Function algebras and flows II

Pavr S. MusLY*

§ 1. When the real line R acts on a space X there arises a natural notion of
analyticity for bounded functions on X. Specifically, we shall say that a bounded
function ¢ on X is analytic in case the restriction of ¢ to each orbit is a function
in H*(R), the space of boundary functions of functions which are bounded and
analytic in the upper half plane. Without some global assumptions about the space
and the functions, it does not seem possible to say much about the analytic functions.
In this paper, which is a sequel to [11], we shall assume that X is a separable
compact Hausdorff space and that the action of R on X is continuous. The pair
(X, R) will be referred to as a flow and for  in X and ¢ in R, the translate of
x by t will be denoted by « - £. The analytic functions on X considered here
are assumed to come from C(X), the space of all continuous complex-valued
functions on X, and the algebra which the analytic functions form will be denoted
by 9.

Theorem II of [11] asserts that if the flow (X, R) is strictly ergodic, meaning
that there is a unique probability measure on X which is invariant under the
action of R, then U is a Dirichlet algebra on X. While the notion of strict
ergodicity seems rather special, there is a vague sense in which the strictly ergodic
flows are generic among all flows. For example, all minimal almost periodic flows
are strictly ergodic; all nil flows are too; and surprisingly it happens that if R
acts measurably on a (standard Borel) measure space Y, if the action preserves
a finite measure on Y, and if the action is weakly mixing, then there is a strictly
ergodic flow (X, R) ‘which is Borel isomorphic to the action of R on Y [8]. Our
objective in this paper is to identify the maximal ideal space My of 9 when the
flow (X, R) is strictly ergodic. We shall show in Theorem II that if the unique
invariant measure is not a point mass then Wy is homeomorphic to the quotient
space obtained from X x[0,1] by identifying the slice X'x{0} to a point. This
result generalizes the well known theorem of Arens and Singer [1] which describes
the maximal ideal spaces for the algebras of analytic almost periodic functions on
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the line, i.e., the algebras of analytic functions associated with minimal almost
periodic flows. We shall also handle the case when the unique invariant measure
is a point mass, although the description is a bit more complicated, and we shall
identify the Gleason parts of M.

While the reasons for assuming that X is separable in this investigation are
technical, they appear compelling because of the tools used in our proofs. However,
experimental evidence seems to indicate that our results are correct in the non-
separable case as well.

In Section 2 we establish some notation, terminology, and elementary facts
which will be used throughout, while in Section 3 we develop some properties of
“Poisson integrals” of measures. The result of Section 4 (Theorem I) establishes
conditions under which the representing measures for certain points in 7y are
concentrated on orbits. It is there that the assumption that X is separable is
really used. The characterization of 7 is presented in Section 5, and Section 6
is devoted to concluding remarks.

§ 2. We begin by reminding the reader of our standing assumptions: We shall
always assume that X is compact and separable and that the flow (X, R) is
strictly ergodic. Although at times one or the other of these assumptions will not
be needed, we shall leave it to the reader to decide for himself on questions of
generality. :

The space of all bounded complex Borel measures on X will be denoted by
M(X) and it will often be convenient to denote the integral f ¢dA of a function
¢ in O(X) with respect to a measure 2 in M(X) by {4, i>.

The action of R on X induces a strongly continuous one-parameter group
{T'},eg of automorphisms of C(X) defined by the formula (7$)(x) = (x — f),
¢ € 0(X). The group of adjoints of {T,},cx acting on M(X) will be denoted by
{T¥}er Observe that for each ¢ in R and for each 4 in M(X), T¥. is the
measure which assigns to each Borel set E the value A(¥ —+ ¢). Observe also that
in general {T}},cg is not strongly continuous but is merely weak-* continuous.

