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Introduection

The origin of this paper is a misprint () in Bourbaki ([4], p. 156, Exercise 13 d).
There it is stated that if f is a 2X2-matrix with entries in a commutative ring
and f2=0 then (Trf)*= 0 and 4 is the smallest integer with this property.
Using the Cayley-Hamilton theorem we get f2 — af + b1 =0 where a = Trf
and b = det f. Noting that f%= 0 and taking traces we geta - Tr f = a? = 2b.
Multiplying the first equation by f gives bf = 0 which implies b - Tr f = ba = 0.
Hence @® = 2ab = 0 so 3 and not 4 is the smallest integer above. Experimenting
with small m and » one soon makes the conjecture: If f is an #»Xmn-matrix
with f™*' =0 then (Trf)™*' = 0. This is proved in a somewhat more general
setting in 1.7 using exterior algebra.

In Section 1 the characteristic polynomial A(f) is defined for an endomorphism
fiP—P where P is a finitely generated projective A-module (4 is a com-
mutative ring with 1). If P 1is free then A(f) = det (1 4- ¢f). The exponential
trace formula (in case 4 contains Q)

© Tr (f
M) = exp (~ 320 t)")
connects A(f) with the traces of the powers of f.

Various computations of A(f) are made in Section 2. By the isomorphism
End, (P)-> P* @ 4P where P* = Hom, (P, 4) every f: P — P corresponds to
a tensor >, zf ® x; with af € P*, », € P. Let M(f) be the matrix with entries
a; = <&f,x;>. Then A(f) = det (1 + tM(f)). Even the computation of 4,(1p)
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where 15 is the identity map is not quite trivial, The resultis 4,(1p) = >¢ (1 + )’
where the e;:s are the idempotents given by Ann A'P = (¢, + e, + ... - ¢;_;)4.

In Section 3 the behaviour of A(f) under change of rings and taking duals is
studied. Some attempts are made to connect the polynomials A(f), A(g) and
AW(f® g). In the multiplicative group A = {1l + af + at>+...;a,€ A} of
formal power series with constant term 1 one can define a =-multiplication such
that A(f ® g) = A(f) * 4(g9). Then A becomes a ring (with ordinary multiplication
as addition).

A formula for computing A(f) in terms of the minimal polynomial of f and
some of the Tr (f°):s is given in Section 4.

In Section 5 the definition of A(f) is extended to f: M —> M where M is
an A-module having a finite resolution of finitely generated projective modules.
Some of the results in Section 1 can be generalized to this case. Furthermore A(f)
is defined for f = chain map of complexes (or map of graded A-modules).

Section 6 contains an attempt to classify all endomorphism of finitely generated
projective A-modules, i.e. to compute the K-group K, (End ¥(4)). The charac-
teristic polynomial 4,(f) is sometimes a good enough invariant. This is the case
if 4 isa PID or A = K[X, Y] where K is a field or A4 is a regular local ring
of dimension at most two. Then K, (End 9(4)) is isomorphic (as a ring) with the
direct product of Ky (4) =7 and the ring of all »rational functions»

l1+at+...4a,t™
1+bt+...+00

(under multiplication and s-multiplication). This generalizes a result by Kelley-
Spanier ([8] p. 327) for A = field. The ring of »rational functions» is also isomorphic
with a subring of the Witt ring W(4) of A. Finally strace sequencesy, (Tr (f*){
are studied.

Finally I would like to thank T. Farrell, G. Hochschild, M. Schlessinger and
M. Sweedler for many valuable discussions about this paper and mathematics in
general.

1. The characteristic polynomial

First we fix some notation. 4 will always denote a commutative ring with
unity element 1. Spec A is the set of all prime ideals p of 4. If « € M where
M is an A-module we denote by =, the image of 2 wunder the localization
map M — M, = M @, A, for all p € Spec 4.

The category of all finitely generated projective A-modules will be denoted
by P(4). If P € P(A) then P, is afree A,-module of finite rank = rk,P. We
define rkP = max, rk,P. This integer is equal to the minimal number of generators
of P. If rk P = rkP for all p € Spec A we say that P has constant rank. Let
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P* = Hom, (P, A) be the dual of P. Then for P € P(A4) there are natural
isomorphisms of A4-modules

End, (P*)— Homy, (P* @ , P, 4) — Hom , (End, P, A) (%)

Let Tr be the image of 1,, under the composed map. We call Tr (f) the trace
of f: P— P. This coincides with Bourbakis definition ([3] p. 112).
Definition 1.1:

Mf) = 3 Tx (A

Here ¢ is an indeterminate, f: P— P an endomorphism with 2 € P(4),
Aif: AP — A'P the induced endomorphism of the ¢:th exterior power of P and
n = rkP. Observe that AP € P(4) ([4], p- 142).

Remark 1.2. If P is free then Tr (f) is the usual trace of f and A(f) =
det (1 - if) where 1 = identity of the free A[¢{]-module P ® 4 A[t]. This is a well
known formula ([9] p. 436).

Prorosirion 1.3. Let f,g: P—P with P €P(4) and p € Spec A be given.
Then
(@) (Trf), =Trf,
@) Ay = ML) e if W) =1+ at + ...+ af" then
M =1+ ayt + .. 4 ayl”
(iii) A(feg) = Alg-f)
(iv) Mlhofoh™) = A(f) if b P—Q is an isomorphism.

Proof.

(i) Localization commutes with everything in (x) since all modules involved
(P*, End, (P*) etc.) are in P(4) ([4], p. 98).

(ii) Localization commutes with exterior powers, (A'f), = Af,, so (ii) follows
from (i).

(iii) We have Tr(fog) = Tr(gof) ([3], p. 112) and A(fog) = Afo Ay.

(iv) By (ii) it is sufficient to prove (iv) for P free (and hence @ is free), in
which case it is well known.

CayrEY-HaMILTON THEOREM 1.4. Let A(f) =1+ ayt + ...+ at" and define
g() = 1" — a4 .. 4 (— D'a,. Then g¢(f) = 0.
Proof. 1t suffices to show
G = f3 — a3 4 o (= Wy - 1, =0

for all p € Spec A. But this follows from the ordinary Cayley-Hamilton theorem
jor fo: P,— P, with P, free since



266 GERT ALMKVIST
" — alpthI R (__ l)nanp — n—rk(Pg)qu(t)'

Proposrrion 1.5. Let

0—>P;—~>...>P—-P,—0
Ja Hho (o
Y Y Y
0—>P;,—~>...->P,—P,—0

be a commutative diagram with exact row and oll P; € P(A4). Then

d

S(—1Trf,=0 and ﬁ' ALY =1
0 0

Proof. Since localization is an exact functor it is (using 1.3 (i), (ii)) sufficient
to prove the proposition when all P; are free. But then it is well known at least
for d =2 (see [9], p. 402) and the general case follows by splitting up the long
exact sequence into short ones.

CoROLLARY 1.6.

Tr(f@g9)=Trf+Trg and A(f® g) = A(f) - A(g)-

TarorREM 1.7. Let f: P— P be given with
PeP4), tkP=mn and M(f) =1+ aif + ...+ a,t™

(i) Assume that f is nilpotent with f™*' = 0. Then ayay...aln = 0 if the
weight vy - 2v, + . .. + ny, > mn. The constant mn 4s best possible.

(ii) Conversely assume that apay...a =0 when v, + 29 + ... +ny, > k.
Then f** = 0. The integer n + k is best possible.

Proof. (i) After localizing and using 1.8 (ii) we may assume that P is free of
rank 7 (it is sufficient to consider the case of maximal rank). Let P have basis
€1, €35+ - ., €, Then A"P is free with basis ¢, Ae, A ... Ne,. Now we claim that

ae;Neg ... Ne= > e N Nfe Ao N fe N Nfe AL Ne, (k%)

< ip<...<i,
By definition we have a, = Tr (Af). Let ¢, Ae A.../ \e; be a fixed basis
element of AP (with 4, <4, < ... <(4,). Then
Afle, Ao Ney )= fe, Ao Nfe, = Cyy e N .. Ne + other terms.

Hence
a, = Tr (A'f) = > C

iy T oen <y

[ZU T
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Expanding the right hand side in (%) one easily gets
Oilix...ir) él NesAol . Ne,

(i1<i2<...<ir
and the claim is proved.
Using (#x) several times we get

ayay . ..ame Nes N Ne) = e Nffe, Ao A frre,

where the sum is taken over all s, s, ...,s, such that s + s34+ ...+ s, =
v; + 2v, + ... 4 nv, which by assumption is larger than mn. Hence each term
contains an s; > m and f% = 0. Therefore the right hand side is zero and the
first part of (i) is proved.

To see that mn is best possible let A be the commutative ring generated by 1,
&y .. q, with the only relations of™'=oaf™' = ... =a""'=0. Let f be
the map given by the diagonal matrix

1
xy 0
=1
&Kn
Then f™*'=0 and a}...a'r = > ooy .. .o where the sum runs over
all s, 8,....,8, with & +s+....4+s, =9+ 20, +...+n, If
v 4+ 29 + ...+ v, < mn then there is a term «f...x» with all s, <m and

hence a?...al» # 0.
(ii) Assume that ap...a»=0 if v, + 2v, + ... + nv, > k. By the Cayley-
Hamilton theorem we have

= f —aft .. L oal,
Multiplying by f and using Cayley-Hamilton again we get
= f~t+ ...+ aa,l.

