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Introduction 

This paper is concerned with the analytic continuation of holomorphic solu- 
tions of a partial differential equation in a complex domain. 

Let t2, f2' be open connected sets in C "+1 satisfying Oc t2 '  and Ot2ng2'~0, 
where 0t2 denotes the boundary of t2. Let P(z, D) be a linear partial differential 
operator of order m with holomorphic coefficients defined in t2' and let z~ '. 
We let (Q) denote the assertion 

(Q): Every solution u~H(O) t o  Pu=O has a holomorphic extension to a 
neighborhood of z ~ 

In the following we suppose 1) z~ and 2) x0=0 is the real tangent hyperplane 
of 0P at 0 whenever Ot2 is assumed to be in C 1. We note that, on the real hyper- 
plane x0=0, there is a unique complex hyperplane passing the origin, which is 
clearly zo=O. We call it the complex tangent hyperplane of Of 2 at 0. 

M. Zerner [13] has proved that (Q) is true if Of 2 is in C 1 and zo---O is non- 
characteristic. Y. Tsuno [9], Pallu de la Barrirre [5] and J. Persson [7] in the simply 
characteristic case, J. Perss0n [6] and Y. Tsuno[10] in the case when z0=0 is 
characteristic with constant multiplicity have given sufficient conditions for (Q) 
to be true. These results are all based on a precise form of the Cauchy--Kowalewsky 
theorem. By the way, if t2n{z0=0}=O and there is a solution to Pu=O with 
singularities on and only on z0=0, then (Q) is not true. When z0=0 is charac- 
teristic with constant multiplicity, the existence of such singular solutions has been 
studied by J. Persson [6], [8], S. Ouchi [4] and so on. 

The purpose of this article is to give sufficient conditions for (Q) to be true 
when z0=0 is a characteristic hyperplane with varying multiplicity around z=0.  
The argument is based on a Cauchy--Kowalewsky type theorem for a Cauchy 
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problem with m -  1 data given on a characteristic hyperplane of the type mentioned 
above. It is theorem 1 in w 1, and it gives sharp estimates of  the existence domain 
of  the solutions. The analytic continuation theorems, theorem 2 and corollaries 1 
and 2 are stated and proved in w 2. 

Theorem 2 is an analogue of the results obtained by cones of  analytic con- 
tinuation in [6] and [7], which are based on the precised Cauchy--Kowalewsky 
theorem. It seems however to be impossible to prove theorem 2 by using them, 
because our result depends essentially on lower order terms, whereas cones of  ana- 
lytic continuation are decided only by the principal part of the equation. We should 
also remark it is not assumed in theorem 2 that f2c~{z0=0}#0. It is important, 
for it means the non-existence of such singular solutions as mentioned above for 
the equations which we treat in this paper. Corollary 2 states this fact as an analytic 
continuation theorem. 

We use the following notations in this paper: 

z ~ (z0, ~) = (z0, za . . . . .  z,); zi = x i+ l/-STyi, i = o, 1 . . . . .  n; 

= ((o . . . .  , ( . ) ;  D = (Do . . . . .  D . ) ;  

Di = O/Ozl = (O/Ox~- t/---L-'-ftg/Oy3/2; 

Di = tg/tg~:, = (O/i)xi + t/------lO/tgy~)]2; 

grad, F = (DoF, .... D , F ) ;  Fz, = DiF;  

F , , = D , F ;  N = ( 0 , 1 , 2  . . . .  }; 

H(I2) the space of all holomorphic functions in f2; 
p = O ( q )  means p/q is bounded as q~0 ;  
p = o ( q )  means p/ql tends to 0 as q ~ 0 .  

1. C a u c h y - - K o w a l e w s k y  type  theorem 

1.1. Denote by pro(z, 0 the principal symbol of  P(z,  D) and presume 

Assumption I. It holds that 

pro(z, N )  - 0 in g2', and (Opm/O(i)(O, N )  = 0 

for every i, where N=(1,  0, ..., 0). 
Let 21, ..., 2, be the eigen-values of  the matrix 

(1.1) M = ((02pm/O(iOzj)(O, N); i , j  = 1 . . . . .  n). 



