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§ 1. Introduction

It has been clear for some time that a natural domain for questions of harmonic
analysis is the class of symmetric spaces G/K where G is an appropriate Lie group
and K an appropriate subgroup [10], [14].(2?)

Now, functions, measures ete. on G/K may be viewed as corresponding objects
on G which are invariant under the right action of K, and a convolution opération
may be defined for them via the group structure of @.

In this paper we study the representation of probability measures on G/K which
are isotropic in the sense that they are, as measures on (, also invariant under the
left action of K, and which are infinitely divisible in the sense of the convolution
mentioned above. The representation is carried out via the abstract Fourier-Stieltjes
transform [13], and the main result is Theorem 6.2 which is analogous to the cele-
brated Lévy-Khinchine formula for the characteristic function of an infinitely divisible
probability measure on the real line.

Certain other results of probabilistic significance are also obtained. The principal
one is Theorem 7.2 which is the analogue of a classical theorem of Khinchine [18].

The organization of this paper is as follows. §2, §3 are devoted to terminology
and recapitulation of known results which will be used often in the sequel. §4-7 are
devoted to the proofs of our theorems in the case when G/K is a symmetric space
of the non-compact type. §8 then indicates briefly the modifications to be made

when G/K is of the compact type.

(1) The partial support of this work by NSF grant no. G-21205 is gratefully acknowledged.
(2) Numbers in square brackets refer to the Bibliography at the end of this paper.



214 R. GANGOLLI

Our work subsumes the work of Bochner [1], Tutubalin [23)], Getoor [8] where
special cases of our Theorem 6.2 and Corollary 6.3 may be found.

The results of this paper were announced in [6].

§ 2. Preliminaries

Throughout this paper except in § 8, @ will be a non-compact connected semi-simple
Lie group with a finite center and K vill be a maximal compact subgroup of ¢. C(@),
C(@), €*(@) will, as usual, stand respectively for the spaces of continuous functions,
continuous functions with compact support and the infinitely differentiable functions
on ¢. We set C(@)=C"(G)NC(G). Fix a Haar measure dz on @ once and for all,
and let L,(G) be the algebra, with convolution as product, of Borel measurable func-
tions absolutely summable with respect to dz. We denote by S(G) the set of finite
regular non-negative Borel measures on Q. S(@) is a semigroup with convolution as
product. For z€G, denote by L, or L(z) the left translation y —>zy of G and by
R, or R(x) the right translation y—»yzx. L(z), R(x) induce transformations on C(@),
C.(G), € (G). Specifically, if f€C(Q) say, then f*® is the function y—>f(z™'y). Simi-
larly f*®=foR(x™'). Similar but tacit conventions will be made regarding the ac-
tion of L(x), R(z) on S(G), L,(G).

Write C(G/K)={f|f€C(G), f*® =}, kEK}
and C(K\G/K)={t|f€C(@), f**=f"®=f, keK}.

The spaces C,(G/K), C.(K\G/K), C*(G/K), C*(K\G/K) ete. are defined analogously.
It is clear that for example C(G/K) may also be thought of as the space of con-
tinuous functions on the symmetric space G/K so that our notation has a built-in
consistency.

We shall be particularly interested in
S(ENG/K)={u|u€8(G); p*®=p?*® =y for all kEK}.

It is easy to check that this is a semigroup under the convolution product, but, what
is more crucial for us is the fact that under our hypotheses, it is a commutative semi-
group. See for example [10, p. 2]. S,(K\G/K) will stand for the subset of S(K\G/K)
consisting of probability measures.

Denote by D(G) the algebra of differential operators on C*(G) which commute
with the left action of @ on C*(G), and by D,(G) the subalgebra of D(G) consisting
of those operators which also commute with the right action of K. Each D€D(G)
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clearly leaves €”(GQ/K) invariant and it can be shown that the algebra of restric-
tions of operators D€D(G) is isomorphic with the algebra D(G/K) of differential
operators on €%(G/K) which commute with left translation by elements of G. We
refer to [15, Chapter X) for elaboration of these definitions.

Let g,,f, be respectively the Lie algebras of G, K. Ad denotes the adjoint re-
presentation of G on g,. Then there exists a subspace p, of g, such that g,=f,+ b,
is a Cartan decomposition of g,, [15, p. 157]). P, can be identified in a natural way
with the tangent space to the coset space G/K at m(e)€G/K, where m:G— G/K is
the natural projection map. ¥, and p, are orthogonal under the Cartan-Killing form
B of g4, and B is negative definite on f,x¥, and positive definite on pyxp,.

Let By, be a maximal abelian subspace of p, and §), a maximal abelian subalge-
bra of g, containing ljp,. Then hy=0, N Py+ B, N §, and By, =BhyNp,. We write fj, =
Bon¥t,. Denote by g the complexification of g, and by §, by, b, I, b, etc. the sub-
spaces of ¢ generated by 1, By, bs,, k), P, respectively. Then ) is a Cartan subalgebra
of g. Let A be the set of nonzero roots of g with respect to . We fix once and
for all a compatible ordering on the duals of the vector spaces §j, and §* =By, + by,
[15, p. 222]. Each root ¢ €A is real valued on §)* so we get in this way an ordering
of A. Let A" denote the set of positive roots. We write

A"=P,UP_={x€A*, a0 on hp} U {x|x€A*, 2=0 on b }.

If g* is the root-space corresponding to «€A, n=73,cr g% and if n,=g, N1 then a
celebrated theorem of Iwasawa says that 1, is a nilpotent Lie algebra and g,=f,+
by, + 1, Further, if Ay, N are the analytic subgroups of @ with Lie algebras fp,, 1y,
respectively, then G admits the Iwasawa decomposition G=KA,N [15, p. 234], and
Ay, N are simply connected. (Of course, 4, is a vector group R')

If M’ is the normalizer and M the centralizer of fj,, in K, then it can be shown
[15, p. 244] that M is a normal subgroup of M’ and M’'/M is a finite group. This
is the Weyl group of the pair (G, K). The Weyl group may be faithfully repre-
sented in the natural way as a finite group of linear transformations on fj, . It pre-
serves the Cartan-Killing form.

Let S(py), S(hp,) be the symmetric algebras over by, fj,, respectively [15, p. 391].
The group Ad(K) operates on S(p,) and W operates on S(l),,) by extension of the
action of these groups on g, hy, respectively. Let I(p,), I(fy,) be the corresponding
sets of invariants. Since the Cartan-Killing form is non-degenerate on P, we may
identify S(pg), with S(p,), S(hy) with S(fy,), where V" stands for the dual of the
vector space V. In particular I(p,), I(fp,) can be considered as polynomial functions

on g, by, respectively which are invariant under Ad(K) and W respectively.
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It will be quite crucial to us in §6 that D(G/K) and I(p,) are isomorphic as
vector spaces. We refer to [15, Theorem 2.7, p. 395] for the proof of this fact.
Denote this mapping of I(p,) onto D(G/K) by P—>Dp, PEI(p,).

Finally, we shall have to use, rather crucially, the fact due to Harish-Chandra,
that the algebras D(G/K) and I(}),,) are isomorphic, [15, Theorem 6.15, p. 432], under
a mapping I' of D(G/K) onto I(fy,).

The notation we have used is that of [15] which indeed will serve as a blanket
reference for the terminology and background material on Lie groups which we use

in this paper.

§ 3. Spherical functions

A function ¢ on G is said to be K-spherical (or simply spherical) if ¢ o R (k)=
doL(k)=¢ for each k€K. It is said to be an elementary or minimal spherical func-

tion if it satisfies in addition,
f K¢ (zky)dk = () b (y) (3.1)

and ¢(e)=1. Here dk stands for the normalized Haar measure of K. The elementary
spherical functions can be quite easily shown to be analytic and indeed can be
characterized by the following properties: (i) ¢(e)=1; (ii) $€C*(K\G/K); (iii) ¢ is
an eigenfunction of each DE€D(G/K). Cf. (15, Chapter X, §3].