Repeating the procedure several times we get

f" = QF~n+1fn—l + Qr—n-]-?fn—z + LR + Qr -1

where ¢, is a polynomial in a,,...,e, of weight ¢ If r=1~L 4 »n then
9 = ¢_1= @_ny1 =0 and we get f"=0.

To show that n 4+ k is best possible let 4 = Z[X,, X,..., X,]/I where
Xy, ..., X, are indeterminates and I is the ideal generated by all monomials
in X,,...,X, of weight k£ + 1. Put
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n

S = O
= o O

0 0 01 g )

\

where @; is the residue of X,. Then a calculation shows that

MO=14at+ ...+ at"
and that f***' £ 0.

CoroLLARY 1.8. f ¢s nilpotent zf and only if all coefficients a v > 1) of A(f)
are nilpotent.

ProposiTiON 1.9. Given f: P — P with PEPA). If [ =fRfQ ... ®f=0
then f7 =

Proof. Localizing we may assume that P is free of rank n. Let (a;) be the
matrix of f in some basis and I theidealin A generated by the coefficients (a;).
The entries of the matrix of f©* are just all possible products of » of the a;:s.
Since f€ = 0 we get I"= 0. The entries (c;) of the matrix of f” are certain
sums of products of » of the a;s. Hence ¢; € I” and ¢; = 0 for all ¢, j and

fr=o.

TarEorREM 1.10 (exponential trace formula). Let f: P— P be A-linear with
P €PA). Then

Proof. Setting b; = Tr (— f) and A(f) = 1 + ait + ... + a,i" we must prove
— (@t + 205" + .. A nat") = (1 F agt - ...+ ath) D bt
1

Comparing the coefficients of # on both sides one finds b, = Q(ay, . . . , @,) Where
the Qs are certain polynomials with integer coefficients. Localizing at p € Spec 4
we have to show b, = @(ayy, - - -, @,,). Hence it is sufficient to show the formula
when P is free and f is a matrix. Then b, = @;(ay, . . ., @,) becomes a polynomial
identity (over Z) in the coefficients of the matrix f. Therefore it is enough to
consider the case A = Z[X,,, ..., X,,] which is a domain of characteristic zero.
Let K be the quotient field of K and K the algebraic closure of K. Over K
the formula is easy to prove. If 4,,..., 2, are the eigenvalues of f we have
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W) = TTr. (1 + At). Taking the logarithmic derivative, expanding A(1 4 Af)~*
into power series and using Tr (f*) = >"_, A7 we get the desired formula.

Remark 1.11. In the theory of differential equations there is a »continuous»
analogue of the formula above: Let U(f) and B(f) be nXn-matrices with real
entries, depending on a parameter ¢, satisfying

% U(t) = Bt)U(t) and U(0) = 1.
Then
t
det U(t) = exp fTr B(s)ds.
0
It is well known that if Tr (f) =0 for ¢ = 1,2,...,n where f is an nXn-

matrix over a field of characteristic zero then f is nilpotent. Our next result is a
generalization of this.

We will call the ring A torsion-free if it is torsion-free as an abelian group,
ie. na =0 with » €Z and a €4 implies n=0 or a=0.

PropositioN 1.12. Assume that A 1is torsion-free. Let f: P> P be A-linear
where P € P(A) has rank n. If Tr(f) =0 for n consecutive i:s then f is
nilpotent.

Proof. Assume that Tr (f7) = Tr (f**") = ... = Tr (f**") = 0. Multiplying
Cayley-Hamilton by f° we get

fn+r — alfn-l-r—l _ azfn+r-2 + . :t anfr

Taking traces on both sides we get Tr (f**") = 0. Repeating the procedure we
get Tr(f)=0 forall v >r. Put g=f" Then Tr(g) =0 for v=1,2,....

Using the exponential trace formula ’for g we find A(g) = 0 which implies

dt
(g) = 1 since A ‘has no torsion. Cayley-Hamilton applied to g gives g = 0,
ile. f=0.

Remark 1.13. The proposition is true if 4 has no s-torsion for s << rkP.

Remark 1.14. If A is a field of characteristic 2 then Tr 1}, = 0 for P free of
rank 2.

Bemark 1.15. If we assume that 4 is torsion-free we can give another proof of
the fact that f®" = 0 = f nilpotent (compare 1.9). Put b; = Tr (f*). Then (f)®” =
(f®) = 0 implies Tr ((f)®") = (Tr (f)) = b = 0 for ¢ =1,2,.... Comparing
coefficients in the exponential trace formula we get a, = b,, 2a, = b} — b,, . . ..
Since A4 has no torsion all ea::s are nilpotent. Then f is also nilpotent by 1.8.
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2. Some computations
First a generalization 1.3 (iii):

ProrosiTion 2.1. Given f:P-—Q and ¢:Q—P with P,Q € P(4). Then
Tr(fog)=Tr(gef) and A(fog)= A(gef)

Proof. After localization we may assume that P and @ are free. The formula
for the trace is then easily proved and

Tr A¥(f o g) = Tt (Af o Aig) = Tr (dig o A¥f) = Tr Ai(g o f)

finishes the proof.
We continue with describing a method for computing 4(f). P denotes always
a module in ¥(4) of rank =.

TreEOREM 2.2. We have End, (P)=~ P* Q4 P. Let f:P—P correspond to
riat Qa in P*Q4P. Let M(f) be the mXm-matrix with entries {x:*, ;)
at place (4,5). Then

A(f) = det (1 4 tM(f))

In particular the right hand side is independent of the choice of representatives for the
tensor. The w;:s can be chosen as a minimal generator set of P.

Proof. First we reduce to the case when P is free. Let p be a prime ideal in 4.
Localizing at p we get a commutative diagram

u

Y
P} @4, P, > Fnd, P,

where the star in the south west corner means Hom 4, (- Ap). Hence if f: P — P
corresponds to DT a* @ a; then f,: P, — P, corresponds to > (%), ® ;, and
by using 1.3 (ii) we may assume that P is free. Let now #;, ..., y» be a basis
for P and Ay, ..., k., a dual basis for P*, ie. (ki y;> == 05 Given fi P — P
let it correspond to

> ailh: @ ) = (Zlajihi) ® yj = zlyj‘ ®y in Pr@,P, ie yf= Zlaﬁhi.
= ]: P==

i =1

Hence the (j, k):th entry in the matrix is

<y;'k, Yy :'21 Ay Chiy Yoy = Aj»
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Now wu:P*®Q,P—>End,P is given by z*Q x> (g {&*, yd>x) s0
=u Z ]l i ® y] neans f xk Z <kw I'Z"k>y] z

It follows that f has the matrix (a,k) in the basis yl, .« «, Yn. Thus the formula
is true if the x;:s form a basis for P.
Let now >7x* ® @ be another representation of f. Assume that

n

T = > ciy; and af = > duhy,

=1 k=1

z 2 ® r, = z cjidikhk @ Y = z (g lk> by ® Y = JZk ajkkk ® Y

i=1 i=1 jk 7k \i

(ajk) = CD with O == (Cji) and D = (d,k)

(here ¢ and D are mXm- and mXn-matrices respectively). The (i, k):th entry
of the matrix in the formula is

<x1, > xk> - z dwcjk<hv’ y]> _ z d’] jk*

Thus this matrix is DC and we are done since A(f) = det (1 + ¢CD)) by the
first part of the proof and det (1 + {CD) = det (1 4+ tDC) by 2.1.
Next we compute 2(1,) where 1, is the identity map of P € P(4).

TrEorEM 2.2 (Goldman). (i) Tr(l,) = Dgie; and A(lp) = D7 el + t)
where ey, ey, . . ., en are orthogonal idempotents with ey + e 4 ... -+ e, = L.

(i) Ann (A*P)= (e + €+ ...+ e,_)A. Furthermore the e::s are uniquely
determined by P.

Remark. Some of the e:s might be zero, e.g. if P is constant rank =, then
eo—el_ﬁ..._e _1=0.

Proof. (i) Let Z have the discrete topology. Then rk: Spec A —Z given by
p —rk, P 1s a continuous function. Hence X; = {p € Spec 4y; rk,P = i} is both
open and closed. It follows that Specd = X, UX,U...UX, where the union
is disjoint. But to this covering of Spec 4 corresponds a unique »partition of unity»

0 otherwise 1 —e€p for all p€X,

l=¢,+4+¢ 4 ...+ e. where ei(x)z{
and e; €p for all p € X;: (see Swan [12] p. 140). This means that the e:s are
orthogonal idempotents.

Now we claim that A(L,) = > e(l + t)'.
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Fix a prime p € X;. Then the localization at p of the left hand side is
(A(1p)), = Zt(lpp) = (1 + )’ since P, is free of rank 7. To compute the localization
of the right hand side we need e,. But ee = 0 with e;€p implies ¢, =0
in 4, for j # i. Furthermore ¢(l —¢;) = 0 with ¢, ¢ p implies e, =1 in 4A,.
Thus (35 (L + 1)), = (1 +#)' = (4(1,)), and we are done since p € Spec 4
was arbitrary.

