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1. Introduction and results

This note is more or less an appendix to the paper [9]. We use the notions of
[9] and recall some of them. R, is the n-dimensional Euclidean space:
= (2,...,%,) €R, S(R,) is the Schwartz space of rapidly decreasing (complex)
infinitely differentiable functions, §’(R,) is the dual space of tempered distributions
(with the strong topology). F is the Fouriertransformation in S8'(R,), JF—1 the
inverse Fouriertransformation. We use special systems of functions {g,}>, (see
[9], 4.2.1) with
1. gux) € S(R,), Folr)=0; k=0,1,2,...
2. HN; N=1,2,...; with supp F, c {&|2*" VN < ] £ 2"*N} for k=1,2,..
supp Fo, c {£]1€] =< 2"}; (supp denotes the support of a function).
3. He; >0 with ¢ < (372, Fg)(&);
4. Wey > 0 with [(DFg) (&) < cplé]™™ for 0 S 6| <21+ 1 k=1,2,...
The most important system of functions of this type is the following. We consider
a function ¢(x) € S(R,); (Fo)(x) = 0;
supp Fp {6127V < | = 2™} (Fp)(@) >0 for 1V2 =g =V2. (1)
It is not difficult to see that the functions ¢, (x) with
(Fo)€) = Fo)27"8); k=1,2,.. 2)
by suitable choice of ¢4(x) are a system of the described type.
Now we define the spaces F, = F, (R, and B, 6 =B (R,). Let

— o <s< oo 1<p<oo; 1<qg<<oo; {@plio is a system of the described
type. We set

© P 1
B = (A €S R, T2l = | [ G i o <oo}. ®)
P\ 4 R,

k=0
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f* @ = (2n)"*FY(Fp,Ff) is the convolution of f and ¢,. In the same way we
define for — oo <s< o0} 1<p<oo; 1 g = o0

w 1
B, = {flfeS'(Rn), 7% 9l , = (3 2407 = )T < oo} )
q p =

(with the usual modification for ¢q = o). L, = L,(R,) is the usual space of

Lebesgue-measurable complex functions with |f|? integrable. In [9], theorem

4.2.2, it is shown that the spaces F, , (and B; ;) with the norms [|{f* <pk}l[L t) (and
P\ g

S = %}“1 “ )) are Banach spaces, and independent of the choice of the system
TP

{@}. At least for s> 0 the spaces B; , are the usual Besov spaces introduced
by Besov [1], see also Nikol’skij [5] and Taibleson [8]. The equivalence of the usual
definitions and the definition (4) is proved in [9], see also [10]. The idea of using
definitions of type (4) is due to Nikol’skij [5] and Peetre [6, 7]. The spaces F, , are
introduced by the author in [9]. Special cases are the well-known Lebesgue spaces

P, = H, = {fIf €S'(R,), FI(1+ [E})TEf € L(R,)}- (5)

(See [9], theorem 4.2.6). Further we define the spaces C* = C(R,); t = 0. C = C°
is the set of all complex continuous functions f(x) in R, with f(z)—>0 for
|#] — oo. Let ¢ be an integer. Then is

C={fID*’feC for |x|<1t}.
(We use the usual notation

a[al n )
o _— = . .o * == .2 . 1 2 O .
D PRTR W o« = (00, %) ) jglzx], ; integers =

¢t with the norm

Ifllce= 2 max |D°f(x)|

o]t z€R,
becomes a Banach space. Let be ¢ # integer. We set
t = [t] + {t}; [t] integer; 0 < {t} < 1;
and define

[D%f(x) — Df(y)]
lz — y|

¢ = {flfe 0", sup < o for all & with |x| = [t]} .

xFy
%, yE€ER,

C* with the norm
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D> — D*
Wlo=Ifln+ S sup D= DI
=l x#£y r — gyl
%, yER,

becomes a Banach space.
The aim of this paper is the proof of the following theorem.

THEOREM. (a) Let w>¢g¢=p>1; 1Zr<So0; — o<t <8< o0;

s —n/p=1t—mnfq.
Then holds
B,,cB,,.
b) Lt o>q=p>1; 1<r<o; —wo<tZs<< oo, and

s—mnfp=1t—nfq.
Then holds

F,.cF,,.
(c) Let 1<p<<oo; £ =0; 1 =r= . Then holds

L
By cC
and

£t

BF, c O for t+ integer.

(d) Let 1 <p<<oo; 1<r< oo; 0<i% integer. Then holds

n

FF+tc .

pr

67

and

(6)

(7)

(8)

(9)

(10)

(11)

The first part is well known, see for instance [5]. We give two independent proofs
of (7). The first proof is very short and uses the definition (4). A similar proof is
given by Peetre [6]. The second proof is inspired by a paper of Yoshikawa [11].
Perhaps it will be interesting from the methodical point of view. A special case

of theorem (b) is (see (5))

HcH; 1<p=q< o©; s—nfp=1t—nlq.

This relation is also known [5]. The embedding theorems (9) and (10) are also known.