A fundamental result, due to Harish-Chandra [13], says that the elementary
spherical functions are in one-to-one correspondence with the quotient Eq/W of the
space E; of complex valued linear functionals on B, modulo the action of the Weyl
group W on it. More precisely, let H(x) denote the unique element €f,, such that
x=k-exp H(z) n, k€EK, n€N, and let v€E;. Then

b () = fKexp (iv— ) (H (xk)) dk (3.2)

is an elementary spherical function on G, ¢,=¢, if, and only if, » =5+ for some s€ W,
and further each elementary spherical function arises in this way from some v € Ec.
In this formula, g=4 >.cp, & where & is the restriction of & to By, -

We shall be especially concerned with a certain subelass of the class of elementary
spherical functions; namely, those which arise in the above fashion from real-valued
linear functionals on Y. If we denote by Ej, the space of real valued linear func-
tionals on )y, (so that E;=Eg+:Eg), and if A€Ep, it is known [13, p. 241] that ¢;(x)
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is an elementary spherical function of positive-definite type (though it is not true
that all the positive-definite elementary spherical functions arise in this way). We

note as a consequence that
g0 =1 drlz)=ila). |da()]<1 (33)

for x€G, A€E,. These facts will be used frequently.

Finally, we need to use the fact that if D€ D(G/K) then D¢, =T"(D) (i1)¢p, where
I' is the isomorphism of D(G/K) onto I(}),) mentioned above, and I'(D) (¢1) stands
for the value of the polynomial function I'(D) at the point ¢A€E.. (In view of the
identification of fjy, with [y, via the Cartan-Killing form, this makes sense.) In par-
ticular, and this is a remark which we shall use crucially in § 6, if we choose a basis
A, ..., A, for B and let A=2;_;A,A,, then the eigenvalue corresponding to ¢; of any
operator DED(G/K) is a polynomial in 2, ...,4. It is also clear from (3.2) that
¢-i,=1 so that a D€D(G/K) annihilates constant functions if, and only if, I'(D) (¢) = 0.
It is easy to conclude from these facts and from the fact that I(f),) contains no linear
polynomials, that second degree polynomials in I(f,) which correspond to second order
operators in D(G/K) which annihilate constants are of the form

3

[ 1

Z Z QuH,H,—~ Z ZquQuQv;

u=1v=1 u=1 v=1
where g,=p(H,),u=1,...,1, H,u=1,...,1 is an orthonormal basis for §,, and {@,,}
is invariant under W. Further, such an element corresponds to an elliptic operator if,
and only if, {@,} is a non-negative definite matrix. We shall have to use these
facts in § 6.

§ 4. Fourier-Stieltjes transforms of spherical measures

Let 8y(K\G/K)=S(K\G/K) n{u|p(@)=1}. For fECAQ), p€S(G) we write u(f) =
Jef(@)du(x). It is clear that since y is regular, u is determined by the values u(f),
f € Ce(@). If, moreover, u €S(K\G/K) then it would suffice to know u(f) for f € C.(K\G/K)
in order to determine u.

DeriNiTioN 4.1. A sequence u,€S(K\G/K) is said to converge weakly to
UES(K\G/K) it p.(f)—u(f) for each f€C.(K\G/K). We then write y,—u. The
sequence u, is said to be Bernoulli convergent to w if u,(f) > u(f) for each bounded
fEC(K\G/K). We write this as u, = u.
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DEFINITION 4.2. For u €S(K\G/K) we define the Fourier-Stieltjes transform g by

A = Ldu(x)dﬂ(x), A€E,, 1)

where the ¢, are as in §3, (3.2).

It is clear that for u€S(K\G/K), f(4) is a bounded continuous complex-valued
function on Ez and is invariant under W.

Further a(A) is definable literally by (4.1) for all those A€ E, for which the in-
tegral (4.1) makes sense. In particular, since ¢_i, (x)=1 for all x€G by (3.2), it is

clear that
a(—ig)=pu(G). (4.2)

We now turn to some properties of this transform.

Lemma 4.1. If u,v€S(K\G/K) then the measure u-xv defined by
e B = | pBy)av)

is again in S(K\G/K). Further, (%) (A)=@(A)3(A), 1 € Ex.

The proof of the first assertion is easy. The second follows because of the
sphericity of u and v and the functional equation (3.1) which is satisfied by ¢, We
omit it. Cf. [15, p. 409].

THEOREM 4.1. Suppose u,, u, €S(K\G/K) and fpi,=p,, then p, = pu,.

Proof. Let p=u,—pu, then u is a signed measure of finite total variation and
2 =0; we shall prove that p=0.

We first assume that u has a continuous density f with respect to Haar meas-
ure on G. The general case will then be settled by approximation.

Let then du=fdx where f€L,(K\G/K)nC(K\G/K). Let v€E, be such that
¢, ()= [ ¢ exp (iv— o) (H (xk))dk is a bounded function on G. It is known that the
Haar measures dz, da, dn of G, A,, N respectively may be so normalized that dz=
exp 2p(log @) dkdadn. [11, Lemma 35]. Therefore we may deduce

[ s@au@ = [ e -0 @Rk f22

= Lexp (iv— ) (H()) - f (x) da
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=f f f exp (v + o) (log a) - f (kan) dk da dn
K Ap N

=f exp iv(log a)- F la)da, (4.3)
Ap

where F {a)=-exp p (log a)- [yf(an)dn.

Now f fF,(a)[da=f
“p “p

< J‘A exp g (log a) f | f(an)|dn da
P N

da

exp g(log a) fo(an) dn

=f f exp ¢(log a)-|/(an) |dadn
Ap N

= fG¢0(x) |f(z)]| dx < oo, (4.4)

since 0<¢y(x)<1 and fEL,(K\G/K). Hence F,(a)€L,(da). Further, specializing
(4.3) when y=1€E, we get

pQA) = fqh (x)dp (z) = L exp iA(log a) - F,(a) da. (4.5)
v

Thus () is just the classical Fourier transform of F, Since 2(4)=0 and since
F €L, (da), we conclude that F,=0. But this means by (4.3) that [¢¢,(z)f(z)dz=0
for each bounded elementary spherical function ¢,. But the Banach algebra L, (K\ G/K)
is known to be semi-simple (see [15, p. 453] where a proof is sketched), that is, if
g€L, (K\G/K), g+0, then there exists a continuous homomorphism X:L,(K\G/K)—
complex numbers such that X{g)+0. On the other hand, it is known also that the
continuous homomorphisms of L,(K\G/K) are precisely g — ¢ ¢, (x)g (x)dz where ¢, is
a bounded elementary spherical function. (Cf. Theorem 4.3 of [15, p. 410]. There the
theorem proved is for the algebra C,(K\G/K), but the same proof applies for our
purposes.) Using these facts we conclude that j=0 and hence y =0, given that dyu = fdx
and that g=0.

Turning to the general case let f,7=1,2,... be a sequence of functions in
C.(K\G/K) such that

B £,=0,i=12..;

(i) fefimdae=1, j=1,2,...;

(iii) fo_afj(x)dx—0 as j—> oo for each compact subset 4 containing e of G.
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Such sequences exist. Let ¢; be the measure in S(K\G/K) whose density with respect

to dz is f;. Then it is easy to check that u % o; has a continuous density w.r.t. dx, viz.
(u* 1) (x)= fa fiy ™" @) dp (y)-

PN PR
By Lemma 4.1, yxo;,=46;. Hence if g=0 then uxo;=0. The above discussion
then shows that uxo,=0.

But by the choice of the functions f;, it follows that f;% g converges to g (as
j—>o0) uniformly on compact subsets of G for each g€C.(K\G/K). From this it
follows easily that (uo0;)(g) —>pu(g) as j— oo for g€C(K\G/K). Since, however,
u¥0;=0, it follows that y=0. Q.E.D.

The following econtinuity theorem now follows rather easily.

THEOREM 4.2. Let u,€S(K\G/K), j=1,2,.... Then

(i) If pj—~u€S(K\G/K) and sup; p;(G)< oo, then g;(1)—> a(d) for A€ Hpy.

(i) If wy =~ pESK\G/K), then p,(A) > a(2) and fy( i) > a(—io).

({i) If py(A)—>B(A) and sup; p;(—ig)< oo, then there exists u€S(K\G/K) such
that ;> and @(7)= (), A€ By,

(iv) Suppose p;(A)—B(A), for LE€ER and lim;_, o f;( —1p) exists {(so that by (iii)
B=p for some u€S(K\G/K)). If lim, . g;(—i0)=p(—ig), then u;= u.

