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1. Introduction 

The role in classical analysis of the Orlicz space L log + L is now well-known 
([18]; I, pp. 33, 242, 267; II,  p. 159) and, quite recently, O'Neil ([14]) has exhibited 
certain connections with the theory of interpolation of operators. In this note we 
show how the modern theory of interpolation methods relates to the space L log + L 
by  describing the intermediate spaces (L 1, L log + L)o ' q; K and (L log + L, L~ ~., g 
generated by  the K-interpolation method of Peetre ([3], Chap. 3). In  particular, 
we find interesting relationships (Corollaries C, E) between these and the Lorentz 
spaces. In fact the essential observation in the proofs of our results is that  all three 
interpolated spaces L 1, L log+L and L ~ are Lorentz A-spaces ([12]) which 
enables us ([15]) to identify the functional norm K( t ; f ) .  A n  application of (some 
variants of) Hardy 's  inequality completes the characterization. Our main results 
are as follows: 

TH~ORW~ A. The intermediate space (L 1, L log + L)o ' ~; K, 0 < 0 < 1, 1 ~__ q < ~ ,  
consists of all integrable functions f on [0, 1] for which the norm 

1 

0 

is f inite.  

COROLLARY B. When 0 < 0 < 1, we have (L 1, .L log+ L)o, 1; K = L (log + L) ~ 
with equivalent norms. 

COROLLARr C. When 1 ~ q  ~ ~ ,  we have (L 1, L log+L) l /q .q;K= L lq, with 
equivalent norms. 
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Note t h a t  Corollary C is an immediate  consequence of Theorem A and the  
defini t ion (3.2) of the  Lorentz space L lq. The proof  of Corollary B is a little less 
direct and  is postponed unt i l  w 7. 

THEOI~E~ D. The intermediate space (L log + L ,  L~176 ,q;g, 0 < 0 < 1, 
1 < q < ~,  consists of all integrable functions f on [0, 1] for which the norm 

1 9-I(0 

I J [ [" vt-~ [" l~ VIq till1 = f*(s)d (s)J dt/t / 
0 o 

is finite, where ~(t) = t(1 + log 1/0. An equivalent (quasi-)norm is 
1 

Hfil= { f [tl-~ 1/~ . 
0 

Since 9(t)/t tends  to inf in i ty  as log 1/t (as t -+ 0), the nex t  corollary follows 
immedia te ly  f rom the  second of the assertions in Theorem D. 

COROLLARY E. When 1 < p < oo, 1 <_ q < oo, the space (L log + L, iO~ K 
is properly contained in the JLorentz space L rq. 

2. The Orlicz spaces L (log + L) ~ 

For  each O, 0 < 0 < 1, the  class of measurable functions 1) on [0, 1] for which 
the  quan t i ty  

1 

f lf(x) l (log+ If(x)l)~ (2.1) 

0 

is f ini te  will be denoted by L (log + L) ~ When 0 = 0, L (log + L) ~ is of  course 
the  familiar Lebesgue space La; when 0 = 1, we write L l o g + L  instead of 
L (log + L) 1. Thus ([9]), L (log + L) ~ is the Orlicz space generated by  the N-funct ion 
u - *  u (log + u) ~ and  as such is a Banach  space under  the  usual  Orlicz norm 
II*H(L log L+) 0 ([9], p. 67). We shall no t  make  explicit use of this norm. Indeed,  all 
we need to know is the fundamenta l  funct ion t--> ~l(t) of  the  space L log + L 
(i.e. the norm in L log+ L of  the characteristic funct ion Z[0,,l of the  interval  
[0, t], 0 < t < 1), and  a simple computa t ion  ([9], p. 72) shows this to be 

~l(t) = t ( 1 - - 1 o g t ) ,  0 < t  < 1. (2.2) 

i) As usual, functions that coincide a.e. are identified. 
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The 0rlicz spaces L (log + L) ~ 0 < 0 < 1, are ))close~) to L 1 in the  sense t ha t  
L P c_ L (log+ L) ~ ~ L 1, for all p > 1; moreover,  following [2], one can show 
tha t  the  indices ([1]) of  /5 (log+ L) ~ are all equal to 1. 