Characteristic Cauchy problems and analytic continuation of holomorphic solutions 291 

Suppose )1, ..., 2kr and 2k+1 . . . . .  2,=0. Besides, put 

0.2) u = p.,_do, N), 

where Pm-X(Z, ~) denotes the homogeneous part of degree m--1, in the ~ vari- 
able, of the symbol of P(z, D). We assume 

Assumption II. The following i), ii) and iii) hold: 
i) The convex hull of 21 (1 ~_i<=k) in the complex number plane does not con- 

tain the origin. 

ii) - p  {~'~=~ 2,fl,; f l :N}. 
iii) There is an integer h with O<=h<=k such that 

= Iz~l + Z ~ = h + l  Izil) 

as  (z~ . . . . .  zk,  ~ . . . . .  ~ D - ~ 0 .  

1.2. Let z be a complex parameter. The hyperplane z0=T is characteristic 
because of Assumption I. We consider the Cauchy problem with m - 1  data on 
this hyperplane: Given f(z) and v(z) holomorphic in a neighborhood of (z, 0), 
obtain a holomorphic solution u(z) to 

(1.3) ?(z,O)u = f ,  u - v  = O((zo-O'-l). 

Denote z=(zo, z', z"), z'=(zl . . . . .  zh), z"=(z,+l . . . .  , z,), [z'l =maxa~_i~_h ]zil and 
!z"l =maxh+l~_i~_, Iz~l with h from Assumption II iii). Then we have 

Theorem 1. Suppose Assumptions I and H hoM. Then there are three positive 
constants 6>0,  r l>0  and 0 < c < l  such that for every Izl<~, every 0<r<r~  and 
every f(z), v(z) holomorphic in {Izo-vl<r 2, Iz'l<r, Iz"l<r2}, the characteristic 
Cauchy problem (1.3) has a unique holomorphic solution in 

{ I z 0 - r l  < (c,@, Iz'l < cr, tz"l < (cr)2}. 

This is an improvement on theorem 7.1 in our previous paper [3]. We will 
give the proof in w 3. 

2. Analytic continuation theorem 

2.1. From theorem 1 we have 

Theorem 2. Suppose Assumptions I and II  hold. Then there exists a positive con- 
stant ~=~(P) depending only on the operator P(z, D), such that the following prop- 
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erty holds: I f  there is a sequence zc~)---O, q~oo, ~ ) # 0 ,  such that 

(2.1) {z; zo = z(a), [z'l ~- I?~(~)11/2, Iz"l <-- I~(~)1} c O, 

then (Q) is true. 

Proof. We apply theorem 1 by taking z--z (q) and r=12T(~ where c is 
the constant appearing there. Put ?=2/c 2, then I~z(q)l--r 2. Hence, by the assump- 
tion, u is holomorphic in some neighborhood of 

Sq., = {z; Zo = ~(q), [z'l ~ r, [z"l <-- r~}. 
Set 

m--2 v = z~i=o (D~u)(~"), e)(zo-z~"))~/i! with e = ( z ' ,  z") .  

Then v is naturally holomorphic in 

{z; Iz0-~(q)l < ,.2, [z'[ < r, Iz"l < r2}. 

Therefore it follows from theorem 1 that there exists a unique holomorphic solu- 
tion t~(z) to P ~ = 0  in 

Vq,, : {z; Iz0-~(~)[ < (or) 2, [z'l < cr, Iz"l < (cr) ~} 

satisfying ~-v=O((zo-r(q))"-~). By the uniqueness, t~=u in a neighborhood of 
(z ~), 0). On the other hand, since (cr)2= 12~(q)[, the set V~,, contains z=0 .  This 
completes the proof. 