Proof. (i) For each A€Kj, ¢;(x) is continuous in x and it is known that as a

function on @, ¢; vanishes at infinity. (See Theorem 2 of [14, p. 585].) Since

gy (A) = fc ¢ (x)dp; (x)

and sup, u;(G) < oo, (i) follows rather easily.

(ii) If ;= u then y;— u so by (i) @;(1) ~ @(2) for 1€ Er. But moreover f; (1) >
[t (1) (where 1 stands for the function identically equal to 1 on G) and this is pre-
cisely the statement g,(-—ip)—> ji(—1ip) since ¢_i, (x)=1.

(iii) The condition sup; fi;( —10) =sup; u;(G) < oo guarantees by the Helly-Alaoglu
theorem that for a subsequence {4;}, x=1,2,...,we have g, —~p€S(K\G/K). By
(i) we have g; (1) — @(4), A€Es. But since g;(1) — f(4), it follows that a{d)=p).



ISOTROPIC INFINITELY DIVISIBLE MEASURES ON SYMMETRIC SPACES 221

If #, is another weakly convergent subsequence of {y;} with limit 4’ then we shall
have similarly g(A)=p(1)=pa"(4) and so by Theorem 4.1, g’ =yu. Hence each conver-
gent subsequence of {u;} has the same limit y proving that y,—u and =4

(iv) Indeed the supplementary condition f;( —%p) — @ (— i) is to say that Iu,(G)
u(G) as j~>oo, This strengthens p;—>u to u; > u. Q.E.D.

~

Let S, S, be the classes of Fourier-Stieltjes transforms of elements of S(K \G/K),
So(K\G/K) respectively. We have observed that (in Lemma 4.1) S is closed under
pointwise multiplication.

Since 8, is closed under convolution, go is also closed under pointwise multiplica-

tion. The following lemma shows up another interesting closure property.

Levma 4.2, If /26@ then the function f(A)=-exp t(/z(l)~,a(~ig))€§0 for each
t>=0,

Proof. It is easy to see that S is closed under linear combinations with non-

negative coefficients. Hence for each m the function

z 2y

is in § for any t=20, «=>0. Let us set a=g(—1p) >‘0 in this and call the resulting
function f@,. Then it is clear that f.(4) — (1), A€ Ey and further that g,{—1ig) <1,
m=1,2,...,. Hence by Theorem 4.2 (iii) u,—> some ¢€S(K\G/K) and (1)=¢&(4).
Thus B€8. But f(—ig)=1. Hence f€§, QE.D.

§ 5. Poisson measures; infinitely divisible measures

- Given y,7€S(K\G/K) we shall write uy for the convolution of u and »; the
order being immaterial in view of the commutativity of S(K\G/K). u’ will stand for

the j-fold convolution of x with itself. It is clear that ;;= ﬂf}, the product on the
right being pointwise.

For z€@ consider the set {k,ak,|k,k,€K}=% Tt is clear that # is homeo-
morphic to KxK in a natural way. Let u, be the measure induced on Z by dkxdk
on KxK where dk is, as usual, the normalized Haar measure of K. u, may clearly
be regarded as a measure on G by setting it 0 outside #. We call this extended
measure u, also. It is clear that u,€8,(K\G/K).
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DeriniTION 5.1. The measure
iz,e = > exp (—¢) ¢ ub/j!
i=0

will be called the Poisson measure with jump size z and jump rate ¢. Here x€G, ¢
is a real number =0.

It is clear that m..€S,(K\G/K) for each x€@, ¢>0, 7m0 being u. identically
for all x€G.

It is an easy computation to verify that i,(1)=¢i(x), A€ Eg and that 7...(1) =

exp {c(¢s(x) —1}. It is thus clear that 7. Mza =z, cra-

DEFINITION 5.2. A measure u€S,(K\G/K) is said to be infinitely divisible
if for each positive integer j, there exists a measure » €S (K\G/K) such that »/=pu.
It is clear that a product of two infinitely divisible measures €S,(K\G/K) is

again infinitely divisible.
Lemma 5.1. Suppose u €8,(K\G/K) is infinitely divisible. Then p(1)=+0 for L€ Ey.

Proof. For any u€S,(K\G/K) define its adjoint u* by u*(B)=u(B™"). Clearly
uESH(K\G/K) and (u*)*=p. Further (uu®)* =p*p=pu*. Hence yu* is self-adjoint.
Now if u is infinitely divisible, then there is for each j a measure »;€8,(K\G/K)
such that u= (). Then clearly uu*= (%) so that uu* is infinitely divisible. Also,

it is easy to check that ‘u//:* (A)=|@a(A)[® so that g(A)=0 if and only if ‘u//:*(}.)= 0.
Hence we may assume to begin with that u is self-adjoint, and for each j there
exists a self-adjoint measure v;€S,(K\G/K) such that u=(»)’. Note that g, v, are
now real valued for 1€ Ez. Therefore, since a(1)={%(A)}, and |a(1)|<1, we have
{31 ={(aA)*}* — B(4) where f(1)=0 or 1 according as a(4)=0 or @(4)=*0. Now
(0)=fs exp —{o(H(z))}du(x) and so (0)>0; therefore §(0)=1. But fl,-2€§,,, hence
»#(—ig)=1 so, by Theorem 4.2 (iii), it follows that ﬁe@, ie., p=p for some
u€S(K\G/K). In particular, f is continuous on Ep. Since Ky is connected and f
only takes the values 0 or 1 as observed above, and finally since $(0)=1, it follows
that B(A)=1, A€E;. Hence g(1)+0, A€E;. Q.E.D.

LemMa 5.2. Suppose p;€S,(K\G/K), j=1,2,...; p; = p as j—>oo and p, is in-
finitely divisible for each j. Then p is infinitely divisible.

Proof. Cf. [9].
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By hypothesis, there exist measures %, €S,(K\G/K), j,m=1,2,...; such that
1= (vm)™ for each j,m. Hence u;= (v;,)". Since f1;(1)+0, A€Ey, we have for fixed
m, V() —>{p(A)}"" as j—oo. On the other hand, »;,(—1ig)=1 for all j, m so Theo-
rem 4.2 (iii) implies [3(4)]"" €S, but since 733 go, it is clear that {ﬁ}l’m€§0 as well.
Hence there exists a v,€S,(K\G/K) such that ¥,(A)=[a(4)]"" so that p=(v.)"

Since this is true for each m, we are done. Q.E.D.
Levma 5.3. A Poisson measure 7w, 1s infinitely divisible.
Proof. Indeed (7z,c/m)™ = 7z, -
LEMMA 5.4. A measure u€Sy(K\G/K) is infinitely divisible if and only if there

exists a sequence {u;} €S,(K\G/K) such that each u; is a convolution of a finite number of

Poisson measures, and w; = u.

Proof. Necessity: If u is infinitely divisible then for each m, there is a », such
that (v,)"=pu. Then a(i)={»,(A)}". Also g(A)+0 for any A1€E; by Lemma 5.1.
Hence m({a(A)}"'" —1) =m(v,(4) —1) >log () as m—oco. Hence

A (4)=lim exp m(v,(4) —1).

Since Y (4) =f b (@) dyp (),
¢
we have f(A)=lim exp m | (¢a(x) —1)dvy (2).

Our assertion now follows by writing the integral as a limit of suitable Riemann~
Stieltjes sums and recalling that 7, (1) =exp c(¢a(x)—1). See [9, p. T4].

Suffictency: If p; is the convolution of a finite number of Poisson measures then
4; is clearly infinitely divisible by Lemma 5.3 and the remark preceding Lemma 5.1.
If u; > p then by Lemma 5.2, u is infinitely divisible. Q.E.D.

CorOLLARY 5.4. p€S,(K\G/K) is infinitely divisible if and only if
A2)=lim exp =y, (4),

where p;(A) = [¢[1 — ¢ (x)]dL; (x) with L;€S(K\G/K).