3. Lorentz L ~'q spaces 

The usual definit ion of  the  Lorentz  space LP~ ([3], [4], [5], [8]) is t ha t  it consists 
of  all (classes of) integrable funct ions f on [0, 1] for which the  norm 

oo 

lift] • I J (tl/P'f**(t))qdt/tl (3.1) 
0 

is finite. However ,  since f*(t) is a priori undef ined for t ~ 1, we shall adop t  the  
more na tura l  definit ion in which the  norm (3.1) is replaced b y  

1 

0 

Now for t > 1, f**(t)  is s imply  an appropr ia te  mult iple of  1/t so when 
1 < p < oo, the  norms in (3.1) and (3.2) are equivalent .  However ,  when p ~ 1, 
the  space defined b y  (3.1) contains only the  zero funct ion (if q < oe) whereas 
the  corresponding Lorentz space L 1~ def ined b y  (3.2) is of  much  more interest.  
Indeed,  we shall see tha t  L 11 is equivalent  to L log + L while the  spaces L 1~ occur 
as the  ~diagonab~ in termediate  spaces be tween  L log § L and L 1 (Corollary C). 

4. The Hardy-Littlewood maximal function 

When  f 
funct ion M f  ([6], [7], [16], [17], [18]) is defined b y  

x §  

(Mf)(x) = sup (1/2h) f ff(y)Idy, 0 ~ x ~ 1 1). (4.1) 
O ~ h ~ l  

x - - h  

The non-increasing rear rangement  ([5], [8], [18]) of  an integrable funct ion f is 
denoted  b y  f *  and the averaged rear rangement  f * *  is defined b y  

t 

f**(t)----- ( l / t ) f f , (8 )ds ,  t >  0. (4.2) 
0 

is an integrable funct ion on [0, 1] its Hardy-L i t t l ewood  maximal  

1) Take f(y)= 0 outside [0, 1]. 
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The inequalities 

f**(2t) _< M(f*)(t) <f**(t), 0 < t ___ 1, (4.3) 

are easy consequences of the fact that  f*  is non-increasing but the estimates 

(Mf)*(t) < 4f**(t/2); f**(t) < 6(Mf)*(t), 0 < t < 1, (4.4) 

due to Herz ([7]), lie much deeper and play a crucial role in the proof of the next  
theorem. 

4.1. THEOI~,M..For any number O, 0 < 0 ~ 1, 
on [0, 1] the following statements are equivalent: 

(a) f e L (log+ L)~ 
1 

(b) f If(x)l (log + If(x)t)~ < oo; 
0 

1 

(e) f f*(t) (log+f*(t))~ < ~; 
0 

1 

(d) f f,(t) (log 1/t)~ < oo; 
0 

1 

(e) f f**(t) (log 1/t)~ < co; 
0 

1 

(,, f (Mf)*(t) (log 1/t)~ < co. 
o 

and any integrable function f 

Proof. That  (a) and (b) are equivalent is a mat ter  of definition (cf. (2.1)), and 
(b) and (c) are equivalent because f and f*  are equimeasurable. I f  (c) holds then 
(el. [18], I, p. 34) let E = {t:f*(t) < t -1/2} and F = {t:f*(t) > t-1/2}. We have 

1 1 

f f*(t) (log l/t)Odt = f + f < const, q -2  ~ f f*(t) (logf*(t))~ < co, 
0 E F 0 

and so (c) ~ (d). The converse is a direct consequence of the fact tha t  for every 
integrable function f,  the function t-->tf*(t) is bounded. The quantities 

0 flof*(t) (log 1/t)Odt and fofl **(t)(log 1/t)O-ldt are the same (use (4.2) and change 
the order of integration) so (d) and (e) are equivalent. Finally, the equivalence 
of (e) and (f) follows directly from (4.4). This completes the proof. 
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4.2..Remarks. (i) When 0 = 1, we deduce from parts (a) and (e) of Theorem 4.1 
that  f e L log + L if and only if f** is integrable, a result of Hardy  and Littlewood 
([6], Theorem 11 (iii)). Hence, by  (3.1), the spaces L log+ L and /21 contain the 
same (classes of) functions. (ii) The equivalence of the parts (a) and (f) shows that  
the maximal function M f  is integrable ff and only if f e L log+ L. This somewhat 
deeper result is due to Stein ([16], [17]) bu t  was later established by  Herz ([7]) 
using the methods indicated here. We shall not  need to use par t  (f) in what  follows; 
the remaining assertions of Theorem 4.1 are then elementary because they do not 
require (4.4). 