We say 0f2 is in C k, k_~l, in a neighborhood of 0, if there is a real-valued 
C k function F(z) defined in some neighborhood V of  0 such that F(0)=0,  
grad~ F ( 0 ) = N  with N--(1, 0, ..., 0) and f2nV--{zE f2'nV; F(z)<0}. We then have 

Corollary 1. Let assumptions I and H be fulfilled and assume Of 2 is in C 2 in a 
neighborhood of O. Then there exists a positive constant a=a(P) dePending only on 
P(z, D) such that the following property holds: I f  

2;~ 0 ~ ~ , ~ ( 0 )  z, zj} < (2.2) max  { i,.t=l F-~iz.i( ) z i z jq -Re~ai , j=a or, 

then (Q) is true. 

Proof. At the section z 0 : - r  with r>0 ,  

F(--r, ~) = F ( - r ,  0)+~'7= 1 {F.,(-r, O)z,+Fe,(-r, 0)2;} 

.~.~_~i,j=ll n {F~,~j(- r, O)zizj+2F.,e~(-r, O)ziz.)+Fe, e~(--r, O)z.izj}+o([z.lz). 

Note that F ( - r , O ) = - 2 r + o ( r ) ,  F, ,(-r,O)=O(r) for l<=i<-n, F,,,s(--r, 0)= 
F,,,~(O,O)+O(r) for l<=i,j~n and so on. Let ? be the same constant as in theo- 
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rem 2. Then we have 

F(z) h - h = - - 2 r + ~ ' l , j =  ~ F~,~j(O)z~zj+Re Y~t,~= ~ G,,j(O) z~zj+o(r) 

on & =  {z; z o = - r ,  Iz'l~(Tr) a/z, I z " l~ r} .  
On the other hand, it follows from (2.2) that 

Z h 6,~j(0) z~ j  + h ReZi,.s=lF.,~j(O)z~z j < ct?r, on &. l, J = l  

Therefore, if we take ~=2/?,  then F < 0  on S, for sufficiently small r, and so the 
condition (2.1) in Theorem 2 is satisfied. This completes the proof. 

Corollary 2. Suppose Assumptions I and 11 hold. Let  U= {z; IZ~I <r for  every i}  
with r > 0 ,  and assume U c  f2". I f  u is a holomorphic solution to Pu=O on the 
universal covering space of U\{z0=0} ,  then u has a unique holomorphic exten- 
sion to U. 

Proof. We can apply corollary 1 by taking F=2x0.  We see u becomes holo- 
morphicin U ' = { z ;  Iz, l < r '  for every i} with some 0 < r ' < r .  Since U'va{U",,{zo=0}} 
is simply connected, u is sing/e-valued there. As well-known in the theory of  several 
complex variables (cf. [1], chapter II, theorem 1.5), u has a holomorphic extension 
to U. This completes the proof. 

Remark ! :  1) In theorem 2, we need not assume any smoothness of  01l 
2) In corollary 1, the condition (2.2) is imposed only to the (z~ . . . . .  zh) direc- 

tion; and in particular when h=0 ,  (Q) is true without (2.2). 

2.2. We give an example. Let l~_rn~_n and 

(2.3) P = D ] -  ~(D~x + .... +D~)+ boDo +.. .  + b,D, 

with bi(z) h01omorphic in a neighborhood of  the origin in C "+~. Change the var- 
iables by wo=zx+z~]2, w~=zo, wj=zj  for j_->2 and denote w by z again. Then P 
is transformed into 

m 2 = 2z, DxD o +D~- z~ Zj== D~ + (bo z~ + b~ + l)Do + boD~ + Z~=2 bjDj. 

Its principal symbolis ~ 2 ~ 2 . ff2=2za(l(oq-~l--Zx(~z-b ...-k(m), ).1=2; ) . j=0 f o r ] = 2  . . . .  , n; 
l*=b~(O)+ 1.: Assumptions ! and !I are dearly satisfied if b t ( 0 ) ~ ,  1 , - 3 ,  - 5 ,  . . . .  
In the present case, the condition (2.2) in corollary 1 is equal to 

(2.4) F=1=1(0) + I/7,1=x(0)1 < ~. 
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By the way, when bj are constants and b0=0, the equation /~u=0 has  so- 
lutions 

(2.5) ul = Ztot'~-x)l*( zo - z~) -(b~ +1)/4, 

u~ : z l  ~0 ~ ' - ~ ) "  (z0 - z ~ ) - ~  + *~/'. 