Proof. Obvious.
15— 642946 Acta mathematica. 111. Imprimé le 3 juin 1964.
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§ 6. The Lévy-Khinchine formula

We begin with two lemmas which will be crucial. Recall that the Cartan-Killing
form B, being positive definite on p,xJp, induces an inner product on p, and hence
on f, as well. We denote by || X|| the norm of X €p, according to this inner pro-
duct. Let H,,...,H, be an orthonormal basis of §),, and let A;, ..., A; be the dual
basis of Ep. We shall denote by dA the Euclidean measure induced on Eg by this
basis. ||:]| will also denote the norm in Ej. TFinally, since }, is essentially the tan-
gent space at m{e) to the symmetric space G/K (where 7t is the natural projection
G — G/K), B induces a metric on G/K. For x€G we write || for the distance of
ne(z) from m(e) according to this metric. It is clear that |xz| is a spherical function
of x since B is invariant under Ad (k), k€ K.

LEMMaA 6.1. Let d>0 be a positive number and let V, be the set {1| || 2] <d} in
Ep. For €@, let

qa(x)= L [1—Re ¢ ()] dA.

Then q4(x) is a spherical function>0, g,(x) tends to a positive limit g,(o°) as x— oo
on G, and q,(x)=0 if and only if x€K.

Proof. The sphericity of g4(x) is obvious, as also is the fact that g,(x)>0 (cf.
(3.3)). Further, since ¢;(x) >0 as z— oo [14], it is clear that g;(x) — Volume (V,) =
qa(°)>0 as x—oo, If x€K, then ¢,(x)=¢q(e)=0 since Re ¢;(e)=da{e)=1 for all
A€Ep Thus it only remains to show that if g,(x)=0 then z€K.

Assume then that

9 ()= fv [1-Re ¢;(x)]dA=0.

Then, since by (3.3), |Re ¢1(x)|<1 and since $a(z) is a continuous function of 4, it
follows that Re ¢1(z)=1 for all A€V,. But using (3.2), this means that

1= [ cos A(H (xk))-exp—o(H (zk))dk, AEV,. (6.1)
K

o

It H)=j1a;(x)H;, A=24.12;A;, it is easy to see that Re ¢;(z) depends differ-

entiably on (4,,...,4;) and so we have from (6.1)
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!
b
=2 7 [Re ¢ (2)]" = =t=0= — Z [a;(xk))* - exp — o(H (xk)) dk. (6.2)
: K]‘
It follows from this that >._;[a;(xk)]*=0, i.e., that H(xk)=0 for all kEK.
Since H(ky)=H(y) for any y€G, k€K by the very definition of H(y), it

follows that
H(kzk')=0 for k, k' €EK. (6.3)

Now w=exp X -k, 2€P,, k, €K, and further it is known that p,= Urex Ad (k) Dy,
see [12, p. 616]. From these facts it is easy to conclude that there exist k,, k,€K
such that z=/k, vk, €4y, and H(2)=0 because of (6.3). But since & — H (h) is one-one
for h€ 4y, this means that kzk,=z=e. So that x€ K, concluding the proof. Q.E.D.

LEMMA 6.2. With the same notation as above we claim

(i) 0<gy(x)<2 Volume (V,).
(i) There exist constants Iz, J; such that

1+ [x]?

| f?

Proof. (i) is trivial. As for (ii), g;(x) > Volume (V;) as x— oo on G implies
that (1+|2]*) || gs(x) > Volume (V,) as x—> oo on G. Since (1+|z]?) |z| % q(x) is

continuous on {x||z|>0}, we shall be done as soon as we prove that |x|2g,(x) is

0<Iy< Q@) <Jy, for all x€GQ such that |z|>0. (6.4)

bounded away from 0 and o as |z|—0.

To this end, let x=exp Xk, X€p,, k€K, let r=||X|, X=X/| X|. Then z=
exp X -k, XGpm “X" =1, k€K, and x =k;' exp ~7X. Now since ¢; is spherical,
we have ¢;(z)=d¢; (exp rX) =¢; (exp Ad (k) rX), k€K. Therefore,

di(x) = ; (exp 1'5()=f é: (exp r Ad (k) X)dk
-3 5 [ aam Ry @ 3 2w (65)
=01 Jk i=0

where we have set Df = the differential operator [z (Ad (k) X)'dk/j! and where for
the last step but one we used the fact that ¢; is analytic (cf. §3).
Similarly

o0

¢y = Z (=) (Df $a) (@) (6.6)

=0
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so that Re da(@) =} [4()+ (e 1= 3 (D5 ) o). (6.7)

Note that by its very construction D3; € Dy(G) for each j. We examine Dj more
closely. Let X,,...,X, be an orthonormal basis for p, such that X,,...,X; is an

orthonormal basis for §),. Let X =316 X, so that >i 1 =1. Then Ad (k) X =
F18 Ad (B) X, so

=1 j=

Bign =3 3 & &([ f A, Ad () X,-dk] 951) ©

from which it is clear that (D:¢;) (¢) depends continuously on (&, ..., &). Now from
(6.7) we have
1-Re ¢ (x)= —* (D5 1) (e) +0(1?), r—>0 (6.8)

so that — (D3 ¢,)(e) >0 since 1—Re ¢;{x)=0. Now D; €Dy(G), hence D; corresponds
to an operator Df€D(G/K). But ¢5 is an eigenfunction of each operator in D (G/K)
(cf. §3). Hence (D;é¢;) (e)=(1~)§¢1) (e)= P35 (A) s (e) = Pz (A) where P3(1) is a second
degree polynomial in 4,,...,4; (6.8) implies that — P;(4)>0. Being a polynomial
in 4, ...,A, P3(A) is =0 only on a null set in ¥, and it follows that

—f P3(2)dA>0.
Va

Now elementary considerations show that the o(r®) in (6.8) is uniform in A€V, so

that integrating (6.8) with respect to A one has
qﬂ,(alc)=r2-J~ — P3(A)dA+o(r). (6.9)
Va

As observed above, (D;¢;)(e)=P;(A) depends continuously on (&, ..., &,). Hence
so does de—Pé (A)dA, We have seen above that fvd—Pg (A)dA>0. Hence as (&,...,&,)

vary on ;& =1, there exist. constants I;, J; such that

0<Iz< —f P (AHdA<Jy.

Ve

Using this, and (6.9) and remembering that || X ||?/|z[*~>1 as | X||—0, we see that

|#|"®¢a(z) is bounded away from 0 and oo as |z|~>0, proving the lemma. Q.E.D.
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CoROLLARY 6.2. For a spherical measure L, the integrals

|=[* . dL(z)

fqd(x)dL(x) and f1+|xi2

are either both finite or both infinite (d being any fixed positive real number). (")

We have seen in Corollary 5.4 that u€S,(K\G/K) is infinitely divisible if and
only if f(A)=exp — y(4), where p(1)=lim;_, . w,(4) with w;(4) = | [1 — s (x)]dL,(x),
L,eS(K\G/K), j=1,2,.... We now turn to the representation of functions y(4) which
can arise in this way.

TurorEM 6.1. Let
w)= (U= h@IaLE, LESK\G/B), j=12...

Suppose that lim;_, . y;(A) =w(d). Then there exists a constant c, a spherical measure
L and a second order elliptic differential operator D € D(G/K) which annihilates constants,
such that

p(4) =6—Pp(ﬂ)+f] 0[1 ~ ¢a(z)]dL(), (6.10)

z]
where Pp(2) is the eigenvalue of D corresponding to the eigenfunction ¢;, i.e., D=
Py (A)ps. Further,

ﬂ dL(x) < o0 6.11)
1+ 2] (%) . (6.
For such a y(2), exp ~zp(l)€§0 if and only if ¢=0.

Conversely, given DED(G/K) and a spherical measure L satisfying the above con-
ditions, the function

—~Pp (AH—.[MI 0[1—\75,1(90)]dL(7c)

is the limit as j— oo of functions y;(A) which arise from measures L,€S(K\G/K) ac-
cording to the recipe y;(2)= [ [1 — da(x)]dL;(z).

Our proof is in broad conformity with classical lines, see for example [2, Chapter
3]. For reasons of space we refrain from giving an extensive treatment like the one
there. .

