
ISOTROPIC INFINITELY DIVISIBLE MEASURES ON SYMMETRIC 

SPACES 

BY 

RAMESH GANGOLLI  

University of Washington, Seattle, U.S.A. (1) 

w l.  Introduction 

I t  has been clear for some t ime tha t  a natura l  domain  for questions of harmonic  

analysis is the class of symmetr ic  spaces G/K where G is an appropria te  Lie group 

and K an appropriate  subgroup [10], [14]. (3) 

Now, functions, measures etc. on G/K m a y  be viewed as corresponding objects 

on G which are invariant  under  the r ight  act ion of K,  and a convolution operat ion 

m~y be defined for them via the group structure of G. 

I n  this paper  we s tudy  the representat ion of probabi l i ty  measures on G/K which 

are isotropic in the sense tha t  they  are, as measures on G, also invar iant  under  the  

left action of K, and which are infinitely divisible in the sense of the convolut ion 

ment ioned above. The representat ion is carried out  via the abs t rac t  Fourier-St iel t jes  

t ransform [13], and the main result is Theorem 6.2 which is analogous to the cele- 

brated Ldvy-Khinch ine  formula for the characteristic funct ion of an infinitely divisible 

probabil i ty measure on the real line. 

Certain other  results of probabilistic significance are also obtained. The principal 

one is Theorem 7.2 which is the analogue of a classical theorem of Khinchine [18]. 

The organization of this paper  is as follows. w 2, w 3 are devoted to terminology 

and recapitulat ion of known results which will be used often in the sequel. w 4-7 are 

devoted to the proofs of our theorems in the case when G/K is a symmetr ic  space 

of the non-compact  type.  w then indicates briefly the modifications to be made 

when G/K is of the compact  type.  

(1) The partial support of this work by NSF grant no. G-21205 is gratefully acknowledged. 
(2) Numbers in square brackets refer to the Bibliography at the end of this paper. 
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Our work subsumes the work of Bochner [1], Tutubalin [23], Getoor [8] where 

special cases of our Theorem 6.2 and Corollary 6.3 may  be found. 

The results of this paper  were announced in [6]. 

w 2. Preliminaries 

Throughout this paper except in w 8, G will be a non-compact connected semi-simple 

Lie group with a finite center and K rill be a maximal compact subgroup of G. C(G), 

Co(G), C~~ will, as usual, stand respectively for the spaces of continuous functions, 

continuous functions with compact  support  and the infinitely differentiable functions 

on G. We set C ~ c (G)=C~c(G)NCc(G). Fix a I-Iaar measure dx on G once and for all, 

and let LI(G ) be the algebra, with convolution as product, of Borel measurable func. 

tions absolutely summable with respect to dx. We denote by S(G) the set of finite 

regular non-negative ]~orel measures on G. S(G) is a semigroup with convolution as 

product. For xEG, denote by  L~ or L(x) the left translation y-->xy of G and by  

R~ or R(x) the right translation y->yx. L(x), R(x) induce transformations on C(G), 

Cc(G), C~(G). Specifically, if /EC(G) say, then f.(x) is the function y->/(x-ly). Simi. 

larly /R(x)=/oR(x-1). Similar but  tacit  conventions will be made regarding the ac- 

tion of L(x), R(x) on S(G), LI(G). 

Write C (G/K) = {/]/E C (G), /R(k) = ], k E K) 

and C (K \ G/K) = {/]/E C (G), ]n(k) =/L(k) =/, k E K}. 

The spaces Cc(G/K), Cc(K\G/K), C~r C~(K\G/K) etc. are defined analogously. 

I t  is clear tha t  for example C(G/K) may also be thought  of as the space of con- 

tinuous functions on the symmetric space G/K so tha t  our notation has a built-in 

consistency. 

We shall be particularly interested in 

S(K\G/K)={#]#ES(G); #Ltk)=#n(k)=/X for all kEK}. 

I t  is easy to check tha t  this is a semigroup under the convolution product, but, what  

is more crucial for us is the fact tha t  under our hypotheses, it is a commutative semi- 

group. See for example [10, p. 2]. So(K\G/K ) will stand for the subset of S(K\G/K) 
consisting of probabili ty measures. 

Denote by D(G) the algebra of differential operators on C ~ ((/) which commute 

with the left action of G on C~(G), and by D0(G ) the subalgebra of D (G) consisting 

of those operators which also commute with the right action of K. Each D ED0(G ) 
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clearly leaves C:r invariant and it can be shown that  the algebra of restric- 

tions of operators DEDo(G ) is isomorphic with the algebra D(G/K)of differential 

operators on C~(G/K) which commute with left translation by elements of G. We 

refer to [15, Chapter X) for elaboration of these definitions. 

Let g0, 3o be respectively the Lie algebras of G, K. Ad denotes the adjoint re- 

presentation of G on go. Then there exists a subspace Po of go such that  go= ~o + P0 

is a Caftan decomposition of go, [15, p. 157]. Po can be identified in a natural way 

with the tangent space to the coset space G/K at ~(e)EG/K,  where ~: G---> G/K is 

the natural projection map. ~o and Po are orthogonal under the Cartan-Killing form 

B of go, and B is negative definite on ~o • t[o and positive definite on po X P0. 

Let t~o be a maximal abelian subspace of Po and to a maximal abelian suba]ge- 

bra of go containing t~o. Then to= t0NPo  §  o and tp~ We write t~0= 

t0 ~ 30. Denote by g the complexification of go and by r), tp, tt, ]~, P, etc. the sub- 

spaces of g generated by to, t,o, t~,, ~0, Po respectively. Then [)is a Cartan subalgebra 

of g. Let A be the set of nonzero roots of g with respect to t.  We fix once and 

for all a compatible ordering on the duals of the vector spaces t , .  and ~*= ~p. § i~to, 

[15, p. 222]. Each root aEA is real valued on D* so we get in this way an ordering 

of A. Let A + denote the set of positive roots. We write 

A + = P +  U P_ ={:r +, a ~ 0  on t~~ U {a[~EA +, ~---=-0 on t~0}- 

If g~ is the root-space corresponding to aEA, n = ~ , , ~ + g  ~, and if no=goNrt then a 

celebrated theorem of Iwasawa says that  rt~ is a nilpotent Lie algebra and go = fo+ 

D~0 + %. Further, if A~, N are the analytic subgroups of G with Lie algebras l~p., n 0, 

respectively, then G admits the Iwasawa decomposition G=KA~N [15, p. 234], and 

A~, N are simply connected. (Of course, A~ is a vector group R*.) 

If M'  is the normalizer and M the centralizer of I~. in K, then it can be shown 

[15, p. 244] that  M is a normal subgroup of M'  and M'/M is a finite group. This 

is the Weyl group of the pair (G, K). The Weyl group may be faithfully repre- 

sented in the natural way as a finite group of linear transformations on t~~ I t  pre- 

serves the Cartan-KiUing form. 

Let. S(Po), S(Op.) be the symmetric algebras over ~o, ~ .  respectively [15, p. 391]. 

The group Ad (K) operates on S(po) and W operates on S([~r,) by extension of the 

action of these groups on Po, [Iv. respectively. Let I(po), I(t~, ) be the corresponding 

sets of invariants. Since the Cartan-Killing form is non-degenerate on P0, we may 

identify S(po), with S(po), S(t~~ with S(~~ where V ̂  stands for the dual of the 

vector space V. In particular I(P0), I (~,)  can be considered as polynomial functions 

on Po, t~, respectively which are invariant under Ad (K) and W respectively. 
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I t  will be q u i t e  crucial to us in w 6 that  D(G/K)  and I(P0) are isomorphic as 

vector spaces. We refer to [15, Theorem 2.7, p. 395] for the proof of this fact. 

Denote this mapping of I(P0) onto D(G/K) by P-->De, PEI(p0).  

Finally, we shall have to use, rather crucially, the fact due to Harish-Chandra, 

tha t  the algebras D(G/K) and I (~ , )  are isomorphic, [15, Theorem 6.15, p. 432], under 

a mapping P of D(G/K) onto I([?~,). 

The notation we have used is tha t  of [15] which indeed will serve as a blanket 

reference for the terminology and background material on Lie groups which we use 

in this paper. 

w 3. Spherical functions 

A function • on G is said to be K-spherical (or simply spherical)if ~b oR(k)= 
~boL(k)=~b for each k EK. I t  is said to be an elementary or minimal spherical func- 

tion if it satisfies in addition, 

rr r162 (3.1) 

and ~b(e)= 1. Here dk stands for the normalized Haar  measure of K. The elementary 

spherical functions can be quite easily shown to be analytic and indeed can be 

characterized by the following properties: (i) r  (if) ~ECCC(K\G/K); (iii) ~b is 

an eigenfunction of each DE D(G/K). Cf. [15, Chapter X, w 3]. 