5. Lorentz A-spaces 

When X is a rearrangement-invariant space ([1], [5], [15]) on [0, 1], the funda- 
mental function ~0 x of X is defined by  q~x(t) = IIz,[Ix, 0 < t < 1, where St is 
the characteristic function of the interval [0, t]. The Lorentz space A(X) associated 
with X consists of ell (classes of) integrable functions f on [0, 1] for which the 
norm 

1 

= ( 5 . 1 )  I[fi]Afx) 
0 

is finite (eft [15]). Observe that  A(X) -- 3/ if X ~- ]P or L~; the subsequent 
theory depends crucially upon the fact tha t  this remains true when X ~ L log+ L. 

5.1. T H E O ~ I .  Up to equivalence of norms we have 

A(L log + L) = L log + L = / 2 1 .  (5.2) 

Proof. We have already observed (cf. Remark 4.2) tha t  L log+L and /21 
are the same. For the other half of (5.2), note that  by  (2.2) the  fundamental function 
of the space L log + L is ~(t) = t(1 + log I/t). Thus, from (5.1), we see that  an 

integrable function f belongs to A(L log + L) if and only if flof*(t) (log 1/t)dt is 
finite, and by  Theorem 4.1 this occurs precisely when f belongs to L log + L. 
Thus, the three spaces A(L log + L), L log + L and /21 coincide algebraically. But  
any two Banach function spaces consisting of the same functions have equivalent 
norms (cf. [11], w 2) so the proof is complete. 

5.2. 3~emarlc. Theorem 5.1 is already implicit in the more general results of 
Lorentz ([11]) which describe the precise circumstances under which an Orlicz 
space can be equal to a Lorentz space; we included the proof in our special case 
because it is elementary. Roughly speaking, Lorentz'  results show that  an 0rlicz 
space can coincide with a A-space if and only if it is }>close~> to /2; in particular, 
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the spaces LP (log + L), p > 1, are not A-spaces and so the techniques used below 
do not extend to the case p >  1. 

When (~4, ~ )  is a compatible couple of Banach spaces the K-functional norm 
of Peetre ([3], Chap. 3) is defined on ~ ) / +  ~ by  

K(t;f) = K(t;f; ~4; ~ )  = inf ([]gIly + t]ihll2), 0 < t < ~, 

where the  infimum is taken over all possible representations f = g + h of f with 
g e ~ and h e c~. We shall need to use the elementary inequality 

K(t;f) < max (1, t/s)K(s;f), 0 < 8, t < ~ .  (5.3) 

The importance of the identity (5.2) is tha t  it allows us to regard the couple 
(L ~, L log + L) (or (L log + L, L ~) as a pair of Lorentz A-spaces and in this case 
it is possible to compute K(t; f). Indeed, if X and Y are rearrangement-invariant 
spaces then 

1 

K(t; f; A(X), A(Y)) = f f*(s)d {min (9~x(S), t~y(8))}. (5.4) 

o 

This result is s tated without proof in [12], and in a special ease in [1]; a proof is 
supplied in [15]. We apply (5.4) in case X = L 1 and Y = L log + L. 

5.3. THEOREM. For each f e L t we have 

K(t; f', LI; .L log+ L) = 

~(t) 

f f*(s)ds + 
o 

1 

f f*(s)d8, 
o 

1 

t f (log 1/8)f*(s)d8, 
~(0 

where e(t) = exp (1 -- 1/t). 

O<t<l ,  

t >  l, 

(5.5) 

We shall, for convenience, write 
when 0 < t < 1, an integration by  parts of the second integral gives 

K(t; f) for K(t; f', L1; L log+ L). Note that  

1 

= t ( 1  - t)-i ff**(8)ds, 
~(0 

~(0 1 

f f*(s)ds + t(1-- t)-l f (log l/s)f*(s)ds 
o e(O 

and this leads to the following characterization of K(t;f) in terms of f**. 

