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Abstract

A sharp result on global small solutions to the Cauchy problem
u, = Au+f(u, Du, D*u,u,) (t > 0), u(0)=1u,

in R" is obtained under the the assumption that fis C'*" for r=2/n and |lug||c? mrmy+ llollwe (R
is small. This implies that the assumption that £ is smooth and ||uollwk )+ ltollwe rmy is small for
k large enough, made in earlier work, is unnecessary,

0. Introduction

Let feC'+" in a neighbourhood of the origin and consider the global existence
of small solutions to the Cauchy problem
u, = Au+f(u, Du, D®u,u,) in R*XR,,
u(0) = u, in R
Here n=1, f(w)=0(w|**") for small wc R*+"+2 r=1 and r=2/n.
It is well known (see [1] and [5]) that the problem

0.1)

w,=Adu+u**" in R"XR,, r=>0,

©2) u(0) = u, in R",

has a unique global solution provided r=2/n and #, is small. In addition, if r=2/n,
then the solution of (0.2) may possibly blow up in a finite time mo matter how
small u, is.

It is the purpose of the paper to deduce the following.

Theorem 0.1. Let 6¢(0, 1),
0.3) refl, =), r=2/n, f(w)=0(wlt") as w~0
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Sor weR™T"2 gnd feC'*" near the origin. Then there exists a constant >0
such that whenever
ll24ollczrm + N0l w2 gomy < 9

(0.1) admits a unique classical solution u such that

S:E ((t+ DY ()] commy + 4 (D ] crmy+ 1P ([u(D]c2+0mmy + [ (D]comm))

Hu(Dlwegen + 114 (Dl @m + 1P ((u ()]s oqe + [ (Dlps _gm)) < -
As a consequence, we have the following by-products.
Corollary 0.1. (Klainerman [2].) Assume
réN, (1+1/r)/r = n/2,

S does not depend on u, and f is smooth with f(w)y=O(w|**") for small w. There
exists an integer k and a small =0, such that if

ll24oll wiccrmy + 100l ey < 9
then there is a unique global classical solution u of (0.1) such that
(A9 [u (@@ +u@lL,@n <= as t—>oo
Sfor some small ¢=0,

Corollary 0.2. (Ponce [4].) If f does not depend on u, and is a smooth linear
Sfunction with respect to second derivatives in a neighbourhood of the origin and (0.3)
with integer r is valid, then there is an integer k=>2+n/2 and a constant 6=0 such
that for any uy with

Netollwim + 4ol wigm < 05

(0.1) has a unique global classical solution u satisfying
sup (49 u(f) || cxrey < o=
>0
Corollary 0.3. (Zheng-Chen [6], Li-Chen [3).) Assume that f is smooth and sat-
isfies (0.3) with integer r. Then for every integer k=n+S5, there is a small §=0,

such that for u, with
”uouw’;(R") + uo"w';“(n") <9,

(0.1) has a unique classical solution u such that

S'I:E -+ DY ([u ] comm+ 4 DL @wm) <.
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The outline of the paper is as follows. The first section contains the notation.
The second section describes a decay estimate for a linear heat equation. Section 3
contains the proof of Theorem 0.1, which is obtained by means of a fixed point
theorem.

1. Notation

We use the following notation in the paper.
R, =(0, «). N is the set of all nonnegative integers. [s] is the integer part of

s€R. neN\{0}.
X = (‘x13 sees x")ER", Di = 3/3)6,-, D* =D:1 ...Dﬁ"

with «=(a, ..., %,)EN" and |¢|=0;+...+a,. D* denotes the vector (D ..., DF)
for all a, ..., BeEN" with |of=...=|f|=k. D'=D, w,=0u/dt and 4 denotes the
Laplacian.

All functions in the paper are real. ¢ denotes a positive constant which may be
different from formula to formula, but is always independent of the variables and
functions occuring in a given place. Especially, it does not depend on the “time”
variable #€R,.

W’; (R®), for keN, p€[l, =), is the space of functions # on R” such that
el @y = Nltell, p = 2 lat =2 1 D*ullr @y < <=.

