Characteristic Cauchy problems and analytic
continuation of holomorphic solutions

Katsuju Igari

Introduction

This paper is concerned with the analytic continuation of holomorphic solu-
tions of a partial differential equation in a complex domain.

Let Q, @ be open connected sets in C"+! satisfying Qc @’ and QN =0,
where 92 denotes the boundary of Q. Let P(z, D) be a linear partial differential
operator of order m with holomorphic coefficients defined in €’ and let z°€0QN .
We let (Q) denote the assertion

(Q): Every solution u€ H(Q) to Pu=0 has a holomorphic extension to a
neighborhood of 2%

In the following we suppose 1) z°=0 and 2) x,=0 is the real tangent hyperplane
of 99 at 0 whenever dQ is assumed to be in C. We note that, on the real hyper-
plane x,=0, there is a unique comiplex hyperplane passing the origin, which is
clearly z,=0. We call it the complex tangent hyperplane of aQ at 0.

M. Zerner [13] has proved that (Q) is true if 9Q is in C! and z,=0 is non-
characteristic. Y. Tsuno [9], Pallu de la Barriére [5] and J. Persson [7] in the simply
characteristic case, J. Persson [6] and Y. Tsuno [10] in the case when z,=0 is
characteristic with constant multiplicity have given sufficient conditions for (Q)
to be true. These results are all based on a precise form of the Cauchy—K owalewsky
theorem. By the way, if Qn{z,=0}=0@ and there is a solution to Pu=0 with
singularities on and only on z,=0, then (Q) is not true. When z,=0 is charac-
teristic with constant multiplicity, the existence of such singular solutions has been
studied by J. Persson [6], [8], S. Ouchi [4] and so on.

The purpose of this article is to give sufficient conditions for (Q) to be true
when z,=0 is a characteristic hyperplane with varying multiplicity around z=0.
The argument is based on a Cauchy—Kowalewsky type theorem for a Cauchy
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problem with m—1 data given on a characteristic hyperplane of the type mentioned
above. It is theorem 1 in § 1, and it gives sharp estimates of the existence domain
of the solutions. The analytic continuation theorems, theorem 2 and corollaries 1
and 2 are stated and proved in § 2. '

Theorem 2 is an analogue of the results obtained by cones of analytic con-
tinuation in [6] and [7], which are based on the precised Cauchy—Kowalewsky
theorem. It seems however to be impossible to prove theorem 2 by using them,
because our result depends essentially on lower order terms, whereas cones of ana-
Iytic continuation are decided only by the principal part of the equation. We should
also remark it is not assumed in theorem 2 that Qn{z,=0}0. It is important,
for it means the non-existence of such singular solutions as mentioned above for
the equations which we treat in this paper. Corollary 2 states this fact as an analytic
continuation theorem.

We use the following notations in this paper:

2= (2, 8) = (Z0s Z1s -o» Z0); 23 = X+V—1y;, i=0,1,...,m;
=6 D =(Dos ... Dyp);
D; = 8/dz; = (8/0x;—V —18/0y;) /2;
B, = 0/, = (0/0x,+V —19/0y)2;
grad, F = (DyF, ...,D,F); F, =D;F;
E,=DF; N={0,1,2,.};

H({Q) the space of all holomorphic functions in £;
p=0(q) means p/q is bounded as ¢g-0;
p=0(q) means p/q tends to 0 as ¢g—0.

1. Cauchy—Kowalewsky type theorem
1.1. Denote by p,(z, {) the principal symbol of P(z, D) and presume
Assumption 1. It holds that
pm(za N) =0 in €, and (apm/aCt)(O’ N) =0

for every i, where N=(1,0, ..., 0).
Let A, ..., 4, be the eigen-values of the matrix

(1.1) M = ((3*pm/dL;0z)(0, N); i,j=1,..,n).
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Suppose Ay, ..., 4#0 and 4, =...=A1,=0. Besides, put

(1'2) ” =pm—1(0’ N)’

where p,,-1(z, ) denotes the homogeneous part of degree m—1, in the { vari-
able, of the symbol of P(z, D). We assume

Assumption 11. The following 1), ii) and iii) hold:
i) The convex hull of 2; (1=i=k) in the complex number plane does not con-
tain the origin.

if) —ud{Zi, 4B BiEN}.
iii) There is an integer & with O0=h=k such that

Pn@ O =0(Z_ 1L+ 30 (zl+ 3, 1z])

as (Zla ey Zk! Cls LERT) Eh)_’O‘

1.2. Let 7 be a complex parameter. The hyperplane z,=t is characteristic
because of Assumption I. We consider the Cauchy problem with m—1 data on
this hyperplane: Given f(z) and v(z) holomorphic in a neighborhood of (z,0),
obtain a holomorphic solution u(z) to

(1.3) P(z,D)u=f, u—v=0((z,—1)"Y).