A fundamental result, due to Harish-Chandra [13], says that  the elementary 

spherical functions are in one-to-one correspondence with the quotient Ec/W of the 

space Ec of. complex valued linear functionals on ~~ modulo the action of the Weyl 

group W on it. More precisely, let H(x) denote the unique element E~,~ such that  

x = k . e x p H ( x ) . n ,  kEK,  hEN,  and let vEEc. Then 

= fKexp (iv-  e) (H(xk))dk (3.2) 

is an elementary spherical function on G, r = ~ ,  if, and only if, v = s v' for some s E W, 

and further each elementary spherical function arises in this way from some v E Ec. 
In  this formula, ~=�89 ~ e +  $ where $ is the restriction of ~ to ~,~ 

We shah be especially concerned with a certain subclass of the class of elementary 

spherical functions; namely, those which arise in the above fashion from real-valued 
linear functionals on ~,,. If we denote by E~ the space of real valued linear func- 

tionals on ~)~o (so that  Ec=ER+iER), and if 2EER, it is known [13, p. 241] that  ~b~(x) 
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is an elementary spherical function of positive-definite type (though it is not true 

tha t  all the positive-definite elementary spherical functions arise in this way). We 

note as a consequence tha t  

r  r162 Ir  (3.3) 

for x E G, ~ E ER. These facts will be used frequently. 

Finally, we need to use the fact tha t  if DED(GfK) then D r  (i)0r where 

F is the isomorphism of D(G/K)  onto I (~ , )  mentioned above, and F(D) (i~) stands 

for the value of the polynomial function P(D) a t  the point i,~EEc. (In view of the 

identification of ~g, with ~~ via the Caftan-Killing form, this makes sense.) In  par- 

ticular, and this is a remark which we shall use crucially in w 6, if we choose a basis 

A 1, ., A~ for Ea and let 2 = then the eigenvalue corresponding to ~b~ of any  

operator D ED(GfK) is a polynomial in ~1 . . . . .  ~z. I t  is also clear from (3.2) that  

r ~ 1 so that  a D E D (G/K) annihilates constant functions if, and only if, P (D) (r = 0. 

I t  is easy to conclude from these facts and from the fact tha t  I(~~ contains no linear 
polynomials, tha t  second degree polynomials in I(~p,) which correspond to second order 

operators in D(G/K)  which annihilate constants are of the form 

l l l l 

u = l  v = l  u = l  v = l  

where Q~=~(Hu),u=l .... ,l, Hu, u = l  .... ,l is an orthonormal basis for ~v,, and {Quv} 
is invariant under W. Further,  such an element corresponds to an elliptic operator if, 

and only if, {Quv} is a non-negative definite matrix. We shall have to use these 

facts in w 6. 

w 4. Fourier-Stieltjes transforms of spherical measures 

Let So(K\a/K)=S(K' \a/K)  n {~[~(a)=l} For/~Cc(a),/~eS(a) we write ~(/)= 
fa/(x)d/x(x). I t  is clear tha t  since /x is regular, ~t is determined by  the values /a(/), 
/ E Cc (G). If, moreover, ~ E S (K \ G/K) then it would suffice to know ~t (/) for / E Cc (K\G/K) 
in order to determine ~. 

DEFINITION 4.1. A sequence /xnES(K\G/K) is said to converge weakly to 

~ES(K\G/K) if /x~ (/) --> /x (/) for each [ECc(K\G/K). We then write /~-->/x. The 

sequence /xn is said to be Bernoulli convergent to # if fin(/)-->/x(/) for each bounded 
]EC(K\G/K). We write this as /~n ~ ju. 
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DEFINITION 4.2. For # E S (K\G/K) we define the Fourier-Stieltjes transform/2 by  

= fr  ~EEa, (4.1) p(~) 
Ja  

where the Ca are as in w (3.2). 

I t  is clear tha t  for I~ES(K\G/K), /2(+~) is a bounded continuous complex-valued 

function on ER and is invariant  under W. 

Further  /2(2) is definable literally by  (4.1) for all those 2EEc for which the in- 

tegral (4.1) makes sense. In  particular, since r  for all xEG by (3.2), it is 

clear tha t  
t2 ( - i ~) = # (G). (4.2) 

We now turn to some properties of this transform. 

LEMMA 4.1. I/  #,~,ES(K\G/K) then the measure lz~e~ de/ined by 

(# ~e ~) (B) = f # (By -~) d~, (y) 
do 

A 
is again in S(K\  G/K). Further, (p+e~)(~t)=/2(~)~(~t),~tEER. 

The proof of the first assertion is easy. The second follows because of the 

sphericity of # and v and the functional equation (3.1) which is satisfied by Ca. We 

omit  it. Cf. [15, p. 409]. 

THEORE~ 4.1. Suppose tzl, #2 E S(K\  G/K) and f~l= f~2, then iz1= [~2. 

Proo/. Let  ~u =/~1-/~+=, then /~ is a signed measure of finite total  variation and 

/2 = 0; we shall prove tha t  ~u = 0. 

We first assume tha t  ~u has a continuous density [ with respect to Haar  meas- 

ure on G. The general case will then be settled by  approximation. 

Let  then dl~=ldx where [ELI(K\G/K)  N C(K\G/K ). Let  ~EEc be such tha t  

r  exp ( iv-~) (H(xk))dk is a bounded function on G. I t  is known tha t  the 

Haar  measures dx, da, dn of G, A~, N respectively may  be so normalized tha t  dx = 

exp 2~(log a)d]cdadn. [11, Lemma 35]. Therefore we may  deduce 

f fof exp ( i , -~) (H(xk))dk ' / (x )dx  

= f o e x p  (iv - ~) (H(x)). l(x) dx 
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= f~: fA fNexp (iv+ ~) (log a) " /(kan) dkdadn 

= f~ exp iv(log a)..F1(a)da, 
tO 

where Fr(a ) = exp e (log a). fN/(an)dn. 

Now f, IF,(a),da= f ,]exp q(log a) f J (an )dn l  da 

~< ~ exp ~(loga) fN][(an)]dnda 
d A~ 

= fay f~t exp ~(1og a).l/(an ) Idadn 

= f. I < oo,  

(4.3) 

(4.4) 

since 0~<r ) ~< 1 and ]ELI(K\G/K ). Hence Fs(a ) ~L1(da ). Further, specializing 

(4.3) when v = ~ E Ea we get 

f L ,a(~) = r exp i~(log a).Fr(a ) da. (4.5) 

Thus ,a(;t) is just the classical Fourier transform of F,,. Since /~()l)=0 and since 

FsELI(d~), we conclude that  Fs=0 .  But this means by (4.3) that  ~G~,(x)[(x)dx=O 
for each bounded elementary spherical function ~ .  But the Banach algebra L 1 (K\ G/K) 
is known to be semi-simple (see [15, p. 453] where a proof is sketched), that  is, if 

gELI(K\G//K), g#O, then there exists a continuous homomorphism Z:LI(K\G/K)---~ 
complex numbers such that  Z(g)4=O. On the other hand, it is known also that  the 

continuous homomorphisms of L 1 (K\G/K) are precisely g --~ fa  ~, (x)g (x) dx where ~ is 

a bounded elementary spherical function. (Cf. Theorem 4.3 of [15, p. 410]. There the 

theorem proved is for the algebra Cc(K\G//K), but the same proof applies for our 

purposes.) Using these facts we conclude that  ] = 0 and hence ~ = 0, given that  dl~ = ] dx 
and that  /~ = 0. 

Turning to the general ease let /j, j =  1, 2 . . . .  be a sequence of functions in 

~c(K\G/K) such that  

(i) b > 0 ,  i = 1 , 2 , . . . ;  
(ii) ~a/j (x) dx = 1, i= 1, 2 .... ; 

(iii) fa_A/j(x)dx--'-O as ] - + ~  for each compact subset A containing e of G. 
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Such sequences exist. Le t  a~ be the  measure  in S(K\G/K)whose  densi ty  with respect  

to  dx is /~. Then  it is easy  to check t h a t / t  ~+ a~ has a cont inuous densi ty  w.r.t,  dx, viz. 

( t t ~ )  (x)=f/~(y-~x)dlt(Y).  

j - ~ .  j - - . .  

B y  L e m m a  4.1, / t ~ a ~ = / 2 ~ .  Hence  if / 2 = 0  t h e n / t ~ - a ~ = 0 .  The above  discussion 

then  shows t h a t  /t ~- a~ = 0. 

Bu t  by  the  choice of the  funct ions /i, i t  follows t h a t  /~-x-ff converges to g (as 

~->~) uni/ormly on compac t  subsets  of G for each g~Cc(K\G/K). F r o m  this it  

follows easily t h a t  (#~eai)(g)-->tt(g) as ? ' - ->~  for g ~ ( K \ G / K ) .  Since, however,  

/, ~e a~ = 0, i t  follows t h a t  tt = 0. Q.E.D.  

The  following cont inui ty  theorem now follows ra ther  easily. 

T~ IZOl~M 4.2. Let t , ~ S ( K \ G / K ) ,  ~ = 1 , 2 , . . . .  Then 

(i) / /  t t j--~ttES(K\G/K) and supj / t j (G)< ~ ,  then /2j (I) -> /2 (i) /or iEEn. 

(ii) I1 ttj ~ tt E S (K'\G/K), then ftj (I) -->/2 (1) and /2j( - i~) -~ /2 ( - i~). 

(iii) I/  ft~(i) --> fl(1) and supj/2j(  - i~) < ~ ,  then there exists # E S(K\G/K)  such 

that ttj--># and /2 ( i )=f l (2 ) ,  2EEn.  

