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Introduction 

The  origin of  this paper  is a mispr int  (?) in Bourbak i  ([4], p. 156, Exerc ise  13 d). 
There  it  is s t a ted  t ha t  i f  f is a 2 • 2-matr ix  wi th  entries in a c o m m u t a t i v e  ring 
and f 2 =  0 t hen  (Tr f )4  = 0 and  4 is the  smallest  integer  wi th  this p roper ty .  
Using the  Cay ley -Hami l ton  theorem we get  f2 _ af ~- b l = 0 where  a = T r f  
and  b = d e t f .  Not ing  t h a t  f 2 =  0 and taking t races  we g e t a - T r f = a  2 =  2b. 
Mult iplying the  f irs t  equa t ion  by  f gives bf = 0 which implies b �9 Tr  f = ba = O. 
Hence  a a = 2ab = 0 so 3 and not  4 is the  smallest integer  above.  Expe r imen t ing  
wi th  small m and  n one soon makes  the  conjecture:  I f  f is an n •  
wi th  f~+i  = 0 t hen  ( T r f )  m"+l = 0. This is p roved  in a somewhat  more  general  
set t ing in 1.7 using ex te r ior  algebra. 

I n  Sect ion 1 the  character is t ic  polynomia l  2t(f) is def ined for an  endomorph ism 
f :  P - - ~  P where  P is a f in i te ly  genera ted  projec t ive  A-module  (A is a com- 
mu ta t i ve  ring wi th  1). I f  P is free then  2t(f) = det  (1 ~- tf). The  exponent ia l  
t race  formula  (in case A contains Q) 

~ Tr (f~) ) 
A,(f) = exp - -  ~ i ( - -  t)~ 

connects  At(f) wi th  the  t races  of  the  powers of  f .  
Various computa t ions  of  2t(f) are made  in Sect ion 2. B y  the  isomorphism 

EndA (P) - ->P* @ A P  where  P *  = t t o m  A (P, A) ev e ry  f:  P---->P corresponds to  
a tensor  ~ x* @ x, wi th  x* e P* ,  x~ C P .  Le t  M(f )  be the  m a t r i x  wi th  entries 
aq = <x*, xj>. Then  At(f) = det  (1 -~ tM(f)).  E v e n  the  computa t ion  of  ~t(1p) 
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where 1p is the identity map is not quite trivial. The result is 2t(lp) = ~ ]  el(1 d- t) ~ 

where the e~:s are the idempotents given by  Ann A~P = (eo d- el -4- �9 �9 �9 d- e~_l)A.  

In  Section 3 the behaviour of 2,(f) under change of rings and taking duals is 
studied. Some at tempts  are made to connect the polynomials 2 , ( f ) ,  ~t(g) and 

2,(f | g). In  the multiplicative group A = {1 ~- alt d- a2t 2 @ �9 �9 .; a, e A }  of 
formal power series with constant term 1 one can define a .-multiplication such 

that  2,(f @ g) = 2,(f) �9 2t(g ). Then A becomes a ring (with ordinary multiplication 
as addition). 

A formula for computing 2,(f) in terms of the minimal polynomial of f and 
some of the '  Tr (f~):s is given in Section 4. 

In  Section 5 the definition of 2,(f) is extended to f: 21I--~ M where M is 
an A-module having a finite resolution of finitely generated projective modules. 
Some of the results in Section 1 can be generalized to this case. Furthermore 2~(f) 
is defined for f = chain map of complexes (or map of graded A-modules). 

Section 6 contains an a t tempt  to classify all endomorphism of finitely generated 
projective A-modules, i.e. to compute the K-group K 0 (End ~(A)).  The charac- 
teristic polynomial 2,(f) is sometimes a good enough invariant. This is the case 
if A i s a P I D o r  A = K [ X ,  Y] where K i s a f i e l d o r  A is a regular local ring 
of dimension at most two. Then K o (End ??(A)) is isomorphic (as a ring) with the 
direct product of K o ( A  ) = Z and the ring of all ))rational functions)) 

1 + a l t @ . . . ~ - a m  t'~ 
1 @ blt d- . . .  -~ b~t ~ 

(under multiplication and ,-multiplication). This generalizes a result by Kelley- 
Spanier ([8] p. 327) for A = field. The ring of ))rational functions)) is also isomorphic 
with a subring of the Wit t  ring W ( A )  of A. Finally ))trace sequences~), (Tr (f~)~ 
are studied. 

Finally I would like to thank T. Farrell, G. Hochschild, M. Schlessinger and 
M. Sweedler for many valuable discussions about  this paper and mathematics in 
general. 

1. The characteristic polynomial 

First we fix some notation. A will always denote a commutative ring with 
uni ty element 1. Spec A is the set of all prime ideals ~ of A. I f  x C M where 
M is an A-module we denote by  x~ the image of x under the localization 
m a p M - ~ M ~ = M @ A A ~  for all p C S p e c A .  

The category of all finitely generated projective A-modules will be denoted 
by  ~(A).  I f  P C ~(A)  then Po is a free Ao-module of finite rank --~ rk~P. We 
define rkP  = max~ rk~P. This integer is equal to the minimal nmnber of generators 
of P .  I f  r k ~ P = r k P  for all p E S p e e A  we say that  P has cons tant  rank .  Let 
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P * =  HOmA (P ,A)  be the dual of P.  Then for P E ~(A)  there are natural 
isomorphisms of A-modules 

EndA (P*) -+ HomA (P* | P,  A) --~ HomA (Enda P,  A) (*) 

Let  Tr be the image of 1~, under the composed map. We call Tr (f) the trace 
of f: P -+ P.  This coincides with Bourbakis definition ([3] p. 112). 

Definition 1.1: 

L(f)  = ~ Tr (A~f)t' 
i = 0  

Here t is an indeterminate, f : P - + P  an endomorphism with P E ~ ( A ) ,  
A~: A~P -+ A~P the induced endomorphism of the i:th exterior power of P and 
n = rkP.  Observe that  A~P E ~ ( A )  ([4], p. 142). 

Remark 1.2. I f  P is free thell Tr (f) is the usual trace of f and L(f) 
det ( 1 +  tf) where 1 = identity of the free A[t]-module P @a A[t]. This is a well 
known formula ([9] p. 436). 

PROPOSITION 1.3. Let f ,  g: P - +  P with 
Then 

(i) 
(ii) 

(iii) 
(iv) 

P C ~ ( A )  and p E S p e c A  be given. 

(Trf)o -- Trf~ 
(2,(f)~ = 2,(L ), i.e. i f  2,(f) = 1 4- alt @ . . .  @ a,,t" then 
;t,(f) = 1 + alot + . . .  + a.~t ~ 
L ( f  o g) = 2,(9 of)  
L(h o f o h -1) = L ( f )  i f  h: P --~ Q ks an isomorphism. 

Proof. 
(i) Localization commutes with everything in (,) since all modules involved 

(P*, End A (P*) etc.) are in ~(A)  ([4], p. 98). 
(ii) Localization commutes with exterior powers, (A~)~ = A~f~, so (ii) follows 

from (i). 
(iii) We have T r ( f o g ) = T r ( g o f )  ([3J, p. 112) and A ~ ( f o g ) = A ~ o A ~ g .  
(iv) By (ii) it is sufficient to prove (iv) for P free (and hence Q is free), in 

which ease it is well known. 

CAYLEY-HAMILTON THEOREM 1.4. L e t  ) , , (f)  = 1 + al t  + . . .  + a~t n and define 

qf(t) = t" - -  alt ~-~ + . . .  + ( - -  1)'%. Then qf(f)  = O. 

Proof. I t  suffices to show 

n _ _  a ~ n - 1  ~ �9 ~ -  0 (qf(f))~ = f~ l~j~ + . . .  + (--  1) a.,  1~ 

for all p E Spec A. But  this follows from the ordinary Cayley-Hamilton theorem 
jor  f,: P ~ - + P ~  with P~ free since 
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t "~ - -  alot ~- i  JF . . .  d- ( - -  1)~a~ ---- t'-'i(%~)qf~(t). 

BI~OYOSITION 1.5. .Let  

be a commutat ive  d iagram wi th  exact row and  all 

d d 

( - -  1)i T r  f~ = 0 and ]'-[ 
0 0 

0 - - + P a - + . . .  - + P i  --+Po - ~  0 

0 - -> P d  - -> �9 �9 �9 - - > P 1  - - > P o  --> 0 

P~ r ~ ( A ) .  T h e n  

~ , ( L ) ( - ~ ) "  = i 

Proof .  Since localizat ion is an exac t  func to r  i t  is (using 1.3 (i), (ii)) suff icient  
to p rove  the  proposi t ion when  all P~ are free. B u t  t h en  it  is well known at  least  
for  d ~-- 2 (see [9], p. 402) and the  general  case follows b y  spli t t ing up  the  long 
exac t  sequence into shor t  ones. 

COROLLAR~ 1.6. 

T r ( f @ g ) : T r f + T r g  and  ~ ( f  O g) ~-- ~,(f)  " ~(g).  

T H ~ O R ~  1.7. JLet f:  P - ->  P be given wi th  

P e ~ (A) ,  r k P  = n and  ),,(f) = 1 + a~t + . . .  + ant ~. 

(i) A s s u m e  that f is n i lpotent  wi th  f ~ + l =  0. T h e n  a~'a[~. . ,  a2, = O i f  the 
weight  vl + 2v: -~- . . . + nv~ ~ m n .  T h e  constant  m n  is  best possible.  

(ii) Conversely  a s sume  that a~l'a~ " . . . a: ~ = 0 when  rl d- 2v: -~- . . . d- n %  > k. 

T h e n  f~+k = O. The  integer n + k is  best possible.  

Proof .  (i) After  localizing and  using 1.3 (ii) we m a y  assume t h a t  P is free of  
r an k  n (it is suff icient  to  consider the  case of  maximal  rank).  Le t  P have  basis 
el, e2 . . . .  , en. Then  A n P  is free wi th  basis el A e~ A . . .  A e,,. Now we claim t h a t  

a r e l A e ~ A . . . A e =  ~ e l A . . . A f % A . . . A f % A . . . A f e i  A . . . A e n  (**) 
i l  < i~ < : . . .  < i r 

B y  def ini t ion we have  ar = Tr  (Art).  L e t  ell/~ el2/~ . . . A eir be a f ixed  basis 
e lement  of  A r P  (with i l < i 2 < . . . < i r ) .  Then  

A r f ( e ~ A . . . A e i , )  = f % A . . . A f e ~ r =  Ci,, .... # % A . . . A e # +  o ther  terms.  

Hence  

a~ ---- Tr  (A ' f )  = ~ C,1 , .... ,, 
i l  < i~ ~ . . .  ~ i r 
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Expanding the right hand side in (**) one easily gets 

( ~ C,,, .... # / e l A e 2 A . . . A e ~  
i l  < i~ < : : " "  < i r  ] 

~nd the claim is proved. 
Using (**) several times we get 

v I v~ . . . = al  a2 �9 �9 �9 a~(e l  A e2 A A e~) ~ f ' %  A f ~ %  A . . .  A f ' .e~ 

where the sum is taken over all s ~ , s 2 , . . . , s ~  such tha t  s i W s 2 + . . . + s ~ =  
v~ + 2v~ + . . .  + nv~ which by assumption is larger than ran.  Hence each term 
contains an s~ > m and f f  = 0. Therefore the right hand side is zero and the 
first part  of (i) is proved. 

To see tha t  m n  is best possible let A be the commutative ring generated by 1, 
~1 . . . .  , ~  with the only relations ~ T + I =  a~ +~ . . . . .  a : + l =  0. Let  f be 
the map given by the diagonal matrix 

I 
~ 1 0 ~ 2  

f =  0 

Then f,~+l = 0 and 
all sl ,  82,  . . . .  , 8n 

h + 2v2 + �9 �9 �9 + nv~ < m n  
hence a~ 1 . . . a ~  ~ #  0. 

(ii) Assume tha t  a ~ ' . . . a : ~ = 0  if v l + 2 v 2 + . - - + n v ~ > k .  
Hamilton theorem we have 

= ~ ~2 ~ where the sum runs over 
with S l + S ~ +  . . . .  + s n = v l  + 2v~ + . . .  +nv~.  I f  

f'~ = a l l  ~-1 - -  a 2 f  "-2  + . . .  ~ an l ,  

Multiplying by f and using Cayley-Hamilton again we get 

f,~+l = a~f , , -1  + . . .  i ala,,1. 

Repeating the procedure several times we get 

f" : q,_~+lf n-1 + qr_n+2f  n-2 + . . .  + q,"  1 

where q~ is a polynomial in al . . . .  ,an of weight i. I f  r :  k + n then 
q , : q , - l : q , - ~ + l = O  and we get f ' :  O. 

To show tha t  n + k is best possible let A : Z [ X 1 ,  X 2 . . . , X n ] / I  where 
X1 . . . .  , X~ are indeterminates and I is the ideal generated by all monomiMs 
in X1 . . . . .  X~ of weight k + l .  Put  

$1 s n  then there i s a t e r m  ~1 . . . a n  with all s ~ m  and 

By the Cayley- 
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f =  

0 0 0 0 (-- 1) "-i a n l  
1 0 0 
0 1 0 

0 --  a e 
0 0 0 1 a i / 

where  at is the  residue of  X~. Then  a calculat ion shows t h a t  

2,(f) = 1 + alt -[- . . .  + a.t" 

a n d  t h a t  f,.+k-1 ~ O. 

COROr~LiRV 1.8. f is nilpotent i f  and only i f  all coefficients ai(i ~ 1) of 2,(f) 
are nilpotent. 

PROPOSlTIO~ 1.9. Given f: P --~ P with P C ~ ( A ) .  I f  f| = f @ f @ . . .  | f = 0 
t h e n  i f =  0. 

Proof. Local izing we m a y  assume  t h a t  P is free of  r a n k  n. L e t  (%) be the  
m a t r i x  of  f in some basis  and  I the  ideal in A gene ra t ed  b y  the  coefficients (%). 
T h e  entr ies  of  the  m a t r i x  of  f| are jus t  all possible p roduc t s  of  v of  the  a~j:s. 
Since f| = 0 we get  I"  = 0. The  entr ies  (cij) of the  m a t r i x  of  f f  are cer ta in  
sums  of  p roduc t s  of  v of  the  %.:s. Hence  c ; j 6 I "  and  % = 0  for  all i, j and  

i f = 0 .  

T~EOnnS~ 1.10 (exponent ia l  t race  formula) .  Let f: P - - > P  
P 6 ~ ( A ) .  Then 

d 
- -  t2,(f) -1 ~ 2,(f) = ~ Tr  (f')(-- t)' 

1 

be A-linear with 

Proof. Set t ing  b~ = Tr  ( - -  f)~ and  2,(f) = 1 + alt + . . . -~- ant" we m u s t  p rove  

- -  (a~t + 2a2 t2 -~- . . .  -~ na~t") -- (1 + a~t @- . . .  4- a.t") ~ b~t ~ 
1 

C o m p a r i n g  the  coefficients of  t ~ on b o t h  sides one f inds  b~ = O~(al . . . .  , a~) where  
the  Oi:s are cer ta in  po lynomia l s  wi th  in teger  coefficients.  Local iz ing a t  ~ 6 Spee A 
we have  to  show b~ = Q~(alv . . . .  , a~). Hence  i t  is suff ic ient  to  show the  fo rmula  
when  P is free and  f is a ma t r ix .  Then  b~ = Q~(al, . . . , an) becomes  a po lynomia l  
i d e n t i t y  (over Z) in the  coefficients  of  the  m a t r i x  f .  Therefore  i t  is enough to 
consider  the  case A - -  Z[Xii ,  . . . , X~,] which  is a domain  of charac ter i s t ic  zero. 
L e t  K be the  quo t ien t  f ield of  K and  R the  algebraic  closure of  K .  Over  R 
the  fo rmu la  is easy  to prove .  I f  21 . . . . .  2, are the  e igenvalues  of  f we have  
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2,(f) ---- ]-[]=1 (1 4- ~t).  Taking  the  logar i thmic der ivat ive ,  expanding  2~(1 4- 2~t) -1 
into power series and  using T r  (fl) ~ = ~ = 1  2~ we get  the  desired formula.  

Remark 1.11. I n  the  t heo ry  of  differential  equat ions  there  is a )>eontinuous~> 
analogue of  the  formula  above: L e t  U(t) and  B(t) be n •  wi th  real 
entries, depending on a pa r ame te r  t, sat isfying 

d 
d~ U( t )=  B(t)U(t) and  

Then  

u ( 0 )  = 1. 

t 

det  U(t) = exp f Tr  B(s)ds. 

0 

I t  is well known  t h a t  i f  T r ( f l ) =  0 for i =  1 ,2  . . . . .  n where f is an n X n -  
ma t r ix  over  a f ield of  character is t ic  zero then  f is ni lpotent .  Our  n ex t  resul t  is a 
general izat ion of  this. 

We will call the  ring A torsion-free i f  it  is torsion-free as an  abelian group,  
i.e. n a =  0 wi th  n E Z  and  a C A  implies n = 0  or a = 0 .  

PRO~OSITIO~ 1.12. Assume that A is torsion-free. Let f: P - ~ P  be A-linear 
where P C ~(A)  has rank n. I f  Tr  ( f i ) =  0 for n consecutive i:s then f is 
nilpotent. 

Proof. Assume tha t  Tr  (if) = Tr  (fl+r) __ . . . = Tr  ( i f+"- ' )  = 0. Mult iplying 
Cay ley-Hami l ton  b y  f r  we get  

- -  a r ff+~ alf "+r-1 a2f "§ 4- . . .  ~ nf 

Taking t races  on bo th  sides we get  Tr  (if+r) = 0. Repea t ing  the  procedure  we 
get T r ( f f ) =  0 for all v > r .  P u t  g = f r .  Then  T r ( g ~ ) =  0 for v =  1 ,2  . . . . .  

d 
Using the exponent ia l  t race  formula  for g we f ind  -dr 2,(g) = 0 which implies 

2,(g) = 1 since A has  no torsion. Cay ley -Hami l ton  applied to g gives g n =  0, 
i.e. f n r = O .  

Remark 1.13. The  proposi t ion is t rue  i f  A has no s-torsion for s < rkP .  
Remark 1.14. I f  A is a f ield of  character is t ic  2 then  T r l ~ =  0 for P free of  

r ank  2. 

Remark 1.15. I f  we assume t h a t  A is torsion-free we can give ano ther  p roof  of 
the  fact  t h a t  f| = 0 ~ f n i lpo ten t  (compare 1.9). P u t  b; = T r  (f~). Then  (ff)| = 
( f |  implies Tr ( ( f~) |  ( T r ( f ~ ) ) ~ = b ~ = 0  for i =  1 , 2 , . . . .  Comparing 
coefficients in the  exponent ia l  t race  formula  we get  a 1 = hi, 2a 2 = b~ --  b 2 , . . . .  
Since A has no torsion all a~:s are ni lpotent .  Th en  f is also n i lpo ten t  b y  1.8. 
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2. Some computations 

First a generalization 1.3 (iii): 

PROPOSITION 2.1. Given f: P -+ Q and g: Q --+ P with P, Q 6 ~(A) .  Then 

T r ( f o g ) - - - - T r ( g o f )  and At(f o g) -~ A,(g o f )  

Proof. After localization we may assume tha t  P and Q are flee. The formula 
for the trace is then easily proved and 

Wr A~(f o g) --~ Tr (A~f o A~g) = Tr (A~g o A~f) = Tr A~(g o f )  

finishes the prooL 
We continue with describing a method for computing 2,(f). P denotes always 

module in ~(A) of rank n. 

THEOREhl 2.2. We have EndA (P) ~ P* | P. Let f: P --+ P correspond to 
~=1 xi* @ xl in P* @A P. Let M( f )  be the re•  with entries (xi*, xj} 
at place (i, j). Then 

2,(f) ---- det (1 + tM(f))  

I n  particular the right hand side is independent of the choice of representatives for the 
tensor. The x~:s can be chosen as a minimal generator set of P. 

Proof. First we reduce to the case when P is free. Let p be a prime ideal in A. 
Localizing at p we get a commutative diagram 

% 

P* @A P ~ EndA P 

P~ | ~ ~ EndA~P~ 

where the star in the south west corner means HomA~ (., Av). Hence if f: P -+ P 

corresponds to ~T xi* Q xl then f~: P ,  -+ P~ corresponds to ~T (x~*)~ | x~, and 
by using 1.3 (ii) we may ~ssume tha t  P is free. Let  now Y l , - - - ,  Y~ be a basis 
for P and h I . . . . .  h. a d u a l b a s i s  for P*, i.e. (h~,yj}~--(5fj. Given f : P - + P  
let it correspond to 

| yj) = ( 5 aj,h,) 0 = | Yj 
i , j  j = l  i = l  j = l  

Hence the (j, k):th entry in the matrix is 

in i .e.  
i=1  

n 

i = l  
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Now u: P* | P --> EndA P is given by  x* |  so 
f : u ( ~  ai,h , @ Yi) means f(xk) = ~. ai,<h,, xk>y~ ----- ~ aiky r 

i,i ~,j j 
I t  follows that  f has the matrix (ajk) in the basis Yl . . . .  , y~. Thus the formula 

is true if the x~:s form a basis for P .  
m Let now ~ l x l  | x~ be another representation of f. Assume that  

Then 

x , =  ~ cliy i and x * = ~ d , k h k  
j = l  k = l  

X~  @ X i : ~ CJ id ikhk  @ YJ --- E Cj idlk h k  ~ Y j  
i = 1  i : 1  j ,k  j ,k  i 

where 

( a i k ) = C D  with C =  (c~i) and D=(d~k)  

= ~ ajA | yj 
j,k 

(here C and D are n X m -  and mXn-matr ices respectively). The (i, k):th entry 
of the matrix in the formula is 

~.i j=l 

Thus this matrix is DC and we are done since X,(f) = det (1 + tCD)) by the 
first part  of the proof and det (1 + tCD) = det (1 + tDC) by  2.1. 

Next  we compute 2t(lr) where ]e is the identity map of P 6 ~(A).  

T~EO~E~ 2.2 (Goldman). (i) Tr (lp) = ~ i e ,  and i,(1~) = ~.~e,(1 + t)' 
where eo, q . . . . .  e. are orthogonal idempotents with e o + e 1 ~ -  . . . - @  e n  ~ 1. 

(ii) Ann ( A ~ P)  = (e 0 + q + . . . + e~_l)A. Furthermore the ei:s are uniquely 
determined by P.  

.Remark. Some of the ei:s might be zero, e.g. if P is constant rank n, then 
e 0 ~ e 1 ~ . . . = e n _  1 = O. 

Proof. (i) Let  Z have the discrete topology. Then rk: Spec A --~ Z given by  
p --> rkvP is a continuous function. Hence Xi = (p 6 Spee A0; rk~P = i} is both 
open and closed. I t  follows that  Spec A ~ X o U X 1 U . . .  U X .  where the union 
is disjoint. Bu t  to this covering of Spec A corresponds a unique ))partition of u n i t p  

l = e o + q + . . . - 4 - e ,  where e,(x)={10 i f x E X ,  otherwise i.e. 1 - - e i E p  for all OEX~ 

and el 6 p for all p ~X~: (see Swan [12] p. 140). This means that  the ei:s are 
orthogonal idempotents. 

Now we claim that  i,(lp) = ~ el(1 + t / .  



272 al~t~T ALltlKVIST 

F ix  a prime p C X ,  Then the localization at  13 of the left hand  side is 
(2t(lp))~ = 2t(lp~) = (1 + t) ~ since P ,  is free of r ank  i. To compute the localization 

of the r ight  hand  side we need ekv. Bu t  e l e j = O  with e ~ p  implies e j ~ = 0  
in A~ for j # i .  Fur the rmore  e~ (1 - - e~ )=  0 wi th  e ~ p  implies % =  1 in A~. 
Thus ~o  ej(1 ~- t)i)~ (1 + t) ~ (2~(le))~ and  we are done since p C Spee A 
was arbi t rary.  

(ii) A~P is in ~ (A)  and  thus  Ann ( A i p ) =  eA where e is a uniquely  
de termined idempotent  (Goldman [6] p. 33). Now (A~P)v = 0 i f  and only if  
r k ~ P < i  if and  only if  ~ C X  o U X  1 U . . . U X I _  1. This is the case if  and only i f  
eA = A n n ( A ~ P )  qkp if  and only i f  e ~ p .  Thus e ( x ) =  0 if  and only if  
x C X i U . . . U X ~  (and hence e ( x ) - -  1 otherwise). Bu t  e 0 ~ e  l ~ - . . . @ e i _ l  
is a candidate  sat isfying these conditions. By  uniqueness we get 

e = e o @ e 1 @  . . .  @ ei_l. 

Put t ing  i = 1 we get e 0 uniquely.  Sinee e 0 @ e 1 is unique e~ is unique etc. 
Def in i t ion  2.3: We define the determinant  of  f by  d e t f =  2 ~ ( f - - l e )  for 

f : P - + P  with  P ~ ( A ) .  
Firs t  we note t h a t  det  1 e = hi(0 ) = 1. I f  P is free then  det  (f) coincides wi th  

the usual  de te rminant  of a mat r ix  for f .  I f  r k P  = n then  there exists Q such 
t h a t  P | Q = F where F is free of rank  n. Clearly Q ~ ~(A) .  Localizing at  
;3 ~ Spec A we get P ,  | Q~ = F~ where P~, Q~, F~ are free A~-modules of rank  
r ----- rk~P, n - -  r and n, respectively. We get (det ( f  | 10))~ = det  (f~ | 1o~) = 

d e t f v ,  det  le~ = detf~ = (detf)~. Hence we could also have defined d e t f  as 

det  (f  @ 1~) where the  last det  is the ordinary de te rminant  of a matr ix  for f | 1 o. 
Thus d e t f  is the same as Goldman.s  de te rminan t  ([6] p. 29). We state  some 
properties of det  (f). 

Pt~OPOSITIOI~ 2.4. (i) det  ( fo g) -- d e t f d e t  g. 
(ii) f is an i smorph i sm  i f  and  only i f  d e t f  is invertible in  A .  
We now collect some formulas for L ( f )  = 1 + alt -~- . . . @ a~t n where f:  P --> P 

with  P C ~ ( A )  and  r k P = n .  

n - - 1  n 

P~oPosITIosr 2.5. (i) 2,t(Akf) = 1 ~- akt ~ . . .  @ a~(k-i)t (k). I n  part icular  

(ii) 2,(A'[f) = 1 + ant. 

( i i i ) ) , , (A~-lf)  = 1 + a~_lt -~- an_2a~t 2 ~- a~_3a2~t 3 ~- . . .  -~- ala:-2t  ~-1 @ a"~-lt ~. 

(iv) 2,(f2) = 1 + (a~ --  2az)t -t- (2a4 --  2axa3 -~- a~)t 2 -~ . . .  + a2nt ~. 

P r o @  Since ~, and  A ~ commute  wi th  localization we m a y  assume t h a t  P 
is free. Using the technique employed in proving the exponent ial  trace formula 1.10 
we m a y  even assume t h a t  A is an algebraically dosed  field. I f  
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n 
m 

;t,(f) = I l( 1 + 2,t) = 1 + a~t + . . .  -}- a.t" 
1 

we have 

2,(A~f) = ] - [  (1 + ~ @ . . .  ~,~t). 
1 _ < i 1 < 1 2 < . . .  < i k < n  

The first  two formulas now follow easily. 

rt 

(iii) We m a y  assume t h a t  a~ = ]--[2~ 4= O. Then we have 
1 

(iv) 

2t (A"- l f )  = 1 @ ~ t = c~,t" 1 + " 4, 
1 

= a.  ~ l + a~. ~ t  + a z - ~  + . . . @ . - L . - t  @ = 
~ n t  a n 

---- 1 -}- a ,~_l t  + a ,~_2%t 2 + . . . + a la~ , -2 t  + a,"-l"~ . 

Set t ~ - - s  2. Then 

L ( f  2) = det  (1 --  serf) ----- det  (1 --  i f ) .  det  (1 + i f )  = 2_,(f)}~,(f) = 

= (1 - -  a~s @ a2s ~ - -  + . . .  d -  ( - -  1)~a~s~)(1  + a l s  + a2s ~ + �9 . .  4 -  a~s") = 

= 1 + (2a~ - a~)a ~ + (2c~ - 2a~a~ + c~)~ ,~ + . . .  + ~ , ~ ( -  a~) '~ 

We keep the  no ta t ion  from above and  fur thermore  % e ~ , . . . ,  e~ are the  
idempotents  in theorem 2.2. 

n C ~  PROPOSITION 2.6. (i) d e t f  = ~o ~e~ where a o = 1. 

(ii) I f  f is invertible then d e t f  is a un i t  in  A and  L ( f  -1) = ~ d k t  k where 
~ -1  ~ ( i . e .  i f  0 & = ~$=kC,_ke, with  c, given by (de t f )  -* = (E0 a,e3 = E,=0 e~e~ e, 4= 

t hen  c~e~ is the  inverse of  afe~ in the  subring Aei).  

Proof .  (i) Localizat ion a t  p C Xi (for the no ta t ion  see the  proof  of 2.2) gives 

( ~  ajei) ~ = ai~ej, = aj~ since ej, = dq. 
0 0 

But  (detf)~ = (21(f-- 1p)~ ~ 21(f~ --  lp~) = det  (f~) since P~ is free. Fur the rmore  

P~ has rank  i (since ~ E X ~ )  and  hence (L(f))~----L(f~)= 1 + . . . + d e t f ~ . t  i 
and a~ = detf~: This proves (i). 

(ii) I t  is sufficient to show the  formula locally. F ix  a ~0 E X~. Then P~ is 
free of  rank  v and  we get  



274 GEl~T &LI~IKVIST 

(2,(f-1), -1 = 2,(f~ ) = ac t  (1 + tf2 ~) = (aerie)  -~ de t  (t- 1,~) de t  (1 + t-~f~) = 

�9 " = a j  ~-j since ejl 3 = (5#. = %t-J % 
0 j = O  j = 0  

On the other  hand  

(~, dktk)o = 4or ~ --- (~. %aq_k)l~)t k = GO%_oot = % ~ aiS-~ with j = v - -  
o o ~=o ~=~ ~=o j=o 

Hence  the localizations of  bo th  sides agree. 

3. The behaviour of 2t under change ot rings, taking duals and forming 
of tensor products 

1)t~oPoslTIO~ 3.1. Let r A---> B be a ringhomomorphism (with r = 1) and 
f : P - - + P  an A-linear map with P E~(A) .  Then P |  is in ~(B) and 

~ ( f Q  1B) = r  

Proof. The f irs t  s t a t emen t  is well known.  Since A~(P | B) is na tura l ly  
isomorphic as B-module  to (A~P) @A B it is sufficient to prove  Tr~ ( f  @ 1B) = 
r ) which is well known. 

P~OPOSITION 3.2. Every f : P - - ~ P  with P in ~(A)  
where P *  = HomA (P, A) is in ~(A).  Furthermore 

T r f *  = T r f  and 2~(f*) = 2,(f). 

induces f*:  P *  -+  P *  

Proof. For  every  p C Spec (A) we get  a na tura l  A~-isomorphism 

h 
(P*)o = ( I toma (P, A))o ~ ,  tIomAo (Po, A~) = (P~)* 

and we have  a commuta t i ve  diagram 

h 
(P*)~ ~ (P~)* 

l(f*)v h l(f~)* 

(P*)~ ~ *  (P~)* 

Hence  (f*)~ = h -1 o (f~)* o h. I t  follows 

(2,(f*))v = 2,((f*)~) = 2,(h -1 o (fv)* ~ h) ----- 2,((f~)*) 

b y  1.3 (iv). B u t  (P,)* is free and 
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2,((fv)*) = det (1 d- (fv)*) = det (1 d-fo) = t,(fo) = (l,(f))v. 

This proves the formula for i, and taking the coefficient of t we get the formula 
for the trace. 

Next  we turn to the tensor product of two A-linear maps f: P--> P and 
g: Q--> Q with P ,  Q in ~(A).  For  completeness we quote 

PROPOSITmN 3.3. Tr (f  | g) ---- T r f .  Tr g. 

There is a corresponding formula for i, bu t  it is more complicated. I t  is 
convenient to introduce some notation: 

Let  A denote the set of all formal power series 1 d- ai t  -d- a2t ~ -4- �9 �9 �9 over A 

with constant term 1. Then A is an abelian group under multiplication. We define 

~)*-mul t@l ica t ion~)  in A such that  the following formula is valid 

1,(f | g) = 1,(f)  �9 t,(g). 

This defines �9 for all polynomials in .4- since 1 + ai t  + . . . + a~t ~ = I t ( f )  where 
f: An--> A n is given by  the matrix 

o o . . .  o• \ 
1 0 T a , _ l ~  

f =  o 1 . . .  + ~ " - ~ /  

o . . . . .  o ' ~  ~, 

PROPOSITION 3.4. I f  I t ( f )  = 1 d-  air -4- . . .  -4- a . t  ~ a n d  

I t (g)  = 1 -4- bit  d-  �9 �9 �9 d -  brat m 
t h e n  

i t ( f  @ g) = (1 -~- ai t  -4- �9 �9 �9 -~- ant n) * (1 + bi t  + . . .  -{- b,~t m) ---- 1 -4- d l t  - 4 - . . .  + d , ,n t '"  

w h e r e  

dl = ~b~ 

d2 = a~b2 -4- a2b~ - -  2a2b~ 

d a = a~b3 + asb~ --~ aza2bzb2 - -  3aza2b a - -  3aablb~ + 3aaba 

cla = a~a2blbs -[- a~aab~b~ - -  alaab~bs + a~ba -4- a4b~ d-  4axaab4 + 4a4b~ba - -  2a~aab~ - -  

- -  2a2blba d-  2a22b4 -4- 2a4b~ - -  4aaba - -  4a~a2b4 - -  4aab2b2 d-  a~b~ 

dmn i = a ' ~ - l a  b ' - l b  
-- n n--I m m--I 

d,~, = a'~b:.  
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P r o o f .  J u s t  as  in t h e  p r o o f  o f  1.10 we  m a y  a s s u m e  t h a t  A is a n  a l g e b r a i c a l l y  
c losed f i e ld  of  c h a r a c t e r i s t i c  zero.  T h e n  

n 

= ]7  (1 + = ( - [  (1 +  jt) 
1 1 

a n d  

s  | g) = ~ (1 + ~,~jt) 
i,j 

U s i n g  f o r m u l a s  fo r  s y m m e t r i c  f u n c t i o n s  (see [1] p.  258) i t  is poss ib le  to  c o m p u t e  
d v d2, d 3 . . . .  A b e t t e r  w a y  is t o  use  t h e  e x p o n e n t i a l  t r a c e  f o r m u l ~  1.10. 
P u t  p~ = T r f  ~, q~ : T r  gl a n d  r~ : T r  ( f  | g)~. T h e n  r~ : plq~ since 
T r  ( f  @ g)~ : T r  ( f i  | g~) : T r f l  T r  g*. T h e  e x p o n e n t i a l  t r a ce  f o r m u l a  a p p l i e d  to  
f g ives  c h t + 2 a 2 s  n :  (1 + a l t + . . . + a ~ t n ) ( p l t - - p 2  t 2 + p a t  3 - . . . )  

a n d  h e n c e  

a 1 : ~91 

2a2 = a iPi  - -  1o2 

3a3 = a2Pi - -  alP2 + ~3 

4aa = a3pl  - -  a2P2 ~ -  all~ - -  P4 

, �9 �9 

Solv ing  fo r  t h e  pi:s  we  ge t  

I01 = a i 

P2 ---- a~ -- 2a2 

3 3ala  2 + 3a a l~ ----- (~i - -  

4 4a~a 2 + 4ala  a + 2a~ ~ 4a a P4 = ai  -- 

�9 ~ �9 

T h e r e  a re  s imi l a r  f o r m u l a s  c o n n e c t i n g  t h e  bi:s a n d  qi:s (dim a n d  rim). T h e  l a t t e r  
g ive  

di - -  ri : Piqi : aibi 

: 2 2  2 2  2d 2 d~r~ - -  r 2 = a~b~ - -  i02q2 = a~b~ - -  (a~ - -  2a2)(b ~ - -  2b2) = 2(a262 -~- a2b~ - -  2a2b2) 

3da : d2ri - -  dir2 + r3 = d2Piqi  - -  dlp2q~ + I03q3 : albi(a~b2 + a2b~ - -  2a2b2) - -  

- -  a~bx(a ~ - -  2a2)(b ~ - -  2b2) + (a~ - -  3aia2 + 3a3)(b~ - -  3b~b~ + 3b3) = 

: 3(a~b a + aab~ - -  3aia2b a - -  3aablb 2 + 3aaba + aia2bib~) 

W e  o m i t  t h e  c a l c u l a t i o n  o f  d 4. 
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3 a a~blb2 would be missing We could immedia te ly  have  seen t h a t  the  te rms  albl ,  

in d a since t he y  would occur in (1 ~ %t)  �9 (1 + bit + b2t~) which only  has degree 
1 �9 2 = 2. Similar ly alb2b ~ will no t  occur. 

To get the  last  t e rms  one can use 

( 1 ~ % t + . . .  + a n t  n) * ( l  + blt + . . . -~ b.~t m) - -  

( ) %-~- t - l  + ~ t-2 -~- . . . �9 1 +  - ~  + --b-~- t-2 -[- . . . = a'~b~t mn 1 + an an 

I n  pa r t i cu la r  the  n u m b e r  of  monomials  occurring in d~,_~ is the  same as in 
dl. L e t  sk deno te  the  n u m b e r  of  monomials  in dk for large m, n (say m, n > k). 
The  computa t ion  of  sk seems to be qui te  a problem. 

B y  formal ly  factor ing 

1 + al t  + % t  2 + . . .  + ant" = (1 + ~t)(1 + fit)(1 + 7t)( t  + St) . . .  

b4b~, of  we f ind t ha t  the  t e rm containing, say  2 2 

(1 + a / - ~ - . . . ) , ( 1  + b l t + b ~ t  2 - 4 - . . . ) =  

= (1 + bx~t + b~fl2t ~ ~- . . .  )(1 + b~flt + b2fi2t ~ + . . . ) . . .  

is - -  ~ f l a ~ .  Using the  large fo ld-out  tables  of F a a  de B r u n o :  Theor ie  des formes 
binaires, Tur in  1876, we f ind  the  following results  s 1 = 1, s2 = 3, s a = 6, s 4 = 15, 
% =  28, s 6 =  64, 8 7 =  116, a s =  234, s 9 ~  373, s l 0 =  814, s11= 1508. 

The  me thod  based on couning zeroes in tables cannot  be general ized to  k larger 
t han  11. 

Now back  to  defining . -mul t ip l ica t ion  in A. B y  the  computa t ions  above i t  
is clear t h a t  i f  we cut  off  the  power  series in the  left  hand  side of  

( l + a ~ t + . . . ) . ( l + b ~ t + . . . ) =  1 + d~t + . . . + dkt ~ + . . . 

and take  . of  the  remaining polynomials  of degree n and m respect ively,  t hen  
d k = t h e  coefficient  of  t k will no t  depend  on n and  m if  n , m ~ ] c ,  t t e n c e w e  

can define dk in this  way.  T h e n  z] becomes a co m m u ta t i v e  r ing wi th  o rd inary  
mul t ip l icat ion as addi t ion and  . -mul t ip l ica t ion  as mult ipl icat ion.  The  u n i t y  e lement  

is 1 ~ t. Clearly A is tors ionfree (as abel ian group).  F u r t h e r m o r e  2~(f) ~-> 2t (Ak f )  

induces a 2-ring s t ruc tu re  on A (it is even  a special 2-ring, see [1], p. 257). 
We denote  b y  ~V(A) = {a ~ A0; a is ni lpotent} the  nilradical of  a ring A. 

:PRoPosITION 3.5. (i) I f  A i s  tors ion  f r e e  then  

_N(A) c N ( A )  = {1 + a l t + % t  ~ + . . .; 

(ii) I f  A i s  n o e t h e r i a n  then  X ( A )  c N ( A ) .  

a, c 
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Proof. (i) Assume tha t  (1 + alt + a2t2@...).k 1. The  left  hand  side is 
1 + cat -[- c2t ~ + . . . with  ca = a~ and  in general  c, ~ m~a~ -r a polynomial  of  
weight  n/c containing a t  least  one of  a 1, a 2 . . . . .  a~_t. Here  m~ is an integer.  
We proceed b y  induc t ion  over  n. We 
t h a t  a 1 , a ~ , . . . , a n _ l E N ( A ) .  Since c~ 
since A is torsion free. 

(ii) I f  A is noe ther ian  t hen  2V(A) 
p roduc t  of  a ny  k elements  of  2V(A) 
t h a t  all monomials  occurr ing in cn 
a 1, . . . ,  an E N(A).  I t  follows t h a t  (1 + alt -t- �9 �9 .),k 

We will r e tu rn  to  the  ring A in Sect ion 6. 

have  a~ = 0 so a 1 E N(A) .  Assume now 
= 0  we get  m n a ~ E N ( A )  and  a ~ E N ( A )  

is n i lpotent ,  say  N(A)  k ---- 0. Hence  the  
is zero. The  computa t ion  above  shows 

conta in  at  least  k factors  among the  
1 .  

PROI'OSITIO~I 3.6. Given f'. P ---> P,  g: 
an induced map 

H o m  (f ig):  HomA (P, Q) -+  Hom~ 

defined by u ~ g o u o f .  Then 

Tr  H o m  (f, g) = Tr  f -  Tr  g 

Q -+ Q with P,  Q E ~ ( A ) .  Then we have 

(P, Q) where Horn A (P, Q) E W(A) 

and )l,(Hom (f, g)) = ~df) * ~,(g). 

Proof. We have  a na tura l  i somorphism Q =~_ Q** which induces na tura l  
isomorphisms 

HomA (P, Q) ~ HomA (P, Q**) ~ HomA (P | Q*, A) = (P |  Q*)* 

Hence  we get  T r  (Horn (f, g) =- T r  ( f  | g*)* and 2,(Horn (f, g)) ---- ~,(f | g*)*). 
Using 3.2 twice and  the  def ini t ion of  . -mul t ip l ica t ion  we get  the  desired formulas.  

4. Relations between 2,(f) and minimal polynomials of f 

PROPOSITION 4.1. Let f: M-->M be A-linear with M a f ini tely generated A-module. 
Then there is a m o n i c polynomial q 6 A[t] of minimal  degree such that q(f) = O. 
(q will be called a m i n i m a l  p o l y n o m i a l  o f  f ) .  The degree of q is at 
most equal to the minimal  number of generators of M.  

sur jee t ion A n 
such t h a t  

Proof. L e t  n be the  minimal  n u m b e r  of  generators  of  M. 

M v 0 .  Since A n is free we can f ind  g : A  n 

An U ) - M  ~ 0  

I f 
Yg 

A n > M ~'0 

Then  we have  a 

). A n 
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commutes.  Now g satisfies a monic polynomial  qi 
Hami l ton  theorem. Using this in the  diagram gives 

A .  7~ ~ M  ) ' 0  

0 - -  qi(g) �9 ~ q~(f) 

A "  ~ ' M  ~ 0  
;g  

from which i t  follows t h a t  q i ( f ) =  O. 

of degree n by  the Cayley- 

l ~ e m a r k  4.2. The polynomial  q is no t  unique in general. I f  A = Z/(4) 
f = (20~) satisfies both  f 2 =  0 and  f z +  2f = 0. 

then  

PROPOSITIO~ 4.3. G i v e n  f :  P --> P w i t h  P i n  ~ ( A ) .  A s s u m e  that  f has  m i n i m a l  

2oolynomial  q a n d  ? u t  ~(t)  ~ ( - -  t )~q(--  t -i) where  v = degree o f  q. T h e n  L ( f )  

s a t i s f i e s  the f o l l o w i n g  d i f f e r e n t i a l  equa t ion  i n  A[ t ]  

d ~ .  ~f (rood t ~+1) 
t2'(f)-I ~ )"( f )  = ~l 

where  ~v(t) = blt  - -  b2t 2 + bat s . . .  w i t h  b~ = T r f (  I f  q(O) = 0 w e  m a y  take  

(mod t ~) i n  the f o r m u l a  above. 

P r o o f .  Assume t h a t  q(t) = t ~ + clt  ~-1 + . . . + ekt "-k .  Taking the trace of 
O = f~ + e i f  ~- l  + . . . + ckk ~-k w e  get O = by + clb~_l + . . . + ckk~_k where in 
case k = v we pu t  b o = Tr 1p. Multiplying by  f and taking traces again gives 

b ~ + 1 - 4 - c l b ~ + . . . + e k b v _ k + x = O  etc. Now ~ ( t ) =  1 - - c l t + c 2 t  2 - . . . •  k and  

q( t )~( t )  = (1 -- clt  -+- c~t 2 - -  . . .  • ckt~)(blt - -  b~t ~ + b a t 3 . . . )  = 

= (terms of degree < v) • (bv + Clb~_ I + . . .  + ckb~_k)t 

j -  (b~+ l + q b  + . . . + ckb~_k+~)t ~ + 1 +  . . . 

Here all terms of degree higher t han  v vanish and the coefficient of V is zero 
unless k = v in which case it is (--  1)"-lck Tr 1p. The exponent ial  t race formula  
gives 

d 
t 2 ' ( f ) - x  dt L ( f )  ~ ~v(t) 

and mult iplying by  q(t) finishes the  proof. 
B e m a r k  4 .4 .  I f  A contains the rat ional  numbers  Q then  2,(f) is determined 

by  a minimal  polynomial  q of f and b~, b 2 . . . .  b~_ 1 where v = degree of q. 
E x a m p l e  4.5. Assume t h a t  A ~ Q. Le t  f:  P - +  P have minimal  polynomial  

q(t) = t~ - -  t, i.e., f is a non-tr ivial  idempotent  in End  A P.  Then ~(t) = 1 + t 
and if  we apply  4.3 we get  (since q(0) = 0) 
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d ((1 + t)(bit - -  b2t2 . . . ) ) (rood t 2) b,t 
t2t(f)-* -~ 2,(f) = 1 -~- t - -  1 + t 

which implies %(f) = (1 + t) b* = (1 + t) vrf. 

I f  f8 = f, i.e. q(t) ---- t 3 - -  t one finds similarly 
b~+b, b2--b, 

% ( f ) = ( l + t )  2 . ( l _ t )  2 

Example  4.6. Let  G be a finite group of order n and A[G] the group algebra. 
Let  f: A[G] --> A[G] b e  given by  left multiplication with a E G. I f  a has order 
k then the minimal polynomial of f is q(t) = t k -  1 and q(t)----- 1 + (-- 1)kt k. 
Using 4.3 and the fact tha t  b 1 - - b ~ - - . . . = b ~ _ ~ =  0 and b k - ~ n  we get 

n 

%(f) = (1 --  (-- l)ktk) k 

5. Endomorphisms of modules having finite resolutions of finitely generated 
projective modules 

Let  9(~(A) denote the category of A-modules M such that  M has a finite 
resolution in ~(A).  We want to define ~t(f) for f: M - + M  when M E~)(~(A). 
For this we need some preparations. 

Defini t ion 5.1. Let  End ~(A)  denote the category of endomorphisms of modules 
in ~(A),  i.e. the objects are endomorphism f: P - + P  with P E ~(A)  and a 
morphism u from f to g: Q - ~  Q (where Q E (~(A)) is a commutative diagram 

P ~ Q  

P ~-Q 

Then K o (End ~(A)) 
morphism classes of) the objects in 
by  all If] --  [f '] -- If"] where 

0 ~ P '  

f + 
0 + P '  

is defined as the free abelian group generated by  (the iso- 
End ~(A)  modulo the subgroup generated 

) P )~P" ~0 

f f" 

) P ~ P "  ~0 

is commutative with exact row. Similarly we define End 9(~(A) and K o (End ")C(A)). 

PROrOSITION 5.2. The embedding End ~(A)  --> End 9(~(A) 
morphism i: K o (End ~(A)) ~ K 0 (End ~)C(A)). 

induces an iso- 
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Proof. The usual proof does not apply since f: P -~  P with P E ~(A)  is not 
a projective object in the abelian category of all endomorphisms (which is iso- 
morphic to the category of modules over A[t]). For tunately  Swan has formulated 
a theorem general enough for our purposes (see [12] p. 235. Theorem 16.12). Pu t  

= End ~(A)  and c)]Z = End ~)(~(A). Then the assumptions in 16.12 are fulfilled. 
Indeed, 

(1) Clearly End ~(A)  and ~(~(A) are closed under direct sums 

(2) I f  
% V 

0 v P ' -  ~ 'P  ~'P" > 0 

q~ "i" V 

0 > P ' -  ) -P  ~ 'P"  ~ 0 

is exact and commutative then P , P " E C ~ ( A )  implies P ' E ~ ( A )  and 
P,  P" E 9C(A) implies P'  E ~)C(A) (see Bass [2], p. 122, Proposition 6.3). 

(3) Given any f: M ~ M with M E ~)(~(A) there exists a finite resolution in 
End ~CP(A), i.e. 

O - - ~ P a  > . . . .  > /)1 ~'Po ~ M  > O 

O ~ -  Pa ~" . . . . .  ~ P1 ~ P o - - - ~  M > O 

is commutative with exact row and all P~ E ~(A).  This is easily proved. 
Now the inverse ~0 of i: K 0 (End ~(A)) -~  K o (End ~ ( A ) )  is given b y  

d 

v([f]) = Z ( -  1)'[f,] 
0 

(*) 

and it is shown in [12] that  the right hand side is independent of the choice of the 
resolution (.). 

THEOaE~ 5.3. Given f: M ~ M with M E ccF(A). Consider the resolution ( ,)  
in End,CP(A) above. Then 

d d 

0 0 

are indepe~dent of the choice of the resolutions and the liftings f~ of f .  

Proof. For f: P - + P  with P C ~ ( A ) ,  f~--~ )~,(f) is a map from (isomorphism 

classes in) E n d ~ ( A )  to A. I f  O - - > ( P ' , f ' ) - - ~ ( P , f ) - - ~ ( P " , f " ) - - ~ O  is exact in 
End W(A) we have (by (1.5) 2 , ( f ) =  2,(f'),~,(f"). 

Hence by  the universal property of K o (End ~(A))  we have a factorization 



282 G E R T  A L M K V I S T  

[] 
End W(A) > K o (End W(A)) 

A 

Assume now that  (M, f) 

and 

in End  ~(A).  

and thus 

in End  9(~(A) has two resolutions 

0 - +  (Pd, f~) - + . . .  ---> (Po, fo) - ~ ,  (M, f )  -+  0 

0 -+ (P~,, ]j,) - + . . .  -+ (P'o, fg)--~ (M, f )  --> 0 

By the proof of 5.2 we have 
d d" 

(-- 1)i[~] = ~ (-- ])i[f~] in K o (End ~(A) 
0 0 

d d" 

2,(fj)(-1)J = i .  d .  
0 o 

The statement about the trace follows from taking the coefficient of t in the formula 
for 2,. 

Now we can safely make the 
Definition 5.4. For f : M - + M  with M in 9((A) we define 

d d 

x(f) = Z (-- 1)' Trf ,  and M f )  = ]-T Mf,) (-1)' 

where the fi:s are given in (,). 

PROI'OSlTIO~ 5.5. Let 

0 - - - M k - - - ~ . . .  ---~ M1 ---~ M0 --~ 0 

be a commutative diagram with exact row and all M~ in DC(A). Then 
k k 

~. (--  1)'X(fi) = 0 and ~ ~ t ( ~ )  ( - 1 ) '  = 1 
0 0 

Proof. Consider the diagram (see the proof of 5.2) 

i 
K o (End ~(A))  + - : ~ + K  o (End 9((A)) 



ENDOI~IOI:tPHIS2r163 OF FINITELY GENEI~ATED I~OJECTIVE :~IODITLES 283 

where we denote ~, by ~, on Endg~(A).  The definition of ~ and ~, 
exactly that  ~ = 2t o ~. Now given an exact sequence 

o -+ (M~, fk) -~... -~ (3/0, fo) -> o 
k 

in End 9((A) we get ~ (-- 1)i[f~] ~- 0 in _R7 o (End ~9(~(A)) and hence 
0 

k 

]7- 7t ,[/;](-1/---- 1 
0 

Taking the coefficien~ of t we get the formula for Z. 

means 

COROLLARY 5.6. z ( f  O g) = z(f) + X(g) and 2,(f �9 g) = M f ) ' M g ) .  

Next we generalize the exponential trace formula 

PROPOSITION 5.7. I f  f: M --> M with M 6 ~ ( A )  then 

d 
_ t~,(f)- i  ~ ~,(f) = ~ z ( f ) ( -  t)' in d .  

1 

Proof. Let 0--~ (Pa, fa) - + . . .  ~ (Po,%) -*" ( M , f )  -+ 0 be a 
End ~(A).  Taking logarithmic derivatives of 

d 

2,(f) = ]-[  2,(fj) ( - #  
j - 0  

we get (using the exponential trace formula) 

- t ,W) -1 a,(f) = ~ ( -  1 /  - tx,(L) -1 ~,(fj) = 

) - -  5 ( - -  1 ) i ~  ( - - 1 ) i  Tr (f~)t ~ -  - -  - -  (-- 1/  ( 1)J Tr (f~) 
j = 0  i = l  i = l  

since 

0 -->- (Pd, f~) - -> . . .  --> (Po, f~) --> (M, f ' )  -->- 0 

resolution in 

= ~ (-- 1)~z(f')t ' 
i ~ l  

is a resolution of (M, fi). 

THEOREM 5.8. Let f: M --~ M with M E 9((A) be nilpotent, f,~+l = O. Then, 
there is a resolution 

o --> (P~, f~) - - > . . .  - ~  (Po, fo) --> (M,  f )  --> o 

in End ~(A)  such that all f,~+l ~_ O. 
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A s s u m e  that  rkPi  n~ a n d  L(f)  = 1 + ~ t i = cl �9 T h e n  all  the ci:s are n i l p o t e n t  
v v 2 v k 

a n d  clc~ . . . c~ = O i f  the w e i g h t  ~l ~- 2v~ + . . . + kvk > m ~ a  o n .  I t  f o l l o w s  

tha t  L ( f )  i s  a p o l y n o m i a l  o f  degree 

na i f  d is  even 
<~ no + ran1 + n2 + tuna + " " " + tuna i f  d is  odd. 

P r o o f .  The existence of the projective resolution such t h a t  f 7  +~ = 0 is precisely 
Proposi t ion 6.2, p. 653 in Bass [2]. Now 2t(f) is a product  of factors 

L ( f , )  = 1 + aat -+- . . .  ~- a.it"i 

or their  inverses. B y  1.7 any  monomial  in the aj:s vanishes provided its weight  

is larger t h a n  mn~. Inver t ing the  polynomial  L(f;) ~-- 1 + alt  + �9 �9 �9 + a.~t "~ we 

f ind  t h a t  2,(fl) -~ is a polynomial  of  degree at  most  mn~ and the coefficient of 
t" is a polynomial  in the aj:s where every te rm has weight  v. Taking the  al ternat ing 
product  of the L(fi):s we get L ( f ) =  1 - ? c l t + c p t  2 + . . .  where c, is a sum 
of  terms of the type  

r l  � 9  a : ;  0 b~ 1 1) snd ( * * )  
a 1 . . . . . . . .  n d 

i f  2t(fo) : 1 + alt  + . . .  + a % t % .  . . , L( fd)  : 1 -{- b~t + . . .  + bo~t ~d. 

Fur thermore  the weight of the monomial  (**) is 

v : r 1 +  2r~ ~ . . . + n o r  % + . . . + s 1 +  2s 2 + . . . + nas%. 

v 1 v 2 Vk  :Let now c = c ~ c ~  . . . c k  be a m o n o m i a l i n t h e  ci:s o f  w e i g h t  

d 

731 -~ 2V 2 -~ �9 �9 �9 -~ kvk > m ~ .  n ~ .  
i=0 

Then  c is a sum of monomials  of  type  (**) such t h a t  their  weight 

d 

0 

Hence a t  least one of the factors 

(bl b2 . . .  
�9 . a~ ) . . . .  bs"d~ 

- -n  d ! 

has weight  > mn~, . . . ,  m n ~  respectively and  this factor  is zero by  1.7. 
The est imate  of the degree of L(f) is clear from the previous considerations. 

COROLLARY 5.9. A s s u m e  that  the r i n g  A is  r e d u c e d, i .e .  the n i l rad i ca l  

N(A) = 0. T h e n  L ( f )  ~ 1 f o r  all  n i l p o t e n t  f :  M - ~  M w i t h  M E%V~(A). 
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We denote the projective dimension of an A-module M with dhAM. 

PI~OI'OSlTION 5.10. Let A be a local noetherian ring with maximal ideal m, 
residue field k = A / m ,  and M a f ini tely generated A-module. I f  d = dh~M is 
f ini te  then M 6 r and 2A(1M) = (1 + t)ZA(1M) where 

d 

ZA(1M) = ~ (-- 1)' dimk Tor~ (M, k) 
i = 0  

Proof. Choose a minimal free resolution 

O-+ Pa--+. . . - ~  P1---~ Po--+ M--~  O 

with nl = rkAPi = dim~ Tor~ (M, k) (see Serre [10] p. IV -- 47). Then 

But 

d 
d d X ( - - 1 / , ,  i 

),t(1M) = ~ 2t(1p,) ( ' /  = ]--[ (1 + t) (-1~hi = (1 + t) ~ 
0 0 

d d 

Z(1M) = ~ (-- 1 / T r  lv, = ~ (-- 1/%. 
0 0 

PROPOSlTIO~ 5.11. Let A be a regular local noetherian ring with residue field k. 
Then k 6~-2(A) and , ~ ( l k ) =  1. 

Proof. Putt ing M = k in 5.10 we get 

/ ( l k )  = ~ (-- 1 / d i m  k Tor~ (k, k) = (-- 1/  = (1 -- 1) a = 0 
0 0 

d i m k T o r ~ ( k , k ) = ( d /  where d = g l o b a l  d imens ionof  A i f A  i s a r e g u l a r  since 
local noetherian ring. V /  

PRO:POSITI02~- 5.12. Let r A - + B  be a f l a t  ring homomorphism, i.e. B is 
f lat as an A-module. I f  f: M -+ M with M 6 ~ ( A ) ,  then M @A B E C~(B) and 

2~( fQ IB) =4(2{ ( f ) ) .  

Proof. Let 

0 - -+Pa--+. . .  + P o  - + M  --+ 0 

f~ fo f 
"f "t" Y 

O -+ P a--~ . . . -+ P o-+ M--~  O 
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be a projective resolution. Then the exactness is preserved after  taking �9 @A B 
since B is A-flat .  Fur the rmore  each Pi @A B is B-projective and  f ini te ly  
generated as B-module.  Hence M @A B e 9(~(B) and since r = 2B(f~ @ 1B ) 
by  3.1 we finish the proof  by  taking al ternat ing products.  

COROLLARY 5.13..Let A be an integral domain and K 

K 
= ~, ( f  | l s )  

Proof. The inclusion A - +  K is f lat .  

its quotient field. Then 

COI~OLLARY 5.14. Let A be an integral domain and f: M - +  M where M is 
a torsion module in ~)C(A). Then ~,(f) = 1. 

Proof. Since M is torsion we have M @A K : 0 and hence 

~ ( f )  = ~ ( f  @ 1K) = ~ ( 0 )  = 1 

by  5.13. 

COROLLARY 5.15. Let A be a Dedekind ring and f: M --~ M A-linear where M 
is f ini tely generated. Then M = T • P where T is a torsion module and P is 
projective and torsion free. 

.Furthermore f (T )  c T and ~t(f) = ~,(fv) where f~: P ~ P is the )>torsion free 
part)) of f .  

Proof. Firs t  we note t ha t  M E 9((A) since A is noether ian  and  gl. dim A < 1. 
Then M = T Q P is jus t  Bourbaki  [5] p. 79, Corollaire. Now Horn A (T, P) = 0 
so we get the following diagram rising mat r ix  representat ion 

O--->T--~T | P---.'-P--~O 

f:(fTh [ 
O-+ T - +  T | P - +  P - ~  O. 

(:) 
From 5.6 and 5.14 i t  follows t h a t  

~,(f) = R,(fT)':' ,(fP) = 1 �9 ~,(fp) = 2,(fp). 

We now extend the defini t ions of Z and  )~t to endomorphisms of graded 
modules and  complexes. 
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Definition 5.16. Let M = | Mi be a graded A-module with all Mi E 9d(A). 
I f  f: M -+ M is a hornomorphism of degree zero, i.e. f (Mi)  c Mf, we put  f / =  the 
restriction of f to M~ and define 

d d 

Z~'(f) = ~ (-- 1)'z(f, ) and 2,g'(f) = ]--[ 2,(fi) (-1/. 
0 0 

:Note that  Zg'(f) and ~,~(f) in general do not agree with z(f)  and 2t(f) where 
M is considered just as an A-module. 

Similarly if 

0 ~" C a -  C d _  1-->- . . . --->- C 1 -  C O ) 0 

Y 8 Y (~1 

0 ~Cd -d + C d _ I - - > . . . ~ C 1  > Co ~'0 

for short f: C--->C is a chainmap of a finite complex C with all C i in <)g(A), 
we define 

d d 

Z(f) = ~ (-- 1) i T r f i  and as(f) = T-[ 2,(fi) (-1)/. 
0 0 

P~OeOSITIO~ 5.17. Let f'. C --+ C be as above. Assume that all homology modules 
Hi(C ) are in 9((A) .  Then 

g( f )  = Zg'(H.(f)) and 2t(f) = 2,g'(H.(f)) 

where H.( f ) :  H . ( C )  --* t I . (C)  is the induced endomorphism of the graded homology 
module H . ( C ) =  | ). 

Proof. Put  K~ = Ker ~i and B~ = Im 51+1. Then we have exact sequences 

O --~ K ~ --~ C I ---~ B i_ I ---> O 

O--* Bi--> K,--> H,(C ) -->0. 

:Now B o = C  o e g ( ( A )  and C l e g ( ( A )  so K 1egg(A)  by Bass [2] p. 122, 
Proposition 6.3. Since HI(C ) E 9( (A)  
B i, K i C 9((A) .  We get induced maps 

0 -*  Ki --* Ci -*  B~_I --> 0 

0 --~ K i  ~ ff~ --~ B i _ l  ~ 0, 

we also get B 1 E c)((A). By induction all 

0 --, Bi ---> K,  --, HI(C) -*  0 

,Hi(f) 
0 ---> Bi --> Ki  "-~ HI(C) ---> O. 

Using 5.5 several times and taking alternating products all 2,(gl) and 2,(hi) cancel 
and we get the wanted formula for 2,(f). 
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_Remark 5.18. The condit ion H~(C) E 9 ( (A )  is satisfied if  A is a regular 
noetherian ring. 

COROLLARY 5.19. I f  f: C--+C and g: C- -+C are chain homotopic maps of 
complexes then 2,(f) = X,(g). 

PI~OPOSlTIO~r 5.20. Let f: C - +  C be a chain map as above. Then 

d 
- -  t2,(f) -1 ~ 2,(f) : ~ x(fJ)( - t) i 

j = l  

Proof. Take the logari thmic der ivat ive of  2t(f) = "~o 2,(fi) (-~)' and use 5.7. 

PRoPosITIo~r 5.21. Given f: M -+ M and g: N ~ N with M,  N C 9( (A) .  
Assume that Tor~ (M, N)  E 9 ( ( A )  for all i ~ O. Then 

~,(f) �9 2,(g) = .t~' (Tor .  (f,  g)) 

where T o r .  (M, N) = @~_>o Torl (M, N)  and Tor .  (f ,  g) is the induced graded map. 

Proof. Let  

and 

be resolutions in 

0 --> (P . , f , . )  - + . . . - +  (Po, fo) --~ ( M , f )  --> 0 

0 -+ (Qn, gn) - ~ . . .  -+  (Qo, go) --~ (N, g) -~  o 

E n d  ~ (A) .  Then 
Tt 

X,(f) = I--]" 2,(fi) (-~)~ and 2,(g) = ~ ~,(gj)(-1)J. 
0 0 

Taking the  tensor p roduc t  of  the  complexes we get  a complex 
a chain map h : v-kJot~ w,+~.. C -+  C where 

C k =  �9 P ~ |  and h k =  �9 ( f i |  
i+j=l, i+j=l, 

Then 

Now 

and 

C =- [~ ~'~+" and  \ "" k]k=O 

Hk(C) = Tork (M, N) and Hk(h) = Tor~ (f, g). 

X,(h~) = ~,( | (f,  | gj)) = I--[ a,(f, | gj) = I--[ X,(L) * ~,(gj) 
i+j=k i+j=k f-t-j=k 

trt+rt m rt 
At(h) = T--[ ~t(hk) (-1)k = 1--1 i - ~  A t (L )  * ~t(gj))  ( -1)ITj  = 

k=O i=O j~O 

= -[Zl x,(f,) (-1)' * l ~  ~,(gj)(_l)~ = a , ( f ) ,  X,(g). 
i=o  j = o  
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But  2,(h)  2fr(H.(h)) -= 2f ~ (Tor. (f, g)) by 5.17 and we are done. 
l~emarlc 5.22. I f  M, N E ~ ( A )  implies M @A N E 9((A) for all M, N then 

also Tor t (M, N) E 9((A) for i ~ 1. This is the case if A is a regular noetherian 
ring. 

To prove this we use induction on dh M. I f  dh M = 0, i.e. M is projective, 
we have nothing to prove. Assume that  dh M ~-- m ~ 1. Choose an exact sequence 

O---~ K--~ F - ~  M----~ O 

where F is free. Then d h K - - m - - 1  and ~ E g ( ( A )  since F and M are: 
in 9((A). The long exact sequence is 

� 9  -~ Tor 2 (F, N) --> Tor~. (M, N)  --~ Tor 1 (K, N) -+ Tor~ (F, N) -~ Torl (M, N) -~ 
v 

- - 0  - - 0  

--> K @ A N--+ F @ A N'-+ M @A N - ~  O. 

By assumption K @ N, F @ N, M @ N E 9((A) and thus Tor 1 (M, N) C 9~(A) 
by Bass [2] p. 122. Furthermore by the induction hypothesis Tor 1 (K, N) C 9((A)  
and hence Tor~ (M, N) ~_ Tor I (K, N)  C 9((A).  Similarly Tor t (M, N) C 9((A)  for 
i>_2 .  

Example 5.23 (M. Schlessinger). I f  M, N C 9((A)  then M @A N may not be 
in 9((A).  Let A be the local ring at  the singular point (0, 0) of the curve 
x a _ y2__ 0. Then A/(x) and A/(y) have homological dimension one (since 

O-+ A ~-~ A ---> A/(x) -+ O is exact) but A/(x) | A/(y) ~ A/(x,  y) = k = the 
residue field which has infinite homological dimension (as A-module) since A is 
not regular. 

COROLLARY 5.24. I f  .3I or N is projective and both are in H(A)  then 

2,(f @ g) -~ •,(f) �9 2,(g) 

(it is not more general to assume M only flat  since M flat  and M E c)((A) implies 
M is projective). 

Example 5.25. Let X be a polyhedron (or any topological space such tha t  
t t . ( X ,  Z) is finitely generated) and g: X -+ X a continuous map. Then there is 
an induced homomorphism of graded abelian groups 

d 

H . ( X )  = @ Hi(X, Z) with d ----- dim X. 
0 

Then (since Q is Z-fiat) 
d 

&(g,) = &(g, | 1@ = ] - [  &(H,(g,)( -1)~ 
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is exactly ~g(-- t) where ~g is the >>falser) g-function of g (see Smale [11] p. 768). 
I t  would be interesting to consider (co-)homology with other coefficients. The 
Lefschetz number  is just  z(g,) = the coefficient of t in 2,(g,). 

PROPOSITION 5.26. Assume  that A ~ T-[~ =1A~ is a direct product of rings. Then 
l = e~ -~ . . . -~ e s where e~ . . . . .  es are orthogonal idempotents and A~ _~ Ae  i. 
Given an A-linear map f: M - - > M  with M in 9 ( ( A )  then M ~ Q] Mt  where 
M i = etM can be considered as an Acmodule  in 9((At) .  Let fi: M t - - > M i  be 
the restriction of f to Mi. Then  

~t(~:(f)) = 2:t(L) 

where ~:  A -~  At  is the canonical projection. 

Proof. Since At is a direct summand  of A it follows tha t  As is a projective 
(and hence flat) A-module.  Then 

M | A ,  e 9((At) and zq(2,A(f)) = 2A, t( f  | 1A, ) 

by 5.12. Finally M |  i ~ e t M = M t  as Acmodules  and f |  may  be 
identified with ft: Mi --> Mi. 

CO~OLnARu 5.27. Let A be a noetherian regular ring. Then A = ] -~  At  where 
the Ai:s  are integral domains. Let M be afini telygenerated A-module and f'. M--> M 
as in 5.26. Then  

~i(2~(f)) = 2,At(L) = 2~'(ft | 1Kt) 

where K i is the quotient f ield of A i. 

Proof. First  M is in 9((A) since A is noetherian and gl. d i m A  < ~ .  The 
direct product  decomposition of the ring is Kaplansky [7], p. 119, Theorem 168. 

6. K-theory of endomorphisms 

In  this section we make an a t t empt  to classify the endomorphisms of finitely 
generated projective A-modulus  (for notat ion see 5.1). 

We have two r inghomomorphisms 

K 0 (End ~(A)) --> Ko(A ) 

defined by 

( P , f )  ~-~ P and Ko(A ) --~ K o (End 9(A))  

defined by P ~-> (P, 0). 
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Since the latter map is the right inverse of the first one we get a split exact 
sequence 

0 -~ Ko(A ) -~ K o (End ~(A))  -~/~o (End ~?(A)) -~ 0 

(compare Bass [2], P. 652) which defines /~o (End ~(A)). Hence 

K o (End ~(A)) ~ Ko(A ) • (End ~(A)) 

and we can consider 2, defined on /~o (End ~(A)) since 2~(0) = 1. 

P~OPOSlTIOSr 6.1. Let A ~-- ]-T] A~. Then K o (End ~(A)) ~- ]-'[[ K 0 (End ~ (A~)). 

Proof. We have 1 - - - - - e l + . . .  + e ,  where e ~ , . . . e ,  are orthogonal idem- 
potents (see 5.26). Given f: P - ~ P  with P C ~(A) we get fi: P i - ~ P i  where 
Pi ~-- eiP E ~(Ai). Define 

by 

T: Ko (End ,C?(A)) -~ ]2[ Ko (End ~(A3) 
i = 1  

[f] -~ ([fi]);=l 

([gl])~ in 1-[~=~ K0 (End ~(Ai) ) where gi: P~ -~ P~ 
[g] e K o (End ~(A))  by g(x) ---- g(~i x,) = ~,~1 g,(x,) 

PROPOSITION 6.3. 2,: K0 (End ~(A)) --> ~i is a 2-ringhomomorphism with image 
Ao. 

Proof. This follows from the definitions made after 3.3. 

THEOREM 6.4. Ao is a direct summand (as an abelian group) of I(o (End ~(A)).  

Definition 6.2. We define the subring of >>rational functions>) 

{ l + a l t 4 - ' ' ' + a m t ' ~  } 
7 0 =  i+b t+ .. +b~ o; a,,bjeA 

of A (where A- o has the induced operations). 

Conversely given with 
Pi E c[~(Ai) , define 

if x =  x i E P =  @P~ with x~CPi for i =  1,2 . . . . .  s. 
1 1 

Then P =  |  and g : P ~ P  is A-linear. 
[ s The maps ~ and (gi])l ~-> [g] are easily seen to be each others inverses. 

Furthermore ~ is a ringhomomorphism since fi can be identified with f @ 1A~ 
and A i is A-flat. 
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Proof. We have to construct  a r!ght inverse a of 

2,: K o (End ~(A))  -+-4o 

:For this purpose it is convenient  to view an endomorphism f: P- ->  P as an 
A[t]-module wi th  the  action def ined by  t .  x = f(x)  for x E P.  Maps between 
endomorphisms correspond exact ly  to A[t]-linear maps. Le t  S be the multiplicative 
set of  all monic polynomials in A[t]. Then S-~P = 0, i.e. P is killed by  some 
monic polynomial ,  which follows from the Cayley-Hamil ton  theorem. Summing up, 
pu t  To(A[t], S) = K o {P C Mod A[t]; P is projective as an  A-module and  S - 1 p  = 0} 
then  

To(A[t], S) =~ K 0 (End ~(A)) .  

A0 define a: A0 -+ To(A[@ S) Given g(t) = 1 + alt + . . . + a~t ~ in 

by  a(g(t)) = A[tJfl(t) 

Over in K 0 (End ~(A))  this means 

where ,q(t) = tag -1;' 

i 0 0 0 :~ a,  O 0 0 • a , _ ~  
= 1 o o I ! 

0 0 1 0 - -  a 2 / 
0 0 0 1 a 1 / 

and  a(g(t)) is an endomorphism of a free A-module.  
Then a is additive, i.e. a(g(t)h(t)) = a(g(t)) + a(h(t)). 
Indeed  we have an  exact  sequence in Mod A[t] 

0 --+ A[tJ/(~(t)) --+ A[t]/(g(t)-h(t)) --+ A[t]/(h(t)) -*- 0 

since ~(t) and h(t) are non-zero-divisors in A[t]. Since 

2t(a(g(t)) = 1 + alt ~- . . .  + ant = g(t) 

we have 2 ~ o a = i d  as we wanted.  

COrOLLArY 6.5. Let A be a regular noetherian ring. Then ~4 o is a direct 8ummand 
(as abelian group) of  1(o (End ~f~(A)) = K o (End c~'7/(A)) (here c]~(A) is the category 
o f  f ini te ly  generated A-modules) .  

Proof. I f  A is regular noether ian then  every module has f ini te  homological 
dimension and  c)'~(A) = 9~(A). B y  5.27 A --~ ]-'~]A~ where the Ads are integral 

domains.  The rest follows from A 0 r-r, __~ ] ]lAio, 5.27, 6.1 and  6.4. 

T ~ n o n n ~  6.6. The map 2,: Ko (End ~(A))  -+  A0 is a ring isomorphism in the 
following cases 



E N D O M O R P H I S M S  O F  F I N I T E L Y  G E N E R A T E D  ~ P I ~ O J E C T I V E  M O D U L E S  293 

(i) A 
(ii) A 

(iii) A 

is a PID.  
B[X] where B is a PID,  e.g. A = K[X,  Y] where 

is a noetherian regular local ring of dimension ~ 2. 
K is a field. 

Pro@ 

go 
K o of the 
Now A[t] 

such tha t  

Using the notation in the proof of 6.4 and Bass [2] p. 492 we have 

(End @(A) ~_~ K 0 (End 9((A)) = K 0 (End c)~(A)) _~ Go(A[t], S) = 

category of A[t]-modules killed by some monie polynomial. 
is noetherian so given any M as above we have a filtration in Mod A[t] 

_ M ~ M  0 ~ M  l ~ . . . ~ _ M  k =  0 

where the p~-:s are prime ideals in A[t]. Since M is killed by a monic polynomial 
e~J 

so is M i and A[t]/pl which means tha t  pi contains a monie polynomial. Let 

p i =  p i [TA and put  p ~ = ( p ,  fi) where fi is a monie polynomial in pl of 
minimal degree. Now we claim tha t  p~ is a prime ideal in A[t]. 

We have 

Art]/V; = A[t]/(pl, f,) ~ (Alpl)[t]/(~) 

where S is the residue of fi in A/pi[t]. Furthermore f i  is irreducible in A/~o,[t] 

since fi = glhl implies fi = gihl + qi with qi e piA[t]. We can choose g~ and 

hi monie and glh lep i  since fi and ql are in pl. Hence gi or hi is in p~ since 

pl is prime. But  f~ has minimal degree so gl ---- 1 or hi --~ 1 and we have shown 

tha t  V[ is prime in A[t]. Evidently p;_c V, and p ; [ 7 A =  P l f l A  so V~= P~ 
by Serre [10] p. I I I .  17, Lemma 3. 

Hence Go(A[@ S) is generated by all A[t]/(p,f) where p e SpcoA and f 
is a monic polynomial such tha t  f is irreducible in A/p[t]. We will show tha t  
only the case p = 0 is interesting. We treat the three cases separately. 

(i) Assume tha t  A is a PID and 0 # p = ipA. Then there is an exact sequence 

P 
0 ---> A[tJ/(f) -+ A[t]/(f) --+ A[t]/(p,f) --+ 0 

This shows tha t  [A[t]/(p,f)] = 0 if p # 0. 
(ii) I f  A = B [ X ]  where B is a PID then a prime ideal p # 0  in A is 

either principal or of the form p = (p, g) where p E B is a prime element 
in B and g C B[X] is such tha t  ~ E B/pB[X] is irreducible. 

The case p principal is treated as in (i) and in the second case 

0 --> A[t]/(p, f )  --+ A[t]/(p, f )  --+ A[t]/(p, g, f )  -+ 0 

is exact. 
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Hence [A[t]/(p,f)] -= O. 
(iii) Let now A be a noetherian regular local ring of dimension ~ 2. I f  

dim A = 0 or 1 then A is a field or a PID. Assume therefore dim A = 2. 
Let ~ r  be a prime ideal in A. I f  htp--~ 1 then p is principal since 
A is a UFD (Bourbaki [5], p. 33) and we are back in case (i). I f  h t ~  = 2 
then p is the maximal ideal in A and p----(xl, x2) where x 1,x~ is an 
A-sequence. Hence the map 

:~2" 
A/(xl)  ~ A/(xl)  

is injective. Then 

0 -+ A[t]/(x~, f )  

is exact and 

2~ 2 �9 

A[t]/(xl, f )  --> A[tJ/(xl, x 2 , f )  ~ 0 

[A[t]/(p,f)] : 0. 

Hence in all three cases Go(A[t ], S) is generated by ~ll AEt]/(f ) where f is 
an irreducible monie polynomial. Recall the maps in the proof of  6.4 

~o(A[t], S) ~ - - - ~  -~o 

where we saw ~ ,o (~ -~ id .  The subgroup Ko(A ) ~ z  of K o ( E n d ~ ( A ) ) :  
Go(A[t ], S)  has the generator A[t]/(t). I t  follows tha t  ~ o ~ =- id on the rest of 

the generators A[t] / ( f )  and hence ~:o (End ~ ( A ) ) ~  Ao which ends the proof. 

We now turn to the s tudy of the Ko-groups of some full subcategories of 
End ff~(A). The first one is (see Bass [2] p. 652) 

~4~S ~(A) = {f e End ~?(A); f is nilpotent} 

Definition 6.7. Let  N(~)o denote the subring of A~ consisting of all ~)rational 
funetions~> 

1 + a l t + . . . + a , ~ t  "~ 

l + blt + . .  . + b,t ~ 

where all a~,b i are nilpotent. Since (1 + bit + . . .  + b~t') -1 in this case is a 
polynomial we have 

N(A)o = {1 + c~t + . . .  + cktk; C~ r N(A)}. 

PROI~OSITION 6.8. ~,: K 0 ( ~ / ~  ~ ( A ) )  ~ N(A)o  is a surjective ringhomomorphism. 

Furthermore 1V(A)o is a direct summand  (as abelian group) of K o ( ~ F ~ ( A ) ) .  
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Proof. We only have to check that  all the ai:s in ,t,(f) = 1 + alt --~ �9 �9 �9 @ a~t ~ 
are nilpotent if f is nilpotent. This was done in 1.7 and 1.8. The last part  follows 
from 6.4. 

_Remark 6.9. The subcategory of ~/fZF@(A) consisting of all zero maps 0: P -+ P 
can be identified with ~(A).  I t  follows that  K0(~,4~d~(A)) contains Ko(~(A) )  = 
Ko(A ) as a direct summand (see Bass [2] p. 652) 

K 0 (~/r  = Ko(A ) | Nil (A). 

Since 2,(0) = 1 we have Ko(A ) c_ Ker 4, so the proposition shows that  Nil (A) 

contains N(A)0 as a direct summand. 

:PRoPosITION 6.10. The map 

T: Ko(A)--> { ~ e~(1 + t)n~; n~ E Z and e l , . . . ,  es are orthogonal idempotents with sum 1} 
5=1 

defined by [P] ~-> 2,(le) is a split surjective ring homomorphism. The right hand side 

considered as a subring of A is isomorphic to the ring of all continuous functions 
f rom Spcc A to Z (where Z has the discrete topology). The kernel of T is equal 
to the Jacobson radical of Ko(A),  which is also equal to N(Ko(A)) .  

Proof. Given P C ~ ( A )  with rkP  = n let 

Xj. = {p E Spec A; rkP~ = j} (compare the proof of 2.2.) 

Let e0, % . . . ,  e~ be the corresponding indempotents in A. Then 

~,(1p) = ~ e~(1 -t- t) ~ defines g]. 
i = 0  

To construct a right inverse O of • consider the map 

e,(1 + t) ~'~-> O A~' - -  | A i = [ P ] - -  [Q] 
i = 1  Lni>o J kn j<O J 

where ex . . . . .  ek are orthogonal idempotents with sum one, n~ E Z, and 
At = Aei E ~(A).  One verifies that  O is a ring homomorphism. We want 
4, o 0 = id. 

First 

(Aei)~ 

where X~ is the closed and open subset of Spec A 
rk~P = nl and (2t(1p))~ , = (1 + t) n~ for p E X i. 

= A ~ % =  {0A~ if p E X ~  
otherwise, 

corresponding to e,.. Hence 
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But  

Furthermore 

k 

( ~ e i ( l - ~ - t ) ' ) ~ =  (1 -4-t) n' for p EX,.  
i = l  

( ej(1 + = Z ej(1 + t) J . 
n j < O  nj<O 

and we have shown that  ~t 
The map 

o 0  ~ id. 

k �9 

e,(1 + t)o' ~ f  
1 

where f(x) ~ ni if x 6 Xi, gives the isomorphism between the ring on the right 
hand side above and the ring of all continuous functions f: Spec A -~ Z. 

The composite ~ o T is precisely the rank map rk. I t  follows that  

Ker T -- Ker (rk) -~ the Jacobson radical of Ko(A ) 

(for the last statements see Swan [12] p. 169). 

COROLLARY 6.11. Let A be noetherian. Then A has a finite number, say k, of 
irreducible idempotents and Ko(A ) contains Z ~ as a direct summand. 

By the previous results the s tudy of the structure of -4o seems interesting. In  

case A contains the rational numbers -40 is related to sequences of traces of the 
powers of a matrix (see 6.13). 

Definition 6.12. A sequence (bl, b2 , . . . )  of elements in A is called a trace 
sequence if there is some f." P - + P  with P 6 ~(A)  such that  b~ ~ Tr (f~) for 
all i > l .  

One may of course assume that  P is free. 

1)RO~OSITION 6.13. Assume that A D_ Q. 

(i) Then there is a ringisomorphism r A--~ ]-[TA where the latter ring can be 
identified with all sequences under componentwise addition and multiplication. 

(ii) A0 is isomorphic to the ring of all sequences which are differences of trace 
sequences. 

Proof. (i) Define r as the composition 

1 -~- a l t  -4- �9 �9 �9 
a l t  - ~  2 a 2 t 2  -~- . . .  

1 - ~  a l t  ~ a 2 t  2 ~ -  . . . 
= b i t  - -  b3 t  3 . . . ~ (b  1, b2, ha,  �9 . .) 

The inverse is given by  
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t 

(bl, b 2 . . .) ~ exp f f  (bl -- b :  + b :  3 . . .) 
0 

tk+l 
t 

where f0  is A-linear and f ' o S ~ :  k + 1" 

Clearly r is additive (essentially it is the logarithmic derivative). To see that  
r is multiplicative one uses the same technique as in the proof of 3.4, the key fact 
being Tr ( f  Q g)~ ---- Tr (f~) Tr (g~). 

(ii) The restriction of r to A0 will do. By the exponential trace formula 

~ - - ~ )  : (b / )~  ~  ~ where b , : T r f '  and c , : T r g ' .  

_Remark 6.14. I f  A is a finite field with q elements then r in (i) is neither 

injective nor surjective. Indeed 2,(f:) = 2,(f) for v = 1, 9 . . . .  In particular 
bqv ~-- b~ and hence every (b~)~ ~ in the image of 6 must have this property. 

Definition 6.15. The Witt ring W(A) of A consists of all sequences (x~)~ 
where x~ E A (Witt vectors) with addition and multiplication defined such that  
for every n > 1 

din 

is a ring homomorphism W(A)--+A. The right hand side b,, ~--~al, dx]/a is 

called the n:th ghost component of (x~)~. We have a ring isomorphism W(A) -> 
defined by  

co 

(x')~ ~ ~ I [ (1 --  xi(-- t)'). 
i = 1  

Many of the previous results can be formulated in the Wit t  ring instead of A. 
E.g. 6.6. becomes 

PRorosI~ION 6.16. I f  A is a P I D  (A ~-- B[X] where B is a PID)  or A is 
a regular local ring of dimension ~ 2 then K0(End ~(A)) is isomorphic with 
the subring Wo(A ) of W(A) consisting of all Witt vectors having differences of trace 
sequences as ghost components. 

Thus we have four rings: K 0 (End ,(2(A)), A0, the ring of differences of trace 
sequences and Wo(A ). They are all isomorphic if A is a field of characteristic zero. 
In case A is also algebraically closed they are also isomorphic to the group ring 
Z[A*] where A* is the multiplieative group of non-zero elements in A. The 

isomorphism ffo-->Z[A*] is given by  

(1 + &t) 
i i 

and is actually defined for any algebraically closed field. 
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Assume now tha t  f: P - +  P is nilpotent,  say f ' + ~ =  0 and r k P - ~  n. Consider 
the image (xl)~ in W ( A )  of  i t ( f ) - -  1 + a l t - C . . . + a , : t  ~. Since x k is a poly- 
nomial  of  weight  k in a~, a 2 , . . . ,  ak we f ind (using 1 . 7 ) t h a t  all x~ are nf lpotent  
and x~ --~ 0 if  k > ran. We can now reformulate  6.8 as follows. 

PI~OI'OSlTIO~ 6.17. There  is a surjective ring homomorph i sm  f r o m  K o (~4~Zf~(A))  
onto the r ing of  Wi t t  vectors (x~)~ where almost all x i : 0 and all x i are nilpotent.  

The  latter is a direct s u m m a n d  (as abelian group)  o f  Nil (A). 

PROPOSITIO~ 6.18. The  fo l lowing are equivalent for  a sequence (bl, b 2 . . . .  ) in  A 

(i) (bl, b 2 , . . . )  is a trace sequence, 

(ii) there exist a ~ , a 2 , . . . , a ~  i n  A such that 

b 1 ~- a 1 

b 2 -~ alb 1 - -  2a+. 

b 3 : alb ~ - -  a~b 1 -~ 3a 3 (Newton ' s  f o r m u l a s )  

b~ : aib~_l - -  a2b~_2 -+- . . .  ~ ( - -  l)"a~_lb~ ~ ( - -  1)~+Ina~ 
and 

b,+~ - -  alb~+~_l ~ . . . -+- ( - -  1)~a,bi : 0 fo r  all i > 1, 
(iii) there exists an  integral extension A '  ~_ A and t l ,  t2, �9 �9 �9  in 6 A ' ,  zeroes 

o f  a monic  po lynomia l  in  A[t] o f  degree n, such that 

b , =  i t~ for  all i > l ,  

(iv) ( / f  A _D Q) 

is a polynomial .  

exp -- i i- (-t)' 

Proof .  (i) ~ (ii): Assume tha t  b~ ---- Tr (f~) where f." P --+ P wi th  P 6 (~(A) 
and r k P  ~ n. Assume tha t  i t ( f )  = 1 -+- alt -+- . �9 . -+- a~t n. Comparing the  coeffi- 
cients on bo th  sides in the  exponential  truce formula we get  Newton ' s  formulas.  

(ii) ~ (i): Assume tha t  (bl, b2 . . . .  ) satisfies the  condit ion (ii). Le t  f: A n - +  A" 
be such tha t  t , ( f )  = 1 ~ alt -+- . . .  -+- a~t n. The exponential  t race formula then  
gives b~ -~ Tr (f~). 

(i) ~ (iii): Assume tha t  I t (f)  -~ 1 -+- alt ~- �9 �9 �9 ~- a~t n and b~ ~ Tr ( f ) .  Since 
tnX~/,(f) is a monic polynomial  there  exists an integral extension A '  of  A such t h a t  
t ' l~/,(f) splits into linear factors in A'[t] (Bass [2], p. 118, L e m m a  5.10). I t  follows 
tha t  

n 

t , ( f )  ---- ] ~  (1 + i~t) with  t~ 6 A'.  
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Taking logari thmic der ivat ives  on bo th  sides and comparing wi th  the  exponent ia l  
t race  formula  gives b~ ---- ~=~n ~.  

(iii) ~ (ii): Assume t h a t  ~1 . . . . .  ~ are zeroes of  t ~ - -  alt ~-1 ~ . . .  -~ ( - -  1)~a~ 
n i with  a l , . . . , a n  in A. Then  b~=  ~ 1 ~  and  a l , . . . , a ~  sat isfy lqewton's  

formulas in (ii). In  par t icu lar  we have  b~ C A. 
(i) ~ (iv): see 1.1O. 
(iv) ~ (ii): Taking logar i thmic der ivat ives  of  

exp - -  - -  ( - - t )  i = l + a ~ t - ~  - ~ a n  t~ 
1 i " " " 

and  comparing coefficients we get  (ii). 
E x a m p l e  6.19. The Fibonacci  sequence (1, 3, 4, 7, 11, 18, . . . )  is a t race  sequence 

in Z. We have  b~+ : - -b~+~- -b~-~O,  so a 1 ~  1 and  a 2 = - - 1 .  The  initial 
conditions b l : a  1~-  1 and  b 2 : a l b  1 -  2a 2~- 3 are satisfied. We get  2,(f)---- 
1 ~- t - -  t ~ and  the  corresponding ma t r ix  

PROPOSITION 6.20. I f  A is a f i n i t e  r ing then a trace sequence is  periodic.  I f  the 
trace sequence comes f r o m  f:  P --~ P wi th  r k P  ~- n then the per iod  is at most  Icn - -  1 

where k is  the number  of  elements in  A .  

Proof .  Assume t h a t  b~- -~Tr( f l )  wi th  2,(f)---- l ~ - a l t ~ . . . ~ a ~ t  n. Then 
bn+~ -~ alb~+~_l - -  a2b~+~_2 ~ . .  �9 :J= a~bl for  i ~ 1 b y  6.14 (ii). 

Hence  an  e lement  in the  t race  sequence is complete ly  de te rmined  b y  the  n 
preceding elements.  There  are only  k ~ choices of these preceding n elements.  Thus  
among k n + n consecut ive b~:s there  mus t  be two identical  sets of  n consecut ive 
b~:s. Thus  the  period is a t  mos t  k ~ -  1. 

_Remark 6.21. The  maximal  per iod k ~ - -  1 m a y  occur  as the  Fibonacci  sequence 
(mod2)  shows ( 1 , 1 , 0 , 1 , 1 , 0 , . . . )  wi th  k - -~2  and  n----2.  (See 6.19.) 

_Remark 6.22. The sequence of  maps  f , f ~ , f a , . . ,  is also periodic i f  A is f inite.  
I f  A has k elements  and  f is represented  b y  an n • n -ma t r ix  then  two maps  in 

the  sequence f ,  f2 . . . . .  fk~'+~ mus t  coincide since there  are a t  mos t  /c n' d is t inct  
n • n-matrices.  

PROPOSXTrON 6.23. Let  A be a f i n i t e  f i e ld  wi th  q elements.  A s s u m e  that 
b~ • Tr  (f~) wi th  2~(f) : 1 + alt -~ . . . ~ ant n irreducible i n  A[t].  T h e n  the per iod 

of  the trace sequence (b 1, b ~ , . . . )  divides  qn - -  1. 

Proof .  L e t  2,(f) : ]-~=1 (1 + ~t) be the  fac tor iza t ion of  ~,(f) wi th  ~ E K 
where K is the  spli t t ing f ield of  ~,(f) over  A. 
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Then bl = ~,~=1 2~. Now A[2~] is a field wi th  q" elements and  2~"-1=  1 
in A[2~] and  hence in K.  I t  follows t h a t  bi+q~_ ~ = b~ for all i >__ 1. Thus the  
period of (bl, b: . . . .  ) divides q~ --  I.  

COROLLARY 6.24. I f  ,~,(f) is a product of irreducible polynomials of degrees 
nl, n p , . . . ,  n~ respectively then the period of the trace sequence (Tr (f i))~ divides 
the l.c.m, of q " ' - -  1, q ~ ' ~  1 , . . . , q % - -  1. 

.Remark 6.25. I t  seems to be quite hard  to predict the period from the characteristic 
polynomial  2,(f). The following results are not  too useful for practical computat ions.  

P~oPoslTiOX 6.26. Given b~ ---- Tr (f~). 
(i) Let q E A[t] be any po lynomia l sueh tha t  q( f )  = O (e.g. q = t~2 l#(f) or 

q = a min imal  polynomial  of f ) .  I f  qlV - -  1 then (bl) ~ is periodic and the 
period s divides r. 

(ii) Conversely assume that (bi) ~ is periodic with period s. Assume further 
that A is a U F D  and 2,(f)  is irreducible of degree > 1. Then  
t~_~l,(f) It ~ - -  1. 

Proof. ( i ) W e  have t r -  1 = q(t)h(t) for some h in A[t]. Since q ( f ) =  0 we 
get f r =  1 so f ~ + ~ f f  for all v > l .  I t  follows b~+~=b~ and  sir. 

(ii) The exponential  trace formula gives 

d 
d-t "~'(f) = ,~(f)(bl - -  bet q- bt~ . . . )  ---- ;~,(f)(b~ - -  bpt q- . . .  - -  ( - -  1)~b~t~-~)(1 --  (-- t)') -~ 

since bi+~ = b i. 
d 

Hence ,~,(f)l(1 --  (-- t ) ' ) .  ~ 2,(f) and  2,(f)I(1 --  (-- t) ~) which implies 
t~A ~z,(f) l(t ~ --  1). 

COROnLA~: 6.27. Assume  that A is a U F D and that ~,(f) is irreducible. Then  
(bl) ~ is periodic i f  and only i f  

tL~_:/,(f) it" - -  1 

for  some r > 1 and the period s is the smallest r with this property. 

_Remark 6.28. I f  ~,(f) is no t  irreducible bu t  the  product  2t(f) = h l h p . . ,  hk 
where h i , . . . ,  hk are irreducible of degrees n~ . . . .  , n k respectively, then  the  
period is the  1.c.m. of  Sl, sp, �9 �9 �9 sk where s t is the smallest integer > 0 such 
tha t  

tn~hi( - 1/t)It s ~ -  1. 
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E x a m p l e  6.29. Let  A--~ Z/(13) and  

f =  0 
1 

Then 2 , ( f ) -~  l + t + t  ~ = ( 1 - 2 t ) ( l + 3 t -  6t ~) where 1 - t - 3 t - - 6 t  2 is 
irreducible. We get  

t32~/ , ( f )  = (t -~ 2)(t u - -  3t ~- 6) 

/qow t ~- 2It ~ - -  1 and  t 9' - -  3t ~- 6It ~6s - -  I since the splitting field of  t 2 - -  3t -~ 6 
has 13u--  - 169 elements. 

Thus  6Is and  s1168 where s is the  period of  Tr  (f~) ---- (1, 1, 4, 5, 6, 1 0 , . . . ) .  
B y  actual ly  comput ing  the  period one finds s = 168 and  hence 168 is the smallest 
integer r ~ 0  such t h a t  t ~ - 3 t + 6 / -  1. 

A d d e d  in  proof:  In  a paper  ~)The Grothendieck  r ing of  the ca tegory  of  endo- 
morphisms,), to  appear  in J .  Algebra, the au thor  proves Theorem 6.6 for any  
c o m m u t a t i v e  ring. 
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