Denote z=(zy, 2’, 2"), 2’ =(245 <0y 23), 2" =(Zp11s +-+» Zn), |2]=MAXy5;, |z} and
|z”| =max, ==, |z;] with h from Assumption II—iii). Then we have

Theorem 1. Suppose Assumptions I and II hold. Then there are three positive
constants 6>0, ry>0 and O<c<1 such that for every |t|<0, every O<r<r, and
every f(z), v(z) holomorphic in {|zo—t|<r?, |Z|<r, |2”|<r?), the characteristic
Cauchy problem (1.3) has a unique holomorphic solution in

{lzg—1l < (cr) |2 < er, [27) < (er)?}.

This is an improvement on theorem 7.1 in our previous paper [3]. We will
give the proof in § 3.

2, Analytic continuation theorem

2.1. From theorem 1 we have

Theorem 2. Suppose Assumptions I and IT hold. Then there exists a positive con-
stant y=y(P) depending only on the operator P(z, D), such that the following prop-
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erty holds: If there is a sequence @ —0,.q-»o, 1@ 0, such that
2.1 {z; 2o = 19, |2'| = @, [2"] = 1@} c @,
then (Q) is true.

Proof. We apply theorem 1 by taking t=t@ and r=|2:?|¥?/c, where c is
the constant appearing there. Put y=2/c?, then |yr¥|=r2 Hence, by the assump-
tion, u is holomorphic in some neighborhood of

Spr=1{2; 2o =19, || =1, |2/| = 1?}.
Set
v = 3" (Diw) (3D, £)(zp—@)fit with 2= (Z,2").

Then v is naturally holomorphic in
{z; 121D < 1 |2 < 1, |2 < P,

Therefore it follows from theorem 1 that there exists a unique holomorphic solu-
tion #i(z) to Pi#=0 in

Voo = {25 l2p—791 < () 2] < er, [27] < (cr)?}

satisfying #—v=0((zy—v?)"~"). By the uniqueness, Z=u in a neighborhood of
(@, 0). On the other hand, since (cr)*=|2t?|, the set ¥, contains z=0. This
completes the proof.

We say 0Q is in C*, k=1, in a neighborhood of 0, if there is a real-valued
C* function F(z) defined in some neighborhood ¥ of O such that F(0)=0,
grad, F(0)=N with N=(1,0, ..., 0) and QnV={z€ @'~V ; F(z)<0}. We then have

Corollary 1. Let assumptions I and II be fulfilled and assume 08 is in C’ina
neighborhood of 0. Then there exists a positive constant a=o(P) dependtng only on
P(z, D) such that the following property holds: If
2.2) {Zl o1 Fri2,(0) 2,2, —C-ReZ’l PR () z,zJ} <a,

lSl
then (Q) is true.

Proof. At the section z,=—# with >0,
F(—r,58) = F(—r, 0)+Z"i'=1 {E, (-1, 0)z;+F, (-r0) Z:}

+= 2 D= 1 A, (=7, 0) 22+ 2F, , (— r,0)z,Z;+F, 5 (—r, 0)Z;Z;}+0(|Z]2).

ZiZj Z;Zj

Note that F(—r, 0)=—2r+0(r), F (—r,00=0() for l=i=n, F ( r0)=
0,00+0() for 1=i,j=n and 50 on. Let y be the same constant as in theo-

Z‘Zj
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rem 2. Then we have

F(z)=_2r+2’:j =1 2121(0) J+R62“ =1 z'zf(o)z +o(r)

on S,={z; z=—r, |Z|=(yr)V2, |2"|=yr}.
On the other hand, it follows from (2.2) that

21, - z‘zj(O)z,z,+ReZ' . F,.(0)zz;<ayr, on S,.