(iv) Suppose /2j-(i)-->fl(i), /or ).EER and l imj_ , r  exists (so that by (iii) 

fl=ft ]or some t tES(K\G/K)) .  I /  l i m s ~ , r 1 6 2  then #j ~-#. 

Proo/. (i) Fo r  each lEER, r is cont inuous in x and  it  is known t h a t  as a 

funct ion on G, Ca vanishes a t  infinity. (See Theorem 2 of [14, p. 585].) Since 

and  sup j t t j (G)<  o~, (i) follows ra ther  easily. 

(ii) If  #j ~ / ,  then  #j-->tt  so by  (i) fi~(1)-->fi(;t) for l E E R .  Bu t  moreover  fis (1)--> 

fi (1) (where 1 s tands for the  funct ion identically equal  to 1 on G) and this is pre- 

cisely the  s t a t emen t  /2j( - i~) -->/2( - i~) since r (x) ~ 1. 

(iii) The  condition sups/2j( - iQ) = supj juj(G) < oo guarantees  by  the Hel ly-Alaoglu  

theorem t h a t  for  a subsequence {/ts~}, zr = I,  2 . . . .  , we have  t~j~--> ~ e S (K\  G/K). B y  

(i) we have  /2s~ (),) -~/2 ( t ) , ) ,  E E R. Bu t  since /2j (i) -~ fl (~t), i t  follows t h a t  /2 (;t) = fl (;t). 
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If  /&~ is another weakly convergent subsequence of {~uj} with limit # '  then we shall 

have similarly fi(~)=t~(~)=fi'(~) and so by Theorem 4.1, ~u'---=/~. Hence each conver- 

gent subsequence of (/~j) has the same limit /~ proving that  /~j-->/~ and /~=/2. 

(iv) Indeed the supplementary condition/~j ( - i~) --~/2 ( - iQ) is to say t h a t / ~  (G) --> 

~u (G) as 1" --> co. This strengthens /~ --~ # to /~ -~/z. Q.E.D. 

Let  S, S o be the classes of Fourier-Stieltjes transforms of elements of S(K\G/K), 

So(K\G/K ) respectively. We have observed that  (in Lemma 4.1) S is closed under 

pointwise multiplication. 

Since S o is closed under convolution, S0 is also closed under pointwise multiplica- 

tion. The following lemma shows up another interesting closure property. 

LEMMA 4.2. I /  /2ES then the /unction /~(2)=exp t ( / 2 ( ~ ) - ~ ( - i ~ ) ) E S  0 /or each 
t >~O, 

Proo/. I t  is easy to see that  S is closed under linear combinations with non- 

negative coefficients. Hence for each m the function 

e -~ ~ tt 
~ ~. [/2 (~)]~ 

is in S for any t~>0, a~>0. Let  us set a = / 2 ( - i ~ ) > / 0  in this and call the resulting 

function /~.  Then it is c l ea r  tha t  /2~ (~) --> fl(~), ~ E ER and further tha t /2z  ( - iQ) ~< 1, 

m = l , 2  . . . . .  Hence by Theorem 4.2 (iii) #m--> some aES(K\G/K) and fl(~t)=#(2). 

Thus t ieS.  But  / ~ ( - i e ) = l .  Hence t i e s  o. Q.E.D. 

w 5. Poisson measures; infinitely divisible measures 

Given /~, ~ES(K\G/K) we shall write / ~  for the convolution of /~ and ~; the 

order being immaterial in view of the commutativity of S(K\G/K). /~J will stand for 

the ~-fold convolution of ~ with itself. I t  is clear that  ~ u =/2 ~, the product on the 

right being pointwise. 

For x EG consider the set {klxk21kl,]QEK}=~. I t  is clear that  �9 is homeo- 

morphic to K•  K in a natural way. Let  /~x be the measure induced on �9 by dk• 
on K•  where dk is, as usual, the normalized Haar measure of K. /~ may clearly 

be regarded as a measure on G by setting it 0 outside ~. We call this extended 

measure /~x also. It is clear that /~ESo(K\G/K ). 
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D E F I I ~ I T I O N  5.1.  The m e a s u r e  

1=0 

will be called the Poisson measure with jump size x and jump ra te  c. Here  x 6G, c 

is a real number  >~0. 

I t  is clear t ha t  g~,c~So(K'~G/K ) for  each x~G, c>~O, 7e~,o being ~ue identically 

for  all x 6 G. 

I t  is an easy computa t ion  to verify t ha t  /2~(t)= ~ ( x ) ,  t ~ En and tha t  ~ , ~ ( t ) =  

exp {c(~b~(x)-l}. I t  is thus  clear t ha t  ~ . c ' ~ , ~ = 7 ~ . c + d .  

DEFINITION 5.2. A measure # 6 S o ( K \ G / K  ) is said to  be infinitely divisible 

if for each positive integer j, there  exists a measure ~6So(K\G/K ) such t ha t  r~=# .  

I t  is clear t ha t  a product  of two infinitely divisible measures ~So(K\G/K ) is 

again infinitely divisible. 

L ~ M M A 5.1. Suppose/a ~ 8 o (K \ G/K) is infinitely divisible. Then/2 (;r :~ 0/or 16 En. 

Proo/. For  any  pESo(K\G/K ) define its adjoint  p* by  #*(B)=~u(B-1) .  Clearly 

/~*~So(K\G/K ) and (~u*)*=~u. Fur the r  ( ju /~*)*=#*p=~#*.  Hence ]~u* is self-adjoint. 

Now if # is infinitely divisible, then there  is for  each ~ a measure ~jeSo(K'\G/K ) 

such tha t  ~ = (v~) j. Then  clearly ~/~*= (~ju~)J so t ha t  /~/~* is infinitely divisible. Also, 

it  is easy to check tha t  ~u#*(1)= I/2(i)[2 so tha t  / 2 ( t ) = 0  if and  only if p /z*(1)= 0. 

Hence we m a y  assume to begin with t ha t  ~u is self-adjoint, and for each ] there  

exists a sel/-adjoint measure vj6So(K\G/K ) such tha t  #=(~j)J.  Note  t ha t  /2, vj are 

now real  valued for ; t6En.  Therefore,  since /2( t)={~j($)} j, and I /2( t )1~1,  we have 

{~j (t)} ~ = {(/2 (i))~} ~/s --> fl (i) where fl (t) = 0 or 1 according as /2  (~) = 0 or /2  (t) r 0. Now 

/2(0) = ~a exp - {Q(H(x))}d#(x) and so /2(0) > 0; therefore fl(0) = 1. Bu t  ~ 6S0, hence 

~ ( - i ~ ) = 1  so, by  Theorem 4.2 (iii), i t  follows t ha t  f l6S,  i.e., fl = /2  for some 

#~S(K\G/K) .  In  part icular,  fl is continuous on Ea. Since En is connected and fl 

only takes the values 0 or 1 as observed above, and finally since r i O ) =  1, it  follows 

tha t  fl (t) - 1, t 6 En. Hence  /2 (t) 4= 0, ~t 6 E~. Q.E.D. 

LE~MA 5.2. Suppose ]aj6So(K\G/K), ~ = 1 , 2 ,  ... ; ju j~  ~u as ~-->~ and i~j is in. 

finitely divisible /or each ~. Then p is infinitely divisible. 

Proof. Cf. [9]. 
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B y  hypothesis,  there exist  measures  vj~ ESo(K\G/K), ] , m =  1, 2 . . . .  ; such t h a t  

/zt=(vj~) m for each ],m. Hence ~tj=(vjz) m. Since /2 j (2)#0,  2GER, we have  for f ixed 

m, ~j~ (2) -+ {/2 (2)} 1~ as ]-->c~. On the o ther  hand,  V j m ( - i e ) = l  for a l l / ,  m so Theo- 

rem 4.2 (iii) implies [/2(2)]11aES, but  since /2Ew it  is clear t h a t  {/2)l/ruES 0 as well. 

Hence  there  exists  a v~ESo(K\G/K ) such tha t  ~m(2)=[/2(2)] l/rn SO t h a t  # = ( v ~ )  z. 

Since this is t rue  for each m, we are done. Q.E.D. 

L E ~ M A  5.3. A Poisson measure ~.c  is infinitely divisible. 

Proof. Indeed  (~x,~l~) m = 7t . . . .  

LEMMA 5.4. A measure ttESo(K\G/K) is infinitely divisible i/ and only i/ there 

exists a sequence {ttj} e So(K\G/K ) such that each ttj is a convolution o/a finite number of 

Poisson measures, and ttj ~ t t .  

Proof. Necessity: I f  # is infinitely divisible then  for each m, there  is a vm such 

t h a t  (Vm)m=/X. Then /2(2)={~m(2)} m. Also fi(2)#=0 for  any  2EER b y  L e m m a  5.1. 

H e n c e  m ( { / 2 ( 2 ) }  1/m - 1) = m ( ~ m ( 2  ) -- 1) -->log/2(4) as m--> co. Hence  

/2 (4) = lim exp m (~z (4) - 1). 

(4) = ( r (x) dva (x), Since 
JG 

~-e have  /2 (4) =m~clim exp m f a  (r (x) - 1) dvm (x). 

Our assert ion now follows b y  writ ing the integral  as a l imit  of sui table R i e m a n n -  

Stiel t jes sums and  recalling t h a t  ~ , c ( 2 ) = e x p  c(r See [9, p. 74]. 

