BMO estimates for lacunary series
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Abstract. We prove BMO and L? norm inequalities in R” for lacunary Walsh and generalized
trigonometric series.

It is known for generalized lacunary trigonometric series f(x)= >¢="_ c,e"*

with 3y et =oo, o real, r_y=—n, oy /n=q>1,k=1,2, ..., that we have con-
stants 4(p, q) and B(p, g) so that for any interval Ic R with || =4xz/(r, min (¢—1, 1)),

i/p
A (16" = (7 [, 1P &) = B (2 Il

for O<p<oo. A similar result holds for lacunary Walsh series. These L?-norm
inequalities can be obtained from the results of [3] by a simple change of variable.

For p=-o it is well-known that the right-hand side inequality fails. In this
paper we show first that we have a norm inequality in the trigonometric case for
BMO and in the Walsh case for BMOd, dyadic BMO, over R. Then we turn our
attention to generalize the LP-norm inequalities to R Finally, as an application,
we prove BMO norm estimate for lacunary trigonometric series and BMOd norm
estimate for Walsh series in R".

We thank the referee for suggesting an improved version of Theorem 2.

BMO and BMOd on R? are defined as follows:

Let I,,=[(j—=1)2"", 27, for j=..—2,—1,0,1,2,... and I=0,1,2,....
i
For any interval Z, let f,:-m- [1f(»)dy, and define

1/2
= s ff = sup (o0 f,170)-Ai )

|xen {Iixen}
and

1/2
foy g 1 e )
A= swp £, 5131'3[1 T f,mlf(y) filPdy)

{Ij. l|x€lj, 1)
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One then defines
| fllgao = I|f“(X)||w,
1/ I satoa = I/F Glee -

Clearly, || flsmoa=I|flsmo- For more on these spaces, see e.g. [2].

Our first theorem concerns the norm inequality for the Walsh functions.

The Rademacher functions are defined as: ry(t)=1 for 0=t<1/2; ro(r)=—1
for 12=t=<1; ry(t)=r,(t+1); and r(t)=r,(2*1).

The Walsh functions are then defined by w,(t)=1; w,()=r,(¢) g (0,
where n=2%+2%4.. . +2%, g >d,>...>a,=0.

Theorem 1. Given a lacunary sequence {n} of natural numbers with n;=1,
H/m=q>1 and a sequence {c,} of complex numbers with 2 |c|2< <o, there exist
constants A,(q) and A,(q) such that for any f(x)=co+ 2., W, (x) we have:

AP (S rso el = [ fllamos = A2(D(Zkro e 22
Proof. Assume c,=0. The left-hand side inequality follows from the inequality:
g 1,
| flamos = (f, S)dy)”
and Bessel’s inequality.
For the right-hand side inequality, we first assume that g=2, since in this

case the w, with m,=2' are orthogonal on I; ;. For n,<2', the w,, are constant
on each /; ;; we denote these constants by w, (I ;1. We have:

S = 21./]. Doy CWn (1) dt
=23 ¢ w, () dt
Siaaf, w0

= Dtk <2Y Wy, (1;,1).
Next we calculate f;7 .

ﬁf,x - (2lflj ) ,2 Ckw"k(z)—Z(klnk<2’} ck}v"k(lj,l)lz dt)1/2
= [21‘/'11 . 'Z{k[nkgzl) ck“"nk(t)l2 dt)lm
= (2 tin =2t lclHV

From this calculation we obtain

I llsmoa = (Zeso ICk|2)1/2.

If we have lacunarity with 1<g<2, we can find m so that we have g"=2. Then
we may break f(1)=_J3) ¢;w, () into m series fi, ..., f, with ratio of lacunarity
greater than 2 and use the triangle inequality.
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This theorem cannot be extended to BMO as the following example shows:

Example. Let J,=[1/2—2-%,1/2+2-Y for [=2,3,4,.... Then for 1=k<I
we have r(f)=1 in [1/2,1/24+2"Y) and r(t)=—-1 in [1/2—2-%1/2). Let

1
f(x)=21:;17€'rk(x)-
We have f; =0 for each / and

[T}Tle |f(J7)—fJ,|2)1/2 - (21_1f1/2+2-1

1/2—2-!
2 1/2
- (l——l)/Z —
) [[f a)"-(r,
-1 l oo 1 2
-z

Therefore we have || fipyo=oo although > |cij2< .
For generalized trigonometric series a stronger result holds:

- 1 2 1/2
Zkzl -'E rk(t)‘ dt)

31
;:1;"1;(1)

et % rk(t)r dt)w]

Theorem 2. Let f(x)=2" __ €™ be defined on R with r, real, ry4,/r=
g>1, and r_y=—r, for k=1,2,..., and 3 |c,]2<-oo.
Then there exist A,(q) and A,(q) so that

AUD( Sz eV = |1 fll paro = Az(Q)(Zwo lel 22,

Proof. Assume ¢,=0. The LP-norm inequality implies that >'*_ ¢.e™* con-
verges locally in L, norm for all O<p<o, and that there exists 4,(q) so that for
any interval ICR with [I|=4n/d, where O0<d=r, min(g—1, 1),

A (oo P2 = (0 [ 17O )™ = 1 oo+

To prove A;(@)(Sixo lcil®2=]|| fllpso. it therefore suffices to show that if
co=0, then lim,.,|f;{=0. In fact, we prove more: under the hypotheses of the
theorem,

. 1 pr .
¢ = lim = f J@e i dx, forall k.

For fixed k, k=...—1,0,1, ..., and n=|k|,

. 1 pr " . .
o ﬁf—r (ZF—'! cie'rjx,) remin dx = ¢y

T>o
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We have:

l ST feinadx—c| =

lZT f (2m>n cje"l") ~in& dx|

1,1
+ I-ET f——T (212“" ¢; ezr_,x)e—u,‘x dx_ck ,

and

1 pr ) )
,‘Z—ff-r(zwb" Cjelffx) . eTinx dx’ - _,__, I2l1|>n ce i d

A

L7 . 12
(ff_.r ](2]][>~n Cjelf,x)lz dx)
= B(Q(Zjji=n e P> < &,

if n is sufficiently large. The estimate is uniform in 7>1. Let T—o and get:

R Y SN
¢ = }E‘iﬁf_rf(x)e _—

To prove | fllpao=A2(q)( S0 lcl?)¥?, it suffices to show that for any interval /
there exists a constant ¢; so that

1 12
(T’ﬂ'f, [f(¥)—cyf? dy] = A (P Srno |ck|2)1/2.

We may assume, by Minkowski s inequality, that f(x)=3,7, c,e™"
Let 7={a, b}, and c¢;= D' c e where we take

m = min {k: r,(b—a) = 4n/min (¢—1, D}.
We have

1 12 e
[mfl '/(y)“(’ll‘z dy) = [b 2 f ‘Zk — Ck(exrkx_elrka)lz dx)

5

= J1+12.

12
‘Z X—m e"k"F dx)
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Using the Schwarz inequality, we have

12
J = (ZL—; |ck|2)1/2 ( f Zm—l eir* — girea|2 dx]
= (2;;1 Ickl2)1/2(2::“‘11 1)Y3(b— a)

(S el (Imot gm0z (h—a)

Fu-a (b= a) (S5, led??

4
min (g —

iIA

IiA

[IA

Ty (S el
For J,, since r, min(g—1, 1)=4n/(b—a), we have, by the L? norm inequality,

Jy = B(Q)(Zk;eo |Ck‘2)1/2-

We next generalize the L? norm estimates in [3] to R™. We present the results
for R? only since R” follows similarly. We consider lacunary Walsh series first.

Theorem 3. Given O<p<oo, q,, q,>1, there exist constants A(p, q,, qs) and
B(p9 ql: qz) S50 that fOi‘ any f(x’ t)ZZk,l Ck,lwnk(x)wm,(t) Wlth Zk,l Ick,l|2< 2,
ng, My=0, m /. =q =1, m/my=g,>1, k,1=1,2, ... we have

< o 2 - 1 1 5
A(p, ¢1, Qz)(.Zk,t !Ck,zla)l/‘ = [fo fo | f(x, D)IP dx dt)llp = B(p, ¢1» qz)(Zk,z |Ck,z|2)1/z-
Proof. For p=2 the theorem holds by orthogonality. For p=2, the left-hand

side follows immediately from Holder’s inequality. As to the right-hand side in-
equality, we have:

(folf: | 1 €W COW (O dx di)” = B(p, 1) [ful (S| S w2 at)?