Therefore, if we take a=2/p, then F<O on S, for sufficiently small , and so the
condition (2.1) in Theorem 2 is satisfied. This completes the proof.

Corollary 2. Suppose Assumptions I and 1I hold. Let U={z; |z;)|<r for every i}
with r=0, and assume Uc Q. If u is a holomorphic solution to Pu=0 on the
universal covering space of UN\{z,=0}, then u has a unique holomorphic exten-
sion to U.

Proof. We can apply corollary 1 by taking F=2x,. We sece u becomes holo-
morphicin U’={z; |z]<r’ for every i} with some O<r’<r. Since U'U{U\{z,=0}}
is simply connected, # is single-valued there. As well-known in the theory of several
complex variables (cf. [1], chapter II, theorem 1.5), u has a holomorphic extension
to U. This completes the proof.

‘Remark 1. 1) In theorem 2, we need not assume any smoothness of 92.
2) In corollary 1, the condition (2.2) is imposed only to the (z, ..., z,) direc-
tion; and in particular when h=0, (Q) is true without (2.2).

2.2. We give an example. Let 1=m=pn and
2.3) P =Dj—z{(D}+...+DE)+ byDy+ ...+ b,D,
with b;(z) holomorphic in a neighborhood of the origin in C***. Change the var-

iables by wy=z,+23/2, wy=z,, w;=z; for j=2 and denote w by z again. Then P
is transformed into

P = 22 Dy Dy+Di—23 37, Di+(bozy+by+ ) Do+ b Dy + 37 _, b;D;.
Its principal symbolis 5, =221CICO+C§—2§(C§+...+C,2,,); A=2;2;=0 forj=2, ..., m;

#=b(0)+1.. Assumptions I and II are clearly satisfied if b, (0)=—1, —3, -5, ....
In the present case, the condition (2.2) in corollary 1 is equal to

Q4 E 5, O +IE,,,,(0)] < o



294 Katsuju Igari

By the way, when b; are constants and b,=0, the equation Pu=0 has so-
Iutions

2.5) 1y = zPr1 DI (z,— 22)~Gr4+ D4,
Uy = z, z‘(,"l‘s)“(zo—- Z%)—(bﬁ-s)ﬂ-

In particular, when b,=~—1, —3, -5, ..., one of u,, u, is singular only on z,=0.
This means that theorem 2 and corollaries 1 and 2 are not valid without assump-
tion II—ii).

See [3] for other examples which satisfy assumptions I and II.

Remark 2. Let P be the operator in (2.3). J. Urabe [11] and C. Wagschal [12]
considered the non-characteristic Cauchy problem

(26) Pu=0, (Djw)0,8)=v(8, i=0,1

where v;(2) are singular on z;=0 (meromorphic data are considered in [11] for
more general operators, and so are ramified data in [12] when m=1). They proved
there exists a neighborhood U={z; |z)|<r for every i} with O<r<1 and a holo-
morphic solution u(z) to (2.6) on the universal covering space of U\(K;uK,),
where K,={z;=%zs} and K,={z;=—32z3}. By corollary 2 we can sce, if
b (0)=+1, £3, 15,..., the solution u(z) is nowhere holomorphic on K,uK,,
that is, the singularities of v;(£) surely propagate onto both K, and K.

3. Proof of Theorem 1

Modifying some points, we follow the proof of Theorem 7.1 in [3]. In parallel
with z=(z,, £)=(z,, 2/, "), we denote o=(a,, &)=(ay, o', «”) for multi-indices,
100. We write

(3.1) P(Z, D) = 2’;=0 Zlalﬁf am_j,a(z)D(’)"-"Da,

where D?=D%...D%, and [@]=a;+...+a,. We assume all the coefficients are
holomorphic in {z; |z{<ry}, ro>0, where |z|=maxys;=, |z

3.1. It follows from i) and ii) of assumption II that there is a positive constant
o0 such that

(3.2) |2 ABitu| =6(35_, Bi+1) forevery BeNm+1,
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3.2. It follows from assumption I and iii) of assumption II that

33 G0 =0,
o 0 (2:‘=1 Izi|2+2f=h+1 Izi|)s when o =0
m-1,8 0 (Z;;l IZil), when |o| =1

as (zy, ..., z)—0, for j=1, &=

3.3. By a suitable linear transform of the Z variable, we may suppose the
matrix M defined in (1.1) has the form

21 my; 0

}'k 0 N
{ K
where the unspecified components are all zero; besides we may suppose