In particular, when bl = - 1, - 3, - 5, . . . ,  one of/./1,//2 is singular only on z0 = 0. 
This means that theorem 2 and corollaries 1 and 2 are not valid without assump- 
tion II--ii). 

See [3] for other examples which satisfy assumptions I and II. 

Remark 2. Let P be the operator in (2.3). J. Urabe [11] and C. Wagschal [12] 
considered the non-characteristic Cauchy problem 

(2.6) Pu = 0, (D~0 u)(0; ~) = v,(e), i = 0, 1 

where vi(~) are singular on z~=0 (meromorphic data are considered in [I1] for 
more general operators, and so are ramified data in [12] when m =  1). They proved 
there exists a neighborhood U={z ;  H < r  for every i} with 0 < r < l  and a holo- 
morphic solution u(z) to (2.6) on the universal covering space of  U'x,(KxuK2), 

1 2 where K l = { z l = T Z o }  and K2={z l=  1 2 - -~zl} .  By corollary 2 we can see, i f  
b x ( 0 ) ~ •  +3,  •  . . . ,  the solution u(z) is nowhere holomorphic on K x u K  2, 
that is, the singularities of  v~(~) surely propagate onto both K 1 and K2. 

3. Proof  of  Theorem 1 

Modifying some points, we follow the proof  of  Theorem 7.1 in [3]. In parallel 
with z=(z0, ~)=(z0, z', z"), we denote ~=(~o, ~)=(%,  a', a") for multi-indices, 
too. We write 

(3.1) P(z ,  D) m m - J  = Z l , o Z l ~ l ~ j a , . _ l . ~ ( z ) D o  D ~, 

where D~=D~,...D~,,, and [~[=~q+. . .+cq.  We assume all the coefficients are 
holomorphic in {z; Iz[<ro}, to>O, where Izl =maxo~_i~_n [z~[. 

3.1. It follows from i) and ii) of  assumption II that there is a positive constant 
6 such that 

(3.2) IZ~=x 2~fli+/z[ => 6(Z~= 1 fl,+ 1) for every flEl~ +~. 
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3.2. It follows from assumption I and iii) of  assumption II that 

(3.~) am, 0 :--- O, 

[zl[ +~i=h+l [z~[), when 0 

a = - l "  = ~ "-- ' [O (Z,L1 lz, I), when I~'[ = 1 

as (z~ . . . . .  zk)~0, for ">1 j =  , 1 4 1 = j .  

3.3. By a suitable linear transform 
matrix M defined in (1.1) has the form 

of  the 2 variable, we may suppose the 

"21 mi 1 0 0] 
(3.4) M " 2, 0 ~- 0 , 

t 
where the unspecified components are all zero; besides we may suppose 

(3.5) Imol ~_ ~{-~, for 1 _~ i < j _<- k 

with c51=min {1/2, 6/8n}, where ~ is the constant appearing in (3.2). See [3], prop- 
osition 4.1. 

3.4. We define 

0.6) T =  Z,~I ~,z,D,+~,, t(~) = Z~=I ~,~,+~'. 

Let z be a constant, v=Zvpa(zo--z)Pz#/p!fl!, and w=ZWp#(Zo-Z)Pz#/p!l~!, where 
zP=zaxl...~ . and fll=fll!...fln!. Then, if  w=Tv, we have wnp=t([3)v #. Because 
of(3.2),  we can define w=T-lv  by w#=v#/t(fl). I f  v is holomorphic at (%0), 
so are Tv and T-iv. 