C(R") denotes the set of all bounded and uniformly continuous functions
on R”.
For k€N,
C*R"™) = {u|D*ucC(R" for all |a| = k}

endowed with the norm

lulicemm = "u”k.o = ul, = Zm_s_k [[D*ullr,_ @,
C'(R)=C(R") and |.fo=|.[-
C*(R"), for s¢R,\N, is the space of all functions u€C*I(R") with

[ DXy (x) — DV u(y)]
Ujs = su Y
[ ] x#y,xEER" Ix—yl [

Of course, C*(R™) is endowed with the norm

l#llcomm = llulls = Null g+ [uds-
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B; (R"), for scR,\N, is the space of all functions u€¢Wj(R") such that

S PP+ )= D¥lu ()] dx
uls,; = su —= < oo,
Lihr yenn,g;éo |yt

Similarly, Bj _ (R") is endowed with the norm
lulip; _m = luls,n = Hullg, o+ [2ds.o-

U(t), t=0, is the Gauss—Weierstrass semigroup written in the form
UOu(x) = @n))=" [ exp (— [x—ylH4nu() dy.

For 0¢(0,1), A,=C(R" and A,=L,(R"), we denote by D,(f, ) with
i=0, 1 the Banach space of all functions u€ A4; such that

lzdl,; = sup | A= AU (D ull 4, < =

>0
endowed with the norm

“ul|1)z(0,m) = ”u”Ai+|[u]|0,i-

2. An a priori estimate

This section is devoted to deducing a basic a priori estimate for solutions to
the linear heat equation
u, = Au+f in R*XR,,

1) w0 =u, in R"

Let us begin with two basic lemmas.
Lemma 2.1, Let 0¢(0, 1), k€N and t€R,. Then we have
@ 1U@ul = c(t+1)~ Y (ul +ulo,q) for ueL(RHNC(R",
(i) ID*U@ul = ct= Y ||u]  for ucC(R™),
(i) [D*UDullg, = ct=YP*||y|,, for ucL(R".

It should be noted that the result is well-known and trivial. It can be deduced
immediately from the definition of U(¢).

Lemma 2.2, Let 6€(0,1). Then we have
@) lllame,o =cluly  for ucC’(R),
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() [[ullcayze,n = cluly,y for u€B{ .. (R,
(i) [ulg1 = cllulljepe,1 Sor ucDl (-;' 0, °°) »
@) [uly = cllllame,o  Sor ueDy (36, ),

Proof. The first two inequalities are proved in the same way. For example,
for ucC®RR"), x¢R" and r¢R,, we have

AU (u(x)] = ct7=" [ exp (~|pl2/60)|u(x+y)~u(x)| dy
= cr= I [ exp (—|p[/81) dy[ul,
= cfMDO-1[y],.
For the proof of (iii), we set
R, Du(x) = f: exp (—styU(s)u(x)ds for ¢=>0, xcR", ucDy (% 0, oo).
By lemma 2.1 and the property AU(t)u=(U(t)u),, we obtain the following
1D 1R (t, A)utully,y = (YD AR(L, A)ully,y = ¢,
£2|DR(t, Dully,, = cllully, and (R(t, A)u), = R¥(t, A)u.
Therefore, for x€R® and ¢=>s=0, we have

[ 119 —uQ)l dy
=2 [ IR, Du)+u) dy+ [ 1sR(s, Ayu(x+y)—sR(s, Au(»)| dy

+ [ [ VAR, A)u(x+y)— AR, A)u(y)| dy die
= ot~ 0[] yyzy0,1 + 52 ulo, 1+ ¥l f M2 AR (e, Dullg,r de
= c(t—(llz)oI[u]|(1/2)6,1+S1/2|x| ”ullo,1+t1/2_(1/2)0|x| : ][“]1(1/2)9,1)-
Letting s—0 and setting 7=|x|~2, we have (iii).
Similarly, we obtain (iv) and complete the proof.

With the use of the above preparations, we proceed to the proof of the fol-
lowing.
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Proposition 2.1. Let 0¢(0, 1), n=1, rm=>2, and let u be the solution of (2.1).
Then we have

fulg (DD (D g+l (Dl + 1D ( Sk z2 (D)4 0+ [ (D))

+u@llg, 1+t (Dllo, 1+ 2P ( Sy ze [4(Dl 6,1+ [uz(t)]o.l))
= c(luollo+ ol + fgg 4+ DA™ (AN + 1D, 1))

+ ¢ sup (t+ D)2 @28 £, +[£(D]s,1)

>0
provided the right-hand side is finite.
Proof. Since u is the solution of (2.1), we have, for r=0,
N4 (Do, + €422 (14, (D], 1 + (24 DD (a1, (DI + 1922 [, (D))
= [u(D)e,1 + 1 [u(Oas 0,1+ (DY (Ju@lla+ £ [u(t)]lz4.6)
F1SDllo, 1 + 1P [f(D)]p,1 + (£ DID™(| L) + 14122 £(1)]p)-