Using {T},eg it is possible to convert C(X) and M(X) into LY(R) modules
as follows: If ¢ is a function in C(X) and if f isin LY(R), then ¢ % f is defined
to be the Bochner integral f * ([L)f(t)dt. On the other hand, if 2 isin M(X)
and if f isin LYR), then A =f is defined to be the measure such that

(B dwf> =< wf D

for all ¢ in O(X) where }' is the function whose value at f is f(— ¢). Equivalently,
A = f may be expressed as the weak-x convergent integral f fm(T’f,Z) f(t)dt. Observe

that with respect to these operations of convolution C(X) and M(X) are indeed
converted into L'(R) modules and, moreover, the following inequalities hold for

all ¢ in C(X), 4 in M(X), and f in LYR):
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I =l <IllIS and 4= fII < 211

Because of these inequalities the annihilator of a function in C(X) or of a measure
in M(X) is a closed ideal in LY(R). The spectrum of a function ¢ in C(X) or of a
measure A4 in M(X), in the sense of spectral synthesis, is then defined to be the
hull of its annihilator and will be denoted by sp (¢) or sp (1). Equivalently,
Sp (¢) (resp., sp (A)) may be regarded as the closed support of the distributional
Fourier transform of the C(X)-valued function 7. (resp., the M(X)-valued
function 774). We note that a function ¢ in C(X) is analytic if and only if sp (¢)
is nonnegative (see [11, Proposition 2.17). Our reference for the basic facts about
spectra is [5].

Recall that a measure is said to be quasi-invariant in case every translate of each
null set is also a null set. We note that if u is a positive quasi-invariant measure
on X, then by Proposition 1 of [6] {T.},cg can be extended uniquely in the
obvious fashion to be a weak-# continuous one parameéter group of automorphisms
of L®(u). Recall also that a quasi-invariant measure is said to be ergodic in case
each invariant measurable subset of X is either negligible or has negligible comple-
ment.

If m is a representing measure for a point in “Hiy then LP(m) and HP(m)
will denote the Lebesgue and Hardy spaces associated with m. The usual Lebesgue
and Hardy spaces on the unit circle T will be denoted by L?(T) and HP(T).

§ 3. Yor the remainder of this paper P, will denote the Poisson kernel for
evaluation at z in the upper half plane; that is, P.(t) = y/(=(y? + (x — £)2) where
z =z 4 4y with y > 0. Our objective in this section is to establish certain facts
about Poisson integrals of measures on X which will be used later.

Propostrion 3.1. (i) Let {m,},>1 be a sequence of measures in M(X) which
converges to a measure m in the weak-x topology on M(X) and let {y,}2, be a
convergent sequence of positive real numbers with finite limit y. Then in the weak-+
topology on M(X), lim,_, , m, % Py, = m x Py, if y > 0 and lim,_ ., m, * Py, = m
if y=0.

(ii) Let {m,}._1 be a sequence in M(X) and let {y,}2., be a sequence of positive
numbers such that lim, ,  y, = co. If lim, , m, = Py, exists in the weak-% topology
on M(X), then the limit is invariant.

(iii) 4 measure m in M(X) s invariant if and only if m x Py, = m for some
y > 0.

n—>o0

Proof. (i) Since lim, , ,, m, exists in the weak-* topology on M(X), the principle
of uniform boundedness implies that there is a K such that |jm,|| < K for all =.
Suppose y is positive and let ¢ be in C(X). Then since lim,_, , ||Piy, — Py} = 0
in LYR) and since ¢ *P; is also in O(X), the conclusion follows from the
inequality

ol

n—00
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[{¢, My * Py > — {p, m = Py
< K, my, % Pigyy — {b,my, = Pyp| + [<§, my, 5 Piyy — (¢, m % Py )|
< KI$l 1Py, — Poll + 1< * Py, m,, — m].
To handle the case when y = 0, let ¢ be in C(X) as before and~observe that

since {P,},-, is an approximate identity for LY(R), lim,, {¢ * Py, — ¢l = 0
by Lemma 1 of [5]. Consequently the following inequality yields the result.

<, 1 % Piy,> — (b, md| < <P % Pry, — b, mad| + < ma) — <y m)]
< Kl % Py, — $ll + 1<, mad — <, mD].
(ii) Let m be the limit in question. Then for each ¢ in R,
T¥m = lim,_, , T (m, * Py,) = lim,  , m, * P_, ., .

But an easy calculation reveals that for ¢ fixed lim, , [[P_, s — Pill=0

in I}(R). Consequently, lim =m also, and this shows that m
is invariant.