3.5 lmyl = 8{~%, for 1=i<j=k

34 M

with &,=min {1/2, 5/8n}, where J is the constant appearing in (3.2). See [3], prop-
osition 4.1,

3.4. We define
(3.6) T=3% hzD+p, t(B)=3r LB+

Let 7 be a constant, v=va,(zo—1:)’z”/p! B!, and w=2Iw,g(Zo— YPzP/p! B!, where
=z .z and Bl=g,!...8,!. Then, if w=Tv, we have w,;=1(B)v,;. Because
of (3.2), we can define w=T"1v by w,y=uv,,/t(f). If vis holomorphic at (z,0),
so are Tv and T 1v.

3.5. We reduce the Cauchy problem (1.3) to a system of integro-differential
equations. Let T be as in (3.6). We define

(€N @y = T— 2 \451%m-1,a(2) D%,
aj =_2|&|§jam_j,a(Z)D&, j - 2, ciey m,
uy=Dju, j=0,1,...,m—1,
Dilu =f:°u(r, £ dt.

We suppose v=0 in the Cauchy problem (1.3). Then u=0((z,—7)""") as zy—t.
It follows from this that

3.8) u; =Dglu;yy, j=0,1,..,m=2.
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Put
(3.9) u= t(uo, seesy u,,,_l),

£f=%0,..0,T"1f),

0 D;t

0 D;t
A= ' : .' * .
0 Dt
T a, .. ... .Ta)

Then the Cauchy problem (1.3) with v=0 is reduced to the equation
(3.10) u = Aa+f.

Conversely, if u='(u,, ..., 4,_,) is a solution to (3.10) with f=*(0, ...,0, T7If),
then u=u, gives a solution to the Cauchy problem (1.3) with v=0.

3.6. We introduce a Banach space composed of holomorphic functions, in
which we consider the equation (3.10). Let 7¢C, 1=R,=R,=R; and 5s=0,1,2, ...
Denote by H®(R;, R,, Rs) or simply by H® the set of power series

v= Zv;ﬁ(zo~r)"zﬁ/p![?!
which satisfy
(3.11) sup v51/[18 16| +p+s1! RFIRPRE*S <o,
P

where we use the notation
(3.12) [k, n)! = k'(k+2)(k+4)...(k+2n).

Define the norm [[o]|° =07 &, &, by the left-hand side of (3.11). Then the space
H®(R,, R,, R;) is a Banach space.

Next, let O<o<1 and denote by H®(R,, Ry, Ry, ) or simply by H® the
set of all u="(uy, ..., #,,_;) With u, € H?(R;, Ry, R;), defining the norm

(3.13) [Hal]|® = [lll$), g, Roe = | _MAX 11 llTRy, R, R0

0=s=m—1

This space is a Banach space as well.

We consider the equation (3.10) in the space H®(R,, R, R, 6). If the oper-
ator norm of A4 is less than 1, we see, by the contraction principle, that the equation
(3.10) has one and only one solution. So, in what follows, we will try to estimate
the operator norm of 4.

3.7. The following 1)~12) hold:
) \T71D%0|{ = (RYSRHw| 2y, for || =2
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2) 77270 = (Ry/SRDI| Ry, for [y =2

3) IT-1z; D) = (1/8)|v]|, for i,j=1,...,h

4) |T-1zo| = (Ry/SRY|v]|$2y, for j=h+1, ..,k

5 Tl = (1/8) 0]

6) [D%l|{P = (R RE/RE|0)|{2)y, for every &

7 20l = (1/RYTRY Do), for every §

8) Dol = [0l 2,

9) Dl = |0l

10) (zo—2)ol$? = (1/Ry)|l0]| &

11) [Pl = (1/2sRg) o]y

12) Let a(2)=1 atz(zy—1)?2%/p! B!,
and suppose that with some positive constants 4, and R,,
(3.14) latsl = A RE+1PIp1 Bt for every p, B.
Then, if Ry<R,=R,=R,, it holds that

lavl® = 4,000, with 0 = JT;_; R/(R;—Ry).