A special case of (11) is

L
HP (% 1<p< o; 0<¢ts~ integer.
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2. First proof of theorem (a)
We choose two systems of functions {g(®)}i>, and {g.(z)}_o of type (1), (2)
with
Fo)&) =1 for & €suppFo.
Let be f€B,, With
lo=1—1/p-+ 1q (12)

follows from Young’s inequality for convolutions that
17 * @i, = i * 9 % edl, = e, I * il - (13)
We have
o) = 2"o(2%x); k=1,2,..;
and

(1-=)

kn —
ok, =2 “lells; B=12,....

We obtain from (12), (13) and the definition (4)

I, = elifeadl,,

=6 % 1 = .
: ‘o, =e H{f * Q@ }||1:+,,(;_ %)(Lp) 03”f”1;‘;;r

This proves theorem (a).

3. Proof of theorem (b)

Let {gu(z)}r_e and {g. ()} s be the same systems of functions as in Section
2. We consider the matrix {K; j(%)}_oci jcw With

(FK, (@) = |27 *Fo)x); k=1,2,..; K,;) =0 otherwise.

It is not difficult to see that the assumptions of the multiplier theorem 3.5 (b) of
[9] hold. This shows

w© 1 o 1
IES, PP gl T, = L3 1F o2 *Fa2F(f » g0l T I,
< el 3 17 * )Tl

For the »inverse» multiplier {Iz,w-(ﬁc)}_oo <k, j<

FE, @) = Ja]7"2"Fo)@); k=1,2,..; K@) =0 otherwise;
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the assumptions of theorem 3.5 (b) of [9] are also true. So we can prove the opposite
direction of the last inequality. It follows

rvm;r~4V*¢w%—kmgiwLwWRFd*¢wuqﬂh, (14)

With the aid of this equivalent norm in F; , it is not difficult to prove theorem
(b). It is known that
_® .= 11
P " =ool ¥ 1<u< oy —+ =1

see [3]. Let be f€8(R,) and ¢ > p. The last relation and (6) show

FA[zF(f * g)](@) = ¢ f (F2E~C )@ — y) - FALELF(f * e)l(y)dy
R

, —n (1— i + i)
= / lv — yl PoCFEE( * g)](y)dy -
R"
With the aid of the generalized triangle inequality we find
© 1
(kzl P |2 F(f = gu)}) )T
(-1 1) o i
_S_Gf lz — 9] P (kz P F(f » p)l) ) dy -
Rn =

With the aid of the Hardy-Littlewood-Sobolev inequality, see [3], follows

®© 1 ' L
”(,Z:l 2 F(f * o]l e, = OH(,Z1 P22 F (f * @]z, -
Together with (14) this shows
Il elfll, . FESE).
g7 br

S(R,) is dense in F,,, [9]. This proves theorem (b).

4. Proof of theorem (¢), (d)

L.
First we prove (9). Let m be an integer; m.= 0. Let. f€ Bl; . We choose
a system {g)r_o of type (1), (2) with

Zj) (Fo)(§) = (2n)™™* E€R,.
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o(z) has the same meaning as in Section 2. Then holds for || < m
Daf? ZDaf*%?Zf*%*Dan-
i=o k=0
(5: convergence in §’, see [9]). We have
(D)) = 2+ (D) (22)

With the aid of Young’s inequality follows in the same way as in the second section,
(Ip + 1/p" = 1),

-] 0 © kn
" b — 4 ok, ,
z [D%f = q’k”Lw = Z i Qk“LP IIf ‘Pk“LP = Gz gh =t I1f ‘pk”LP = cifl 2 tm
k=0 E=0 f BP
P

The last estimate shows the convergence of > D% x ¢, in L(R,). On the other
k=0

hand the sum converges in S'(B,) to D%. So we obtain

>, sup |[D°f(z)] < dfl

n .
—4m
la| Sm x€R, BP +

p1
(9) with ¢ = m follows now from the fact that CP(R,) (the set of all complex

®om
infinitely differentiable functions with compact support in R,) is densein BF, ,
[91.
Next we prove (10). Let be 0 <C ¢ s integer. We choose an integer m with
t < m. Then holds

=0, . (15)

13

(*s )o,» denotes the interpolation spaces in the sense of Lions-Peetre [4], see also
[2]. We sketch a short proof of the last relation. The operator

with the domain of definition

of
D(4;) = {flf €0, 5 € 0}
is the infinitesimal generator of the semigroup in C

GO =f@y s, %+ T, 0,5 %) J=1,..., 1.