(5.6) 

5.4 .  T H E O R E M .  F o r  e a c h  f e L 1 w e  h a v e  
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m o r e  p r e c i s e l y  

1 

K ( t ; f )  N t(1 - -  0 -1 f f**(s)ds, 
.(t) 

O < t < l ;  

1 1 

(2e)-lt(1 - -  t) -1 f f**(s)~ < E(t; f )  _~ t(1 - -  t) -1 f f**(s)ds. 
~(0 ~(0 

(5 .7)  

(5.8) 

Proo f .  The second inequality follows directly from Theorem 5.3 and the identity 
(5.6). For the other one we consider two cases. First, if 0 < t < 1/2, then 
( l - - t )  - 1 < 2  so from (5.5) and (5.6) 

1 e(t) 

~(t) o 

1 

2t f (log 1 / s ) f * ( s ) d s  < 2 K ( t ; f ) ,  

~(t) 

and this establishes (5.8) in ease 0 < t < 1/2. 
x = t -1(1  - -  t) 

1 

t(1 - -  t) -1 f f**(s)gs 
,(,) 

But (5.5) shows tha t  f**(1) = K(1; f )  so using (5.3) we deduce tha t  

1 

t(1 - t)-i ff**(s/es <_ e(t)K(1;f) < 2 e K ( � 8 9  <__ 2 e K ( t ; f ) ,  �89 < t < 1. 

~(t) 

This completes the proof. 

I f  now �89 < t < 1, then with 

1 

= ~-~ f f**(s )d~  <_ x-~(1 - e-=)f**(e -~) ~f**(e -~) ~_ e=f**(1). 
e-it 

6. Hardy's  inequal i ty  

The following integral inequalities, which will be needed later to identify certain 
intermediate spaces, are collectively referred to as Hardy 's  inequality ([3], p. 199; 
[8], p. 256). 

THEORE~ 6.1 (Hardy). L e t  o: > O, 1 <_ q <_ ~ .  I f  yo(s) i s  a n o n - n e g a t i v e  
m e a s u r a b l e  f u n c t i o n  on  (0, oo) then  

oo t ~o 

{f( f {f t - ~  W(s)ds d t / t  < o~ -1 ( tx-~w(t))qdt / t  (6.1) 

0 0 0 
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and 
o0 oo o0 

{f( f )' {f t ~ W(s)ds dt/t < ~-~ (t~+~yJ(t))qdt/t . 
0 t 0 

(6.2) 

In  the  nex t  theorem we establish a useful var ian t  of Ha r d y ' s  inequal i ty.  For  
reasons of brev i ty  we shall denote by  # the  measure given by  

dtt(t ) = dt/[t(1 -- log t)]. 

T~EOR~M 6.2. Let ~ >  0, 1 ~ q <  m, ~f~_0. Then 
1 t 1 

0 0 0 

and 
1 1 1 

- -  . l o g  t ) - - a J  ~)(8)dsJ d . ( t ) [  s - l {  f - 

o t o 

] l /q 

log t)>~(t)]qdtt(t) l . 

(6.3) 

(6.4) 

Proof. The proof  is modeled on t h a t  given in [8J for the classical H a r d y  inequali t ies 
(6.1), (6.2) so we shall only  sketch the details. I f  1 < q < oo and  1/q + 1/q' = 1 
we write 

t t 

f ~(8)d8 f [ 8 1 - 1 / 4 ( 1  - -  log s)Z~(s)][s -1/r --  log s)-Z]ds 
0 0 

and apply  H61der's inequal i ty  to obtain (provided fiq' < 1) 

t q t 

( f  ~(s)ds) <(~q ' - -1) l -q(1- - logt )qO-~)q( f  [s(1--logs)~v(s)]qds/s). 
0 0 

Using this to es t imate  the lef t -hand side, say I ,  of (6.3) we have 
1 $ 

I<{(f lq '-- l)>qf(1--logt)(~+>&-2dt/ t f[s(1--logs)f ly@)]qds/s} 1/q. 
o 0 

An interchange in the order of  integrat ion gives 

1 

I < {(flq' --  1)q-a[(e + 1 --  fi)q -- 1]} -1/q [s(1 --  log @l+~-l/q~o(@]q&/e , 

0 
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provided (:~ q- 1 - -  fi)q > 1. I t  remains therefore only to minimize the constant 
term (subject to 1/q' < fl < ~ -t- 1/q'), and a simple computation shows that  the 
minimum value is a-1 (occurring at /~ = (~ -4- 1)/q'). The cases q = 1 and q = 
are easier so we omit the details. The inequality (6.4) can then be established in 
much the same way. 