3.5. We reduce the Cauchy problem (1.3) to a system of  integro-crrfferential 
equations. Let T be as in (3.6). We define 

(3.7) a l  = T-z~l~l~l a._l.~(z)Z~, 

a 1 =--Z~l~l~_jam_l.~(z)/)~, j = 2 . . . . .  m, 

uj=L~ou, j = 0 , 1  . . . . .  m - I ,  

g 0 D~Xu =f~ u(t, ~) dt. 

We suppose v = 0  in the Cauehy problem (1.3). Then u=O((zo-z) =-1) as z0--z. 
It  follows from this that 

(3.8) ul =Dffluj+l, j = 0 ,  ! . . . . .  m - 2 .  
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Put 

(3.9) u - -  ' (u0 . . . . .  u s - i ) ,  

f = t(O . . . . .  O, T - l  f ) ,  

0 D~ 1 I 0 Dg 1 
a . ~  �9 . 

�9 0 " D ~  1 " 
T-lain T-l al 

Then the Cauchy problem (1.3) with v=0  is reduced to the equation 

(3.10) u = Au+f .  

Conversely, if  u='(u0 . . . . .  us_i) is a solution to (3.10) with f= t (0  . . . . .  0, T-if), 
then U=Uo gives a solution to the Cauchy problem (1.3) with v=0.  

3.6. We introduce a Banach space composed of h01omorphic functions, in 
which we consider the equation (3.10). Let zEC, 1 <=Ri<=R2<=R3 and s=0 ,  1, 2, . . . .  
Denote by H~(~ R2, R3) or simply by H~ (~ the set of  power series 

,, =  .v AZo- ? /p! P! 
which satisfy 

(3.11) sup Iv~al/[I/~'l, I/V'I + p  +s]! RI1 a'l R[ a'l Rg +' < ~ ,  
p,p 

where we use the notation 

0 .12)  [k, n]! = k!(k+2)(k+4)...(k+2n). 

Define the norm ( , ) .  (o llvL --IIoIIs;R1, R,,R~ by the left-hand side of  (3.11). Then the space 
H(~~ R2, Rs) is a Banach space. 

Next, let 0 < a < l  and denote by H~O(Rx, R~, Ra, a) or simply by H (0 the 
set of  all u=t(u0 . . . .  , us_~) with u, EH(~~ Rz, R3), defining the norm 

(O - s 

( 3 . 1 3 )  IIlulll  <') = I I Iu l I I~ ' I ,R , ,~ . ,  = m a x  I lusl ls :R~,R, ,R~a 
0~;~ s ~ m "  1 

This space is a Banach space as well. 
We consider the equation (3.10) in the space H~'!(Ra, R2, R,, a). I f  the oper- 

ator norm of A is less than 1, we see, by the contraction principle, that the equation 
(3.10) has one and only one solution. So, in what follows, we will try to estimate 
the operator norm of  A. 

3.7. The following 1)--, 12) hold: 

1) IIT-XD~'vll} o ~_ (Ri/~Ra)tlvllJ2x, for I~'1 = 2 
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2) ]]Z-lz~'vl[~ (o ~ (Ra/aR~)llvl](,~,, for Iv'l = 2 

3) [IT-XzjO,vll} ") <= (1/a)llvtl m, for i , j  = 1 . . . . .  h 

4) IIZ-lzjvll(/~ <= (RdaR=)llvll(/)+l, for j =  h + l  . . . . .  k 

5) IIZ-~vll(~*) <= (1/a)llvll(~') 
6) IID~vtI(,')<=(Rk<Rg~"TRgaI)IIvlI(;)_I~I, for e v e r y a  

7) IIz~vll~ (') <= (l/Rl,~'lR~'q)llvll(;), for every 

8) IIO0v[l~ (*) ~_ Ilvll~(~l 

9) IID~%II, (') = Ilvll,(:~l 

10) II(z0-z)vL (~) <= (1/R3)llvll(, "~ 

11) IIvL (') _<- (1/2sR3)ltvll(,')_i 
12) Let a ( z ) = ~  a*~a(zo-,)Pza/pt~!, 

and suppose that with some positive constants Ao and R0, 

(3.14) ta~al <--AoR*~+Iplp!~! for every p,/~. 