Sufficiency: I f  ttj is the convolut ion of a finite n u m b e r  of Poisson measures  then  

ttj is clearly infinitely divisible b y  L e m m a  5.3 and  the  r emark  preceding L e m m a  5.1. 

I f  tts ~ tt then  b y  L e m m a  5.2, tt is infinitely divisible. Q.E. D. 

COROLLARY 5.4. luESo(K\G/K) is infinitely divisible if and only i/ 

/2 (2) = lira exp  - y~j 0,), 
j ->oo 

where v/j(2) = J'a [1 - r with LjES(K\G/K).  

Proof. Obvious. 

1 5 - 6 4 2 9 4 6  Acta mathematica. 111. I m p r i m 6  le 3 j u in  1964. 
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w 6. The  L 6 v y - K h i n e h l n e  f o r m u l a  

We begin with two l emmas  which will be crucial. Recall  t h a t  the  Car tan-Ki l l ing  

fo rm B, being posit ive definite on po x P0, induces an  inner p roduc t  on P0 and  hence 

on ~0 as well. We denote  b y  II i ][ the  norm of i E P0 according to  this inner pro- 

duct .  Le t  H 1 . . . .  , Hi be an or thonormal  basis of ~ , ,  and  let  A 1 . . . . .  Az be the  dual  

basis of En. We shall denote  b y  d2 the  Eucl idean  measure  induced on En by  this 

basis. ]1" H will also denote  the  norm in ER. Finally,  since P0 is essential ly the  tan-  

gen t  space a t  ~t(e) to the  symmet r i c  space G/K (where ~ is the  na tu ra l  project ion 

G---> G/K), B induces a metr ic  on G/K. For  x E G we write Ix] for the  dis tance of 

~ ( x )  f rom n(e) according to  this metric.  I t  is clear t h a t  Ixl is a spherical  funct ion 

of x since B is invar ian t  under  Ad (k), k EK. 

LEMMA 6.1. 

ER. For xEG, let 

Let d > 0  be a positive number and let Va be the set I1 11 < d} in 

qa (x)  = | [1 - Re ~, ( x ) ]  d~t. 
d va 

Then qd(x) is a spherical /unction >~ 0, qa (x) tends to a posit ive limit qa (~o) as x---> 

on G, and qa (x)= 0 i/ and only i/ x e K. 

Proo]. The spheric i ty  of qa(x) is obvious,  as also is the  fact  t h a t  7a(x)>10 (cf. 

(3.3)). Fur ther ,  since r  as x--> oo [14], i t  is clear t h a t  qd(x)-->Volume (V a )=  

qa (~176 > 0 as x -+ oo. I f  x E K, then  qd (x) = qa (e) = 0 since Re  r (e) = d2~, (e) = 1 for all 

E Ea. Thus  i t  only  remains  to  show t h a t  i/ qd(X)=O then x E K .  

Assume then  t h a t  

= ( [1 - Re  r d), = O. qa(x) 
j v  d 

Then,  since b y  (3.3), IRe  r ~< 1 and  since r is a cont inuous funct ion of ~t, i t  

follows t h a t  Re  e a ( x ) = l  for all 2eVd. But  using (3.2), this  means  t h a t  

1 = I cos 2(H(xk ) ) ' e xp -q (H(xk ) )dk ,  2EVd. (6.1) 
J K 

If  I J l ( x ) = ~ J = l a j ( x ) H j ,  / t = ~ = 1 2 j A j ,  it is easy  to  see t h a t  Re  ~a(x) depends differ- 

en t iab ly  on (21 . . . .  12z) and  so we have  f rom (6.1) 
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~2 fK 0 = ~ ~ [Re Ca(x)].l~,= .... 4,=0 = -- ~ [at(xk)]~.exp -Q(H(x]c))d]c. 
j= l  ]=1 

(6.2) 

I t  follows from this t h a t  ~ = 1  [a~(xlc)] ~=0, i.e., that  H(xk)=0 for all k EK. 
Since H(ky)=H{y) for any yE.G, k e K  by the very definition of H(y), it 

follows that  
H(lcxlc') =0 for k, k' eK .  (6.3) 

Now x = exp X./Co, x E P0, ]Co E K, and further it is known that  Po = U k~K Ad (/c) ~,,  

see [12, p. 616]. From these facts it is easy to conclude that  there exist kl, k~EK 
such that  z=lclxk2EA~, and H(z)=O because of (6.3). But since h-->H(h)is one-one 

for  hEAo, this means that  klXlC~=z=e. So that  xEK, concluding the proof. Q.E.D. 

LEMMA 6.2. With the same notation as above we claim 

(i) 0 ~< qa (x) ~< 2 Volume (Va). 

(ii) There exist constants Ia, Ja such that 

l+lxl' O<Ia~--~-qa(x)<~Ja ,  /or all xEG such that Ix l>0 .  (6.4) 

Proo/. (i) is trivial. As for (ii), qd(x)--> Volume (V a) as x->  c~ on G implies 

that  ( l+ [x ]  ~) Ix l -~q~(x)-~Volume (v~) as x - ~ r  on a.  Since ( l + l x l  ') Ixl-'q.(x)is 
continuous on {x I Ix] >0}, we shall be done as soon as we prove that  Ix[-2qa(x) is 

bounded away from 0 and ~ as Ix[--> 0. 

To this end, let x = exp X .  k, X E Po, k E K, let r = I1X II, )~ = x / l l  i ] l .  Then x = 

exp rX.  k~, 2~ E Po, I1 ~ [[ = 1, k~ E K, and x '1 = k; 1 exp - rX. Now since CA is spherical, 

we have CA(x)=Ca (exp r)~)=Ca (exp Ad (k)rf;), kEK. Therefore, 

Ca(x) = C~ (exp rX)=  fKca (exp r Ad (k)X)dIc 

= J=o ~ ~ [(Ad (Ic)X)JC~](e)dk= j~o ~ r'(DfC~)(e)' (6.5) 

where we have set D r =  the differential operator fK(Ad (k)X)Jdk/j! and where for 

the last step but one we used the fact that  r is analytic (cf. w 3). 

Similarly 

fz(x-l)  = ~ (-)Jr~(DY CA) (e) (6.6) 
i=D 
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oo 
so t ha t  Re ~b~ (x) = �89 lea(x) + ~b~ (x-~)] = ~ re~(D~ Ca) (e). (6.7) 

JffiO 

Note  tha t  by  its ve ry  construct ion D~jED0(G ) for  each j. We examine D~ more 

closely. Le t  X1, . . . ,Xn  be an or thonormal  basis for Po such t h a t  X 1 . . . . .  Xl is an 

or thonormal  basis for ~o.  Le t  X = ~n= 1 ~iXi so tha t  ~ 1  ~2 = 1. Then  Ad (k) X = 

~ - - 1  ~t Ad (k)X~ so 

( ~r (e)= 
t~ l  t=1 

f rom which it  is clear t ha t  (D~ ~b~) (e) depends continuously on (~1 . . . . .  ~ ) .  Now from 

(6.7) we have 

1 - Re r (x )  = - r z ( D ~  r  (e)  + o (r2),  r - >  O ( 6 . 8 )  

so t ha t  - (D~ ~b~) (e) >10 since 1 - Re  ~ (x) >~ 0. Now D~ fi D O (G), hence D xz corresponds 

to  an operator  /)~e~ D (G/K).  But  Cx is an eigenfunetion of each operator  in D (G/K)  

D �9 ~ p~ (cf. w Hence ( 2 ~ ) ( e ) = (  2r 2(;t)r where P~2(;t) is a second 

degree polynomial  in )~1 . . . . .  ~z. (6.8) implies t ha t  - P~ (;t) >7 0. Being a polynomial  

in A 1 . . . . .  ~l, P~(A) is = 0  only on a null set in Va and it follows tha t  

- f v P i  (~)d~ > 0. 

Now elementary  considerations show tha t  the o (r z) in (6.8) is uniform in 2E Va so 

t ha t  integrat ing (6.8) with respect  to  ~t one has 

f 
qd(x) = r ~ " Jv  d -  ~ (It) dA + o (rZ). (6.9) 

p x  . . . ,  As observed above, (D2 Ca)(e)= z (A) depends continuously o n  ($1, ~rt). Hence 

so does Sv~- P~ (~t) d~t, We have seen above t ha t  Sv d -  P~2 (~) d~t > 0. Hence  as (~1 . . . . .  ~ )  
n 2 vary  o n  Z i = l  ~i : 1, there  exist constants I~, J~ such t ha t  

0 < Ia <<. - t~  (~) d~. <<. Jd. 
d 

Using this, and (6.9) and remembering t ha t  [fxllVlxl - l as Ilxi{- 0, we see t h a t  

[xl-2qa(x) is bounded away from 0 and oo as I 1- 0, proving the 1emma. Q.E.D. 
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COROLLARY 6.2. For a spherical measure L, the integrals 

fqd(x)dL(x)and f  dL(x) 
are either both /inite or both in/inite (d being any /ixed positive real number). (1) 

We have  seen in Corol lary  5.4 t h a t  /z E So ( K \ G / K )  is inf in i te ly  divisible if a n d  

on ly  if fi (2) = exp  - ~0 (2), where  ~o (2) = limj_+ ~o v A (2) wi th  ~oj (+~) = S [1 - Ca (x)] dLj (x), 

L j E S ( K \ G / K ) ,  ] =  1, 2 . . . . .  W e  n o w  t u r n  to  the  r ep resen ta t ion  of func t ions  y~(+~) which  

can  arise in this  way .  

THEOREM 6.1. Let 

y,:(:t) = f[1 -r  L~ f iS (K\G/K) ,  ] = 1 , 2  . . . . .  

Suppose that limj_,oc~p~(~)=~p(~). Then there exists a constant c, a spherical measure 

L and a second order elliptic di//erential operator D E D (G/K) which annihilates constants, 

such that 

~(~) = C -- PD (/t) § f l  xJ>O [1 -- CA (X)] dL(x), (6.10) 

where PD(~) is the eigenvalue o/ D corresponding to the eigen/unction ~ ,  i.e., Dr  

PD (~) r Further, 

f lxl 1 + Ixl  2 dL(x)<  ~ .  (6.11) 

For such a yJ(~), exp  - ~ v ( ~ ) e S  o i/ and only i/ c =0. 

Conversely, given DE D(G/K)  and a spherical measure L satis/ying the above con- 

ditions, the /unction 

- PD (~) § f ix  I>O [1 -- r (x)] dL(x) 

is the limit as :--->cr o/ /unctions y~j(~) which arise /rom measures L j E S ( K \ G / K )  ac- 

cording to the recipe ~vj(2) = j" [1 - r 

Our  proof  is in b road  c o n f o r m i t y  wi th  classical lines, see for  example  [2, C hap t e r  

3]. F o r  reasons of space we ref ra in  f rom giv ing  an  ex tens ive  t r e a t m e n t  like the  one  

there .  

(1) When integration is performed on all of G, we shall frequently omit G from the symbol, 
unless risk of confusion is present. 
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Proo/. Suppose that  

= f [1-r  LjES(K\G/K) 

and yJj()t)-+v2(~ ) as j - - > ~  for )tEER. Then exp -%(~)- ->exp  -yJ(),). On the other 

hand, by Lemma 4.2, exp - Vii(Z) E w so that  by Theorem 4.2 (iii), exp - ~p(~t) E w In 

particular, e x p - ~ ( Z )  and hence v2(Z ) is continuous on Ea. 

Let ql(x) be the function of Lemmas 6.1, 6.2 with d = l .  We have 

Re v2j()~ ) = f [1- Re r i =  1, 2, . . . .  (6.12) 

Since the integrand is non-negative we integrate w.r.t. ), and using Fubini's theo- 

rem, we get 

~ v R e  ~,(2)d~t=fqi(x)dL,(x),  ~ = 1 , 2  . . . . .  (6.13) 

However, Re yJj (~t) -> Re ~ (~t) as ?'-> c~ and since these functions are non-negative and 

continuous, 

fv Re%(2)d]t->~ Re~(2)d2,  ~-~c~; (6.14) 
J V~ 

in particular, M = s u p j  Sv, Re ~j(~t)d~< ~ .  Thus 

fql(x)dLj(x) < ~ .  (6.15) M 

We now break up Sql(x)dLs(x) into 

f,~,<~l q~(x)dLs(x) + f,x,.l q~ (x)dLj(x)' 

and since each of these is non-negative, we have 

fix I > 1 qi (x) dLj (x) <~ M, (6.16) 

fl  ~< M, ~= 1, 2, (6.17) ql(x) dLt(x) D 0 0  0 

x I<~1 

But because of Lemma 6.1, qx(x)>~(~>0 for I x l > l ,  hence by (6.16) 

fl~ dLj <~ M/~. (6.18) (x) 
i>1 
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( 6 . 1 7 ) ,  ( 6 . 1 8 )  toge ther  imply  easily t h a t  there exists a spherical  measure  L on 

{x[ [xl > O} such t h a t  

fo qi(x)di(x)+ f di(x)<~ (6.19) 
<lxl<l xl>l 

and  such t ha t  for each /Et3(K\G/K)which vanishes a t  e and  a t  co, we have  

f /(x)dLj~(x) ~ f /(x)dL(x), ]~--~ ~ (6.20) 

for a su i tably  chosen subsequence {Lj~} of {Lj}. We rename Lj~ as Lj. (1) Note  t h a t  

since ql (x) ~> (~ > 0 on { x { > 1 and  since ql (x) is continuous and  tends  to a posit ive l imit  

as x - +  oo, (6.19) is equivalent  to 

fl ql(x)dL(x) < ~" (6.21) 
xl>0 

Now consider ~ l x l > x [ 1 - R e  ~b~(x)]dLs(x). Because of (6.18) the  numbers  

7J = f u z t>l dLj (x) 

are bounded,  so t h a t  a subsequence of t h e m  will converge to  y~ say, while, since 

Re  r vanishes a t  ~ ,  (6.20) implies 

f l z l > i R e  r ftxl> Re r 

so tha t ,  set t ing c = ~ - S i x l > l d L ( x ) ,  and passing to an appropr ia te  subsequencc of 

{Ll}, we have  

[ [ 1 -  Re  ~b~(x)]d.Lj(x)~-c+ [ [ 1 -  R e  ~(x)]dL(x). (6.22) 
JI xl>l JI  x{>l 

Now we tu rn  to f i ~ { < l [ 1 - R e  q~(x)]dLs(x). Each  such t e rm  is non-negat ive  and  

therefore,  

o<~ fl x,~1 [1-Re~(x)JdL,(x)~ f[1-Re~(x)]dL,(x)=Rey~r (6.23) 

(1) In the following proof we shall pass repeatedly to subsequences of {Lj}, and call these sub- 
sequences {Ly} again. We may clearly do so since we are concerned with the representation of 
lim y~r yJy ().). 
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Since Re ~j(2)-+l~e ~2(~), if follows that  for a subsequence, Slat<l[1 Rer 
converges. 

Let e > 0  be a fixed number. We have 

fl~:l< [1- Re r flxl< [1- Re r162 + fl 

As to the second term, we may write it as 

[1 R e  r162 
X[>8 

(6.24) 

f 1 - Re r (x). 
ix I>, q~ (x) 

Since in this expression, the integrand is bounded and continuous (of. Lemma 6.1), 

since the range of integration excludes {x I I x I = 0} and since ql (x) dLj--> q~ (x) dL on 

{xllx]  >0}, we see that  

f l  - f l  [1 - Re r ~1>[1 Re d?~(x)]dLj(x)--+ xl>~ 

(Provided, of course, that  r = e is a point of continuity of the monotone function of 

r given by Sr<x~<l dL(x); this function has only eountably many points of discontinuity 

and we exclude these once and for all.) Thus in (6.24), the left side and the 2nd term 

on the right side both converge as j--> oo and so must the remaining term, to yield 

lim fl  [ 1 - R e  r 
i-->~ x l ~ l  

= lim f, [1-1~er 
j---> oo xl~<~ <ix 

[1 - Re Ca (x)] dL (x). ( 6 . 2 5 )  

Letting ~--> 0 through permissib]e values, the 2nd term on the right, being monotone 

in e and bounded by the left side (which is independent of ~), is seen to converge to 

so that  because of (6.25), 

f0 [ 1 - R e  r 
< I x K 1  

lim lim ft  [ 1 - R e  r 

is seen to exist; we have 
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lira f l  [1 - R e  r 
j - - -> ~ xl~<l 

= lim lira ~ [ 1 -  Re r fo 
e--~.O j . ~ o r  xl<~e <lxl~<l  

[ 1 - R e  r (6.26) 

Let us now examine the first term more closely. Recall the device and nota- 

tion used in proving Lemma 6.2. We have then 

- r P ~  (~)  + o (r3) .  1 - R e  r  = 2 (6.27) 

Integrating (6.27) and recalling that  ]q~(x)dLj(x)< co and ql(x),,~]xl2,,,r ~ as r--~0 

because of Lemma 6.2 (iii), it follows that  

f ix I<~ [1 - Re r (x)] dLj (x) = fl �9 f<~ r2 P~ (~) dLj (x) + ~tJ, (6.28) 

where supj ~j--> 0 as e --> 0, so that  

lim lim I [1-Re~b~(x)]dLj(x)=limlim-f  r2p~ (~). dLj (x).  (6.29) 
zl<-<~ 

The existence of the limit on the right being clear from (6.28). However, for fixed 

x, P~(A) is a quadratic polynomial in 21 . . . . .  Az being the eigenvalue of D~ED(G/K) 
corresponding to the eigenfunction r By our remarks at  the end of w 3, 

l l 

-P~(~)= Z Q~.~(x).~.~,+ ~ Qu.o(x)e~.eo. 
u , v = l  u , v ~ l  

I t  follows easily from this t h a t  the limit on the right of (6.29) must necessarily be 

of the form 
l l 

u,  v = l  u,  v =1 

say. Further, since for each x, P~ (sX) = P~ (2) for s E W, it is clear that  PD (sX) = 

PD(X), so that  PD eI(O~0). Hence (cf. w 3)there exists a second order operator D E D(G/K) 

whose eigenvalue for r is PD(X). The fact that  PD(- - i~ )=0  means D annihilates 

constants, while the fact that  {Q=v} is a non-negative definite matrix is precisely the 

elliptieity assertion, cf. w 3. Thus 

lim lim fl  [ 1 - R e  r (6.30) 

where Dr162 Collecting the results (6.22), (6.26), (6.30) we have 
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Re v2(~) =lims--->~ Re ~ps(~t) = c -  PD(~t) +f i l l>0  [ 1 - R e  ~(x)]dL(x). 