(ii) AP is in P(4) and thus Ann (A'P) =ed where e is a uniquely
determined idempotent (Goldman [6] p. 33). Now (A'P), = 0 if and only if
tk,P < ¢ ifand only if p € X,U X, U...UX, ;. This is the case if and only if
eAd = Ann (A'Pyd p if and only if e€p. Thus e(@) =0 if and only if
x€X;U...UX, (and hence e{x) =1 otherwise). But e, 4 e -+ ...+ ¢,
is a candidate satisfying these conditions. By uniqueness we get

e=¢e +e -+ ...+ ¢_;.

Putting ¢ =1 we get ¢, uniquely. Since e, + ¢, is unique e; is unique ete.

Definition 2.3: We define the determinant of f by detf= A(f— 1,) for
fi P—P with P € P4).

Tirst we note that det 1, = 4,(0) = 1. If P isfree then det (f) coincides with
the usual determinant of a matrix for f. If rkP = n then there exists ¢ such
that P @ Q = F where F is free of rank #. Clearly @ € ¥(4). Localizing at
p €Spec A we get P, @ @, = F, where P,, Q,, F, are free A,-modules of rank
r=rk,P, n —r and n, respectively. We get (det (f @ 1p)), = det (f, @ lop) =
det f, - det 1Qp = det f, = (det f),. Hence we could also have defined det [ as
det (f @ 1,) where the last det is the ordinary determinant of a matrix for f @ 1,.
Thus det f is the same as Goldman-s determinant ([6] p. 29). We state some
properties of det (f). ‘

ProposiTion 2.4. (i) det (fog) = det fdet g.

(i) f is an ismorphism if and only if detf is invertible in A.

We now collect some formulas for A(f) = 1 -} a;t + ... 4 ant* where f: P — P
with P € P(4) and 7kP = n.

n—1y /n
ProposiTiON 2.5. (1) A(A¥) =1+ aut + ...+ an(’“‘l)t(k).
(if) (A7) = 1 + adt.

(i) A(AY) =14 ap st + ot 4 @l L T 4 e

(v) A(f%) =1+ (&} — 2a,)t + (20, — 20,05 - aD)t® + ... + &2

In particular

Proof. Since 4 and A* commute with localization we may assume that P
is free. Using the technique employed in proving the exponential trace formula 1.10
we may even assume that A is an algebraically closed field. If
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n

WA =TTA + ) =14 at + ... + ant”

1

we have

MMASY =TT @+ &y - .. Aih).

1<iy<dp=< ... <ip<n

The first two formulas now follow easily.

(i) We may assume that a, = | [A == 0. Then we have
1

MW(A™f) ~||<1+ )—wt”||(1+ )]—[_~

- 1 1 a,_1 Qn
= 0, t"(l+“1‘a—rj+w2;?+---+(1:—_1f,—_i+a;ti> =
=14 a, it + a,_ a2 ...+ a7 -+ ar "

{iv) Set t = — 2. Then
A(f?) = det (1 — $2f%) = det (1 — sf) - det (1 -+ sf) = 2_(NA(f) =
=(1—as a8 — + ...+ (— D)aas™) (1 + aq8 + 282+ . .. + ans™) =
=1+ (2ay — a)s® + (2a, — 2aya5 + oD)s* £ . .. + a¥(— )"

We keep the notation from above and furthermore ey ey, ...,e, are the
idempotents in theorem 2.2.

ProposITION 2.6. (i) det f= >0 aie; where ay= 1.

(ii) If [ is invertible then detf is a wnit in A and A(f™) = >4 did* where

di, = z,zkc _x& with ¢; given by (det £y = (Of ae)™! = ZE:O ce; (Le.if e, &= 0
then cie; is the inverse of ae; in the subring Ae;).

Proof. (i) Localization at p € X; (for the notation see the proof of 2.2) gives

(% ) Z Ui = Gy since Eiy dij,

But (det f), = (L(f — L), = A(f, — lpp) = det (f,) since P, is free. Furthermore
P, has rank i (since p € X;) and hence (A(f)), = A(f,) =1+ ...+ det f,, - ¢
and a;, = det f,. This proves (i).

(i) It is sufficient to show the formula locally. Fix a p € X,. Then P, is
free of rank » and we get



274 GERT ALMKVIST
(lz(f"l)p = p—l) = det (1 tfp—l) = (dei’;f,p)‘1 det {t- lpp) det 1+ t‘lfp) ==

n v v
= (%cjpejp)t” ZO“jpt_] = Cyp _Zow”‘f since ¢, = 9,
J= J=

On the other hand
Q, di")y = ; digt” :kz (zkciv“(i—k)v)tk = kz Cyp-igpl” = Cy Z{)“fpt”_" with j =» — k.
0 =0 i— =0 i=

Hence the localizations of both sides agree.

3. The behaviour of 1, under change of rings, taking duals and forming
of tensor products

ProrosirioN 3.1. Let ¢: A — B be a ringhomomorphism (with $(1) = 1) and
fi P—P an A-linear map with P € P(A). Then P Q4B isin PB) and

W(f @ 15) = $(A())-

Proof. The first statement is well known. Since AL(P ®,B) is naturally
isomorphic as B-module to (A}P) ® 4 B it is sufficient to prove Try (f ® 1p) =
é(Tr(f)) which is well known.

ProrostTioN 3.2. Hvery f:P-—-P with P in P(4) induces f*: P* — P*
where P* = Homy (P, 4) is in P(A). Furthermore

Trf* =Trf and A(f*) = A(f).
Proof. For every p €Spec (4) we get a natural A4 -isomorphism
h
(P*)p = (Hom, (P, A))p = I'IOInAJa (Pp’ Ap) = (Pp)*
and we have a commutative diagram
h
(P*)y =z (Pp)*
a6y
(P*)p = (Pp)*
Hence (f*), = hto (f,)* o h. It follows

(A(f*Np = M((*)p) = M(h o (f,)* o B) = A((f,)*)
by 1.3 (iv). But (P,)* is free and
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() = det (L + (F,)%) = det (1 + £,) = A{fy) = (A(f)),.

This proves the formula for 1, and taking the coefficient of ¢ we get the formula
for the trace.

Next we turn to the tensor product of two A-linear maps f: P—P and
7:Q —@Q with P,@ in P(A4). For completeness we quote

ProrosiTioN 3.3. Tr(f®@ g)=Trf-Trg.

There is a corresponding formula for A, but it is more complicated. It is
convenient to introduce some notation:

Let A denote the set of all formal power series 1 + at - a2 + ... over 4
with constant term 1. Then A is an abelian group under multiplication. We define
v~ multiplicationy in A such that the following formula is valid

W(f ® g) = A(f) = Alg).

This defines = for all polynomials in A since 1 + al + ...+ a® = A(f) where
f: A® — A" is given by the matrix

0o 0 .04 a.
1 0 Fa,_,
f=101 +a,
........ 00— a,

0 01 a

PropostTioN 3.4. If A(f)=1-Faf+ ...+ ad® and

Mg) =1+ byt + ... + bt

then
M@ =+ at+ ...t et s (Qbbt+ ... +but™)=1-4dgt + ...+ dt™
where
dy = ayby
dy = @b, + ayb] — 2ab,
dy = alby 4 asb 4 a,a,0,05 — 3a,0.b; — 3a;b,0, + 3azb,
dy = afash,by + a,a5btb, — a,a5biby + aiby + ab} 4 daash, + dabiby — 2a,a5b; —

— 2a2bbs + 2a3b, -+ 20,02 — 4dab, — datash, — 4adib, + alb;

w

m—1 n—-1
dmn 1= 0y an—lbm bm—l

d,.. = anby.

mn
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Proof. Just as in the proof of 1.10 we may assume that 4 is an algebraically
closed field of characteristic zero. Then

m

—TT @+ i), 4 =TT+ u

1
and
MWf®g)= |_r 1+ }'ilujt)
bJ

Using formulas for symmetric functions (see [1] p. 258) it is possible to compute
dy, dy, dg, . .. A better way is to use the exponential trace formula 1.10.
Put pi=Trfl, ¢g=Trg and 7rn=Tr(f®¢g)}. Then 7 = pg; since
Tr (f ® 9 = Tr (f ® ¢°) = Trf' Tr¢g’. The exponential trace formula applied to

fgives ayf 4 2082 + ... F nat” = (L + of + ... + aud”)(prf — Pt + p5t> — .. )
and hence
a4 =D
20, = a;p, —

3a3 = axp; — Py + P
day = 3Py — APy + U P3 — P4

Solving for the p:s we get
D=0
Py = ai — 2a,
P = ay — 30,0, -+ 3a,
Py = a7 — 4aia, + daya, - 203 — 4a,

There are similar formulas connecting the b:s and ¢s:s (diss and ris). The latter
give
dy =1 =Dy = by
2d, = dyry — 1, = a3b; — Pygs = 207 — (a] — 2a,) (B3 — 2b,) = 2(alb, + a.bd — 2a,b,)
3dy = dory — dyry + 13 = dop1qy — diPoqs - D303 = “lbl(a%bz + azb% — 2a,b,) —
- a’lbl(ai - 2“2)(5% — 2b,) + (“? — 3a,a5 + 3“3)(b? — 3byb, -} 3b;) =
= 3(a3b; -+ asb} — Saya,0; — 3agbib, - 3azh; + a,a,b,D,)

We omit the calculation of d,.
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We could immediately have seen that the terms alb%, alh,b, would be missing
in d, since they would oceur in (1 - at) * (1 - bt + byf3) which only has degree
1-2 = 2. Similarly a,b,b} will not occur.