(iii) If m is invariant, then a calculation shows that

n—>ao mn *P

=iy,

m % Py = m f Py@)dt =m

for all ¥ > 0. The converse follows from (ii) and the observation that if y > 0,
then (m * Py) % Py = m x (Piy % Py) = m % Py,

PROPOSITION 3.2. If m is a representing measure for a point in My and if =z
18 a point in the wpper half plane, then m x P, is also a representing measure for o
point in Ny,

Proof. First note that if ¢ isin A and if F(t) = (T_, m), then by the
analysis presented on page 50 of [5], the spectrum of F as a bounded continuous
function on R is contained in sp (¢) N sp (m) which in turn is contained in [0, o).
That is, F lies in H®(R). If ¢ and y lie in U, then the following equation
yields the result. ‘

gy, m o Py = f T _ (), mOP.(t)dt (3.1)

- f T, my{T_gp, myP(t)dt (3.2)
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— [ fw (T_, m>P,(t)dtJ [ fw T _p, m>P(t)dt]

[
—

(3.3)
= (¢, m = P> {p, m = P).

The passage from (3.1) to (3.2) is justified by the fact that m is multiplicative on
A and that {7,},cg leaves U invariant (see Lemma 3 of [5]). The passage from
(3.2) to (3.3) is justified by the fact just mentioned that the expressions inside the
angular brackets are functions in H*(R) and by the fact that the measure P.d¢
is multiplicative on H%(R).

As a consequence of Propositions 3.1 and 3.2, we obtain

CorROLLARY 3.3. If m represents a point in My and if m is neither a point
mass nor the unique invariant measure, then the Gleason part containing the point
represented by m is nontrivial.

Proof. Tt suffices to produce a representing measure for another point in My
which is absolutely continuous with respect to m (see [7, p. 144]). Choose y > 0
and consider m = P;. By Proposition 3.2, m = P;, is a representing measure and
it is distinet from m by the hypothesis that m is not invariant and Proposition
3.1 (iii). On the other hand, since m is quasi-invariant by Theorem IIT of [11], it
follows that m % P; is absolutely continuous with respect to m. With this the
proof is complete.

§ 4. Let = be a point in X which is not fixed by the action of R and let y
be positive. Then by Proposition 3.2, 4. * P;, is a representing measure for a point
in “My and, by Proposition 3.1 and the hypothesis on #, 4. % P is not a point
mass. Our objective in this section is to show that the representing measure for
almost every point in ¥y can be written in this form.

TaeoreM I. Let m represent a point in My and asswme that m is neither the
unique invariant probability measure on X nor a point mass on X. Then there is a
unique x tn X and a unique positive y such that m = 8. = Py,

Proof. The proof is divided into two steps. First we show that each representing
measure m satisfying the hypotheses of the theorem is concentrated on an orbit.
Once this is done, then we show that s has the indicated representation.

Step 1. By Corollary 3.3 the Gleason part containing the point represented by
m is nontrivial. Also, by Theorem VI and Corollary 3.1 of [11], H®(m) is a maximal
weak-* closed subalgebra of L*(m). Therefore, by a theorem of Merrill [10], which
is a sharpening of the Wermer imbedding theorem, we may find a Hilbert space
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isomorphism W from L%*im) onto LXT) such that WH?m) = H¥T),
WL*m)W— = L*(T) and such that WH®m)W—=1= H*(T). As was noted in
Section 2, the fact that m is quasi-invariant allows us to extend {T'},cg to a
weak-* continuous one-parameter group of automorphisms of L®(m). This we shall
do, but we shall keep the same notation for the extended group. Since {7',},cx
leaves A invariant by Lemma 3 of [5], {7 },cg leaves H%(m) invariant also.

For each ¢ in R and each ¢ in L*(T), define T ¢ to be T, (W—¢W). Then

{i’,}iER is a weak-* continuous one-parameter group of automorphisms of L*(T)
which leaves H*®(T) invariant. Appealing to a theorem of de Leeuw, Rudin, and
Wermer [2], we find that there is a continuous one-parameter group {w},cg of
conformal maps of the open unit disc 4 onto itself such that for ¢ in H®(T)
and £ in R

(Tih)(z) = d(u(2)) ae. p (4.1)

where u is a normalized Lebesgue measure on T. Since H®(T)+ H*(T) is
weak-* dense in L*(T) equation (4.1) holds for all ¢ in L*(T) as well. That is,

{T}ier is implemented by the transformation group {},cp restricted to T.