Then, if R o < R I < = R ~ R s ,  it holds that 

IlavL (~) ~_ Ao0llvll,(% with 0 3 
= / / , = 1  R J ( R , - ~ ) .  

We can prove these properties in an elementary way by consulting the proofs 
of  Propositions 5.1, 5.2 and  5.3 in [3]. So we leave it to the reader. 

3.8. Now we estimate the operator norm of A. First, put 

(3.15) rn~f =Dja , ,_ l ,e , ( z ,  0), i , j  = 1, 2 . . . . .  n, 

where ei is the i-th unit multi-index. It follows from assumption II--iii) that m ~ = 0  
for k+l<=j<=n and for h+l<=i<=n, l<=j~h. Besides, by the same assumption, 
we can Write 

(3,16) CtlUm_ 1 -~- ~ a ( 1 ) ( m ~  ~ -- ZI:~'< " ~ _ ,  j_k rn~ , ,,-1 

+ Z m zj D, Zo ,~_ .  ( z , -  ~,) f,~., u._ l  

- r Z  (2) zT" Di( f i~  ' Um-1)'~- Z o ~ I ~ n  ( Zt-- q )  g[ Um-1 

:= {al l  q- alz-{- alzq- a14 + als}um-1, 

where %=% z~=0 for 1 <=l<=n; 2~ (~) denotesthe sum for 1 <-i,j~_h and for 1 ~_i~_n, 
h+l~_j<=k and so does Z (2) for Iv'l=2, h+l<-i<=n; taking t0>0 sufficiently small 
and Ao, Ro sufficiently large if necessary, we may suppose that the Taylor expansions 
of ft~t, f~, and g~ about  (~, 0) all satisfy (3.14) for every Izl<to. 
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We estimate each term by making use of  1)~ 12). There is a positive constant 
M 1 such that ~ o < Imli-mijl=MllTI for every Izl<_-t0, and so, by 3), 4) and 6), we have 

IlZ-lalxUm-lll~)__x ~ (M2 Iz[/6)IIUm-lll(d)-.x, 

where M2=n2M1 . By (3.5), 3), 4) and 6), we have 

IIT-XalzUm_xl[~ )_ < (1/4) l[U,n libra*)-. 1 = - 1  1 "  

By 3), 4), 6), 7), 10) and 12), we have 

1 .) < (AoOC1/~R1)Ilum_IlILOl l iT-  al3Um-1 m-1 

Here and hereafter Ci denotes a positive constant depending only on rn and n. In 
the same way, we have 

2 (0 T-1a14wm_111m_ 1 . ,  I 1 (0  ~ (AoOC2Rd6R1)llUm-lllm-x, 

[IZ-la15 U,~-IlI~m*)__I =< (AoOC3/3R1)Ilum_lll(,n')_l. 
We thus obtain 

,~) < { _ _ ~  1 AoOC~R2 AoOC,~ 
(3.17) T- la  m - - 1  r a - - l =  +--4 + ~R~ ~---~1" ~ Ilum-xll(d)-I 

for every I~l<t0 and every Um_IEH~)__I(R1, R2, R3). 

3.9. By assumption II~iii),  we can write, for j_->2, 

(3.18) ajUrn-j = ~(a) z~D~(fj~Um_j)+ ~(4) z~l~(fivu,,_j) 

+ Z(5)Da(fja u~_j) + Z  lal <JgJa Da Um-j 

= {ajl+aj~+aj3+aj,}Um_j, 

where 2: ~3) denotes the sum for lal--j with a '=0 ,  9=(? ' ,  0) with If'l=2 or r = e j  
with h+l<=j<-k; so does Z<4) for I&{=j with Ic~'l=l, l ~ l ~ k ;  and ,~(5) for lal=j 
with Ia'/_->2. Taking to smaller and Ao and R0 larger if necessary, we may suppose 
the Taylor expansions of  f r o ,  fja,, fi~ and gja all satisfy (3.14) for every I,l<t0. 