(!) When integration is performed on all of @, we shall frequently omit G from the symbol,
unless risk of confusion is present.
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Proof. Suppose that
w = [0-h@NLE, Lesw\e/k

and p;(1) >y (A) as § > oo for A€E; Then exp —p;(4) >exp —y(4). On the other
hand, by Lemma 4.2, exp ~1p,(l)€§0 so that by Theorem 4.2 (iii), exp —y)(l)Eg. In
particular, exp —g(4) and hence p(A) is continuous on Ez.
Let q,(x) be the function of Lemmas 6.1, 6.2 with d=1. We have
Re y,(2) = f[l —Re di(x)]dLy(x), =12, .... (6.12)

Since the integrand is non-negative we integrate w.r.t. 2 and using Fubini’s theo-

rem, we get

fRe w,(l)dl=fql(x)dL,(x), j=1,2,.... (6.13)
Vi

However, Rey,;(1) > Re p(1) as j— oo and since these functions are non-negative and

continuous,

fv Re tp,(l)d).—>fv Re p(A)di, j—> oo; (6.14)
in particular, M =sup, [y, Re y,(A)dA< co. Thus
f g, (@)dL;(x) < M < oo. (6.15)
We now break up {g,(x)dL,(x) into
fmsl g, (x)dL;(x) + fmn 0 (x)dL(2),
and since each of these is non-negative, we have

fl | 1ql(w)al-’?;(ac) <M, (6.16)

f g (@dLx)< M, j=1,2,.... (6.17)
|zi<1
But because of Lemma 6.1, ¢,(x) >6>0 for |x|>1, hence by (6.16)

f dL,(x) < M/$. (6.18)
|z|>1
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(6.17), (6.18) together imply easily that there exists a spherical measure L on
{x| |x]|>0} such that

f g, (x)dL(x) +f dL(x) < o0 (6.19)
0<|z|<1

jzf>1

and such that for each f€C(K\G/K) which vanishes at e and at oo, we have
ff(x)dLja (@) +ff(x)dL(x), Ja—> 0 (6.20)

for a suitably chosen subsequence {L;} of {L;}. We rename L, as L; (') Note that
since ¢,(#)>6>0 on |z|>1 and since g¢,(x) is continuous and tends to a positive limit

as x— oo, {6.19) is equivalent to
f ¢, (z)dL(x) < oo. (6.21)
|z]>0
Now consider {|;y-1[1—Re ¢z(x)]1dL;(x). Because of (6.18) the numbers

7’7’=f dLy(x)
|z|>1

are bounded, so that a subsequence of them will converge to y, say, while, since
Re ¢; vanishes at oo, (6.20) implies

f Re ¢ (x)dL;(x) - Re ¢ (x)dL(x)
j2]>1 1

1z]>

so that, setting ¢=y, — [|z;-1dL(x), and passing to an appropriate subsequence of
{L,}, we have

j [1—Re ¢;(x)]dL,(x) ->c+f
|zf>1

1z]>

[1—Re ¢;(2)]dL(a). (6.22)
1

Now we turn to [|.;<i[l—Re ¢1(x)]dL;{x). Each such term is non-negative and
therefore,

0< J‘I - [1—Re ¢a(z)]dL;(z) < f[l —Re ¢;(x)]dL;(x) = Re u;(4). (6.23)

() In the following proof we shall pass repeatedly to subsequences of {Lj}, and call these sub-
sequences {Lj} again. We may clearly do so since we are concerned with the representation of
lim 500 97 (4).



230 R. GANGOLLI

Since Re y;(4) = Re (4), if follows that for a subsequence, {|z1<i[1 — Re ¢1(x)]dL;(x)
converges.
Let £¢>0 be a fixed number. We have

[1—Re ¢a(x)dL;(zx) + f

lz]

flﬂq [1 —Re ¢a(2)]dL;(x) = f

1z}

[1 —Re ¢, (z)]dL;(x).

(6.24)
As to the second term, we may write it as

1 - Re ¢1(x)
—_— dL;(x).
£1I>6 0, () ¢, (x)dL; (x)

Since in this expression, the integrand is bounded and continuous (cf. Lemma 6.1),
since the range of integration excludes {z||x|=0} and since ¢, (x)dL;— ¢, (z)dL on
{z||=]| >0}, we see that

ﬁ | [1 — Re ¢;(x)]dL;(x) — fm {1 —Re ¢;(x)1dL(x).

(Provided, of course, that r=¢ is a point of continuity of the monotone function of
r given by [,c:<1dL(x); this function has only countably many points of discontinuity
and we exclude these once and for all.) Thus in (6.24), the left side and the 2nd term

on the right side both converge as j— co and so must the remaining term, to yield

lim [1-Re ¢;(x)]dL;(z)
j—oo Jlz|1
= lim [1—Re ¢y(x)]dL;(x) + f [1—Re ¢;(x)1dL(x). (6.25)
j—e J]z|<ge e<irigl

Letting £ — 0 through permissible values, the 2nd term on the right, being monotone
in ¢ and bounded by the left side (which is independent of &), is seen to converge to
[ n-Reg@nize,

o<zl

so that because of (6.25),

lim lim [1—Re ¢ (x)1dL;(x)

e—>0j—00 Jlzri<e

is seen to exist; we have
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lim [1~Re ¢;(x)1dL;(x)
j—>o00 J|z|<1
= lim lim [1—Re ¢;(x)]dL;(z) + f [1—Re ¢;(x)]dL(x). (6.26)
e—0 j—»o00 J)2|ge O<|z|<1

Let us now examine the first term more closely. Recall the device and nota-

tion used in proving Lemma 6.2. We have then
1—-Re ¢i(x)= —r* P;(A) +o(r°). (6.27)

Integrating (6.27) and recalling that [ ¢,(z)dL;(z)< oo and g¢,(z)~|z|*~7* as r—0

because of Lemma 6.2 (iii), it follows that

f [1—Re ¢y(x)]dL,(x) = f r® P5 (A)dL;(x) +n;, (6.28)
lzl<e

Lz l<e

where sup; 77,—>0 as £->0, so that

lim lim [1—Re ¢;(x)]dL;(z) =1lim lim — 2 P5(A) - dL;(x). (6.29)
e—>0 j—00 J]zl<ge >0 j—>o0 lz|<e
The existence of the limit on the right being clear from (6.28). However, for fixed
x, P3(1) is a quadratic polynomial in 4,,...,4, being the eigenvalue of D;€D(G/K)
corresponding to the eigenfunction ¢;. By our remarks at the end of §3,

!
Qu.v (x) - Y 2.1, + .vzs Qu,v (x) Ou’ Ov-

=1 U 1

M~

—P:(h)=

u,

L3

It follows easily from this that the limit on the right of (6.29) must necessarily be
of the form

1 l
.E_; qu;*uﬂv"" vz= qu@u@vz “PD(X)

U 1 u,v=1

say. Further, since for each «, P3(sAd)=P5(A) for s€W, it is clear that P,(si)=
Py (4), so that P, €I(l)y,). Hence (cf. § 3) there exists a second order operator D€ D(G/K)
whose eigenvalue for ¢; is Pp(A). The fact that Pp(—1ig)=0 means D annihilates
constants, while the fact that {Q,,} is a non-negative definite matrix is precisely the
ellipticity assertion, cf. §3. Thus

lim lim [1—Re ¢;(x)]dL,(x) = — Pp(A), (6.30)

e~>0 j—>00 J|r|<e

where D¢;=Pp(A)¢;. Collecting the results (6.22), (6.26), (6.30) we have
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Re p(A)=lim Re y,(A)=c—Pp(4) + f [1—Re ¢;(x)]dL(x). (6.31)
je>co 121>0
Let us now look at the imaginary part of y(4). We have

In )= [In fuelatyo = [ tm ot + |

lz|>

Im ¢(x)dL;(x). (6.32)
1
As to the second term, Im ¢;(x) vanishes at oo and hence, by (6.20),
f Im ¢;(x)dL;(x) —>J\ Im ¢;(x)dL(x)
1z]>1 lz|>1

for a subsequence (to which we may pass). With regard to the first term, we may

use the device of Lemma 6.2 to get

Tm (@)= 5 [ha(e) — dala =7 3 7 (D2 ) () (6.33)

ti~0

Now Di=(r Ad (k) Xdk. Since X €p, and Ad (K)p,<p,, it follows that D, €p, and
is invariant under Ad(k’), ¥’ € K. But this implies that D,=0, [5], [15]. Hence by
(6.33),