Hence it suffices to prove the estimate without the u, terms.
Equivalently, the solution u# can be written

(2.2) u(t) = U()u+ f; U (t—s) f(s) ds.
It follows from lemmas 2.1 and 2.2 that

(t+ DY U (O uglle+ | U () oll 2,1 = c(lolla + ll2z0lla,1)s
and, for £=0,1, 2,
-+ D)X ODO T (1) g1 o+ (2P [U (Dtholic 40,1

= ct1/20 ((t + DD sup s1-WD0|| AU (5) D*U () ]|
§=>0
+sup st~ /29| AU (s) DU () uy| 0,1)
>0

= B0 sup 51D (54 )72 (. D¥uoll + | DF ullo,1)

>0

= c(lluollz+ [1uolls,1)-

Consequently, it remains to estimate the integral term of (2.2).
Set

M(f) = sup (#+ D@2 (Y FOI+1ADllo,1+ P (LAD]o + LA Do, 0))-
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We calculate, for t,s€R, and k=0,1,2,

14U @)D" [ U(t—0) f(0) do]

= [ & U((t+5-0)2) ADMU((t+5—0)/2) fio) o]

= ¢ [ (45— 0+ 1)~ (t4-5—6) =0 (] f(G)| +1 f(0)lo.1) do,

by lemma 2.1,

= o(t+ 1)~ W2 (g 4 5)~1- Q2 fo‘”z"

= c(t+ 1)-—(1/2)ns(1/2)9—1 t—(l/z)ot—(uz)k(l —(t+ 1)1—(1/2)nr)M(f)
=c(t+ 1)~ @r2m - Q28 g/2)0 M),

|av @D [ U(t—0)f(0) do,

]

(6 +1)~V2m daM(f)

= f:"”’ AD U (t+5—0) f(0) do, ,

= cf:mt (t+5—0)"1 =YX f(6)lly,1 do,
by lemma 2.1,

= csW/I-1 4—(1/2)0 M(f)
Moreover, note that
—@/2nr [* QW20-1-Dk i < osW/D8—1(4 1 1)~ (1/2nr 1—(1/2)k
(t+1) .[o. (s+0) 5 = cs (t+1)
= sV provided k =0,1,
(t+ l)——(l/2)nrft (S+o-)(1/2)0—1—(1/2)k do = ft (S+0')(1/2)0_2 do
1] °
= sV provided k =2,
—@/2mr 1 -2 (1/2)0 —1—(1/3)k
(t+1) fo (s+o+1) (s+0) do

= (14 1)~ Wamr g1/20-1 ,/: (s+a+ 1)~ g

= c(t+ 1)~ WAng20—-1" provided k =0,
and
(t+ 1)—(1/2)nrf‘ (540 -+ 1)~ WDn (51 g)A/DO-1—C1Dk g
0

= (t+ 1)-(1/z)nrf; (5-+6)VDO-2 4o

= c(t4+1)~WInsWDe-1 provided k=1,2.
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We have, for k=0, 1, 2,

|av)D* [°  U(t—0)f(e)do,,

1/2)t

- Hf(tl/z)t DU((t+s—0)/2) AU ((t+5—-0)/2) (o) da"f).l
scf  (t+s=a) AU ((t+5—0)/D) (o)l do,

by lemma 2.1,

= o fl | (t+s—o)MI-I=0k (g1 1)=UI =0/ doM(f),

by lemma 2.2,
- —y2nr s—y2)0 [ (1/2)8—1—(1/2)k
=c(t+1) t fo (s+0) deM(f)

= cs(l/z)a-—l t"(llz)oM(f),
and

14U D [ U(t~0)fie)do]
= || [y U (@+5=0)/3) DHU((1+5—0)/3)4T((2-+ 5~ 0)/3) (o) do|
scft | (ths—a+ 1) UMt 5— o) O-1=CX((f(0)ly,1 +[f(0))) do

(t+5—0+ 1)~ WD (14 5 g)U/DO-1=QA/Dk(g 4 1)~/ G—1/20 g

= cM(f) [

t
a2

(1A

cM(f)(t+1)~ Q2 -8 f' (s+o0+ 1)~ Wan(s 4 o)1=k 5
0
= cM(f)s@/DO-1 Q20 (14 1)-@2m,

In view of lemma 2.2, we thus have shown that
D03 o [(Dro 1+ + na2m (3, _, [u(Dlro+ (D)) = cM(f).
Further, let us show that
(t+ D)2 D2u(@)| + | D*u(o,1 = cM(f).
Note that, for >0 and v€D(3 0, =) with i=0, 1,

ID*UE)e(o,i = et~ [ exp (= y60]|2(- +3)=v(-)lo,: 4y

= W20 1p], .
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We have

t

|2 f -9, =cf

_ \y2)e—1 .
war W (t—s) (9o, ds

= c(t+ 1)—(1/2)nrt-(1/2)of‘ (t—5)P0-1 gg M(f)
0

= c(t+ 1)~ M(f),
and, similarly,

“DZf(l/z)t U(t—s) f(s) ds“o,l +(t+ 1)(1/2),.

0

D? f a7 (t—5)f(s) ds"

0

= ¢ [0 (0= sy (1 e+ DED (1= 5+ 1)~ (| fis)l, 1 + L) s

= ct! f; (s+1)~WDw GoAr(£) = cM(f).
Finally, we show that

e(Dllo,a+ -+ DYP* [u(B)] = cM(f).

Indeed, following the above, we have

f(llz)t U(t—9)1(s) ds" = cM(f),

(]

”f; U(t—9)1(s) dS”o,l +(t+1)/2m

and, since rn>2 and r=1, we get

I/ ('W U—s)f)ds| = ¢ [\ (t=s+ )= +1)lo,q) ds

/2
= c(t+1)-Wom f; (t—s+ 1)~ gsp(£)

= o(t+ )~ W M(f).
The proof is complete.

3. Proof of Theorem 0.1

With the use of the Banach fixed point theorem, Theorem 0.1 is, in fact, a
simple consequence of Proposition 2.1.

Proof of Theorem 0.1. Let B denote the unit ball of R¥+"*2 Without loss of
generality, we suppose that f€C'+"(B).
In order to apply the fixed point theorem, we need the following notation.
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X is the Banach space of all functions # on R”XR, such that the norm

ulx = sup (¢ + DY Qu @l + N (Dl + 192 ( oz [ (D] o+ [4,(D]s))

. +llw(Dlls, 1+, (Do, + t(llz)o(Zké 2 [U(Dk+o,1+ [ (D5, 1))
is finite.

Y is the Banach space of all functions u€ C?(R") such that the norm
‘ lully = llullo+ 22,1
1s finite.
For E<(0, 1),
X(E) = {ueX|llulx = E}, and Y(E) = {ucY||uly = E%}.
For ucX(E), u,€Y(E) and t=0, we set
u* = (us Du, D*u, 1), and T,u(f) = U(D)up+ f; U (1—5)f(u*(s)) ds.

Recall that fcC**(B) and f(w)=O(w|**") for small we€B. Hence there

is a constant EC(0,1) such that for u, v€X(E) and u,cY(E), the following
estimates hold.

[/ (@ (D)]o.1 = c[u* D, lu* AN
= (S [(Olero,1+H (Do, 1) (1 s+ DY
= ot~ WDO(g4 1)~ A2m |||,
@ @], = ez, + e (Dllo, ) (1 (@la+ 2, DY
= c(t+ 1)~ |ulx",
D[ £ ()]o+ || (@) = et [ Ol DI+l D)+
= c(t+ 1)~ B | y)x,
[ (u’k (Z)) —f (”*(t))]a.1
= e (O + 1 O [ () =2* (D)s,2
+c([w* (D)o +[v* Dl) (1 O+ Io* @O~ ¥ (1)) = 2™ (D]o,1
= ct= WP (t 4+ 1)~ (|lull g + ol Nu—2x,
/@)= £ O)lo.r = c(lw* @I +1* DY lu* (D —2*Dllo,0
= c(t+ D)~ (lullg + ol u—2lx,
(14 1) (3D £(*(0)—/(* D)o + [ () =" D))
= c(llullx +Iol0) u—vlx.

and
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From the above estimates and proposition 2.1, we have
1T, (Wlx = clluoly +ulx™") = cE* = E
[T () =Ty @)lix = c(lulx+vl0)" lu—2lx

1
= cE|u—vlx = 5 |u—2lx,

and

provided wu, v€ X(E), u,€ Y(E) with E¢(0, 1) sufficiently small. Taking into account
the Banach theorem, we have that the operator T, has a unique fixed point u¢ X(E)
provided €Y (E). The proof is complete.
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