To get the last terms one can use

(14 agt + . oo+ ant®) 5 (1 byt + ... + but™) =

an— an—z

Et—l_{_

On an,

bm—l bm—2
— arbrgm| 1 T E R e e LIt

In particular the number of monomials occurring in d,, , is the same as in

d;. Let s denote the number of monomials in di for large m, n (say m, n > k).
The computation of s, seems to be quite a problem.
By formally factoring

1+ agf + agf? + . F ant = (1 ad)(1 -+ BE)(L -+ p)(t -+ 8) . ..

we find that the term containing, say bbi, of

A af+..)s(1+bt+b2+..)=
= (1 byt 4 D2 - L)L 4 byt BB AL )L

is — o%f% 9. Using the large fold-out tables of Faa de Bruno: Theorie des formes
binaires, Turin 1876, we find the following results & =1, 8, =3, 83 = 6, 5, = 15,
S5 = 28, s5= 64, & = 116, 53— 234, 5= 373, 5,0 = 814, s,; = 1508.

The method based on couning zeroes in tables cannot be generalized to % larger
than 11. B

Now back to defining s-multiplication in 4. By the computations above it
is clear that if we cut off the power series in the left hand side of

(I4at+..)x@Q4Fbtt+..)=1Fdt+ ... Fdt*+...

and take % of the remaining polynomials of degree n and m respectively, then
dr = the coefficient of t* will not depend on »# and m if n,m >k Hence we

can define dp in this way. Then 4 becomes a commutative ring with ordinary
multiplication as addition and *-multiplication as multiplication. The unity element

is 1 4+ ¢. Clearly A is torsionfree (as abelian group). Furthermore A(f) > A(A%)

induces a A-ring structure on 4 (it is even a special A-ring, see [1], p. 257).
We denote by N(4) = {a € 4,; o is nilpotent} the nilradical of a ring A.

ProrosrrioN 3.5. (i) If A4 is torsion free then
NAYCNA) = {14 ap +a®+..; a;€NA)
(i) If A is noetherion then N ('fi') c Z\\T(Z).
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Proof. (i) Assume that (1 4 a;f + anf2 + .. .)** = 1. The left hand side is
14+ ¢t + o2+ ... with ¢, = o} and in general ¢, = m,a* + ¢ polynomial of
weight nk containing at least one of ay, a,, ...,a, ;. Here m, is an integer.
We proceed by induction over n. We have af = 0 so a, € N(4). Assume now
that a;, @y, ..., a,_; € N(4). Since ¢, = 0 we get m,a* € N(4) and a, € N(4)
since A4 is torsion free.

(i) If A is noetherian then N(A) is nilpotent, say N(A4)* = 0. Hence the
product of any k£ elements of N(4) is zero. The computation above shows
that all monomials occurring in ¢, contain at least L factors among the
&y, . .., 0, € N(A). It follows that (1 + at --...)** = 1.

We will return to the ring A in Section 6.

Prorosition 3.6. Given f: P — P, 9:Q —Q with P, Q € P(A). Then we have
an tnduced map

Hom (f, g9): Hom4 (P, @) — Hom (P, @) where Hom, (P, @) € P(4)
defined by wr>gouof. Then
TrHom (f,g) =Trf-Trg and A(Hom (f, g)) = A(f) * A(g).

Proof. We have a natural isomorphism @ =~ @** which induces natural
isomorphisms

Hom, (P, @) =~ Hom, (P, @**) >~ Hom, (P ® 4 Q% 4) = (P ® 4 Q*)*
Hence we get Tr (Hom (f, g) = Tr (f ® g*)* and A(Hom (f, 9)) = A(f ® g*)*).

Using 3.2 twice and the definition of s-multiplication we get the desired formulas.

4. Relations between A,(f) and minimal polynomials of f

ProrositioN 4.1. Let f: M—M be A-linear with M o finitely generated A-module.
Then there is a mon ic polynomial q € A[t] of minimal degree such that q(f) = 0.
(g will be called a minimal polynomial of f). The degree of q is at
most equal to the minimal number of generators of M.

Proof. Let n be the minimal number of generators of M. Then we have a

surjection A"~ M ——> 0. Since A" is free we can find g: A®—> 4"
such that
(4

A" > M —>0

lg lf

AT M —> 0
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commutes. Now g satisfies a monic polynomial ¢, of degree n by the Cayley-
Hamilton theorem. Using this in the diagram gives

T

A > M —>0
0=qg) | l ()
Y
Ar > M —>0
7

from which it follows that ¢ (f) = 0.
Remark 4.2. The polynomial ¢ is not unique in general. If A4 = Z/(4) then
f= () satisfies both f2=0 and f24 2f = 0.

Prorosition 4.3. Given f: P — P with P in P(4). Assumethat [ has minimal
polynomial q and put q(t) = (— tYq(— t1) where v = degree of q. Then ()
satisfies the following differential equation in A[t]
+1)

g v (mod ¢
q

where () = bt — byt* + bt . .. with b= Trf'". If q0) =0 we may take
(mod ) in the formula above.

d
P = ) =

Proof. Assume that q(t) =¢ + ¢,/ " + ...+ a’*. Taking the trace of
O=f+ef+...+tak™" weget 0=0,+eb,_,+ ...+ ak,_, where in
case k =v we put b, = Tr 1,. Multiplying by f and taking traces again gives

byt b, 4+ .. Gb, gy = 0 etc. Now g(t) =1 — ot + 62 — ... 4 al® and
' qO)w(t) = (1 — et + oot — . .. 4= cat®)(byt — byl + bof® . . ) =
= (terms of degree <) 4+ (b, +¢b,_; + ...+ ¢b, 1)t +
el (O SN SR Y JNTI) Al S
Here all terms of degree higher than » vanish and the coefficient of ¢ is zero

unless % = » in which case it is (— 1)"~'¢, Tr 1. The exponential trace formula
gives

d
) 5 ) = v

and multiplying by ¢(¢f) finishes the proof.
Remark 4.4. If A contains the rational numbers @ then A(f) is determined
by a minimal polynomial ¢ of f and b,b,...,b,_; where » = degree of g¢.
Example 4.5. Assume that 4 D¢. Let f: P—> P have minimal polynomial
g{ty = 2 — ¢, ie., f is a non-trivial idempotent in End, P. Then g(f) = 1 + ¢
and if we apply 4.3 we get (since ¢(0) = 0)
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(1 )byt — byf? .. ))(mod £2) byt

d
), ) = T -

which implies A(f) = (1 + #)"t = (1 + 1™/,

If f2=f, ie. q(t) = — ¢t one finds similarly
byrt-b,y b—b,
Afy=@0+1t* -(1—1t)°*

Example 4.6. Let G be a finite group of order n and A4[G]] the group algebra.
Let f: A[G] — A[G] be given by left multiplication with ¢ € G. If ¢ has order
k then the minimal polynomial of f is q(f) = t* — 1 and q(f) = 1 4 (— 1)*~
Using 4.3 and the fact that b, =b,=...=08, , =0 and b, =n we get

M(f) = (1L — (— 144*

5. Endomorphisms of modules having finite resolutions of finitely generated
projective modules

Let X(A4) denote the category of A-modules M such that M has a finite
resolution in P(4). We want to define A(f) for f: M —~ M when M € X(4).
For this we need some preparations.

Definition 5.1. Let End P(4) denote the category of endomorphisms of modules
in P(4), ie. the objects are endomorphism f: P—P with P € P(4) and a
morphism u« from f to ¢g:Q — @ (where Q € P(A4)) is a commutative diagram

U
P—>0Q
fl lg
Y u
P— @

Then K, (End (4)) is defined as the free abelian group generated by (the iso-
morphism classes of) the objects in End ¥(4) modulo the subgroup generated

by all [f] = [f'] —[f"] where
0— PP——> P > P'——> 0
TS
¥ ¥ v
0— P’ > P > P’ 0
is commutative with exact row. Similarly we define End 9(4) and K, (End 9C(4)).

PropostrioN 5.2. The embedding End P(4) — End (A) induces an iso-
morphism i: K, (End P(4)) - K, (End 2((4)).
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Proof. The usual proof does not apply since f: P — P with P € P(4) is not
a projective object in the abelian category of ell endomorphisms (which is iso-
morphic to the category of modules over A[t]). Fortunately Swan has formulated
a theorem general enough for our purposes (see [12] p. 235. Theorem 16.12). Put
P = End P(4) and M = End X(A4). Then the assumptions in 16.12 are fulfilled.
Indeed,

(1) Clearly End (4) and 9(4) are closed under direct sums

2) It 0— > P s P pPr—s
lf’ *f lf”
u Y v

0—P ——>P—>P —>0

is exact and commutative then P,P" € P(4) implies P’ €P(4) and
P, P" € X(A) implies P’ € X(A4) (see Bass [2], p. 122, Proposition 6.3).

(3) Given any f: M — M with M € XN(A) there exists a finite resolution in
End 9(4), ie.

O0——> Pg—>++— P > P, > M >0
fa lf] lfo lf *)
!

0 Py o> P> Py——> M —> 0

is commutative with exact row and all P; € P(4). This is easily proved.
Now the inverse u of ¢ Ky (End P(4)) — K, (End 2(4)) is given by

d
v([f]) = % (— T

and it is shown in [12] that the right hand side is independent of the choice of the
resolution ().