7. The intermediate spaces (L 1, L log + L)o,~;~ c 

Denote by  [ifll0,1, K the norm of a function in the space (L 1, L log+ L)o" 1; K" 
Then by  (5.5) 

~ 1 1 

,,]llo.,,K-- f t-o.~(,;f)at/t=o-l f f*(,)a,+ f t-o-~K(t;f)at. (7.,) 
0 0 0 

Now, again using (5.5) and the change of variable u = e(t) we have 

1 

f t -~ f )dt  = 
0 

1 u 1 1 

= f ( 1 -  log u) ~ + f ( 1 -  log u,o,f o  
0 0 0 u 

A change in the order of integration gives 

1 

f t-~ ~ 1K(t; f )d t  = 
0 

1 1 

= -  og.)o_ + ( 1  - -  o)-:ff*(~)(log 1 /~ ) (1  - l o g  8)~ 

0 0 

which, combined with (7.1), shows that  

1 1 

f f*(s)(1 - -  log s)~ < Ilfllo,1;K <-- [0(1 -- 0)] - a / f , ( ~ ) ( 1  - log s)Ods. 
0 0 

Thus a function f belongs to (L 1, L log+ L)o" 1; K if and only if flo f*(s)(1 - log s)~cls 
is finite; it follows immediately from Theorem 4.1 that  the spaces (/~, L log+ L)o ' 1; g 
and Z, (log+ L) ~ coincide. This completes the proof of Corollary B. 
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8. The intermediate spaces (L 1, L log+ L)o,q;K 

We shall show that  the space Xo, ~, which by definition consists of all (classes 
of) measurable functions for which the norm 

1 1 

]l f[[o,q=ff*(t)dt+{f[t(1--1ogt)~ (8.1) 
0 0 

is finite, coincides with the intermediate space (12, L log+ L)o,q; K. Since the 
finiteness of the second integral in (8.1) is not affected if 1 -- log t is replaced 
by - - l o g  t, this is precisely the assertion of Theorem A. 

8.1. THEOREm. Let 0 < 0  < 1, 1 <_ q < 0o. Then (12, L log+ L)o,q;K= Xo, q, 
with equivalent norms. 

Proof. Let us show first that  Xo, q ~ (12, L log+ L)o,q; g" 
by (5.5), (5.8) and Minkowski's inequality 

co 

[ r / ~/q 
Ilfllo, q;K =- I J [t-~ 

0 
1 1 

-< f ,~ t) - 1  JfNN(s)ds I dt/t I 
o <t) 

SO, if I denotes the first term, we have 
1 

I[fllo, u; = ~ I -4- (Oq) -1/' f f*(s)ds. 
0 

Now the change of variable u---e( t)  gives 

1 1 

1 f f  lq 1 ~/q 

0 u 

e -I I 

1 f lq I l l q  

< s { f [ ( 1 -  log~) ~ Jf**(s)dsJ@(u) I 
0 u 

1 1 

e-1 u 

We use the Hardy inequality (6.4) to obtain the estimate 

I f  f e Xo, q, then 

r 1 

1 0 

(8.2) 

(8.3) 
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1 

<2 1 o,l{fE  l llq 
0 

while for the  second t e rm we use the  inequal i ty  log u < u --  1 to  obta in  

1 

u 

1 

( e -  1) 1/qe_l<u<l[sup I(1- U) -1 ff**(8)ds] < (e- 1)l/qf**(e-1). 
u 

Therefore  
e -1 1 

0 0 

(s.4) 

(s.5) 

and 
1 i s 1 u 

u u 0 u 0 

= - -  u (log u) f**(u)  

so f rom (8.7) we have  
1 

0 

(s.s) 

Thus  i f  Nfi]o,~; K is f inite,  so is the  integral  in (8.8) and  hence,  using once more  
the  fac t  t h a t  (1 - -  log u) and  - -  log u are a sympto t i ca l ly  the  same as u -+ 0, 
so is, ]lf][o, 1. This completes the  proof  of  Theorem 8.1 and  therefore ,  as we r emarked  
above,  of  Theorem A. 

