>0. We have F=a"YC) for some a€Ad,, C<o(a). Let W=o(a)\C, and
put V=aW), so V<U. yu, is regular, so there is a compact set C;< W such that
H1a(C1) > (W) —e. Then, by Lemma 5

#@C0))) = po{Cr) > (W) —¢
=1—-pu,(0)—e=1—u(F)—¢

>1—p(K')—2e=u(U)—2¢
which proves the lemma.
We observe that if a€A4, and f€ C(o(a)), then for any set BS R we have f(a)-1(B) =
a~1(f~1(B)). Indeed
Ha)(B) = {s€X: f(a)(s) € B}
= {s€X: f(a(s))€ B}

=aY(fX(B)).
LEMMA 9. Let K,, K,€X with K, < K,. Then u(Ky) —u(Ky) =infyogonx, u(U)-

Proof. Let £¢>0 be given, We first choose U= K, such that u(U)<u(K,)+e. This
choice can be made by virtue of Lemma 4 and the observation that if V = C for any V and
C, then u(V)<u(C) (from Lemma 8). Now choose a€4, such that yx, <a <y, and let
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F={s€X: a(s)>1}. Take bEA, such that y,<b<yy, and let. W ={s€X: b(s)>4}}. Then

we have
K,cF°cFcsWcU.

For m=1, 2, .., let b,€A, be chosen such that yg, <b,<yz, and p(b,)<u(K,) +1/n
(Lemma 6). Put F,={s€X: b,(s)=1}. Then K, < F,< Ffor all »; and u(K,)<u(F,) <
0(b,) <u(K;)+1/n. Thus u(F,)->u(K,) as n—>oo. With V,=(X\F,)NW, V, is open,
V.NF,=0 and V,UF,=W for all n. We observe that b,(1 —b)=0 for all n. Hence, by
Lemma 1, there is an a,€ A4, such that b, b,€A(a,); n=1,2, .... By the observation pre-
ceding this lemma, this implies that, for each =, there are sets V,, F, and W’ <o(a,) such
that V,=a, (V;), F,=a,(F,)and W=a, (W’'). We have V, N F,=@and V,U F,=W".
Thus, by Lemma 5 and the definition of u(W), we get

W) = pa W) = panl Vo) + ponl Fr) = u(V ) + pl Fr)-

With V =(X\K,)n W, V is open and contains K,\ K. Since F,2 K,,weget V, S V;
n=1,2, ... So u(V) > p(V,) = p(W) — p( Fo) > (W) — s(Ky), 50 (W) < (V) +u(K,). On the
other hand, if K<V it follows that KN K, =@ and KUK, S W, so u(W)=u(K,VU K,)=
W(Ky) 4 u(K) by Lemma 7. By Lemma 8 we then get u(W) > u(K;)+ u(V) which combined
with the opposite inequality above gives u(V)= u(W)~— u(K,). Consequently

H(EK) — pu(Ky) S (W) — u(Ky) = (V) < p(U) =~ pl(Ky) < (K p) — p(Ky) +e,
since WS U. As £> 0 was arbitrary, this inequality completes the proof.
LeEMMA 10. Let K, K,e X with K, < K,. Then u(K,)—u(K,)= sup wK).
K< K\K,;

Proof. First, if K € K,\ K,, then K, N K =@ and K, U K € K,, 50 u(K,) + u(K) < p(K,),
ie. u(K)<u(K,)— u(K,). Now choose, by Lemma 4, F2 K, such that F°2 K, and u(F) <
u(K)+e Pubt K=(X\F)NK, so KSK,\K,. We observe that (FNK,)\K,2
K, N\ (KUK,), so, by the preceding lemma, we get u(F N K,)—u(K,) > u(K,) —u(K U K,).

Hence we have

£ u(F) — u(Ky) > u(F N Ky) — u(Ky) > u(Ks) — K U Ky) = p(Ky) — p(Ky) — p(K),
so u{K) > u(K,) — u(K,) —& which proves the lemma.
Let N={4cX: A=K,\K;; K,2K,}

We claim that I' is a semi-ring of sets in the sense of Zaanen [10]. That is, we must check
that
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(a) A, BE'=An BET
(b) A, BED’ and B A=A\ B=UZ..C,, where C,€I for all n, and the sets C,
are mutually disjoint

(¢) Q€T
Lemma 11. T’ is a semi-ring.