The hypothesis that X is separable now allows us to apply a theorem of Mackey
[9, Theorem 2] (see [12] also) to conclude that there are invariant null sets N,
and N, in T and X respectively and a Borel isomorphism @ from T\,
onto X\ N, which carries u to a measure equivalent to m such that for all z
in TN\, and for all ¢ in R, @(x(2)) = DP(z) — t. Thus to show that m is carried
on an orbit (which must be X\ N,), it suffices to show that {«,},cp restricted to
T acts transitively on T\N;. There are two cases to consider.

Case 1. Some point in 4 is fixed by {«},eq-

After a conformal change of variables, if necessary, we need only consider the
case when the fixed point is the origin. But, then, it is readily verified that there is
a real 0 such that w(z) = ¢z for all { in R and all z. Whence, in this case,
N; is actually the empty set, {x},cr acts transitively on T, and X\ N, is a
periodic orbit.

Case I1. No point in A is fixed by {x}eg-

First note that since {x},cg is a commutative group of fractional linear trans-
formations, the set O of common fixed points for {x}cg coincides with the
set of fixed points for any particular «. which is not the identity transformation.
It follows that O is nonempty and consists of at most two points; moreover, the
hypothesis implies that ¥ is a subset of T. Select a point from ¥ and let =
be the fractional linear transformation which maps 4 to the upper half plane and
carries the selected point to oo. Then if &, = t%t™, {&,}ep IS & continuous one-
parameter group of fractional linear transformations of the upper half plane onto
itself which fixes oo. Therefore, for each ¢ in R, there is an @, > 0 and a b,
in R such that x(z) = az + b for all z; ie., {X}cg iS a one-parameter sub-
group of the well known “ax + b group”. A moment’s reflection directed toward
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the exponential map on the Lie algebra of the “ax -4 b group” reveals that y and
f exist in R such that m(z) = e’z 4 B((e” — 1)/y) for all ¢ in R and all z,
where the expression in parentheses is to be interpreted as ¢ if y = 0. We assert
that y = 0. For if not, then {x},ex fixes the point — B/y on the real axis and
so leaves invariant each of the infinite rays on either side of — f/y. Back on the
disc this implies that u is not ergodic under {w}, g which in turn implies that
m is not ergodic and this is contrary to Theorem VI of [11]. Hence y = 0, and so
B # 0 for otherwise each «. would be the identity. Thus we find in this case, that
Ny =9 = {r})}, and that {&},g acts transitively and freely on T\Ny;
ie., no o, ¢ 0, fixes any point in T\ N;.

Step IX. Let © be the orbit upon which m is concentrated and assume first
that O is not periodic. Then there is a one to one continuous function # from R
onto & such that 5(s +¢) =n(s) + ¢ forall s and ¢ in R. Since m is quasi-
invariant [11, Theorem III], m is equivalent to Lebesgue measure on R trans-
planted to © via # because, as is well known, every non-zero quasi-invariant
measure on R is equivalent to Lebesgue measure. From this it follows that there
isa £ in © and a positive nonvanishing function A in L'(R) such that m = ¢, k.
When H®(R) is transplanted to £ via %, we may regard it as a proper weak-=
closed subalgebra of L*(m) which contains . On the other hand, as we pointed
out earlier, H*(m) is a maximal weak-* closed subalgebra of L*(m) and so it
must coincide with the transplant of H*(R) to ©. Hence it follows that the
measure hdf, where dt is Lebesgue measure on R, is multiplicative on H%(R).
But it is well known that this implies that there is a z in the upper half plane such
that A() = P.(¢). Therefore, if 7 = Re (z), y = Im (2), and if * = & + 7, then
0 % Py = (T'* 8,) % Py = 6. * Py as was to be shown.