Im $i(x)=0(®) as r—0. (6.34)

There is no difficulty in showing, remembering (6.17) and ¢, (x) ~7* as r — 0, that
f Im ¢a(x)dLy(x) ——>f Im ¢a(z)dL{x). (6.35
|z|<1 {ri<1
Putting together (6.32), (6.35), we have

fIm ¢ (x)dL;(x) “’f Im ¢;(x)dL(x). (6.36)

It follows now from (6.31), (6.36) that

p(2)=lim y,(1) = lim [Re p,(4) + i Im (1))

= lim [f[l ~Re ¢;(x)]dL;(x) — ¢ fIm </>l(x)dL,(x)]

j—>o0

~c—Pp (2)+f (1— ¢ (2)]dL (). (6.37)
|>0

|z
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Thus exp —y(d)=exp — (c —Pp(2) + f [1—¢; (x)]dL(x))
lz|>0

and so exp —wy(4) €§0 if and only if exp — {p(—ip)} =1, i.e., if and onlyif p(—ig)=0.
But the quadratic polynomial Pp(A) vanishes at 1= —ig as seen above, while the
integral vanishes at A= —ip since ¢_i,=1. Hence y(—ig)=c so exp —w(l)Eéo if
and only if ¢=0. The proof of the direct half of the theorem is thus finished.

We now turn to the converse part of the theorem. Suppose then that we are
given an elliptic second order differential operator D€ D(G/K) which annihilates con-
stants and a spherical measure L on {z||z|>0} satisfying (6.11). We shall presently
prove that there exist N,ES(K\G/K) such that

lim 11— gu(a)dN, @)= = Pod).

Granting the existence of such N,, let M, be the measure in S(K\G/K) defined by
M;A)=L(An{x||z|>1/4}) and let L,=N,+ M, Then it is clear that

lim [0-g@n@=-Pa@+ | 0-henize,
Thus, to finish the proof of Theorem 6.1, we have to produce N,€8(K\G/K) such
that [ [1— ¢s(x)]dN;(x) > — Pp(A) as j—>co. Recall that (cf. §2) D(G/K) and I(p,)
are isomorphic as vector spaces under an isomorphism P —> D; from I(p,) onto D(G/K),
and further the order of D,=degree of P. Thus given D€D(G/K) of the above de-
scription there exists P€I(p,) such that D=D, Since D is second order, P is of
degree 2. The ellipticity of D is to say that the quadratic part of P is non-negative

definite. P has no constant term since D annihilates constants. Hence,
n n n
P(X,,....X,) =u21 UZIQW X, X, + Z; b, X,.

But since P is invariant under Ad (K), it is easily seen that each of the two terms
on the right must be so invariant. But there are no vectors €p, invariant under
Ad (K) except the null vector. Hence > b,X,=0. So

P(X,,....X,)= ;: Qu X0 X, (6.38)

u 1

Since @, is symmetric and non-negative definite it is clear that
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PX,,..., Xn)=v§1c,, Yz,

(6.39)

where ¢,>0 and the Y, are certain linear forms in X, ..., X,; so that Y,ep,. We

may clearly assume that ||Y,|=1, v=1,...,n. Now since P is invariant under Ad (K),

we have from (6.39)
PX,...X)=> C”f Ad (k) Y2dk= 3 ¢, P, say,
=1 K v=1

where P,€I(b,), v=1,...,n.

Since P — Dp is linear, it is clear, setting D,= Dp,, that

Let P,(4) be the eigenvalue corresponding to ¢ of D, ie., D,d;=P,(4)

Pp(A)=23-1¢, P,(A). We shall now construct a sequence of measures

N, ,eS(K\G/K), j=1,2, ...,
such that

Ju-ienav.@ -2, jroi vo1n
Then if we set N;=>7.1¢, N 5,0, we shall clearly have

f (1= i@V, @) = 3 . f (1~ 2@ dN;., (2)

=3 e Py(d), j>oo
= —Pg(l)o

(6.40)

(6.41)

Then

(6.42)

(6.43)

Thus we shall be through as soon as we construct N;,€S(K\G/K) satisfying (6.42).

To do this, let & be a sequence of positive numbers such that g0, j—oo.

Let N;, be the measure
1

5 Hexpe Yoo
&

(Recall here the notation introduced in the second paragraph of §5.) Then

[0 gienan, - 5 n-dutexp o, 70

Using (6.5) on this, we get easily

(6.44)
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1
f[l ~ a(x)]dN; , (z) = 5 (1~ a(exp &1,)]

f

—iz % &’ ([fKAd (k) Y,',"dk] ¢,1) (e)

& m=1

i
|

$iv8

&' (Do,mp2) (), (6.45)

1

L]

where D, = [ Ad (k) Y} dE.
Now D,; being a linear form €I(},), must equal 0 while D, =D, in our pre-
vious notation. Hence we have

f [1—¢1()]dN,,,(2) = — (D, 1) (€) + 0 (&) (6.46)
Since (D, ¢;) (€) =P,(A) ¢i(e) =P,(A), and since ¢;—>0 as j—> oo, we have from (6.46)
f[l — a(x)1dN; ,(x) > — P,(A) as j—>oo. (6.47)

and the proof of Theorem 6.1 is finally finished. Q.E.D.

In view of Theorem 6.1 and Lemma 5.2, we can now state the following.

THEOREM 6.2. A4 measure u€S8y(K\G/K) is infinitely divisible if and only if its
Fourier-Stieltjes transform fi(2), A€ Er has the representation

pi-exp (Pt - [ 0-penaze), (6.45)

where L is a spherical measure satisfying
E
———dL
f 1+ |=f (7)< o0
and Pp(A) 1is the eigenvalue corresponding to the eigenfunction ¢; of a second order el-

liptic differential operator DED (G/K) which annihilates constants.

In view of the remarks on page 265 of (16], the following corollary is not without
interest.

CoroLLARY 6.3. Every infinitely divisible measure u€Sy(K\G/K) can be re-
presented  as ,ul in a continuous one-parameter convolution semi-group {#t}bﬂ with
pi=pe as £ 0 (recall the notation of §5).
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Proof. Indeed let u‘ be defined by (u%)” =(a)'. Q.E.D.

We now turn to the question of uniqueness.

THEOREM 6.3. In the representation (6.48), the measure L and the operator D are
determined uniquely by u.

Proof. We shall follow the method used in [23 p. 194]. Suppose then u€8,(K\G/K)
is such that y satisfies (6.48). Let & be a separable Markov process taking values
in the symmetric space G/K, whose transition function P (¢, p, B) satisfies the following
two conditions:

(i) P, p,B)=P(t,(e),x ' B) where p=m(z), z€G, and B is a Borel subset of
G/K, m being the natural projection G — G/K.

(ii) If u’is the measure in §)(K\G/K) which corresponds to the measure P(t, w(e), - )
on G/K, in the natural way (the existence of u‘ being guaranteed by (i)) then

("™ = (). (6.49)

It is not hard to show that the sample functions of such a process will, with
probability one, only have discontinuities of the first kind. (Indeed, the sample func-
tions of & may be obtained as limits with probability one of sequences of functions
each of which is the trajectory of a Brownian motion, interlarded with finitely many
independent Poisson jumps, the convergence of the sequence being uniform on compact
subsets of the parameter set {0, o). See our note {7].)

We may prove just as in [4], [17] that the mathematical expectation of the num-
ber of jumps of the trajectories of the process & between time O and ¢, the magni-
tudes (in the sense of the metric on G/K) of which lie between r; and r,, is pre-
cisely

t f dL(). (6.50)
n<|zj<ry

Since this mathematical expectation is determined by the transition function P( -, -, +),
if follows that the measure L is determined by u. It follows that the term P,(A)
in (6.48) is also determined by u.