THROREM 5.3. Given f: M —M with M € 9(A). Consider the resolution (x)
in End P(A4) above. Then

(— I Trf; and ]d_| A(fo) Y
0

OM&

are wndependent of the choice of the resolutions and the liftings fi of f.

Proof. For f: P— P with P € P(4), fr> A(f) is a map from (isomorphism
classes in) End P(4) to A. If 0> (P'sfY— (L, f) = (P", f) 0 is exact in
End P(4) we have (by (1.5) A(f) = A{f)A(f").

Hence by the universal property of K, (End ¥(4)) we have a factorization
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End 9(4) L K, (End (4))

Nt

A

Assume now that (M,f) in End 9C(4) has two resolutions

00— (Pa,fa)— ... (Pp,fo)—, (M, f)—0
and
0——>(P;,,f,;,)—>...—>(P(',,f(;)-—>(M,f)—>0

in End $(4). By the proof of 5.2 we have

d d’

% (— fil =2 (= VI[fj] in K, (End P(4)

)
and thus

d .4 , S .
TT AR =TT A in 4

0

The statement about the trace follows from taking the coefficient of ¢ in the formula
for 4. ‘

Now we can safely make the

Definition 5.4. For f: M —M with M in 9((4) we define

d

d .
() =2 (= 1 Trfe and A(f) =TT 4(H
where the fi:s are given in ().

ProrosiTioN 5.5. Let
O—-My—... M, —M,—0

P
0—My—...—M,—My—0

be a commutative diagram with exact row and all M; in XC(A). Then
k

k .
ZO (— 1x(fi) =0 and |—0|' M) =1

Proof. Consider the diagram (see the proof of 5.2)

s

K,y (End P(4)) < > K, (End V((4))

A
Y A
1 A
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where we denote 4, by 4 on End 9¢(4). The definition of v and 7, means
exactly that 74 = 1, 0w. Now given an exact sequence

O (My,fo)—...—> (M fo)—>0
in End 9((4) we get Ek: (— 1)[f]=0 in K, (End 9°(4)) and hence
0 k ,
TT20 =1
Taking the coefficient of ¢ we get the formula for .

CoroLLArY 5.6. x(f @ 9) = x(f) + 2(9) and A(f ® g) = A(f) - Alg).

Next we generalize the exponential trace formula

ProposiTioN 5.7. If f: M — M with M € 2C(A4) then
d o _ y
- Mt(f)‘la M) = ; (SN =1t in A

Proof. Let 0-— (Py, fa)— ... (Po,fo) > (M,f)—=0 Dbe a resolution in
End P(4). Taking logarithmic derivatives of

d .
Mf) = ]j; AV

we get (using the exponential trace formula)

)&

d ) d
— () 5 M) = 2 (— 1) —mm)ﬁwr(m)z

=0

M

d «© © d
220(* l)jgl(— 1 Te (f;)tf 221(— 1)"(;(— 1)/ Tr (f,':)) =2 (= iy (f)E

i

since
0— (P, fi) > ... = (Po, f3) = (M, )y -0

is a resolution of (M, f%).

THEOREM 5.8. Let f: M — M with M € 9((A) be nilpotent, f*'= 0. Then
there is o resolution

0— (Pa, fa) = ... —> (P, fo) = (M, f) — 0
in End P(A) such that all f7™' = 0.
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Assume that tkP; = n; and A(f) = 1 + D7 cit’. Then oll the ci:s are nilpotent
and cey ... ¢ =0 if the weight v + 20+ ...+ kv >m Sgn. It follows
that 2.(f) is a polynomial of degree

ng if d is even

gno+mn1+n2—l—m7z3+...+{mm of d is odd.

Proof. The existence of the projective resolution such that ff** = 0 is precisely
Proposition 6.2, p. 653 in Bass [2]. Now A(f) is a product of factors

Mfy=1+at+ ...+ a ™

or their inverses. By 1.7 any monomial in the a;:s vanishes provided its weight
is larger than mmn;. Inverting the polynomial A(fi)) =1+ ait + ...+ anit"i we
find that A(fi)™* is a polynomial of degree at most mn; and the coefficient of
# is a polynomial in the a;:s where every term has weight ». Taking the alternating
product of the A(fi):s we get A(f) =1+ ¢f + ct? + ... where ¢, is a sum
of terms of the type

a;l...ano...bil...bn:d (%)
i Af)=14at+ ...+ af® ., Af))=1+4bt+. .. b

Furthermore the weight of the monomial () is

v:'}”1+27'2—{—...—]—n07'n0—-}—...+81+282+...+7?,.18na.

v . . .
Let now ¢ = cjl¢;2...c¢* be a monomial in the ci:s of weight

d
v+ 2y R > m D .
i=o
Then ¢ is a sum of monomials of type (+%) such that their weight
d
4‘1—1—27"2—}—...—[—nono—{—...—[—81-]—282—}—ndsnd:v1—{—2v2—|—...+kvk>m2ni.
0

Hence at least one of the factors

(@ . .ay, ., (00 )
has weight > mn,, ..., mng respectively and this factor is zero by 1.7.

The estimate of the degree of A(f) is clear from the previous considerations.

COROLLARY 5.9. Assume that the ring A s reduced, i.e. the nilradical
N(A) = 0. Then J(f) =1 for all nilpotent f: M — M with M € X(A4).
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We denote the projective dimension of an A-module M with dh, M.

ProrositioN 5.10. Let 4 be a local noetherian ring with maximal ideal m,
residue field k= A/m, and M o finitely generated A-module. If d = dh, M is
finite then M € W(A) and A1) = (1 4 ty**0w)  where

d
() = > (— 1) dimy Tor{ (M, k)
i=0
Proof. Choose a minimal free resolution

0—>Ps—...—-P,—>P—M-—>0

with n; = rk,P; = dim, Tor* (M, k) (see Serre [10] p. IV — 47). Then

d s
(1)

d . _i_ ;
2(Ly) = U A(1p) 0 = |0| (L+ 0= (1 +8)°

But
d d
#a) = 2 (= 1 Tr Ly, = 3 (= 1ms

0

ProrosrrionN 5.11. Let A be a regular local noetherian ring with residue field k.
Then k € 9A4) and A1(1,) = 1.

Proof. Putting M =k in 5.10 we get

¢

i1, = i (— 1)" dim, Tor{ (k, k) = i (— 1) (d) =(1—1¢=0

since dim, Tor{ (k, k) = <d> where d = global dimension of 4 if 4 is a regular
local noetherian ring. !

ProrosiTioN 5.12. Let ¢: A —B be a flat ring homomorphism, i.e. B is
flat as an A-module. If f: M — M with M € X(A), then M QB € XN(B) and

W(f © 1g) = (& (f))-

Proof. Let

O%Pd*‘%...’épo"»M_}O
Ja Jo if
Y Y Y

0->Py—>...>Py—>M—0
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be a projective resolution. Then the exactness is preserved after taking - ®, B
since B is A-flat. Furthermore each P; ®,B is B-projective and finitely
generated as B-module. Hence M ® , B € )(B) and since ¢(A(f)) = 12(f, @ 1)
by 3.1 we finish the proof by taking alternating products.

CorROLLARY 5.13. Let A be an integral domain and K its quotient field. Then

H(f) = A(f® 1)
Proof. The inclusion 4 — K is flat.

CorOLLARY 5.14. Let A be an integral domain and f: M — M where M is
a torsion module in C(A). Then A(f) = 1.

Proof. Since M is torsion we have M ® , K = 0 and hence

() = © 1x) = 4(0) =1
by 5.18.

CoroLLARY 5.15. Let A be a Dedekind ring and f: M — M A-linear where M
is finitely generated. Then M =T @® P where T 1is a torsion module and P is
projective and torsion free.

Furthermore f(T) €T and A(f) = A(fp) where fp: P — P is the »torsion free

party of f.

Proof. First we note that M € 9((4) since A is noetherian and gl. dim 4 < 1.
Then M =T @ P is just Bourbaki [5] p. 79, Corollaire. Now Hom (T, P) = 0
so we get the following diagram using matrix representation

1
0
0—>T—-T ® P-P—0

e ()
Y PY
0—->T T ® P—-P—0.

1
e

From 5.6 and 5.14 it follows that

2f) = A(fr) - Alfe) = 1+ A([e) = 2(fp)-

We now extend the definitions of y and 4, to endomorphisms of graded
modules and complexes.

(0, 1)




ENDOMORPHISMS OF FINITELY GENERATED PROJECTIVE MODULES 287

Definition 5.16. Let M = @®§ M, be a graded A-module with all 3, € 9((A4).
If f: M — M is a homomorphism of degree zero, i.e. f(M,) C M;, we put f, = the
restriction of f to M; and define

d d )
U =2 (= 0ufy and 2() =TT 2"

Note that x¥(f) and Af(f) in general do not agree with y(f) and A(f) where
M is considered just as an A4-module.
Similarly if

04 0
O——)Od *Od_1—>...-+01'—_—*00—>‘0
% Lf noo b
Y 4 Y 61
0—> Cy—2> Oy == Oy — > Cy—> 0

for short f: C'— C is a chainmap of a finite complex ¢ with all C; in 9C(4),
we define

2(f) = 20: (— 1) Trf, and A,(f) = I—OI' lt(fi)(—l)i.