2 If  R~_R~, then by 2), 4), 6) and 12) we have 

I]T -Xajl u m -j[I ~)--x ~- (AoOC5 RI~-X/6R~ '1) I1Um -ill (dLj. 

In the same way, we have 

liT ay2Um--jllm-X ~-- 

l[ T-laj3 u m - S  II (~- x -~ (A00C7 82 R~- ~/~Rg -1) l u~-~ll ~')- X, 

liT -1  aj, Um_jl]ra_l (AoOCsRJz-1/~RJ~-I)]IUm_jH(mO__j. 
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Hence for j_->2 we obtain 

(3.19) T - l a  u ~) ~-~+1 j m - j  m - i  t" 

.< AoO(CTR~t +CoRO 
= ~r6R a (Ra/aRa) j - z  l[ blm - j}l ~)~j  a--m +j" 

3.10. By 9), we have 

(3.20) IlOcXuj+all}O ~-J  = a t l u j + a l [ ~  -I-~ 

Putting (3.17), (3.19) and (3.20) together, we can get an estimate of  the oper- 
ator A: Set 
(3.21) R I = R ,  R 2 = 4 ~ R  ~, R ~ = 4 z R  a. 

If  a, Ro, 4~ and 03 are constants satisfying 

(3.22) 0 < a <  1, R ~ > R o ,  R~ - 1 <  Q2< 1 < 43, cr4z > 4 2 ,  

then for every R > / ~  and [vl<t0 it holds that 

(3.23) IIIaulll ") <= elllulll ~o for uEH(')(R, 42R a, 4zR a, a), 

f M~t o 1 AoO ( C C4 C7+Ca42 )} 
with e = m a x ~ r , - - - - - ~ - + ~ - + T  [ ~4~+-~o- ~ a48-4~ " 

a We can take t o , /~ ,  Q2, 4s and a so that u  1. Hence, by the contraction 
principle, we see that equation (3.10) has a unique solution in the space 
H(~ 42R 2, oar 2, a) for every Izl<to and every R > R  o. 

3.11. Theorem 1 is proved as follows. Let to, Ro, 4~, 4a and a be such as 
stated above. Supposef(z)  is holomorphic in {z; Iz0- t l  < r  ~, Iz ' l<r ,  Iz" l<r  ~} with 
r>0 .  Taking ca so tha t  0 < c a < V ~ ,  put R = ( q r ) - ~ ;  then r-~<t /~R<R<I/- -~3 R. 
We easily see that f E H [ ~ a ( R  , 42R ~, 4aR2), and besides 

f = t(O . . . . .  O, T-I f )EHCO(R,  42R z, 4sR 2, a). 

If  R > R  o and I t l<t0,  then the equation (3.10) has a unique solution 

u = '(u o . . . .  , u,~_I)EHC') (R, #2R *, 43R ~, a). 

As noted in the paragraph 3.5, u=uo gives a solution to the Cauchy problem (1.3) 
with v=0.  From the definition, the Taylor expansion u=~u~p(Zo--t)PzP/p!l~! 
satisfies 

[u~DI <- II ullo C') [IM'l, I/3"1 +p] t  Rla'J (42 Rz) IVl (43R~) p 

LI ullo "~ (p + 1/81)! (1~ca r)lP'l (2Qdc~ a ra)la"l (243/~ r~)L 
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Hence u is holomorphic  in 

l z l [+ . . .+ lZh [  ~ 2o2(Izt,+ll+...+lz,]) + 20a]Zo-Zl  < 1. 
e l f  c~ r~ c~ r ~ 

Take c > 0  so that  (hc/cO + (2Q2 ( n -  h) c2/c~) + (20a c2/c~) ~ 1. Then  u is ho lomorphic  in  

{z; I z ~ - z [  < (cr)  z, Iz't < cr,  tz"l < (or)2}. 

This completes the p roof  of  Theorem 1. 
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