Now we have seen that P,(A) is the eigenvalue, corresponding to ¢, of an el-
liptic second order operator in D(G/K). To finish the proof of our theorem it is
enough to prove that if D', D*€ D(G/K) and if D'$y=D?¢, for each ¢, A€E, then
D'=D? But if T is the isomorphism I':D(G/K)—I(hy,) (cf. §2) then it is known
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[15 p. 430-432] that D¢,=T'(D) (¢ 1) ¢1 where I'(D) (:4) is the value at i} € E of the
polynomial function I'(D)€I(Yy,). Thus, if D*¢,=D?¢,, it follows that I'(D*) (1) =
I['(D% (¢4), A€E;. Hence I'(D*)=T'(D? and since I' is an isomorphism, we conclude
D'=D%: Q.E.D.

§ 7. Generalized limits and infinitely divisible measures
The following definition has a well-known classical motivation.

DerinirioNn 7.1. A measure y€8,(K\G/K) is called a generalized limit if there
exist, for each positive integer j, measures u;, €8 (K\G/K), 1<r<r; with r;—>oco as
j—oo, such that

() & A)=IT ,pr(A)—>a@A) as j—>oo, L€Ep;

(i) max |@;(A)—1|—0 as j—co uniformly for 1 in compact subsets of Ep.
1rsry )
TrEOREM 7.1. Condition (ii) of Definition 7.1 is equivalent to

max f dus () =0 as j—co (7.1)
Ac

1<r<r;

or each compact subset A containing e of G. Here A° stands for the complement of A.
P g P

The proof, which offers no difficulty, is omitted (ef. [8, p. 1298]).

Lemma 7.1. If u€8)(K\G/K) is infinitely divisible, then u is a generalized limit.

Proof. Let r;=j, and let u; be defined by means of its Fourier-Stieltjes trans-
form as follows:

fi5r (D) = [ (AT =exp (% {Pp(l) —fu ] R ¢A(x)]dL(x)}), Isrsn=j.  (7.2)

z|

Then it is clear that g;=[[7,g,=p for each §j so u,=u. Also (7.2) ensures that
condition (ii) of Definition 7.1 is fulfilled. Q.E.D.

Lemma 7.2. Suppose that u€8,(K\G/K) is a generalized limit, and let u;, u; be
as in Definition 7.1. Set B,(A)=1~ jin(A), A€E,. Then there exists a d>0 such that

sup sup Ef IRe B (A)] < oo, (7.3)
ieVyg 7 r=1
where Vy={4| ||| <d}.
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Proof. Since g;(A) —~ (), A€E; and ﬁ€§o, we have u;=u by Theorem 4.2 (iv).
In particular, the convergence f;(A)—> ji(4) is uniform in every compact neighborhood
of 0 in Ep. Now, since u€8,(K\G/K), 4(0)>0; hence there exists a d >0 such that
p(2)+0 for A€V, Therefore log|p,(4)[*—log |2(A)[® uniformly for A€V, Let us
write B(1)=log |a(A)|®>. Then it is clear that if £¢>0 is given, we have, for large §

B +e>Tog | (W) [P =3 log |, (1) (1.4

Let a,(A)=1—{a;(A)°. Then |a,(A)]~—>0 as j—oco uniformly in 1<r<r; and A€V,
Therefore it easily follows that for large 4,

5] 74
2, Yog |y (A)[*= 3. log 1~ ap(A)

é ] alr(}*)l

NHP-'

Z’ “"h (}*) lz

N)l

I

% é { (fRe $a(2) d/‘fr<‘”))2— (flm ¢z(x)dmr(x))2}. (7.5)

Since u;, obey Theorem 7.1, and ¢;(e)=1, we have, given 5 >0, for large j

f Re ¢ (2)djusr (2) > 1~ 7 (76)

so that
~([Re tr@ame@) =1 - [Re @] [1 + [Re bi1ur0)]
>2-n) f [1— Re gy(@)1day (2). .7)

Now consider (f Im ¢;(x)du; (2))% we have for any compact neighborhood A of e,

(J Im ¢(w)dp, (x )z (J Tm ¢ (@) dpy x)) (Lc Im :;zS,ﬂa:)dy,,(:r:))2

=J,+J, say. (7.8)
Jy=2 (L T d)x(x)d‘u,,(:c)) <2 L duy () - L |Tm 3 (2) P dpjr (x)

2 L |Im ¢, (=) | dps (), (7.9)
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since u; €Sy(K\G/K) and [Im $;(x)|<1. Now, for a sufficiently small neighborhood
A of e, 1—Re ¢;(x) >0 except at x=e for £ €4 and further, (6.34), (6.27) imply that
Im ¢i(z)/(1-Re ¢;(x)) >0 as x—e. Hence, given 5 >0 we can choose 4 so small
that |Im ¢;(z)| <5(1—Re ¢;(2)) for x€A. Making this choice, (7.9) yields

J, <29 L [1--Re ¢, (x)]dpz (). (7.10)

As for J,, we have

2
J,=2 (fAcIm $a () dm,(x)) <2 Lc dptye () Lcl Im ¢;(x) | dpsr(2)

<4 fAcdﬂjr (x)- fAc [1 —Re ¢z (x)]1du; (x), (7.11)
where we used, for the last step, the following

(Im ¢2())=|$2(2) '~ (Re d1(@))*<1—(Re $s())*
= (1+Re ¢1(x)) (1 - Re () <2(1 — Re ¢, (x)). (7.12)

Since w;, obey Theorem 7.1, for large enough j we have
J, <47 Lc [1—Re ¢ (2)]dp (@). (7.13)
From (7.8), (7.10), (7.13), we have
([1m @ dur) <49+ [0~ Re duteidi @) (7.14
using (7.4), (7.5), (7.7), (7.14) we have finally
By +e=4@-om 3, [1-Re diordupo) = 1@=m) 5 Reguh.  (719)

Since n# may be as small as we please, Re f,(1) >0, and since B(4) is continuous
for A€V, Lemma 7.2 clearly follows from (7.15). Q.E.D.

Lemma 7.3. Let u€Sy(K\G/K) be a generalized limit. Then with the same nota-
tion as in Lemma 7.2, we have, for A€Ey,

T
sup 3> [Br (W) < oo (7.16)

16 — 642946 Acta mathematica. 111. Imprimé le 8 juin 1964.
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Proof. |ﬂlr (x) I = ’ f[l - ¢l (=)] d.uir (x)

gf]:c|< Il—fﬁl(x)ld,u,,(x)—}-ﬁ“) |1_¢7-(x)|dﬂir<$)
=htdy sy (7.17)

Now, it is an easy consequence of Lemma 6.2 and (6.27) that for each d>0,
[1-¢i(x)| < Myqu(x) for |x| <7, M, being a constant (depending on z, which is fixed

in this discussion). Hence

BeM [ a@dp (7.18)

lz)ge

As for J, we have by Lemma 6.1 that ¢,(x)>6>0 on [z|>r (once again, é may
depend on ), so that

2
J,<2 f| Ay () <5 fl | g (2) dpy, (). (7.19)
rl>t z|>t

Hence | B (M) < M fqa(x) dpy (), (7.20)

where M} is a constant. Finally
s L
gl |Br(A)|< Mg 21 ¢4 () d g (x)
1]
=My 21 va (1 —Re ¢r (x)]dA dpy ()
r= d
4]
=M, f > |Re B, (X)) dX. (1.2)
vgr=1
In view of Lemma 7.2, this last inequality concludes the proof of Lemma 7.3.

QED.

TrEOREM 7.2. p€S(K\G/K) is a generalized limit if and only if u is infinitely
divisible.

Proof. In view of Lemma 7.1, it is enough to prove that if u is a generalized
limit, then g4 is infinitely divisible.

Le uy, ysr, B4 {2) ete. be as above. Let d>0 be any real number. Condition (ii)
of Definition 7.1 implies that for sufficiently large j (how large depending only on d),
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Qi (A)F0 for A€V, 1<r<r; Hence f,;(1)+0, A€V, so that log (1) may be defined.
For such j we have

~log (1) = = 3 log fur(3)
—-Slog A== > 5 m) Bpi)”
=S80+ 3 S o) B =Ty 4T,y say. (7.22)

Where, for the expansions, we used the fact, guaranteed by Definition 7.1, that
maxlggrilﬂjr(l)leo as j—>oo uniformly for 1€V,.