Prorosirion 5.17. Let f: C — C be as above. Assume that all homology modules
H(C) are in (A). Then

() = 2" (H(f)) and A(f) = X (H(f))
where H,(f): Hy(C) — H(C) s the induced endomorphism of the graded homology
module H.(C) = @®§f H/(C).
Proof. Put K;=Kerd, and B, =1Im ¢, ;. Then we have exact sequences
0—->K,—~C,—~B, ,—0
0—B;,— K,— H{C)— 0.

Now By=C,€9(4) and C,€9XA4) so K, €Y(4) by Bass [2] p. 122,
Proposition 6.3. Since H,(C) € 9((A4) we also get B, € 9((4). By induction all
B, K; € 9(A4). We get induced maps

0—-K,—~C,—~B, ;,—0 0-—>B;~—~K,—~H(C)—0
Lo 5 [hes i Lo |Eo
0—-K,—~C,—~ B, {—0, 0—B,—~K,— H/(C)—0.

Using 5.5 several times and taking alternating products all A,(g;) and A,(h;) cancel
and we get the wanted formula for A,(f).
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Remark 5.18. The condition H(C) € 9((4) is satisfied if 4 is a regular

noetherian ring.
Cororrary 5.19. If f:C—C and ¢:C—C are chain homotopic maps of

complexes then A(f) = A(g).
ProposiTiON 5.20. Let f: C — C be a chain map as above. Then

=3 1y

TTé 4(f)CY and use 5.7.

L4
- tlz(f)— Ei At(f)

Proof. Take the logarithmic derivative of A,(f
Given f M->M and ¢:N-—>N with M, N €A).

Assume that Tor, (M, Ny € H(4) for all i > 0. Then
A(f) = Alg) = A (Tors (f, 9))

@, Tor; (M, N) and Tor, (f, g) is the induced graded map

ProrosiTron 5.21.

where Tor, (M, N) =

Proof. Let
0= (P fu) = .. > (Po.fo) >~ (M, f)—0
and
0= (@ ga) > .. = (@0, 90) >~ (N, 9) >0
be resolutions in End 9(4). Then

0

— U }-,(fi)(—l)i and /’{t(g) —= ]—I- l‘(gj)(—l)f‘
Taking the tensor product of the complexes we get a complex C = (Cp)ity and

a chain map % = (h,)yt": C — C where

Ok:@Pi®Qj and hk:@(ﬁ@g])
ihj<k itj=k
Then
HC) = Tor, (M, N) and Hyh) = Tor,(f,g).
Now
M) =2 & (i@g) =TI I;L (fi ®9,)—+_Tl (f:) * 2(9;)
itj=k i+j=k

l-f—_]~

and

]+

00 = T TT A0 » e =

0

-
i

(f *TU ) = A(f) * Adg)-

||_|5
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But A(h) = AF(H (k) = A¥ (Tor, (f, g)) by 5.17 and we are done.

Remark 5.22. If M, N € 9(A) implies M QN € 9 (A4) for all M, N then
also Tor, (M, N) € 9((4) for ¢ > 1. This is the case if A is a regular noetherian
ring.

To prove this we use induction on dh M. If dh M = 0, ie. M is projective,
we have nothing to prove. Assume that dh M = m > 1. Choose an exact sequence

0O—-~K—>F-—->M-—+0

where F is free. Then dh K =m — 1 and K € 9((4) since F and M are
in 9((4). The long exact sequence is

...—>Tor, (F, N) — Tor, (M, N) — Tor, (K, N) — Tory (F, N) — Tor, (M, N) —
N N
—~KQN—-FQRQUqN—->M R N—0.

By assumption K @ N, F @ N, M ® N € 9{(4) and thus Tor; (M, N) € V(4)
by Bass [2] p. 122. Furthermore by the induction hypothesis Tor, (K, N) € 9((4)
and hence Tor, (M, N) ~ Tor, (K, N) € 9(4). Similarly Tor, (M, N) € 9((4) for
7> 2,

Example 5.23 (M. Schlessinger). If M, N € 9((4) then M ®,N may not be
in 9((4). Let A be the local ring at the singular point (0, 0) of the curve
2% — 42 =0. Then A4/(x) and A/(y) have homological dimension one (since
0>A4A52>A4-—-A)/x)—0 is exact) but AJ(z) Q@ A/(y) =~ A/(z,y) = k = the
residue field which has infinite homological dimension (as 4-module) since 4 is
not regular.

CororrarY 5.24. If M or N is projective and both are in H(A) then

(it is not more general to assume M only flat since M flat and M € Y((4) implies
M is projective).

Example 5.25. Let X be a polyhedron (or any topological space such that

H, (X, Z) is finitely generated) and g¢g: X — X a continuous map. Then there is
an induced homomorphism of graded abelian groups

d
H(X)= @ H(X,Z) with d = dim X.
0
Then (since Q is Z-flat)

d .
2(94) = 2 © Lg) = Uo- AH (g5
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is exactly Eg(— t) where Eg is the »false» ¢-function of ¢ (see Smale [11] p. 768).
It would be interesting to consider (co-)homology with other coefficients. The
Lefschetz number is just y(g,) = the coefficient of ¢ in A(g,).

PROPOSITION 5.26. Assume that A = T [:™' A; is a direct product of rings. Then
l=e ...+ e where e,...,e, are orthogonal idempotents and A; =~ Ae,.
Given an A-linear map f: M —>M with M in 9((A) then M = @ M; where
M, =eM can be considered as an A;-module in (A). Let f: M;,— M, be
the restriction of f to M, Then

m(2(f)) = A f)

where 7z A — A; is the canonical projection.
Proof. Since A4; is a direct summand of A4 it follows that A4; is a projective
(and hence flat) A-module. Then
M®,4,€94) and w(X(f)) = K(f @ 14)
by 5.12. Finally M ®,4;>~¢M = M; as A;modules and f® 1, may be
identified with f: M, — M,.

COROLLARY 5.27. Let A be a noetherian regular ring. Then A = [} A; where
the A;:s are integral domains. Let M be a finitely generated A-module and f: M — M
as in 5.26. Then

w(Af)) = K(f) = A(f: ® 1k)
where K, is the quotient field of A,.

Proof. First M is in 9Y((A) since A is noetherian and gl. dim 4 < . The
direct product decomposition of the ring is Kaplansky [7], p. 119, Theorem 168.

6. K-theory of endomorphisms

In this section we make an attempt to classify the endomorphisms of finitely
generated projective A4-modulus (for notation see 5.1).
We have two ringhomomorphisms

K, (End 9(4)) — K,(4)
defined by
(P, f)r=P and Ky A4)-—> K, (End P(4))

defined by P+ (P, 0).
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Since the latter map is the right inverse of the first one we get a split exact
sequence

0 — Ko(4) — K, (End P(4)) — K, (End P(4)) — 0
(compare Bass [2], p. 652) which defines IZO (End 9(4)). Hence
K, (End P(4)) ~ K,(4)x K, (End P(4))

and we can consider 1, defined on Izo (End P(4)) since A,(0) = 1.
PropoSITION 6.1. Let A = [ [; 4;. Then K, (End P(4)) =~ TT; K, (End P (4,)).

Proof. We have 1l =1¢, + ...+ ¢ where e,...e, are orthogonal idem-
potents (see 5.26). Given f: PP with P € P(4) we get f:P,— P, where
P, = e,P € P(A,). Define

s

¥: K, (End P(4)) — [T K, (End P(4,))

i=1
by
1= (/i
Conversely given ([g,]); in [ [i_. K, (End 9( )) where g¢;:P,— P, with

P, € P(4,), define [g] € K, (End P(4)) by g(a) = g1 %) = 23 g:x)
if t=>2€P=@®P, with 2,€P, for ¢ =1,2,...,s
1 1

Then P = @; P, € P(4) and ¢g: P — P is A-linear.

The maps ¥ and (f¢g]);+[g] are easily seen to be each others inverses.
Furthermore ¥ is a ringhomomorphism since f; can be identified with f& 1,
and 4, is A-flat.

Definition 6.2. We define the subring of »rational functions»

~ {1+a]t—}—...+amt”"
o= 1 +bt+ ... Lot

of A (where Ah;) has the induced operations).

a;,b; € A}

_ ProrosiTION 6.3. ] I~{0 (End 9(4)) >4 isa A-ringhomomorphism with image
A,.

Proof. This follows from the definitions made after 3.3.

THEOREM 6.4. fIO 15 o direct summand (as an abelian group) of IN(O (End 2(A4)).
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Proof. We have to construct a right inverse o of
) K, (End P(4)) — 4,

For this purpose it is convenient to view an endomorphism f: P— P as an
A[t]-module with the action defined by ¢-z = f(x) for x € P. Maps between
endomorphisms correspond exactly to A[¢]-linear maps. Let S be the multiplicative
set of all monic polynomials in A[t]. Then S-P =0, ie. P is killed by some
monic polynomial, which follows from the Cayley-Hamilton theorem. Summing up,
put Ty(A[t], S) = K, {P € Mod A[¢]; P is projective as an 4-module and S71P = 0}
then

Ty(A[t], 8) = K, (End P(4)).