Let us now look at the imaginary part  of vj(~t ). We have 

Im ~,s(,1.)= f lm r = fl Im gp~(x)dLj(x) + f, Im /p~(x)dLs(x). 
x l ~ l  . x l > l  

As to the second term, Im ~(x)  vanishes at ~ and hence, by (6.20), 

fl~i>llm 4>~(x)dLs(x)--> flxl> Im dp~(x)dL(x) 

for a subsequence 

use the device of Lemma 6.2 to get 

(to which we may pass). With regard to the first term, we may 

(6.33) 

Now D~=f~Ad(k,)Xdk,. Since XEOo and Ad (K)PoCpo, it follows that  D1Epo and 

is invariant under Ad(k'),  k'EK. But this implies that  DI=O, [5], [15]. Hence by 

(6.33), 
Ime~a(x)=o(r 2) as r-->0. (6.34) 

There is no difficulty in showing, remembering (6.17)and ql(x)~r ~ as r-->0, that  

f,x,<l Im dp~(x)dL,(x)--->flxi~llm dp~(x)dL(x). (6.35) 

Putting together (6.32), (6.35), we have 

f I m  ~,.(x)dL,(x)--->f Im r (6.36) 

I t  follows now from (6.31), (6.36) that  

~p(2) = lim y~j(2) = lim [Re yJj(,~)+i Im v2~(~)] 
i ~ r 1 6 2  t--~ o0 

= l i m  

= c - PD (2) § ( [ 1 - Ca (x)] dL (x). (6.37) 
JI x l > 0  

(6.31) 

(6.32) 

1 - r  = r~S+' ( . §  t D  (e). Im r (x) -~ ~-~ [ ~  (x) D x 
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Thus exp -vd(~)=exp -(c-PD(2)+flzl>o[1-r ) 

and so exp - ~0 (2) E w if and only if exp - {v 2 ( - i q)} = 1, i.e., if and only if ~v ( - i r = 0. 

But  the quadratic polynomial Po(2) vanishes a t  2 = - i r  as seen above, while the 

integral vanishes a t  2 = - i r  since r  Hence ~ ( - i Q ) = c  so exp - v / ( 2 ) E w  0 if 

and only if c = 0. The proof of the direct half of the theorem is thus finished. 

We now turn to the converse par t  of the theorem. Suppose then tha t  we are 

given an elliptic second order differential operator D ED(G/K) which annihilates con- 

stants and a spherical measure L on {x[ [x [>0}  satisfying (6.11). We shall presently 

prove tha t  there exist NjES(K\G/K) such tha t  

lim f [ 1  " ~ b a ( x ) ] d N ~ ( x )  = - P D ( 2 ) .  
1---> oo 

Granting the existence of such N~, let M s be the measure in S(K\G/K) defined by 

Mj(A)=L(d O {x I Ixl>~l/) '}) and let Lj=_hrj+Ms. Then it is clear tha t  

lim f [1-f~(x)]dLj(x)= -P.(2)+ f~ [1-r 
y--> oo xl>O 

Thus, to finish the proof of Theorem 6.1, we have to produce NjES(K\G/K) such 

that  f [1 - 5ha (x)]dNj (x) -+ - PD (2) as j --> c~. Recall tha t  (cf. w 2) D (G/K) and I (P0) 

are isomorphic as vector spaces under an isomorphism P--> De from I (P0) onto D {G/K), 
and further the order of Dp = degree of P. Thus given D E D (G/K) of the above de- 

scription there exists P E I(p0) such that  D = Dp. Since D is second order, P is of 

degree 2. The ellipticity of D is to say tha t  the quadratic par t  of P is non-negative 

definitel P has no constant term since D annihilates constants. Hence, 

P ( X  1 . . . . .  Xn)  = ~ ~QuvX~Xv+ ~ b~X~. 
u = l  v = l  u = l  

But  since P is invariant  under Ad (K), it is easily seen tha t  each of the two terms 

on the right must  be so invariant.  But  there are no vectors E P0 invariant  under 

Ad (K) except the null vector. Hence ~ bu Xu = 0. So 

P(X I .... , Xn) = ~ Q,,vXuXv. (6 .38)  
u ,  v = 1 

Since Q.,, is symmetric  and non-negative definite it is clear tha t  
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n 
P(X~ . . . . .  X,~) = ~ c,, Y~v, (6.39) 

V=I 

where c ,>/0 and the Y, are certain linear forms in X~ .... Xn; so tha t  Y~EPo. We 

m a y  clearly assume t h a t  U Y~ II = 1, v = 1 . . . . .  n. Now since P is invar iant  under  Ad (K), 

we have trom (6.39) 

n 

P(X~ . . . . .  X=)=  Cv Ad (k) Y~dk= ~c~P,  say, (6.40) 
v = l  v = l  

where PvEI(Po)  , v =  1 . . . .  , n. 

Since P--> De is linear, i t  is clear, sett ing Dv = D~,  t ha t  

D= ~ cvDv. (6.41) 
V=I 

Let  Pv(,~) be the  eigenvalue corresponding to r of Dr, i.e., D , r 1 6 2  Then 

PD(;t)=~'~lcvPv(2). We shall now construct  a sequence of measures 

such t h a t  
.Nj.v 6 S ( K \ G / K ) ,  j = 1, 2 . . . . .  

f[ 1 ~ (x)] dNj.v (x) ----> Pv(~t), ?'--> ; v 1 , . . . , n .  (6.42) 

Then if we set N j =  ~'~lcvNj.~,, we shall clearly have 

~[i- r ~lco f [l-4,(x)]dNj.~(x) 

---> ~ -c, Pv(;O, i--->~ 
= _ p . ( ~ ) .  (6.43) 

Thus  we shall be th rough  as soon as we construct  Nj . ,ES(K\G/K)  satisfying (6.42). 

To do this, let ej be a sequence of positive numbers  such tha t  e j - ~ 0 ,  ] - - > ~ .  

Let  Nj.v be the measure 
1 

s ~ exp e I Yr.  

(Recall here the nota t ion  introduced in the second paragraph  of w 5.) Then  

f 1 [1 - r e~ Yv)]. (6.44) [1 - Ca (x)]  dN:.v (x) = 

Using (6.5) on this, we get  easily 
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f[1 r d~6.~ (~) [~ - r (exp ~jr~)] lo 
e7 

_ 1 ~ e?(Dv.m~), 0 (e), (6 .45)  
E~ m~l 

where D~..m = f~ Ad (k) Y~'dlc. 

Now D,.1 being a linear form EI(p0), must equal 0 while D,.2=Dv in our pre- 

vious notation. Hence we have 

f [1  ~a (x)] dN~.v (x) = - (Dr ~ )  (e) + o (e~). (6.46) 

Since (D,~h~)(e)=Pv($) '~(e)=Pv(~),  and since es-->0 as j - ~ ,  we have irom (6.46) 

f [1 - r  -P~(2)  as ]-->oo. (6.47) 

and the proof of Theorem 6.1 is finally finished. Q.E.D. 

In view of Theorem 6.1 and Lemma 5.2, we can now state the following. 

THEOREM 6.2. A measure # E S o ( K \ G / K  ) is infinitely divisible i] and only i] its 

Fourier-Stieltjes trans/orm fi (2), ]t E E• has the representation 

, ( 2 ) = e x p  {P D(~) -  f l~ ,>o[1-r  (6.48) 

where Jb is a spherical measure 8atis/ying 

1 + Ixl 2 dL(x )< c~ 

and PD(2) is the eigenvalue corresponding to the eigen/unction ~ o/ a second order el- 

liptic di]/erential operator DE D (G/K) which annihilates constants. 

In view of the remarks on page 265 of [16], the following coro]lary is not without 

interest. 

COROLLARY 6.3. Every infinitely divisible measure IaESo(K\G/K ) can be re- 

presented as la 1 in a continuous one-parameter convolution semi-group {/~t}e>0 with. 

i~e ~ l~ as t ~ 0 (recall the notation o/ w 5). 
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Proo[. Indeed let /x t be defined by  (#t) ̂ =  (/~)t. Q.E.D. 

We now turn to the question of uniqueness. 

T ~ O R ~ M  6.3. In the representation (6.48), the measure L and the operator D are 

determined uniquely by ~. 

Proo/. We shall follow the method used in [23 p. 194]. Suppose then /x f igo(K\G/K ) 

is such tha t  /z satisfies (6.48). Let  ~t be a separable Markov process taking values 

in the symmetric space G/K, whose transition function P (t, p, B) satisfies the following 

two conditions: 

(i) P(t ,p ,B)=P( t ,=(e) ,x - IB)  where p=n(x) ,  xEG, and B is a Borel subset of 

G/K, ~ being the natural  projection G---> G/K. 