Now |J2|<1§1 ”zz(m_l) [Bir (A) ™
7y oo Ty (A
Z 2. Iﬂjr(l)l"'——Z lﬁljﬂ(jr)(ll)l
< max |8, 0] 3 18,0 >0 as jroo (7.23)

uniformly for 1€V, in view of Lemma 7.3. Hence, by (7.22) we have

f;(A) — exp — {Zil ,8,,(1)} -0 (7.24)

as j-—>oo, uniformly for A€V,;. But since g;(A) = fi(4) by hypothesis, it follows that

Jl_l)llolo exp—-{é1 ﬁjr(l)}=la(l), AEEs. (7.25)
Now, exp — {37, f,()} = exp — {J [1 - da(2)]dL, (@)} where L, =37 u,€8(K\G/K).
Therefore, by Theorem 6.2, exp — {37 B, (A)}=;(4) where »,€8,(K\G/K) and is
infinitely divisible. Since %;(4) >4 (1), 1€ By and since u€8,(K\G/K), Theorem 4.2
(iv) implies that v, = u. Therefore, by Lemma 5.2, u is infinitely divisible. Q.E.D.

Thé*following theorem is implicit in our work above and we mention it without

formal proof.

THEOREM 7.3. Let 3, €8y j=1,2,...,1<r<r, r,~>oco asj—>oo, and suppose that

lim max |[1—4a,(4)|=0
Jooo 1KTSY;
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uniformly for 4 in compact subsets of Ep. Let
L)
pi(A)= Elﬂjr(l)-
Then ﬂ,—>ﬂe§0 if and only if the measures Q; defined by

2
Q(B) = Z 51 L ll Iz dpy (%)

are Bernoulli convergent to a measure Q€S(K\G/K).

If this condition is satisfied, then there exists a uniquely determined second order
elliptic differential operator D€ D(G/K) which annihilates constants such that u has the
representation (6.48), the measure L of that formula being related to Q by

1 2
L(B)=L rxllfl dQ(x).

We end this section with some comments. Qur Theorem 6.2. which was the in.

stigation for this paper, can be obtained from Hunt’s results [16] ¢f we assume the
truth of Corollary 6.3. Thus a part of the justification for our results is that in our
situation Corollary 6.3 is a consequence and not an assumption. As Hunt remarks,
Corollary 6.3 is not true in his more general set-up. Indeed, there are reasons to
believe that such a result is true only when some commutativity is present as in our
set-up, where S{K\G/K) is commutative.

Our work shows that the function exp Pp(A) is the Fourier-Stieltjes transform
of a measure in $,(K\G/K), for each DED(G/K) of the description in Theorem 6.2.
It is natural to call these measures Gaussian, for obvious reasons. One can at this
point formulate and prove many theorems analogous to those of classical central limit
theory, e.g., the theorems of Lindeberg-Feller on convergence to Gaussian distribu-
tions. Another eclass of problems of interest is the discussion of Stable laws; cf. § 10
of [8]. We do not occupy ourselves with these questions in the present paper.

When the symmetric space G/K has rank 1 so that it is two-point homogeneous,
our results become rather more explicit. In this case, there is, up to positive mul-
tiples, only one elliptic second order differential operator in D(G/K), viz. the. Laplace—
Beltrami operator of G/K. The space of double cosets K\G/K is one dimensional in
this case and our theory is a theory of infinitely divisible elements in certain con-
volution semigroups of measures on the half-line [0, ), the convolution being, of
course, different from the usual one. In this form, our work subsumes [8], [23], as

rather special cases.
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§ 8. The case of a compact symmetric space

The case where G/K is a compact symmetric space can be dealt with by sub-
stantially the same methods as we have followed above. We do not wish to give
complete details but will merely outline our results and point out one or two places
where the argument of the previous sections has to be modified.

It is well known that the elementary K-spherical functions of positive-definite
type are in one-to-one correspondence with equivalence classes of irreducible unitary
representations of G which are of class 1 with respect to K, i.e., representations T
such that the trivial representation of K occurs in the reduction of the restriction
of T to K. If G/K is compact, then it also is easy to show that there are only
countably many distinct elementary K-spherical functions on G and these are all of
positive-definite type. Indeed if % is the character of a finite-dimensional unitary ir-

reducible representation of G which is of class 1 with respect to K then the function
¢(x)=f Xz k)dk, z€G (8.1)
K

is an elementary spherical function on G and all the elementary spherical functions
arise in this way.

Letting ¢y, é;,...; ($p=1) be an enumeration of these elementary spherical func-
tions one may now define for u€8(K\G/K) the sequence of Fourier-Stieltjes coeffi-
cients by

f(n)= qun (2)du (2). (8.2)

By utilizing Peter-Weyl theory, it is possible to show that any complex-valued
continuous spherical function on ¢ may be approximated uniformly by finite complex
linear combinations of the elementary spherical functions and this can be seen easily
to lead to the fact that if g(n)=0 for all n=0,1,2... then u=0. The elementary

spherical functions ¢, still satisfy (3.1), and this has the implication that ‘l/,t:'=ﬂﬁ, for
4, vES(K\G/K). The analogue of the continuity theorem (Theorem 4.2) is trivial.

The notion of infinite divisibility may be introduced just as before, but due to
the disconnectedness of the domain of the Fourier transform, it is no longer true (as
examples easily show) that for an infinitely divisible measure u€8,(K\G/K), (n)+0
for any n. Instead one has to make this assumption ad hoc. With this assumption,
the theorems of §5 are true with only minor changes which will be obvious to the
reader.
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The function ¢,(x) of Lemma 6.1 is now to be replaced by the function 1 — Re ¢, (z)
(the arbitrariness of the choice of ¢, may be, for example, decided by choosing ¢,
to be that elementary non-constant spherical function which has the smallest eigenvalue
with respect to the Laplace-Beltrami operator of G/K). Lemma 6.1 which was used
in the non-compact case to get the estimate (6.18) is now superfluous in view of the
compactness of G and only the left half of the inequalities in (ii) of Lemma 6.2 has
content. The method of proof of this inequality has, of course, to be slightly modified.

The Lie algebra g, of G may be decomposed as f,+ b, and p, is identifiable with
the tangent space to G/K at m(e). It is still true that I(p,) and D(G/K) are iso-
morphic as vector spaces, and this remark enables us to retain the essential idea in
the proof of the above inequality.

Theorem 6.2 finds the following replacement in

TeEOREM 8.1. Suppose u€8,(K\G/K), and that i(n)=+=0 for any n. Then u is
wnfinitely divisible if and only if

A(n) = exp (Pu(n) - fm \ 1— ¢ (2) dL(x)), (8.3)

where Pp(n) is the eigenvalue corresponding to ¢, of an elliptic second order differential
operator DED(G/K) and L is a spherical measure on {xz||x|>0} such that

f[l ~Re ¢, (x)]dL(z) < oo,

We remark that this last condition on L can be shown to be equivalent to
flz|PdL(x) < o.

Corollary 6.3 and the uniqueness Theorem 6.3 can be proved in the same fashion,
and indeed, the counterpart of the Theorem 7.2 also holds exactly as written down
in [6], the method of proof being as above. The reader is invited to fill in on this
sketchy outline.

Theorem 8.1 is the general version of the result of Bochner in [1], where

G=80(n), K=80(n—1); n=3.

To be sure, Bochner considers a slightly larger class of heat equations obtainable from
the radial part of the Laplace-Beltrami operator of S0 (n)/SO(n—1) by continuation
of a parameter (depending on #») and his full results may be thought of as giving
results for “spheres” of fractional dimension. We do not know whether similar re-
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sults could be obtained by suitable analogous continuation of the radial part of the
Laplace-Beltrami operators of compact symmetric spaces G/K which are two-point
homogeneous. ‘

A specialization of our results is the following: Taking G=8U(n +1), K=U(n)n>2,
one gets G/K=complex projective space. The spherical functions ¢, can be shown
to be the Jacobi polynomials PZ" ® in the notation of [22]. This result may be
regarded with a certain amount of curiosity since we are not aware of a classical proof
of the positivity property [1, p. 24] of the Jacobi polynomials which is brought out
by (3.1), on which is based Bochner’s proof of his result in [1].
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