= B, q1) (Z'k ([: |3 W (O dt)m)llz

= B(p, %ﬂz)(Zk,z Ick,l|2)1/2'

For O<p<2, the right-hand side inequality follows from Hélder’s inequality
and the result for p=2. To prove the left-hand side inequality, we write

1 (1-0) 0
=5 °T

aal
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for 0<60<1, and we have, as in the one-dimensional case,
1 pl
(Zralel)? = (fo fo |f(x, H]2dx dt)l’2
1 p1 _ 1 a1
= (f) [o1re ol dedy =% (2 21 fcx, o1 dv i)™

1 pl1 -
= B'(4, g1, 99 ([ [, 1/, 017 dx di) =0 (S e )72
Therefore,

AP, @15 9)( D e )2 = (folfol Lf(x, DI dx dt)llp'

We also prove-a local version of theorem 3:

Theorem 4. Given O<p<co, q,, g,=>1, there exist constants A(p, q,,q,) and
B(p, 41, qs) so that for measurable EC[0, 12 with positive measure, there exist
Ny=Ny(E,q) and Ny=N,(E,q,) so that for any f(x, 1= 20,1 C,1Wa (X)W, (1)
with 2 1 lel*< oo, 1y, my=0, m;=N,, m=N, and o /m=q>1, my/m=
=1, for k,1=1,2, ... we have:

i/p
A(p, g1, ‘12)(2k,1 Ick,tiz)llz = [%ffE | f(x, DI? dx dt)

= B(p, 41> 9 )( i ICk,tlz)llz-

Proof. We prove first the inequalities for p=2. Assume that f(x, ¢) is a finite
sum of terms of the form Ci 1 Wy, (), (1). Let E be a measurable set in [0, 1%
We then have:

f/E Lf(x, DI dx dt
= (Sralea®IEN+ Skaiies cuili [ ¥n )W ()W, (DW, (D dx b
The second term does not exceed, in absolute value,
(Seeistes (S, Wm0 (03, (1) dx dE) )2 31l ol
As in the proof of the one-dimensional case (see [3]), we know that if », and m,
are large enough, then the coefficient of 2, ,l¢, /2 in the above expression can

be made as small as we wish. Thus we have the theorem for p=2.
Next we prove the right-hand side inequality for p=2,
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First suppose E=E,XE,. Then using the 1-dimensional case, we know there
exist Ny=N,{(p, q)) and N,=N,(p, ¢q,) such that

Up
(% (ffElez | 3kt €t Wi (X) Wae ()P dt)]
1o
- (I_E-IJ-[Ez (T];%T.[El IZk,l Clyt Wy (%) W,,,,(t)l” dx] dt]

Yp
= B(p, ) (T;:j sz (Zk 'Zl Ck,.lwml(f)lz)l’iz df]

1 2/p\1/2
= B(p, ¢1) [Zk (Tb:szEz |21t W, (DJF dt) ]

= B(p, ¢, 42)(21; H ]Ck,z]2)1/2

whenever n,>N; and m;>N,.

Next, suppose E=|Jg E;, where each E; is of the form E,=E,,XE,,,
and the E; are disjoint. For each E;, there exist N;; and N, , so that if n,>N,
and my >N, ,,

1 Yp
(El“ff& 'Zk,l Ck,lwnk(x)wm,(t)lp dx dt) = B(p, 41, 4)( Sk el V2

Let N;=max; N; ; for j=1,2. Then when n,>N; and m;>N,, we have

(Tl%?—lff;; | it €t W () Wi (D[P dt] "

p
- [ ‘IEE:l: lzf:| ff lzk 1 iyt Wiy, (X)W, (D dxdt)

1
=2 [é]l (IF ff |2klck ngk(x)wm.(t)Idedt] ’

= i |E| ——B(p, q:, %)(Zk e, l')uz

= B(D, g1, ¢)(Zler, 1272

Next suppose E=|J;., E;, where E; are of the previous type and the E; are
disjoint. We may write E=FE,UE,, E;=Jsu. Ei» F; and E, are disjoint and
|E/2=|E|. Let N;(E)=N;(E), j=0,1. Then for f(x, )=2, C, 1 Wy (X)W, (1)
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with n,=N,(E) and m;=N,(E),

1 Vp
(TET.[/E |f(x, OIF dx dt]

1 1p 1 Yp
(I_E‘:I—ffﬁl |f(x, DIP dx dt) + (Wffﬁz | f(x, DIP dx dt) _

For the second term on the right, we have

lIA

—,éq [f g, /0 Drdxdt= (ff 5, 1105, D% dx )"