We can prove these properties in an elementary way by consulting the proofs
of Propositions 5.1, 5.2 and 5.3 in [3]. So we leave it to the reader.

3.8. Now we estimate the operator norm of A. First, put
(3.15) m;:] :Djam_l’ei(f, 0), i,] - l, 2, ..y H,

where ¢; is the i-th unit multi-index. It follows from assumption II—iii) that ;=0
for k+1=j=n and for h+1=i=n, 1=j=h. Besides, by the same assumption,
we can write

(3.16) iy 1 = 2(1) (m(i)j_mx?j) ZjDium—1_21§i<j§k m?jZiDium—l
+ 3D 2;D; Zosizn (21— 7)) fijt i
+ 2P 2" Di(fy thy—1)+ Zoz1=n (21— 1) & thn—1
= {ay + a1+ Gyt Ay + G} iy 1

where 1y=1, 7,=0 for 1=/=n; X® denotes the sum for 1=, j=h andfor 1=i=n,
h4+1=j=k and so does X® for |y’|=2, h+1=i=n; taking #,>0 sufficiently small
and 4,, R, sufficiently large if necessary, we may suppose that the Taylor expansions
of fi, fiy and g about (z, 0)- all satisfy (3.14) for every |7|<{,.
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We estimate each term by making use of 1)~12). There is a positive constant
M, such that |m,—m|=M,|1| for every [1|=¢,, and so, by 3), 4) and 6), we have

1T~ A1t -5 1 = (M [11/0) [t all 21,
where M,=n?>M,. By (3.5), 3), 4) and 6), we have
1T a3t 1 = (1/4) -l
By 3), 4), 6), 7), 10) and 12), we have
1T a5t -1l 521 = (4OC/ORD) |ty -1l 551

Here and hereafter C; denotes a positive constant depending only on m and #. In
the same way, we have

N7 @y th-1ll 521 = (AoOC3 Ro/ORE) |4l G2

1T 25 thy 1]l 1 = (Ao0C/ORY) || 144l 0,
We thus obtain

M,t 1 A4,6CyR, A,0C }
- O = elp 1 A A o9C 4 @
AT T o)y = [P Aot So0E e

for every [t|<#, and every u, ,€H® (R;, R;, Ry).
3.9. By assumption I1—iii), we can write, for j=2,
(3.18) Aty = 5@ 2D (flpgu- )+ D 2 DA (fia1thm- 3)
+ ZODHfratt- )+ 2 ta1 <1816 D% -5
= {ap+a,+ a3+ ;) ;s

where Z® denotes the sum for |&|=/ with «’=0, §=(y’, 0) with |y’|=2 or y=¢;

with h+1=j=k; so does ™ for |&|=j with |o’|=1, 1=I=k; and Z® for |8]=j

with |o'|=2. Taking #, smaller and 4, and R, larger if necessary, we may suppose

the Taylor expansions of fia, fi4, f;s and g;, all satisfy (3.14) for every |1 <ty.
If R,=R?, then by 2), 4), 6) and 12) we have

1T 20,14 11 = (AoOCs REYSRE™D) 14,412
In the same way, we have
172814 121 = (40Cs REYORE™) It I,
l]T'laj3um_J|](’)1_(A09C7R2R’ SR |t ;15 5,
1T 2853t 1521 = (Ao0Cs REYORE™) |t e 5
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Hence for j=2 we obtain
(3.19) IT=a; 4y I 0=+

A,0(C; R3+CyRy) = N
= LT RyORY - 207

3.10. By 9), we have

(3.20) 1Dg u; P07 =0 ﬂuj+1|1§21°'—171-

Putting (3.17), (3.19) and (3.20) together, we can get an estimate of the oper-
ator A: Set
(3.21H) Ry, =R, Ry,=0R%, R;=¢gR.

If o, Ry, 0, and g, are constants satisfying
(322) 0<O'< 17 R6>R0, R6~1< @2 < 1 < Q3 003 = Q2,

then for every R>R| and |t|<f%, it holds that

(3.23) |ll4ul]|® = ¢||[u]||® for wcH®(R, g,R? g5 R?, 0),
_ My, 1, 4,0 ( Co, CitCopy )}
h e= Tt Ry oes—02 N
with e¢=max {6, s Tat7s Caat R§ + 003 — Q2

We can take 7, