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1. Introduetion

The role in classical analysis of the Orlicz space L logt L is now well-known
([18]; I, pp. 33, 242, 267; 11, p. 159) and, quite recently, O’Neil ([14]) has exhibited
certain connections with the theory of interpolation of operators. In this note we
show how the modern theory of interpolation methods relates to the space L log*t L
by describing the intermediate spaces (L', Llog* L), ., x and (Llog* L, L*), . x
generated by the K-interpolation method of Peetre ([3], Chap. 3). In particular,
we find interesting relationships (Corollaries C, E) between these and the Lorentz
spaces. In fact the essential observation in the proofs of our results is that all three
interpolated spaces L', Llog*L and L® are Lorentz A-spaces ([12]) which
enables us ([15]) to identify the functional norm K(¢; f). An application of (some
variants of) Hardy’s inequality completes the characterization. Our main results
are as follows:

THEOREM A. The intermediate space (L, Llogt L), . x, 0 <0 < 1,1 <q < o0,
consists of all integrable functions f on [0, 1] for which the norm
1
1/q
Il = { / [t(log 1/t)"="4f **(t)lth/t}
0
s finite,

CoroLrLaRY B. When 0 <6 <1, we have (L', Llog*L),, x = L (log* L),
with equivalent norms.

CoroLLaRY C. When 1 <q < o, we have (L', Llogt L)y, ,.x = L', with
equivalent norms.
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Note that Corollary C is an immediate consequence of Theorem A and the
definition (8.2) of the Lorentz space L. The proof of Corollary B is a little less
direct and is postponed until § 7.

TaeoreEM D. The intermediate space (Llog™L, L%), ., 0<0 <1,
1 <q < oo, consists of all integrable functions f on [0, 1] for which the norm

1 1)

1Al = { f [t*e f f*(s)d¢(s>rdt/t}”q

0 [
is finite, where ¢(t) = #(1 4 log 1/t). An equivalent (quasi-)norm is

1

1/q
A1l = { f [tl“’f*(qa‘l(t))]th/t} )

Since ¢(t)/t tends to infinity as log 1/t (as ¢->0), the next corollary follows
immediately from the second of the assertions in Theorem D.

CoroLLARY E. When 1 <p < 0, 1 < q < o, thespace (Llogt L, L®); 4 x
is properly contained in the Lorentz space LM,

2. The Orliez spaces L (log* L)°

For each 6, 0 << 6 <1, the class of measurable functions!) on [0, 1] for which
the quantity

f 1£(@)] (log* | f()I)de (2.1)
0

is finite will be denoted by L (log* L)’. When 0 =0, L (log* L)® is of course
the familiar Lebesgue space L'; when 6 =1, we write LlogtL instead of
L (logt L)*. Thus ([9]), L (log* L)® is the Orlicz space generated by the N-function
u— % (logt u)® and as such is a Banach space under the usual Orlicz norm
Ilziogz+y ([91, p- 67). We shall not make explicit use of this norm. Indeed, all
we need to know is the fundamental function &— ¢(f) of the space L log*™ L
(i.e. the norm in Llog+ L of the characteristic function y , of the interval
[0,t], 0<t<1), and a simple computation ([9], p. 72) shows this to be

Pi(t) = (1 — logt), 0 <t <1 (2.2)

1) As usual, functions that coincide a.e. are identified.
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The Orlicz spaces L (logt L)?, 0 <0 <1, are »close» to L' in the sense that
Lf € L (logt L)’ € L', for all p > 1; moreover, following [2], one can show
that the indices ([1]) of L (log* L)° are all equal to 1.

3. Lorentz L?? spaces

The usual definition of the Lorentz space LP? ([3], [4], [5], [8]) is that it consists
of all (classes of) integrable functions f on [0, 1] for which the norm

0 i/q
Il = { f (t”‘”f**(t))"dt/t} (3.1)

0

is finite. However, since f*(f) is a priori undefined for ¢ > 1, we shall adopt the
more natural definition in which the norm (3.1) is replaced by

. lq
1fllg = { f (t"Pf**(t))”dt/t} - (3.2)

Now for ¢ > 1, f**@) is simply an appropriate multiple of 1/t so when
1 <p < o0, the norms in (3.1) and (3.2) are equivalent. However, when p = 1,
the space defined by (3.1) contains only the zero function (if ¢ < o) whereas
the corresponding Lorentz space L' defined by (3.2) is of much more interest.
Indeed, we shall see that L is equivalent to L log+ L while the spaces L'Y occur
as the »diagonaly intermediate spaces between L log+t L and L' (Corollary C).

4. The Hardy-Littlewood maximal funetion

When f is an integrable function on [0, 1] its Hardy-Littlewood maximal
function Mf ([6], [7], [16], [17], [18]) is defined by

x+-h
(Hf)w) = sup (1j2) [ |fg)idy, 0 <@ <10, (4.1)
0<h<<l o

The non-increasing rearrangement ([5], [8], [18]) of an integrable function f is
denoted by f* and the averaged rearrangement f** is defined by

t

FEE(E) = (1)t) f f*(s)ds, t> 0. (4.2)

0

1) Take f(y) = 0 outside [0, 1].



218 COLIN BENNETT

The inequalities
FEH2) < M(f*)(@E) < f**(@), 0 <<, (4.3)
are easy consequences of the fact that f* is non-increasing but the estimates
(MFY*(E) < 4f**(¢[2); f**@) < 6(Mf)*(@), 0 <t <1, (4.4)
due to Herz ([7]), lie much deeper and play a crucial role in the proof of the next
theorem.
4.1. TarorEM. For any number 0, 0 <8 <1, and any integrable function f
on [0, 1] the following statements are equivalent:

(a) fe€L(logtL);

1
(b) f 1f@)] (log* 1f(@)1¥de < oo;

1

(©) [ £50) (log* @) dt < oo;

]

1
@ f F5(t) (log 1/ty°dt < co;
1

(e) f F*4() (log 1jey~dt < oo;

0

1
) f (MF)*(t) (log 1/6~1dt < co.

Proof. That (a) and (b) are equivalent is a matter of definition (cf. (2.1)), and
(b) and (c) are equivalent because f and f* are equimeasurable. If (c) holds then
(cf. [18], I, p. 34) let E = {t: f*(t) <t "} and F = {t: f*(¢) > ¢t~'*}. We have

ff*(t) (log 1/t)°dt = f—l— /S const. - 2° ff*(t) (log f*(2))°dt < <o,

and so (¢) = (d). The converse is a direct consequence of the fact that for every
integrable function f, the function ¢-»if*(¢) is bounded. The quantities
6 f(l,f*(t) (log 1/¢)°dt and f:,f**(t) (log 1/t)°"'dt are the same (use (4.2) and change
the order of integration) so (d) and (e) are equivalent. Finally, the equivalence
of (e) and (f) follows directly from (4.4). This completes the proof.
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4.2. Remarks. (1) When 6 = 1, we deduce from parts (a) and (e) of Theorem 4.1
that f € Llogt L if and only if f** is integrable, a result of Hardy and Littlewood
([6], Theorem 11 (iii)). Hence, by (3.1), the spaces Elog* L and L1 contain the
same (classes of) functions. (ii) The equivalence of the parts (a) and (f) shows that
the maximal function Mf is integrable if and only if f € L logt L. This somewhat
deeper result is due to Stein ({161, [17]) but was later established by Herz ([7])
using the methods indicated here. We shall not need to use part (f) in what follows;
the remaining assertions of Theorem 4.1 are then elementary because they do not
require (4.4).

5. Loreniz -spaces

When X is a rearrangement-invariant space ([1], [5], [15]) on [0, 1], the funda-
mental function ¢y of X is defined by ¢x(¥) = llxlx, 0 <t <1, where y, is
the characteristic function of the interval [0, t]. The Lorentz space A(X) associated
with X consists of all (classes of) integrable functions f on [0, 1] for which the
norm

1l = f FHt)dpx®) (5.1)

is finite (cf. [15]). Observe that A(X) =X if X = L' or L*®; the subsequent
theory depends crucially upon the fact that this remains true when X = Llog* L.

5.1. TeEOREM. Up to equivalence of norms we have

A(Llog* L) = Llog+ L = LM, (5.2)

Proof. We have already observed (cf. Remark 4.2) that Llog*L and L
are the same. For the other half of (5.2), note that by (2.2) the fundamental function
of the space Llogt L is ¢(t) = (1 + log 1/t). Thus, from (5.1), we see that an
integrable function f belongs to A(Llogt L) if and only if f :, f*@) (log 1/t)dt is
finite, and by Theorem 4.1 this occurs precisely when f belongs to L log* L.
Thus, the three spaces A(L logt L), Llog* L and LM coincide algebraically. But
any two Banach function spaces consisting of the same functions have equivalent
norms (cf. [11], § 2) so the proof is complete.

5.2. Remark. Theorem 5.1 is already implicit in the more general results of
Lorentz ([11]) which describe the precise circumstances under which an Orlicz
space can be equal to a Lorentz space; we included the proof in our special case
because it is elementary. Roughly speaking, Lorentz’ results show that an Orlicz
space can coincide with a /-space if and only if it is »close» to LY; in particular,
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the spaces LP (logt L), p > 1, are not A-spaces and so the techniques used below
do not extend to the case p > 1.

When (A, 9) is a compatible couple of Banach spaces the K-funetional norm
of Peetre ([3], Chap. 3) is defined on A -+ % by

Kt f) = K(t; f; SA; D) = inf (|g] ¢ + Hlkl5), 0 <t < oo,

where the infimum is taken over all possible representations f =g + & of f with
g €A and h € %. We shall need to use the elementary inequality

K@ f) <max (1,¢s)K(s; f), 0 <s,t < . (5.3)

The importance of the identity (5.2) is that it allows us to regard the couple
(LY, Llog+ L) (or (Llogt L, L*) as a pair of Lorentz A-spaces and in this case
it is possible to compute K(t; f). Indeed, if X and Y are rearrangement-invariant

spaces then
1

Kt f; AX), A(Y)) = j F¥6)d {min (p,(5), tpy(s)}. (5.4)

This result is stated without proof in [12], and in a special case in [1]; a proof is
supplied in [15]. We apply (5.4) in case X = I* and Y = Llog* L.

5.3. THEOREM. For each f € L' we have

e(t) 1
/f*(s)ds +¢ / (log 1/s)f*(s)ds, 0 <t <1,
K@ f; L} Llogt L) = 1 ° 0 (5.5)
/f*(s)ds, > 1,
0

where e(t) = exp (1 — 1/f).
We shall, for convenience, write K(¢;f) for K(¢; f, L'; Llog* L). Note that
when 0 <t <1, an integration by parts of the second integral gives

e(t) 1 1
f FE(s)ds + #(1 — )1 f (log 1/s)f*(s)ds = #(1 — t)~* f FrHe)ds,  (5.6)

e(t) e(t)

and this leads to the following characterization of K(¢; f) in terms of f**.

5.4. THEOREM. For each f e L' we have
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1

K@t fy ~t(1 — )2 ff**(s)ds, 0 <t <L (5.7)
e(t)
more precisely

1 1
(2¢)7%(1 — t)~1 /f**(s)ds <K@ f) <t —p7? /f**(s)ds. (5.8)
et) e(t)
Proof. The second inequality follows directly from Theorem 5.3 and the identity

(5.6). For the other one we consider two cases. First, if 0 <¢ <1/2, then
(1 —8)1<2 so from (5.5) and (5.6)

1 e(t) 1
1 — ) | f**s)ds < | fXs)ds + 2t | (log 1/s)f*(s)ds < 2K (¢ f),
e(;)/ Of e(tf

and this establishes (5.8) in case 0 <t <<1/2. If now %} <¢ <1, then with
z =111 —1%)

W(r—up ff**(é‘)ds =z /f**(s)ds S a7l — e)f*FH(e) < fHHe) < ef*H(L).
e(t) e
But (5.5) shows that f**(1) = K(1;f) so using (5.3) we deduce that

1
(1= ot [1s < K (3 f) < 2K f) < 2K ), <t <1,
e(t)
This completes the proof.

6. Hardy’s inequality

The following integral inequalities, which will be needed later to identify certain
intermediate spaces, are collectively referred to as Hardy’s inequality ([3], p. 199;
[8], p.- 256).

TEEOREM 6.1 (Hardy). Let o> 0, 1 <g < oo. If w(s) is a non-negaiive
measurable function on (0, o) then

H

{ f (t_‘" f zp(s)ds)th/t}llq < oc"l{ f (tl“"‘tp(t))th/t}l/q (6.1)
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and

{ f (t"‘ f w(s)ds)th/t}llq < oc"l{ f (t1+°‘1/)(t))9dt/t}1/q. (6.2)

In the next theorem we establish a useful variant of Hardy’s inequality. For
reasons of brevity we shall denote by u the measure given by

du(t) = dt/[t(1 — log £)].

THEOREM 6.2. Let o> 0, 1 <g< oo, w>0. Then

1 t

1
g 1 l/q
{ f {(1 —logty* [ w(S)dSJ dﬂ(t)} ‘< a-l{ [ e —10g t)”‘"w(t)]qdu(t)} (6.3)
[1] 0 0

and

1 1

q 1/q ! /g
{ f [(1—logt)'“ f w(S)dSJ dmt)} Soc“{ f [t(l—logt)l““w)]q«iu(t)} .64

t

Proof. The proof is modeled on that given in [8] for the classical Hardy inequalities
(6.1), (6.2) so we shall only sketch the details. If 1 < ¢ < o0 and 1l/g +1/¢’' =1
we write

fw(s)ds = f[sl_”q(l — log sYy(s)I[s (1 — log s)~*1ds
0 0

and apply Holder’s inequality to obtain (provided fq’ < 1)

H

( f w(s)ds)’ < (g’ — 191 — log =P ( [ 10— 10 s)ﬁw(s)]fds/s).
(1]

0

Using this to estimate the left-hand side, say I, of (6.3) we have

1

I< {(ﬁq’ — 177 [ (1~ tog ot [ (1 — log s)ﬁw(s)]ws/s}l’”.

An interchange in the order of integration gives

1/q

I<{fg — 1) [(x+1— g — 1]}~ {f[S(l — log 8)1+°‘_1’“'/1(8)]qd8/8} ;
0
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provided {(« + 1 — f)g > 1. It remains therefore only to minimize the constant
term (subject to 1/¢" << f < « 4 1/¢’), and a simple computation shows that the
minimum value is «~! (ocourring at § = (« + 1)/¢’). The cases ¢ =1 and ¢ = ©
are easier so we omit the details. The inequality (6.4) can then be established in
much the same way.

7. The intermediate spaces (L, Llogt L), . x

Denote by ||fll, 1,x the norm of a function in the space (L', Llog* L), ;.-
Then by (5.5)

© 1 1

Wl x = f K (& f)dtft = 01 f F(s)ds + f K@ fd. (T.1)

Now, again using (5.5) and the change of variable u = e(f) we have

1

/ =LK (1 f)dt =

= /(1 — log u)eff*(s)ds du(u) + f(l — log u)e_lflog 1/s f*(s)ds du(u).

A change in the order of integration gives

1

f oKt F)dt —

= O‘Iff*(s)[(l —logs)’ — 1]ds + (1 — O)7T ff*(s)(log 1/s)(1 — log s)°~'ds
which, combined with (7.1), shows that
[ 7260 = tog syds < 1fl ik < 1601 — 017 [ FHENL — log syds.

Thus a function f belongsto (L, Llog+ L), ., ifand only if f (1, FE(s)1 — log s)°ds
is finite; it follows immediately from Theorem 4.1 that the spaces (L', Llogt L), ,. g
and L (log+ L)° coincide. This completes the proof of Corollary B.
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8. The intermediate spaces (L', Llog* L), . x

We shall show that the space X, , which by definition consists of all (classes
of) measurable functions for which the norm

1Mo, g = ff*(t)dt + {/[t(l — log t)“’”"f**(t)]th/t} (8.1)

is finite, coincides with the intermediate space (L', Llog+ L), . . Since the
finiteness of the second integral in (8.1) is not affected if 1 — log# is replaced
by —logt, this is precisely the assertion of Theorem A.

8.1. THEOREM. Let 0 <6 <1, 1 <q < oo. Then (L', LlogtL), . x=X, .,
with equivalent norms.

Proof. Let us show first that X, < (I}, Llog+ L)
by (5.5), (5.8) and Minkowski’s inequality

If feX,, then

0, q; K*

> 1/q
1, g5 x = { f [t"QK(t;f)]th/t}

1

< { f [t"“’(l e f lf**(s)dsrdt/t}l/q + { f [t“’ /1 f*(s)ds]th/t}llq

e(t)

go, if I denotes the first term, we have

g <+ 60 [ 1254 (52)
Now the change of variable u = e(t) gives
1 1 ] 1q
I = { [(1 — log u)°(— log w) ™! f**(s)ds} d,u(u)}
J J
< 2{ / {(1 — log w)~ f f**(s)dsrdy(u)}llq (8.3)

+ 2 {f {(— log »)™! ‘/‘f**(s)dsre du}llq =J; + J, say.

o

We use the Hardy inequality (6.4) to obtain the estimate
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. /g
Jy<2(1—6)"! {/[u(l — log u)ef**(u)]qdu(u)} (8.4)

while for the second term we use the inequality logu <% — 1 to obtain
1
Jy < (e — 1)1 sup {(— log u)~* ff**(s)ds}

el <u<]
u

1

S@~Dwﬁm{ﬂ—w“fﬁmm}éw—DW”WW

Therefore
el 1
T = (o= 1 [ peds < ¢ [ friads. (8.5)
0 0

Collecting the estimates (8.3), (8.4) and (8.5) we deduce from (8.1) and (8.2) that
i 1
lq
1, x < %,q<ff*(t)dt + {f[t(l — log t)"f**(t)]"dﬂ(t)} ) = G, [lflls, » (8.6)
0 0
which establishes the desired inclusion.

It remains only to show that if ||fl,, ., is finite then so is |f||, ,. But, again
from (5.8),

1 1

q 1/
[N, g 5 = 6{ f [(1 — log w)*™* f f**(S)ds} d,u(u)} ) (8.7)

13

and
1 1 s 1 u
[f**(s)ds = /s_ldsff*(t)dt > fs_lds/f*(t)dt = — u (log u)f**(u)

s0 from (8.7) we have

(fllo, s x = c{ f [(1 — log u)®* *u(— log u) f**(u)]qdy(u)}. (8.8)

0

Thus if [\fil, ,x is finite, so is the integral in (8.8) and hence, using once more
the fact that (1 — log %) and --logw are asymptotically the same as u — 0,
$0 is .|| fll, ;- This completes the proof of Theorem 8.1 and therefore, as we remarked
above, of Theorem A.
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9. The intermediate spaces (L log+ L, L%), .k

Recall that the fundamental function of the space L log*t L is ¢(t) = #(1 — log ¢)
so from (5.4) we have
()
K@ f; Llogt L, L*) = ff*(s)d<p(s) (9.1)

0

(cf. the expression for the K-norm of the pair (L?, L*) given in [10]; see also [13]).
Hence
o0

" q l/q
- { f [re [ f*(s)d¢(s)J dt/t} , (9.2)

the first of the assertions of Theorem D. For the second we note that the change
of variable u = @(s) in (9.2) gives

1l g = { f [t-l f ‘F*w)du]th/t}”q,

where F*(u) = f*(p~Y(u)), so from Hardy’s inequality (6.1) we have
z i/
11l s x =< 0_1{ / [ ~f *(tP‘l(t))]th/t} - (9.3)

Finally, it is easy to check that f*(p=(f)) < f ‘;’"“’ F*(s)dg(s) so from (9.2)
i /g
{ f [tl—ef*(qo*(t))]w/t} < Wl (9.4)
0

The second assertion of Theorem D now follows from (9.3) and (9.4).

Remarks. (i) From the hypotheses T=L'— weak-L!, T:L* —L* and
Marcinkiewicz’ theorem ([5], [8]), it follows that T:Lr — L, 1 <p < o,
1 < ¢ < o0. Under the weaker (cf. [14]) hypotheses T: L log+ L — L, T: L* — L*,
it is no longer true that T': LP? — LP1 (take Tf = fo ¢~1); in this case, the inter-
polation theorem corresponding to Theorem D shows that if 7T: Llog+ L — L1,
T:L* — L*, then T:(Llogt L, L%) _yp 4 x—> L™

(i1) Because of the stability theorem, the intermediate spaces between pairs
(L1, L) of Lorentz spaces depend only upon p and r (and they are again Lorentz
spaces, cf. [10], p. 160) whenever 1 < p,r < oo. Thus the intermediate spaces
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depend only upon the indices ([1]) of LP? and L™. We see from Corollary E that
this is not true in general since the spaces Llog+ I and L' have the same indices
and yet the intermediate spaces for the couples (L log* L, L) and (L', L®) are
different.

(iii) From the point of view of incorporating classical results such as those of
Marcinkiewicz and O’Neil ([14]) into the theory of interpolation methods it would
be interesting to have analogues of Theorems A and D where L logt L is replaced
by weak-Lt. The difficulty is not so much that weak-L! is not normable (cf. [10])
but that weak-L! is not a -space, so the methods presented here do not apply.
We hope to return to this question at a later time.

Note added in proof (july 73): Some results pertaining to Remark (iii) above are announced
in the author’s paper »Estimates for weak-type operators», which is to appear in Bull. Amer.
Math. Soc. 79 (5) (1973).
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