Given g(f) = 1+ ait + ... 4 at" in fIO define o: jio — To(A[t], S)
by o(g(t)) = A[t]/§(t) where g(t) ="~
Over in K, (End ¥(4)) this means

0 0 0 0 +4a,
1 0 0 0 +a,,
olgtH =10 1 O 0 Ja,.,
00 01 0 —a,
00001 g

and o(g(f)) is an endomorphism of a free A4-module.
Then ¢ is additive, i.e. o(g()R(t)) = o(g(t)) -+ o(h(?)).
Indeed we have an exact sequence in Mod A[f]
0 — A[11/((6) ~ ALY GORE) — ALY (R(E) — 0
since g¢(f) and l;(t) are non-zero-divisors in A[f]. Since
Aolgt) = 14 ag + ... + at = g(t)

we have 4,00 =1d as we wanted.

CoROLLARY 6.5. Let A be a regular noetherian ring. Then jo 18 a direct summand
(as abelian group) of K,(End P(A)) = K, (End FN(A)) (here IN(A) is the category
of finitely generated A-modules).

Proof. If A is regular noetherian then every module has finite homological
dimension and M(A) = H(A). By 5.27 A = | [}4; where the A;s are integral
domains. The rest follows from A4, =~ WiAio, 5.27, 6.1 and 6.4.

THEOREM 6.6. The map A IEO (End P(4)) —>fIO 18 @ ring isomorphism in the
Jollowing cases
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(i) 4 ¢ a PID.
(ii) 4 = B[X] where B is a PID, eg. A = K[X, Y] where K 1is a field.
(iii) A s a noetherian regular local ring of dimension << 2.

Proof. Using the notation in the proof of 6.4 and Bass [2] p. 492 we have
K, (End P(4) =~ K, (End 9((4)) = K, (End M(A)) =~ G(4[#], S) =

K, of the category of A[t]-modules killed by some monic polynomial.
Now A[t] is noetherian so given any M as above we have a filtration in Mod A[#}
M=M>5M,D...DOM,=0
such that
Mi/Mi+1 = A[t]/g:

where the E:s are prime ideals in A[{]. Since M is killed by a moniec polynomial
so is M; and A[f]/p; which means that p: contains a monic polynomial. Let
pi=p:NA and put p; = (p,,f) where f, is a monic polynomial in P; of

minimal degree. Now we claim that p; is a prime ideal in A[¢].
We have

ATtlfp; = AL (0, £) =2 (A/PIIEY/(S)
where fT, is the residue of f; in A/p{t]. Furthermore f: is irreducible in A4/p;[f]
since f, = g¢h; 1mphes fi= g + ¢; with ¢ € € p:4[t]. We can choose g and
h: monic and g € p; since fi and ¢; are in p, Hence g; or A; is in p since

p, is prime. But f; has minimal degree so ¢; = 1 or h; = 1 and we have shown
that p; is prime in A[t]. Evidently p; € P, and p/NA =7p, N4 so p, =P,
by Serre [10] p. IIL. 17, Lemma 3.

Hence Gy(A[t], S) is generated by all A[t]/(p,f) where p € Spec A and f
is a monic polynomial such that f is irreducible in A/p[t]. We will show that
only the case p = 0 is interesting. We treat the three cases separately.

(i) Assume that 4 isa PIDand 0 5= p = pA4. Then there is an exact sequence

»
0 — A[t]/(f) — A[2/(f) — A8/ (b, f) = O
This shows that [A[t]/(b,f)]1 =0 if p == 0.

(i) If A == B[X] where B is a PID then a prime ideal p £ 0 in 4 is
either principal or of the form p = (p, g) where p € B is a prime element
in B and g € B[X] is such that § € B/pB[X] is irreducible.

The case p principal is treated as in (i) and in the second case

J.
0 — A[t}/(», f) — A[t)/(p, f) — A[t)/(p, 9. f) = O

is exact.
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Hence [A[t}/(p, )] = O.

(iii) Let now A be a noetherian regular local ring of dimension < 2. If
dim A = 0 or 1 then A4 is a field or a PID. Assume therefore dim 4 = 2.
Let p # 0 be a prime ideal in 4. If ht p = 1 then p is principal since
A is a UFD (Bourbaki [5], p. 33) and we are back in case (i). If ht p = 2
then p is the maximal ideal in 4 and p = (%, x,) where x;, 7, is an
A-sequence. Hence the map

Fy.
Al(wy) —> A=)

is injective. Then

0 — A[f)/(ey, f) ~Z> A[)(2p, f) — ALY (21, s f) — O
is exact and

[A[t]/(p:f)] = 0.

Hence in all three cases Go(A[t], 8) is generated by all A[t]/(f) where f is
an irreducible monic polynomial. Recall the maps in the proof of 6.4

A -~
GO(A[t]: S) *?+ Ao

where we saw A o0 =id. The subgroup Ky4)~Z of K,(EndP4))=
Go(A[t], S) has the generator A[t]/(). It follows that oo 2, = id on the rest of

the generators A[f]/(f) and hence f(o (End €°(4)) >~ A, which ends the proof.

We now turn to the study of the K,-groups of some full subcategories of
End (4). The first one is (see Bass [2] p. 652)

AN P(A) = {f € End P(4); f is nilpotent}

Definition 6.7. Let N(4), denote the subring of A:, consisting of all »rational
functions»

14 at+ ...+ a, ™
148¢4...+ bt

where all @;,b; are nilpotent. Since (1 -0+ ...+ b, in this case is a
polynomial we have

N(A)y = {1 + ¢ + ... 4 et c; € N(4)}.

~

ProrosITION 6.8. A: K, ("M P(A)) — N(4), s a surjective ringhomomorphism.
Furthermore N(A), is a direct summand (as abelian group) of K ( A" P(A)).
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Proof. We only have to check that all the a;s in A(f) =1+ af + ...+ at"
are nilpotent if f is nilpotent. This was done in 1.7 and 1.8. The last part follows
from 6.4.

Remark 6.9. The subcategory of 7.7 P(4) consisting of all zero maps 0: P — P
can be identified with P(A4). It follows that K (. 1.7 P(A4)) contains K (P(4)) =
Ky(A) as a direct summand (see Bass [2] p. 652)

Ky (ANl P(A)) = Ky(4) @ Nil (4).
Since 2,(0) =1 we have K (A4) C Ker 4, so the proposition shows that Nil (4)

contains N(4), as a direct summand.

Prorosirion 6.10. The map

YV Ky(A)—{D> e(1 +8)"; n, €Z and ey,...,e, areorthogonal idempotents with sum 1}

1

AR

defined by [P]+> A(1p) is a split surjective ring homomorphism. The right hand side
considered as a subring of A4 is isomorphic to the ring of all continuous functions
from Spec A to Z (where Z has the discrete topology). The kernel of ¥ is equal
to the Jacobson radical of Ky(A), which is also equal to N(K,(4)).

Proof. Given P € P(A) with rkP =n let
= {p €Spec 4; rkP, = j} (compare the proof of 2.2.)

Let ey e, ...,¢, be the corresponding indempotents in A. Then

(1p) 2 e(1 4 t)° defines Y.

To construct a right inverse @ of ¥ consider the map

k

Set+0n5| 0 4r — | 0 47| —P1-10)

where e;,...,¢, are orthogonal idempotents with sum one, =;€Z, and
A; = Ade, € P(4). One verifies that © is a ring homomorphism. We want
Ao® =id.
First

4 y {Ap if pe€X,

(de)y = Ayeyy = 0 otherwise,
where X, is the closed and open subset of Spec A corresponding to ¢, Hence
rk P = mn; and (A(1p)), = (1 )% for p € X,.
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But

=

(2 el + 0%, =14n% for p€X,

i=1

Furthermore

(D el + 0™ " =2 el +8)¥
nj<0 "j<0

and we have shown that 1,060 = id.
The map

k

S el + o) o> f

1

where f(z) = n; if z € X;, gives the isomorphism between the ring on the right
hand side above and the ring of all continuous functions f: Spec 4 — Z.
The composite &o ¥ is precisely the rank map rk. It follows that

Ker ¥ = Ker (rk) = the Jacobson radical of Ky(4)

(for the last statements see Swan [12] p. 169).

CorROLLARY 6.11. Let A be noetherian. Then A has o finite number, say k, of
irreducible idempotents and Ky (A) contains Z* as o direct summand.

By the previous results the study of the structure of fi’o seems interesting. In

case A contains the rational numbers 4, is related to sequences of traces of the
powers of a matrix (see 6.13).

Definition 6.12. A sequence (b;, by, ...) of elements in A is called a frace
sequence if there is some f: P — P with P € P(4) such that b, = Tr (f%) for
all ¢>1.

One may of course assume that P is free.

Prorostrion 6.13. Assume that A 2 Q.

(1) Then there is a ringisomorphism ¢: A - TTA where the latter ring can be
identified with all sequences under componentwise addition and multiplication.

(i) Ay 4s isomorphic to the ring of all sequences which are differences of trace
sequences.

Proof. (i) Define ¢ as the composition

ot 4+ 2a58% - . ..
=
1+ agf + a2 + . ..

The inverse is given by

1+ap-+... = bt — bgt®. ..+ (by, by, by, .. )
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t
(b, 65 .. .) > exp [ (b, — bys + 8,8 . . )
0
k1

E+-1°

Clearly ¢ is additive (essentially it is the logarithmic derivative). To see that
¢ is multiplicative one uses the same technique as in the proof of 3.4, the key fact
being Tr (f @ g) = Tr (/) T (g).

(ii) The restriction of ¢ to A, will do. By the exponential trace formula

12 . . 3
where f o is A-linear and f 08 =

(lz(f )) . . . .
¢ = (b;) — (¢;) where b; = Trf* and ¢; = Trg'.

A(9)
Remark 6.14. If A is a finite field with ¢ elements then ¢ in (i) is neither
injective nor surjective. Indeed A(f?) = A(f) for » =1,2,... In particular

by = b; and hence every ()" in the image of ¢ must have this property.
Definition 6.15. The Witt ring W(A) of A consists of all sequences (x)°
where z; € 4 (Witt vectors) with addition and multiplication defined such that
for every n >1
(@) = z dayl”

din

is a ring homomorphism W(4)—> 4. The right hand side b, = >, daj" is

called the n:th ghost component of (z,)7°. We have a ring isomorphism W{4) - 4
defined by

Many of the previous results can be formulated in the Witt ring instead of A.
E.g. 6.6. becomes

Prorosirion 6.16. If 4 is a PID (A = B[X] where B is a PID)or 4 is
a regular local ring of dimension <2 then K HEnd P(A4)) is isomorphic with
the subring Wy(A) of W(A) consisting of all Wité vectors having differences of trace
sequences as ghost components. 5

Thus we have four rings: K, (End (4)), 4,, the ring of differences of trace
sequences and Wy(4). They are all isomorphicif A4 is a field of characteristic zero.
In case A is also algebraically closed they are also isomorphic to the group ring
Z[A*] where A* is the multiplicative group of non-zero elements in A. The

isomorphism ANO——>Z[A*] is given by
rr (I 4 A2y 2 wid;

and is actually defined for any algebraically closed field.
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Assume now that f: P— P is nilpotent, say f™*'= 0 and 7kP = n. Consider
the image (z;);7 in W(d4) of A(f)=1+ai¢+ ...+ a,t". Since =z, is a poly-
nomial of weight £ in ay, a,, ..., a, we find (using 1.7) that all x; are nilpotent
and z, = 0 if k> mn. We can now reformulate 6.8 as follows.

PrOPOSITION 6.17. There is a surjective ring homomorphism from K, (4 P(A))

onto the ring of Witt vectors (x;)7 where almost all x, = 0 and all x; are nilpotent.
The latter is o direct summand (as abelian group) of Nil (4).

ProrositioN 6.18. The following are equivalent for a sequence (by, by, ...) tn A
(i) (By, by, . ..) 45 a trace sequence,

(il) there exist a,, &y, ...,a, in A such that
bl = Oy
by, = a;b; — 2a,
by = aby — ab; + 3a, (Newton’s formulas)

b,=a;b, { — ab, -+ ...+ (— 1)"a"_1b1 + (— 1)n+1nan

and
bypi— b, i 14 ...+ (= Db, =0 for all i >1,
(iii) there exists an integral extension A' 2 A and Ay 2y, ..., A, €A, zeroes

of & monic polynomial in Alt] of degree n, such that
b, =>4 forall 1>1,
y=1
(iv) (if 429Q)
5% )
exp 21’ ; (— ¥
28 @ polynomial.

Proof. (i) = (ii): Assume that b, = Tr (f) where f: P— P with P € P(4)
and rkP = n. Assume that A,(f) =1+ ai¢ + ...+ a,". Comparing the coeffi-
cients on both sides in the exponential trace formula we get Newton’s formulas.

(ii) = (i): Assume that (b;, b,, ...) satisfies the condition (ii). Let f: A" — 4"
be such that A(f) =1+ a;f + ...+ a,t". The exponential trace formula then
gives b, = Tr (f7).

(i) = (ili): Assume that A(f) =14 a;t + ...+ a,t* and b, = Tr (f’). Since
t"21,(f) is a monie polynomial there exists an integral extension 4’ of A such that
t"2,(f) splits into linear factors in A’[f] (Bass [2], p. 118, Lemma 5.10). It follows
that

A(f) H|| 4+ Af) with 4, €4’
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Taking logarithmic derivatives on both sides and comparing with the exponential
trace formula gives b, = > Al

(iii) = (ii): Assume that A,,..., A, are zeroes of " — a)t" '+ ... - (— 1)"a,
with @,,...,a, in A. Then b,=>7 % and a,...,a, satisfy Newton’s
formulas in (ii). In particular we have b, € 4.

(i) = (iv): see 1.10.

(iv) = (ii): Taking logarithmic derivatives of

n

exp(—zlf (—t)‘) =14at+...+at"
and comparing coefficients we get (ii).

Example 6.19. The Fibonacci sequence (1, 3, 4, 7, 11, 18, . . .) is a trace sequence
in Z. We have b,,, —b,,;, —0,=0, so a,=1 and a, = — 1. The initial
conditions b; = a; =1 and b, = a,b; — 20, = 3 are satisfied. We get A(f) =
1+¢t— ¢ and the corresponding matrix

01
7=(05)
ProposiTiON 6.20. If A is a finite ring then o trace sequence is periodic. If the

trace sequence comes from fi: P -~ P with tkP = n then the period is at most k™ — 1
where k 1is the number of elements in A.

Proof. Assume that &, = Tr(f) with A(f)=1-+af+ ...+ at" Then
bppi=ab, ;g —ad, ; o+ ...+ ab for ¢ >1 by 6.14 (ii).

Hence an element in the trace sequence is completely determined by the =
preceding elements. There are only k" choices of these preceding » elements. Thus
among k" -+ n consecutive b;s there must be two identical sets of n consecutive
b:s. Thus the period is at most £k — 1.

Remark 6.21. The maximal period £* — 1 may occur as the Fibonacci sequence
(mod 2) shows (1,1,0,1,1,0,...) with k=2 and = = 2. (See 6.19.)

Remark 6.22. The sequence of maps f, 2 f2, ... is also periodic if A4 is finite.
If A has k elements and f is represented by an % X n-matrix then two maps in

n? o s . o g
the sequence f,f2,...,f* *' must coincide since there are at most k™ distinct
n X n-matrices.

ProposiTION 6.23. Let A be a finite field with q elements. Assume that
b, = Tr (fY) with A(f) =14 ait + ...+ @ irreducible in A[t]. Then the period
of the trace sequence (by, by, ...) divides ¢" — 1.

Proof. Let A(f) = [, (1 4~ Af) be the factorization of A(f) with 1, €K

v

where K is the splitting field of A(f) over A.
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y=1 "p*

in A[2,] and hence in K. It follows that b, » ;= b, for all ¢ > 1. Thus the
period of (b, by, . ..} divides ¢" — 1.

Then b, = >r A Now A[A] is a field with ¢ elements and 2 ' =1

CoroLLARY 6.24. If A(f) is a product of irreducible polynomials of degrees
Ty, Mgy « o 5 Wy Tespectively then the period of the trace sequence (Tt (f))y divides
the le.m. of g™ — 1,¢™ —1,...,q" — 1.

Remark 6.25. It seems to be quite hard to predict the period from the characteristic
polynomial 4,(f). The following results are not too useful for practical computations.

ProPOSITION 6.26. Given b; = Tr (f7).

(i) Let q € A[t] be any polynomial such that q(f) =0 (e.g. q = t"A_y(f) or
g = a minimal polynomial of f). If qjt" — 1 then (b,)7 is periodic and the
period s divides .

(i) Conversely assume that ()7 s periodic with period s. Assume further
that A s a UFD and A(f) is irreducible of degree > 1. Then

Ayl — 1.

Proof. (i) We have ¢ — 1 = ¢q(t)h(t) for some h in A[t]. Since ¢(f) =0 we
get ff=1 so 7" =f for all v >1. It follows b, ,=2>b, and s|r.
(ii)) The exponential trace formula gives

d
70 M) = Mo — Bk B2 ) = (B — byt + e — (= IBE TN — (- £y~
since b; , = b,

Hence A4(f)|(1 — (— ) - % A(f) and A()](1 — (—£)°) which implies
2Dl — 1),

COoROLLARY 6.27. Assume that A isa UF D and that A(f) is irreducible. Then
(0.7 8 periodic if and only if

"2 ()" — 1

Jor some v > 1 and the period s is the smallest r with this property.

Remark 6.28. If A(f) is not irreducible but the product A(f) = Mk, ...k

where hy, ...,k are irreducible of degrees =, ...,n; respectively, then the
period is the Le.m. of s, 8,,...,s, where s; is the smallest integer > 0 such
that

£h(— 18t — 1.
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Example 6.29. Let 4 = Z/(13) and

_-0 O

0 0 1
f={1 0 o0
01 1

Then A(f)=14+t+&=(1— 2t)(1 + 3t — 6:2) where 1+ 3t— 62 is

irreducible. We get

B2_(f) = (6 + 2)( — 3 + 6)

Now ¢ 4 2]t — 1 and 1* — 3¢t 4~ 6[¢1% — 1 since the splitting field of #* — 3¢ + 6
has 132 = 169 elements.

Thus 6[s and s|168 where s is the period of Tr (f') = (1,1, 4, 5, 6, 10, . . .).

By actually computing the period one finds s = 168 and hence 168 is the smallest
integer r > 0 such that # — 3¢t 4 6)t" — 1.

Added in proof: In a paper »The Grothendieck ring of the category of endo-

morphisms», to appear in J. Algebra, the author proves Theorem 6.6 for any
commutative ring.
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