If, on the other hand, © is a periodic orbit, then since the hypothesis of the
theorem excludes the possibility that & reduces to a point, we may find a
homeomorphism %" from T onto © such that for ¢ in R and 2z in T,
7'(e"2) = n'(z) + ¢. It follows that %’ implements an isomorphism between the
algebra |, obtained by restricting the functionsin A to © and the disc algebra
on T. Because of this, the well known expression for the representing measures
for the points in the maximal ideal space of the disc algebra, and the hypothesis
that m is mot invariant, we may assert that there isan & in  and a z in the
upper half plane such that m = J, x P,. Translating & by the real part of z if
necessary, we arrive again at the desired conclusion.

As for the uniqueness of the representation of m as d. =Py, suppose
0 % Py = 6. % Py . Then these two measures must be concentrated on the same
orbit. Consequently, there exists a £ in R such that =z, = x 4+ ¢. But then it
follows easily that the two measures Pydt and P, ;,df on R are equal and
so t =0 and y = y,. This shows that x = z; as well and we may conclude that
the proof of Theorem I is complete.
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§ 5. In this section we present our characterization of the maximal ideal space
of 9. As we noted in the introduction we must consider two cases. The first is
when the unique invariant measure x on X is not a point mass on X. In this
case we let D denote the quotient space obtained from X X [0, 1] by identifying
the slice X X {0} to a point. The point in D which is the image of X X {0} under
the quotient map will be denoted by 0 and the points in X x (0, 1] will be identified
with their images under the quotient map. The space D may be regarded as a big
disc with boundary X and origin 0 and it is possible to think of a pair (z,7) in
X x (0, 1] as the polar coordinates for the point in D\ {0} to which it corresponds
under the quotient map. In the second case, which is when u is a point mass 4,
on X (so that =z, is fixed under the action of R on X), we let H denote the
quotient space obtained from X X[0,1] by identifying the closed set
(X x{0}) U ({x}x[0,1]) to a point. We shall identify the points (x,r) in
(XN\{xp}) X (0, 1] with their images in H wunder the quotient map and we shall
denote the image of (X x{0}) U ({z}x[0,1]) in H by &. The choice of the

symbols H and & is motivated by the observation that if X is the one point
compactification of the real line then H is homeomorphic to the (closed) upper half

plane with & corresponding to the point at infinity. Of course in this case H is
conformally equivalent to the closed unit disc but in general it is not possible to
make such an identification between H and D.

Recall that if ) denotes the closure in C(X) of the space of functions with
positive spectra, then because the flow (X, R) is strictly ergodic, C, is a maximal
ideal in ¥ and p is its representing measure (see [11, Theorem V}). If 4 isnot a
point mass on X, then we define a map I' from D into My as follows:

) I0) = Gy
i) I'x,1) =2« for all z in X; and
iii) if 0 <r <1, then I'(z,r) is the point represented by the measure 6. * P,
where y = — log 7.

On the other hand, if u is a point mass 6, on X, so that O, = x,, then we
define a map IV from H to My as follows:

) I"(30) =
i) M, 1) =2, if x £

iii) if 0 <r <1, and if % # x, then I"(x,r) is the point represented by
the measure §, = P;, where y = — logr.

Observe that the maps I" and I are well defined on allof D and H, respectively.

TaroreM II. A. If u is not a point mass on X, then the map I' defined above
s @ homeomorphism from D onto Wy, Moreover, for each r,0 < r << 1, the point
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Iz, r) lies in a nontrivial Gleason part and the Gleason part containing C, is non-
trivial if and only if u 1is concentrated on an orbit.

B. If u is a point mass 0, on X, then the map I defined above is a homeo-
morphism from H onto Wy and for each point (z,r) n H, x # 2, 0 <r <1,
I(z,r) lies in a nontrivial Gleason part.

Proof. We prove A; the proof of B is similar and so will be omitted. Proposition
3.1 and Theorem I imply that I' is bijective and continuous at each point in
DN\ {0}. Since D is compact and Wy is Hausdorff it suffices to check the con-
tinuity of I' at O in order to show that I is a homeomorphism. To this end let

{{z,, 7.)}n1 be a sequence converging to 0in D and let yn = — log r, so that
lim, 9. = oo. (Note that it suffices to consider sequences since X is separable.)
Then since any weak-% cluster point of the sequence {0, * Py}, is w
by Proposition 3.1 (ii) and the strict ergodicity of the flow, it follows that

lim, |, I'(%n, 12) = Oy = F(6). Whence I' is continuous at 0 and the first part
of the proof is complete.

The fact that each I'(z,r), 0 << r << 1, lies in a nontrivial Gleason part follows
from Corollary 3.3. Suppose that C, also lies in a nontrivial Gleason part and
suppose m represents some other point in the part containing C,. Then since m
is not invariant, because m == u, and since m is not a point mass, m is con-
centrated on an orbit by Theorem I. Since m and u are mutually absolutely
continuous [7, p. 143] we may conclude that u is also concentrated on an orbit.
Conversely, if u is concentrated on an orbit ©, then it is easy to see that for each
z in O and each y > 0, the measures d.* P; and u are mutually absolutely
continuous. Consequently the Gleason part containing C, is nontrivial [7, p. 144]
and we may conclude the proof is complete.

One noteworthy corollary to Theorem II is the fact that Wy is contractible
and consequently the invertible elements in % have logarithms [7, p. 91]. This
certainly is not obvious a priori.

§ 6. In this section we discuss possibilities of extending the analysis presented
above to more general situations. In one rather special case it is possible to apply
the above arguments to characterize the maximal ideal space of ¥ when the flow
(X, R) is not strictly ergodic. This is the case when it is possible to fiber X smoothly
over a space Y whose points are closed invariant subsets X, of X, y € Y, such
that on each X, the flow is strictly ergodic. It develops that “/ly may be fibered
similarly where the fibers are the maximal ideal spaces for the algebras 9, associated
with the flows (X,, R). In general, of course, no such fibering of X exists.

One of the principal obstacles which we have encountered in trying to extend
our results is the problem of deciding when 9 belongs to any of the well known
classes of abstract function algebras. In particular we would like to know con-
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ditions other than the strict ergodicity of the flow under which every point in 7/,
has a unique representing measure. In this direetion we are able to prove the fol-
lowing curious fact: Suppose (X, R) is arbitrary and that ¢ is a point in My \X.
If each representing measure for ¢ is singular with respect to every finite invariant
measure on. X, then, in fact, ¢ has a unique representing measure and, assuming
that X is separable, it may be written as d. = P, for some z in X and y > 0.
What the situation is regarding the other points in 9y remains a mystery to us.
Of course the nature of the flow has some bearing on this problem and one class
of flows for which this problem seems tractible is the class of distal flows. As a test
question we ask: If the flow (X, R) is distal, is % a Dirichlet algebra on X?
One reason for suspecting that the answer is yes is that all distal flows can be built
up in a very explicit manner from almost periodic flows (see [4]) and the algebra of
analytic functions associated with an almost periodic flow is, after all, a Dirichlet
algebra. On the other hand, distal flows, even minimal ones, need not be strictly
ergodic (see [3]) and consequently there is reason to suspect that the answer to the
question is no. Nonetheless, because of the way distal flows are constructed, it
should be possible, if the answer is no, to decide precisely why A fails to be a
Dirichlet algebra.

We conclude by indicating another proof of part of Theorem II which is valid
even when the space X is not separable and which may indicate a way of removing
all considerations of separability from our arguments. We assert that if the flow
(X, R) is strictly ergodic where X need not be separable, and if the Gleason part
containing O, is nontrivial, then the unique invariant probability measure u is
conecentrated on an orbit. For if Z is the Wermer imbedding function (see [7,
p- 133]), then it is possible to show that the sequence {Z"}*___. constitutes an
orthonormal basis for L*(u) such that for some nonzero real A,

ZMx + t) = e™Z"x) ae. u

for each integer n and each ¢ in R. This means that the unitary representation
of R on I*u) induced by the action of R on X has pure point spectrum con-
sisting of integral multiples of 1. The proof is completed by appealing to an
argument of Rohlin [13, p. 227] which he used to obtain a sharpened form of a
well known theorem of von Neumann concerning ergodic R-actions with pure point
spectrum.
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