Proof. (c) is evidently satisfied, @ =X\ X. (a): If 4 = K\ K,, B=C,\C, with K, = K,
0,SC,, then AN B=K,N C;\((K,N Cy)U(CoN Ky) so An BET. (b): Let 4, BeT with
A2 B. It A=K\ K,, then BS K, so BS K,. Since B=0(,\ C, for some pair of compact
sets C,20,, it follows that B\ B is compact. Let C;=BU K,, C;=(B\_B)U K,. Then
C0i20; and both sets are compact, and B=C{\ Cj since BN K,=@. Furthermore,
K,>0120;2K,, so we can write AN\ B=(K,;\C;)U (C3\K,) which is a disjoint union
of setsin I.

Hence I' is a semi-ring which contains all open and all compact subsets of X. If A€T,
A=K,\K; with K,2 K,, we define

wA)=p(K,) — u(K,).

By Lemma 9 and 10 this definition is unambiguous, and we have
A4)= K)=inf u(U).
wu(4) sup u(K) = inf 4(U)

The definition of y on I'is clearly consistent with the previous definitions of 4 on open and

compact sets. We are going to show that y is a measure on I'. First we need:

Lemma 12, (a) If U, S U, then U\ UL €T and w(U,\U,) = u(Us) —u(U,).
(b) For U,, U, arbitrary (open) u(UU Uy) <p(Uy) +u(Uy).

Proof. (a) UsN\U;=(X\ U)X\ U, €T, so
WU\ Uy) = wXNU,) = (XN Up) =1~ w(Uy) =1+ pu(Us) = w(U,) — M(U1)-

(b) Put U = U, U U,. Then, by (a), u(U) = w(UNUy) + u(U,) < u(Uy) + u(U,), from Lemma 9,
since UN U, < U, and U\ U, €T

LEMMA 13. p is a measure on T'.

Proof. We know from the definition of 4 and Lemma 9 that u(@)=0, u(4)>0 for all
A €T and that A < B= u(4) <u(B), for A, BET". The only thing left to verify is therefore
that w is countably additive on I
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Let {4,}<T' with the 4, pairwise disjoint, and suppose 4= ;.1 4, belongs to I'.
For £>0, there is K< A such that u(K)>u(d)—¢, and there is U,24, such that
w(U,) < u(d,)+&/2" for each n. Now U3, U, 2 U314, =A2K, so there is an m such
that U.,U,=2 K. Hence

m

1(4n) >§1,u( U, —e Zé/z( U, —e¢ >uU U,)— &> u(K) —e>u(d) - 2¢,

M8

n

where we have used Lemma 12(b). So u(4) < 27-1u(4,). On the other hand, let K, < 4,
be chosen in such a way that u(K,)>u(4,)—¢/2",2=1,2,.... Let p be any positive
integer. Then U%_, K, is compact and contained in 4. The sets K, are clearly disjoint, so

) > w0 K = 5 p()> S o) —e

from Lemma 7. Hence u(A4) > >5_,u(4,) for any p, which, combined with the inequality
already proved, gives u(4d)= 23 1u(4,).

By standard arguments (see for instance [10]) it now follows that u extends to a regular
measure on the g-field of Borel-sets in X. By Lemma 5 u satisfies (*) of Lemma 3, so if
we take @ to be the state on A given by ¢(a) = f za(s)du(s); a€4, s€X, then ¢ =¢. The

proof of the theorem is complete.

4. Quasi-states on general C*-algebras

Let p be a quasi-state on L(H) (=all bounded linear operators on a Hilbert-space H),
and let P denote the set of orthogonal projections on H. If we assume that dim H >3 and
that g|P is completely additive, then Gleason’s theorem [5] states that there is a positive,
normal state ¢ on C(H) such that ¢|P=p|P. It is now simple to show that o=@, so that
o in fact is linear on H. Without the assumption that g|P is completely additive, i.e. that
it is merely finitely additive, the problem remains unsolved. However, by a slight modi-
fication and extension of Gleason’s methods, one may show that any quasi-state on CC(H)
(=all compact linear operators on H) is linear if dim H>4. The details of this proof,
and the proofs of the other results mentioned in this section will be published in a forth-
coming paper [1].