(15) follows now from the interpolation theory for commutative semigroups [2, 4]
and the theory of equivalent norms in these spaces, [10]. (10) follows now from (9),
(15), and the general interpolation theory [4, 9],
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2ot Z = tm t
Blf-r =(B1{1’B1}:,1 )t_rC(O:Gm)_:_ 'C(O:Om)_t_oozc"

We obtain (11) from (10) and the inclusion property, [9], theorem 5.2.3,

A
Fp,r cC Bp,mnx(p, r -
5. Second proof of theorem (a)

5.1. A special semigroup of operators

We consider the homogeneous polynomial of degree 2m with real coefficients

a@) = > e w=(2,...,%,) €ER,;
loe}=2m
& = (6, ...,%,) multiindex; 2*=21... 2%,
Let for a suitable number ¢ > 0
(— ™ > ax*=clzl™™, z€R,. (16)
|| =2m

It is easy to see that G(z); 7 = 0;
(@) a) = V@) f € L(R,) ;

is a strong continuous semigroup of operators in L, (R,); 1 <p << c0o; with the
infinitesimal generator A,

(Af)z) = (— D" Ma(@)f; D(4) = {f|(1 + |a{x))f € L,} .
(D(4) denotes the domain of definition of the operator 4). We define (;1(1) by

H)f = FG(0)Ff; 0 << o; fESR,). (17)
We set
h(§) = (F-1e-0"0) () € §(R,) - (18)
Then holds
n 1
B (&) = P~V @)y — ¢ h(s ) € S(R,) . (19)

1
We used 7a(z) = a(v"™"») and a well known (and easily proved) transformation
formula for the Fourier transformation. (17) and (19) show

1
(G(D)f)() = (2n)~" f h(x — y)fy)y = (2=)~"" [ hy)fle — yo™™)dy . (20)
Rl‘l Rn
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The last formula is also meaningful for f € L,(R,). @('c) is a continuous semigroup

of operators in L,(R,); 1 <p < co: That the operators a(r) are linear and
bounded follows from (20). The semigroup property follows from (17). The continuity
of the semigroup follows from (20),

@)~ [ hiy)dy = FR)©0) = & =1,
I

and the usual estimation technique. We want to show that ff,
@W)e) = = 3 aD¥, D)= W), (21)
a|=2m
is the infinitesimal generator of é(r). (W3™ is the usual Sobolev space). Let
fE€S(R,) and bx) =1 [#/¥, where j is a sufficiently large positive integer.
A denotes the Laplacian, E is the identity. Then we have

2 - |2 )
T L, T Ly

1 [0l g
= (2m)~"* || F1 [g@ (—T—— + (— l)ma(x))} * F(b(@)Ff) "

IA
[«

1 [0l g
gl - e,

1 [et-Dm el g
e R
|

1 [e—Vm el __ q
1+ (— 14 ){5(‘“)(

IA
a\

I

—— +(— 1)"*a<x)) ]

U

A

c

P ra) 5

—0 for 740.
We used Young’s inequality for convolutions and known estimates for Fourier-
transformations. That A is the infinitesimal generator of G(z) follows now from:

(a) the last estimate, (b) S(RB,) is dense in Wf,"’(R,,), (c) A is closed operator with
non empty resolvent set.

We notice an interesting special case. Let be a(z) = — [z|?/2. In this case holds
_ e
hE) =ce ? .

k(&) are the Gauss-Weierstrass kernels.
For the further considerations we need an estimate for the operators G(r).
Let

1 1 1
w=g=zp>1; —=1——4—. 22
qg=p ” p+q (22)



A REMARK ON EMBEDDING THEOREMS FOR BANACH SPACES OF DISTRIBUTIONS 73

Young’s inequality for convolutions and (19), (20) show

n 1 1

s Fe LR, (23)

¢ is independent of 7. From the theory of semigroups of operators follows
d— by = [ erbois ©zm;
1]

see [12]. We obtain with theaid of (23) for sufficiently large m

o

A LAY E AL
I = By, <o [ o0 T Tf do = olfly, P T
0
and
n g1 1
WE — zAyfl, < clfle,s ™7 15 0<v=1; fEL(R).  (24)

The idea of using inequalities of such type for the proof of embedding theorems
is due to Yoshikawa [11].

5.2 Proof of theorem (a).

The last estimate gives the possibility of a new proof of theorem (a). s, ¢, p, ¢, r
have the same meaning as in the theorem. We choose an integer m with

2m > s —¢. (25)

Without loss of generality we may assume ¢ > 2m. Otherwise we would use the
lifting property of the spaces B, and B; ,, see [9]. Finally we choose an integer
k with

2km >s=t> 2m. (26)
From the interpolation theory of the spaces B;,, [9], and the known fact
D(4* = Wf,”"'(Rn) follows

B, = (L, D(4Y), = (D(d), D(A")

Zem "

(27)

s—2m ,
2m(k—1)°

and a similar formula for B, ,. The interpolation theory for semigroups of operators,

[4], shows
4 1
LA . dr\+v
Il ~ ( [ == — By, ;) + 11k, (28)
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(with the usual modification for r = o). § > 0 is a suitable number. Using (24)
we find for f € B, c D(4)

IG(z) — BYfll, < (B — vd)yHG(z) — BYfil, + wl(B — vA)G(x) — BYAfly,
ngs1 1
= o =T ((G(e) — By, + wl(G(x) — BFAfl,)
and

1l S WE — Ay, + 1B — Ay2Afly, < e(fl, + 147lL,) < ¢Ifls
The last two relations together with (27), (28), and (6) show

1, < e(fllzz, + 14S 1™ = €Il -

This proves theorem (a).
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