(ii) I f /x  t is the measure in S O (K\ G/K) which corresponds to the measure P(t, 7t(e), �9 ) 

on G/K, in the natural  way (the existence of /x t being guaranteed by (i)) then 

(#t) ̂  = (fi)t. (6.49) 

I t  is not hard to show tha t  the sample functions of such a process will, with 

probabil i ty one, only have discontinuities of the first kind. (Indeed, the sample func- 

tions of ~t m a y  be obtained as limits with probabil i ty one of sequences of functions 

each of which is the trajectory of a Brownian motion, interlarded with finitely many  

independent Poisson jumps, the convergence of the sequence being uniform on compact 

subsets of the parameter  set [0, c~). See our note [7].) 

We may  prove just as in [4], [17] tha t  the mathematical  expectation of the num- 

ber of jumps of the trajectories of the process ~t between time 0 and t, the magni- 

tudes {in the sense of the metric on G/K) of which lie between r 1 and r2, is pre- 

cisely 

t fr,<,xt<r, dL(x)" (6.50) 

Since this mathematical  expectation is determined by the transition function P( �9 -, �9 ), 

if follows tha t  the measure L is determined by /x. I t  follows tha t  the te rm PD(2) 

in (6.48) is also determined by  /~. 

Now we have seen tha t  PD(2) is the eigenvalue, corresponding to ~b~, of an el- 

liptic second order operator in D(G/K). To finish the proof of our theorem it is 

enough to prove tha t  if D 1, D~e D(G/K) and if D I ~  = D~qb~ for each ~b~, ~teE~ then 

D x= D ~. But  if F is the isomorphism F : D  (G/K)---> I(~~ (cf. w 2) then it is known 
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[15 p. 430-432] that  Dr162  where F ( D) ( i )  0 is the value at i2EEc of the 

polynomial function F(D)EI(D~, ). Thus, if D~r162 it follows that  F(D 1) ( i~)= 

F(D ~') (i~), 2EEa. Hence F (D1)=P(D ~) and since 1 ~ is an isomorphism, we conclude 

D I = D  2. Q.E.D. 

w 7. Generalized l imbs a n d  infinitely divisible m e a s u r e s  

The following definition has a well-known classical motivation. 

DEFINITION 7.1. A measure /t ESo(K\G/K ) is called a generalized limit if there 

exist, for each positive integer j, measures thrESo(K\G/K), l<~r<~r t with rj-->c~ as 

j--> ~ ,  such that  

(ii) max I Pjr(~)- 1[--> 0 as ?'--> cr uniformly for 2 in compact subsets of Ea. 
l<<.r~<r 1 

THEOREM 7.1. Condition (ii) o! Definition 7.1 is equivalent to 

max f dth,(x )-->0 as j-->~ (7.1) 
l~r<~r t J A e  

/or each compact subset A containing e o/ G. Here A c stands /or the complement o] A. 

The proof, which offers no difficulty, is omitted (el. [8, p. 1298]). 

LEMMA 7.1. / /  ft ESo(K\G/K ) is infinitely divisible, then tt is a generalized limit. 

Proo/. Let rj = ?', and let /@ be defined by means of its Fourier-Stieltjes trans. 

form as follows: 

fi,r(~)=[f~(~)]~'J=exp ( l  {PD(~)- fJxl>o [1-~(x)]dL(x)}) ,  l <~r<~rj=~. (7.2) 

Then it is clear that  fij=I~Llfiz=12 for each j so # j = # .  Also (7.2) ensures that  
condition (ii) of Definition 7.1 is fulfilled. Q.E.D. 

LEMMA 7.2. Suppose that /~ESo(K\G/K ) is a generalized limit, and let luj, /~i~ be 
as in Definition 7.1. Set f lM2)=l-pj~(~),~eE,.  Then there exists a d > 0  such that 

U 
suv sup I R e  <  7.3) 

where V,~ = Ila II < d}. 
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Proo[. Since /2j (;[) --> /2 (;t), ;t E En and /2 E $0, we have /~, ~/~ by Theorem 4.2 (iv). 
In  particular, the convergence /2,(2) --> /2 (2) is uniform in every compact neighborhood 

of 0 in ER. Now, since #E$o(K\G/K), /2(0)>0;  hence there exists a d > 0  such tha t  

/2(;t)+0 for 2EVa. Therefore log [/2~0.)1~--~Iogl/2(~)I ~ uniformly for ;~EVa. Let us 

write B (2)= log I/2(;~)I S. Then it is clear thnt  if e > 0 is given, we have, for large i 

1 

1 
2 

1 
2 

Since /~j, obey Theorem 

r~ 

B (~) + e/> log ]/2, (~) [3 = ~ log ]/2,, (~) ]*. (7.4) 
r = l  

Let ~j~(~) = 1 -I/2~(~)I ~. 
Therefore it easily follows tha t  for large ~, 

r~ r j  

2 log E log 
r = l  r = l  

Then I~,,(~)1-->0 as ~-->oo uniformly in l<.r<~r, ancl;tEVa. 

T =l {l -(fRe (7.5) 
7.1, and q~(e)= 1, we have, given ~/>0, for large 

f Re ~a(x)dFsr(x ) > 1 - ~ (7.6) 

so tha t  

1 - ( f R e  ~b~(x)dlaj~(x)) z= [ I -  fRe r [ I +  fRe 
>i ( 2 -  ~/) f [ l  - R e  ~b~(x)]dt~,r(x). (7.7) 

Now consider ( S I m  ~b~(x)dt~j~(x))~; we have for any compact neighborhood A of e, 

= J1 + J~ say. (7.8) 

~< 2fa  Jim d?~(x)[d#,~(x), (7.9) 
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since ~jr E S O (K\ G/K) and [Im r (x) 14 1. Now, for a sufficiently small neighborhood 

A of e, 1 - Re r > 0 except at x = e for x EA and further, (6.34), (6.27) imply that  

Im ~ ( x ) / ( 1 - 1 ~ e  ~(x))-->0 as x-->e. Hence, given ~ > 0  we can choose A so small 

that  Jim r r for x e A .  Making this choice, (7.9) yields 

J1 ~< 2 ~1 fA [1 -- Re r (x)] d/~jr (x). (7. 10) 

As for J2, we have 

where we used, for the last step, the following 

(Ira r (x)) ~= Ir (x)[2 _ (Re r (x))~ < 1 - ( R e  r (x)) ~ 

= (1 + R e  r  (1 - R e  r  < 2(1  - R e  r  (7 .12)  

Since ,ujr obey Theorem '/.1, for large enough j we have 

J2 ~< 4 ~ fAc [1 - Re r (x)] d~# (x). (7.13) 

:From (7.8), (7.10), (7.13), we have 

( f  Im r . f [1-Re r (7.14) 

:using (7.4), (7.5), (7.7), (7.14) we have finally 

Since ~ may be as small as we please, Re flj~(~)~>0, and since B(~)is  continuous 

for ~EVa, Lemma 7.2 dearly follows from (7.15). Q.E.D. 

LE~MA 7.3. Let ~ E S o ( K \ G / K  ) be a generalizeg limit. Then with the same no~- 

tion as in Lemma 7.2, we have, ]or ~ E En,.  

rf 

< o o .  ( 7 , 1 6 )  
i = 

16--  642046 Acta mathematica. 111. I m p r i m 6  le 8 juin 1964. 
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Proo/. 

zl~T 

= J1 + J~ say. 

II-r 

(7.17) 

Now, it is an easy consequence of Lemma 6.2 and (6.27) tha t  for each d > 0, 

I1 -  r <. Maqd(X) for I xl < T, M~ being a constant (depending on v, which is fixed 

in this discussion). Hence 

Jl <~ Md f l z I<~ qtt (X) alp jr (X). (7.18) 

As for J~, we have by Lemma 6.1 that  q~(x)>~>O on txl>v (once again, J may 

depend on r), so tha t  

J~<.2fl~l>dpj~(x)<.~fl~l>qd(X)dl~j~(x ). (7.19) 

f 
Hence I flj, (t) [ < M'd Jqa (x) dpj~ (x), (7.20) 

Finally 
t 

where Ma is a constant. 

U r) 

r=l r=l 

L r~ 

In view of Lemma 7.2, this last inequality concludes the proof of Lemma 7.3. 

Q.E.D. 

T ~ o ~ M  7.2. F E So(K\G/K) is a generalized limit if and only i /F is in]initely 
divisible. 

Proo]. In  v iew of Lemma 7.1, it is enough to prove that  if # is a generalized 

limit, then # is infinitely divisible. 

Le /~, ~j~, /?jr (2) etc. be as above. Let  d > 0  be any real number. Condition (ii) 

Of Definition 7.1 implies that  for sufficiently large j (how large depending only on d), 



I S O T R O P I C  I N F I N I T E L Y  D I V I S I B L E  M E A S U R E S  O N  S Y M M E T R I C  S P A C E S  241 

/2j~(2)#0 for 2EVa, l<~r<rj. Hence /2j(2)#0, 2EVa so that  log fi j(2)may be defined. 

For such } we have 

rj 

- log/2i ( 2 )  = - ~. log/2j~ ( 2 )  
r = l  

ri rf 

= - ~ log (I-flit(2)) = ~ ~ ( m ) - X ( f l . t r ( , ~ ) )  m 
r = l  r = l  m = l  

U r/ 

= ~ ~#().)+ ~ ~ (m)-l(~tr()t))m=Jl+J ~ say. (7.22) 
r = l  r = l  m=2 

Where, for the expansions, we used the fact, guaranteed by Definition 7.1, that  

maxi<r<~ Ifljr(2)]--~0 as ~'-->~ uniformly for 2eVa. 

r1 I m 
r = l  rn=2 

< m a x  Ifljr(2)l r Iflj~(2)]-->0 as i - ~  (7.23) 

uniformly for 26va in view of Lemma 7.3. Hence, by (7.22) we have 

/2j(2)- exp (~=1 fljr(t) -~0 (7.24) 

as j - ->~ ,  uniformly for 2eVa. But since fij(2)-->/2(2) by hypothesis, it follows that  

lim exp-- fljr($) =/2(2), 2EER. (7.25) 

NOW, exp -- { ~ 1  flJr(2)} = exp -- {~ [1 -r where Lj = ~r~_lttjreS(K\G/K ). 

r i  Therefore, by Theorem 6.2, e x p -  {~=x/~,r(2)}=~i(2) where v~eso(g\G/K) and is 

infinitely divisible. Since ~j (2) -~/2 (1), 2 e ER and since i z 6 S o (g \  G/K), Theorem 4.2 

(iv) implies that  vj ~/~. Therefore, by Lemma 5.2, /z is infinitely divisible. Q.E.D. 

The.following theorem is implicit in our work above and we mention it without 

formal proof. 

T~EOREM 7.3. Let ~2jr E S0, 2" = 1, 2 . . . . .  1 ~< r ~< rj, rF-> ~ as j --> oo, and suppose that 

lim max ] 1 -/2jr(t)] = 0 
)--->:~ l<~r<~r/ 
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uni]ormly ]or ~ in compact subsets o] ER. Let 

ri 

pjC ~) = T~l~jr (~). 

Then fij-->f~ e So i] and only i/ the measures ~1 de]ined by 

n, IBI = ( .  I 1' ,=1 . I , ,  + Ixl ~ rim'(x) 

are Bernoulli convergent to a measure ~ fi S ( K \ G / K). 

I1 this condition is saris/led, then there exists a uniquely determined second order 

elliptic di/lerential operator DE D (G/K) which annihilates constants such that i~ has the 

representation (6.48), the measure L o/ that formula being related to ~ by 

L(B)= f .  1 +[x l  ~ ixl~ d~(x) .  

We end this section with some comments. Our Theorem 6.2. which was the in. 

stigation for this paper, can be obtained from Hunt ' s  results [16] if we assume the 

truth of Corollary 6.3. Thus a part of the justification for our results is that  in our 

situation Corollary 6.3 is a consequence and not an assumption. As Hunt  remarks, 

Corollary 6.3 is not true in his more general set-up. Indeed, there are reasons to 

believe that such a result is true only when some commutativity is present as in our 

set-up, where S(K\G/K)  is commutative. 

Our work shows that  the function exp PD(~t) is the Fourier-Stieltjes transform 

of a measure in So(K\G/K), for each De D(G/K) of the description in Theorem 6.2. 

I t  is natural to call these measures Gaussian, for obvious reasons. One can at this 

point formulate and prove many theorems analogous to those of classical central limit 

theory, e.g., the theorems of Lindeberg-Feller on convergence to Gaussian distribu- 

tions. Another class of problems of interest is the discussion of Stable laws; cf. w 10 

of [8]. We do not occupy ourselves with these questions in the present paper. 

When the symmetric space G/K has rank 1 so that  it is two-point homogeneous, 

our results become rather more explicit. In  this case, there is, up to positive mul- 

tiples, only one elliptic second order differential operator in D(G/K), viz. the Laplace- 

Beltrami operator of G/K. The space of double cosets K \ G / K  is one dimensional in 

this case and our theory is a theory of infinitely divisible elements in certain con- 

volution semigroups of measures on the half-line [0, co>, the convolution being, of 

course, different from the usual one. In  this form, our work subsumes [8], [23], as 

rather special cases. 
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w 8. The case  of  a compact  symmetr ic  space 

The case where G/K is a compact symmetric space can be dealt  with by sub- 

stantially the same methods as we have followed above. We do not wish to give 

complete details but  will merely outline our results and point out one or two places 

where the argument  of the m previous sections has to be modified. 

I t  is well known tha t  the elementary K-spherical functions of positive-definite 

type are in one-to-one correspondence with equivalence classes of irreducible uni tary 

representations of G which are of class 1 with respect to K, i.e., representations T 

such tha t  the trivial representation of K occurs in the reduction of the restriction 

of T to K. I f  G/K is compact, then it also is easy to show tha t  there are only 

countably many  distinct elementary K-spherical functions on G and these are all of 

positive-definite type. Indeed if Z is the character of a finite-dimensional unitary ir- 

reducible representation of G which is of class 1 with respect to K then the function 

4(x) = fKZ(x-ik)dk, xEG (8.1) 

is an elementary spherical function on G and all the elementary spherical functions 

arise in this way. 

Letting 40, 41, ... ; (40 -~ 1) be an enumeration of these elementary spherical func- 

tions one may  now define for ~tES(K\G/K) the sequence of Fourier-Stieltjes coeffi- 

cients by  
/ w  

p (n) = j4n  (x)d~ (x). (8.2) 

By utilizing Peter-Weyl  theory, it is possible to show tha t  any  complex-valued 

continuous spherical function on G may  be approximated uni/ormly by finite complex 

linear combinations of the elementary spherical functions and this can be seen easily 

to lead to t h e  fact that  if /2 (n) = 0 for all n = 0, 1, 2 ... then /x = 0. The elementary 
/x ,  

spherical functions 4n still satisfy (3.1), and this has the implication tha t  ~tv=/2~,, for 

/~,vES(K\G/K). The analogue of the continuity theorem (Theorem 4.2) is trivial. 

The notion of infinite divisibility may  be introduced just as before, but due to 

the disconnectedness of the domain of the Fourier transform, it is no longer true (as 

examples easily show) tha t  for an infinitely divisible measure # E So(K\G/K),/2 (n)#0 
for any n. Instead one has to make this assumption ad hoc. With this assumption, 

the theorems of w 5 are true with only minor changes which will be obvious to the 

reader. 
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The function qt(x) of Lemma 6.1 is now to be replaced by  the function 1 - Re r 
(the arbitrariness of the choice of ~b 1 m a y  be, for example, decided by  choosing ~1 

to be that  elementary non-constant spherical function which has the smallest eigenvalue 

with respect to the Laplace-Beltrami operator of G/K). Lemma 6.1 which was used 

in the non-compact case to get the estimate (6.18) is now superfluous in view of the 

compactness of G and only the left half of the inequalities in (ii) of Lemma 6.2 has 

content. The method of proof of this inequality has, of course, to be slightly modified. 

The Lie algebra ~0 of G may  be decomposed as ~ + p,  and p,  is identifiable with 

the tangent space to G/K at  n(e). I t  is still true tha t  I (p , )  and D(G/K) are iso- 

morphic as vector spaces, and this remark enables us to retain the essential idea in 

the proof of the above inequality. 

Theorem 6,2 finds the following replacement in 

THEOREM 8.1. Suppose ]aeSo(K\G/K), and that f~(n)=~O ]or any n. Then ]a is 
in/initely divisible i/ and only il 

f~(n)= exp (PD(n) - f lx l>ol-  ~n(x)dL(x) ) , (8.3) 

where PD(n) is the eigenvalue corresponding to ~n o/ an elliptic second order di//erential 
operator De D(G/K) and L is a spherical meazure on (x I I xl > O} such that 

f[ 1 - R e  r  ~ .  

We remark tha t  this last condition on L can be shown to be equivalent to 

[x[2di(x) < ~ .  

Corollary 6.3 and the uniqueness Theorem 6.3 can be proved in the same fashion, 

and indeed, the counterpart  of the Theorem 7.2 also holds exactly as written down 

in [6], the method of proof being as above. The reader is invited to fill in on this 

sketchy outline. 

Theorem 8.1 is the general version of the result of Bochner in [1], where 

G = S 0 ( n ) ,  K =  S 0 ( n -  1); n>~3. 

To be sure, Bochner considers a slightly larger class of heat  equations obtainable from 

the radial par t  of the Laplace-Beltrami operator of SO(n)/SO(n-1) by continuation 

of a parameter  (depending on n) and his full results may  be thought  of as giving 

results for "spheres" of fractional dimension. We do not know whether similar re- 
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sults  could be ob ta ined  b y  sui table  analogous con t inua t ion  of the  radia l  p a r t  of the  

L a p l a c e - B e l t r a m i  opera to rs  of compac t  symmet r i c  spaces G / K  which are  two-po in t  

homogeneous.  

A specia l izat ion of our  resul ts  is the  following: Tak ing  G = SU(n + 1), K = U(n) n >~ 2, 

one gets  G / K  = complex  pro jec t ive  space. The spher ica l  funct ions  r can be shown 

to be the  Jacob i  po lynomia l s  p(�89 in the  n o t a t i o n  of [22]. This resul t  m a y  be 

rega rded  wi th  a cer ta in  a m o u n t  of cur ios i ty  since we are  no t  aware  of a classical proof  

of the  pos i t i v i t y  p r o p e r t y  [1, p. 24] of the  J acob i  po lynomia ls  which  is b rough t  ou t  

b y  (3.1), on which is based  Boehner ' s  proof  of his resu l t  in [1]. 
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