Let A be a C*-algebra and let @ be the set of all positive quasi-linear functionals g on
A with |lgl| <1. @ is clearly a convex set under the pointwise operations, and if we give
@ the topology of pointwise convergence on 4, we can show that @ is compact. Let us say
that a quasi-state g is pure if each element y €Q such that y <g is of the form y =49, with
0<A<1, A€R. As for ordinary states it turns out that a quasi-state g is pure if and only if
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o is an extreme point of @ different from 0. On the basis of the Krein-Milman theorem
it is therefore clear that to show that an arbitrary ¢ €@ is linear, it is sufficient to show
that any pure quasi-state on A is linear. :

The introduction of pure quasi-states makes a subdivision of the problem possible.
Let ¢ be a pure quasi-state on the C*-algebra 4. Suppose for a moment that g is actually
linear. Then there is a standard way of associating a representation 7, of A to . 7, is
irreducible and I =ker 7, is a primitive ideal of 4. g vanishes on I so it lifts to a pure state
gon A/I, and if ¢: 4—>A4/I is the quotient homomorphism, we have g =gog. This procedure
suggests the following subdivision of the linearity problem for a pure quasi-state g on 4.

(I} Find a primitive ideal  of 4 such that g(J)=0.
(IT) Lift p to a pure quasi-state g on A/I, such that g =gogp, where ¢ is the quotient
map.

(ILI) Show that § is linear on A/I.

Since ¢ is linear, a positive solution of (I), (II) and (III) will imply that o =gog is
linear.

With respect to (), one may show that this is true if Prim A (=the set of all primitive
ideals of 4) is a Hausdorff-space in the hull-kernel topology. The basis of the proof of this
fact is the following recent result by Dauns and Hofmann [2]. If 4 is a C*-algebra, C*(Prim 4)
is the space of all bounded continuous complex-valued functions on Prim A, then for each
z€A4, h€C(Prim A) there is an element y€A4 such that

y(mod I) = A(I) - (z(mod 1))

for all 7€Prim A. More conveniently, this result may be reformulated as follows. For each
I€Prim A, let A/I be the quotient C*-algebra, and let ¢,: 4~ A/I be the canonical quotient
homomorphism. Let I'=3 g, ;eprum4 4/I be the C*-direct product of the A4/I. We define a

map ¢: A-T" by
¢(z) = {pd2)}-

@ then becomes an isometric isomorphism of 4 onto a closed C*.subalgebra of I'. We may
therefore identify 4 with its image under ¢, and write = for ¢(z). In this way x becomes a
vector-field on Prim 4 with values in the various A/, and we write 2(I)=g¢,(z); 2€A4,
I€Prim 4. With these conventions the Dauns~Hofmann result takes the form: For each
2€4, and hE€C(Prim A), there is y €4 such that

y(I)=h(I)x(I); I€Prim A.
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Now suppose that Prim 4 is Hausdorff, and let g be a pure quasi-state on 4. The po-
sitive solution of (I) then takes the form: There is an element I €Prim 4 such that if x€4,
then «(I,) =0=p(z)=0.

The lifting problem (II) now takes the form: if z, y €4 and z(I,) =y(l,), can we show
that p(x)=p(y)? A simple calculation shows that if h=h*€ C%Prim 4), and A(ly) =1,
then g(x) =p{hx) for all z€ A. From this it follows that if (1) =y(I) on some neighbourhood
W of I,in Prim A, then p(x) =p(y). Indeed, choose k€ C*(Prim A) such that A >0, h(I)) =1
and % vanishes outside W. Then hx =hy, so o(x) =p(hx) =o(hy) =0(y).

In the special case where Prim 4 is discrete, it therefore follows that (II) has a positive
solution.

A positive linear functional on a C*-algebra is automatically continuous. This is far
from obvious for quasi-states. However, if we assume that the pure quasi-state o on A is
continuous, then ¢ can indeed by lifted to a pure quasi-state g on A4/1.

With respect to part (III) of the problem, the situation is less encourageing. Only
very special solutions exist. However, on the basis of the fact mentioned previously, that
any quasi-state on LC(H) is linear if dim H >3, one may show the following results:

(a) Any quasi-state on a dual C*-algebra A is linear if dim n 32 for all irreducible
representations n of 4.

(b) If 4 is CCR with Prim A Hausdorff and dim 5 42 for all irreducible representa-
tions 7 of 4, then each pure, continuous quasi-state on A is linear.

Some other cases will be treated in [1].
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