1A

(f:fol |fCx, 0122 dx dt)¥® = B(2p, q15 42 (Sl PP

Therefore, combining constants,

i/p
[%ff}; !f(x, t)!p dx dt) = B(p, qi, qz)(Zk,l lck'llz)llz'

Finally we consider a general measurable set E in the unit cube in R% Define
L=[k—1)2"" k271, k=1,2, ..., 2. Define J; ., =L, X1, 1, k.n=1,2,...,2". We
want to decompose E. We start with /=0. J,; ,=[0, 112 If |E|=|EnJy ;0=
% |/1,1,0/ then we keep J, ; , and the process stops. Otherwise, we divide [0, 1]2
dyadically into 4 cubes Jy 14, Jy 1.1, J1,0,1 and Jy 5 1. X |ENTy 1| =% gl for
some k or n, then we keep that one and ignore all subsequent subdivisions of it.
We subdivide the remaining cubes, and repeat the process.

In this way we obtain a sequence of disjoint intervals J, , ;. Let F={)i/J; , ..
Clearly, |F|=2|E|. Moreover, F contains all points of density of E, so that yy=y,
a.e. Since the theorem holds for F,

1 1/p
[Tﬂ / f 1fCe nlP dx dt]

2 1/p
= [W [[ 1 piP dx dt] = 27B(p, g1, 42 lewal?)™.

This proves the right-hand side inequality for p=2. For O<p<2, the right-
hand side follows from Holder’s inequality and the result for p=2. The left-hand
side inequality follows from the convexity argument as in theorem 3.

For lacunary trigonometric series we have similar results.

Theorem 5. Given O<p-<oo, q,, g,>1, there exist constants A(p, q,, q,) and
B(p, g1, g2) such that for any f(x,1)=3 ¢, €™ with J|c  |*<ee, with
Fe=—Fos ;= —58_1, F9=5=0, r/n=q>1, and s5;.{/51=q,>1 fork,1=1,2, ..
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and for any intervals I, I with || =4z /(r, min (g:— 1, 1)), || =4r/(s, min (g,—1, 1)),
we have

1 1/p
AP 420 0 (SnslenalV = (i [, S, e 0l dx )

= B(p, 41, ‘12)(2k.1 ‘Ck,ﬂz)lla'

Proof. The generalization follows from the one-dimensional case as in theo-
rem 3.

Theorem 6. Given O<p<-oo, qy, g,>1, there exist constants A(p, q,, q2) and
B(p, g1, q2) so that for measurable EC[0, 112 with positive measure there exist
Ny=Ny(E, q)) and Ny=N,(E, q,) so that for any f(x,1)=_ ¢ € e with
DiilalP<oo, with r=—r_, 5=—5_1,1,=5=0,r>N, $;>N,, e,/ =01 >1,
and s;.4/8=q,>1 for k,1=1,2,... we have

1/p
AP, g1, 3)(S e )2 = (IELI S /G pip dx dt] = B(p, q15 92)(3 lerd?)2.

Proof. The generalization of the one-dimensional result follows along the same
lines as the proof of theorem 4.

Theorem 7. Suppose {n.} and {m,} are lacunary sequences with ny /n,>g,>1,
My p1/m>qs>1, and suppose f(x, t)=co+ >} =1 c,,,,w,,k(x)wml(t) with 2 ley, |2 < ee.
Then there exist constants A(q,, ) and B(q,, q,) so that

A(qy, ‘12)(2“;1 |Ck,1|2)1/2 = || fllsmoa = B(q1, 42)(21‘,1;1 lck,1|2)1/2-

Proof. The proof follows the outline of the proof of theorem 1 except that we
use theorem 3 for the left-hand side inequality.

Theorem 8. Let f(x, 1)=I==_ ¢, e"et with r,, s, real, ry/re>q>1,

k= —oco
Sipfsi=q.>1 for k,I=1,2,.... Assume also r=4n/min(q,—1,1), s=
47t/nlill (q2— 1, 1), Fog=—F, S =—58, and 2 lck,l|2< oo,
Then there exist constants A(qy, g») and B(q,, q,) so that

A(q, %)(Z;,, lck,ll2)112 = | flemo = B(qs, ‘12)(2,:,, |Ck,l[2)1/2’

where 2’ is the sum over all k and 1 except for the case where both k and | are zero.

Proof. The proof follows as in the one-dimensional case, using theorem 5.
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