which establishes the  desired inclusion. 
I t  remains  only  to  show t h a t  i f  IJftJo, q., K is f ini te  then  so is IJfllo, q. But ,  again 

f rom (5.8), 
1 1 

r' ] q ! ~/q 

0 u 

Collecting the  est imates  (8.3), (8.4) and  (8.5) we deduce f rom (8.1) and  (8.2) tha t  
1 1 

[]fl,o.q;K <~ co, ( f f*(t)dt + {f[t(1--logt)~ 1/') = co, qI[f[]s,~, (8.6) 

0 0 
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9. T h e  i n t e r m e d i a t e  spaces (L log+ L, L~)o,q;K 

Recall  t ha t  the  fundamenta l  funct ion of the  space L log+ L is ~(t) = t(1 --  log t) 
so from (5.4) we have 

e-l( 0 

K ( t ; f ;  L log+ L, L ~) ---- / f * ( s ) d q ~ ( s )  (9.1) 

0 

(cf. the expression for the K-norm of the pair (LP, L ~) given in [10]; see also [13]). 
Hence 

oo ~,l(t) / / [ /  llfllo,~; K = t -~  f*(s)dq~(s) dt/t  , (9.2) 

0 0 

the f irst  of the assertions of Theorem D. For  the second we note  t h a t  the change 
of variable u = ~(s) in (9.2) gives 

oo | 

//[ l} lj , Ilfllo,~., K = t -1 * u u dt t 

0 0 

where F * ( u ) = f * ( ~ 0 - 1 ( u ) ) ,  so from H a r d y ' s  inequal i ty  (6.1) we have 

oo 

Ilfllo,~; K ~ 0 -1 J [tx-~ �9 
0 

(9.3) 

Finally,  i t  is easy to check t h a t  tf*(q~-l(t)) < f~-lC')f*(s)d~o(s) so f rom (9.2) 

{/[tl-~ 1/~ < II,fllo,~. 
0 

(9.4) 

The second assertion of Theorem D now follows from (9.3) and  (9.4). 

R e m a r k s .  (i) F r o m  the  hypotheses T Y L  1 --+ weak-L 1, T: L * -~ L ~ and  
Marcinkiewicz' theorem ([5], [8]), i t  follows t h a t  T: Leq-+Lvq, 1 < p < ~ ,  
1 < q _< ~ .  Under  the weaker (el. [14]) hypotheses T: L log+ L --~ L 1, T: L * -~ L ~, 
it  is no longer t rue  t h a t  T: L ~  ~ Lvq (take T f  -~ f o ~-1); in this case, the inter- 
polation theorem corresponding to Theorem D shows t h a t  i f  T: L log+ L--~ L 1, 
T: L ~ --+ L ~, then  T: ( L l o g + L ,  L~ Lvq. 

(ii) Because of the stabil i ty theorem, the in termedia te  spaces between pairs 
(Lpq, L rs) of  Lorentz  spaces depend only upon p and  r (and t h e y  are again Lorentz  
spaces, cf. [10], p. 160) whenever 1 < p, r < ~ .  Thus the  in termediate  spaces 
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depend only upon the indices ([1]) of LPq and L rs. We see from Corollary E that  
this is not true in general since the spaces L log+ L and L 1 have the same indices 
and yet  the intermediate spaces for the couples (L log + L, L +) and (L 1, L +) are 
different. 

(iii) From the point of view of incorporating classical results such as those of 
Marcinkiewiez and 0 'Neil  ([14]) into the theory of interpolation methods it would 
be interesting to have analogues of Theorems A and D where L log+ L is replaced 
by  weak-LL The difficulty is not  so much that  weak-L 1 is not normable (cf. [10]) 
but  tha t  weak-L ~ is not a A-space, so the methods presented here do not  apply. 
We hope to return to this question at a later time. 

Note added in proof (july 73): Some results pertaining to Remark (iii) above are announced 
in the author 's  paper ~)Estimates for weak-type operators~), which is to appear in Bull. Amer. 
Math. Soc. 79 (5) (1973). 
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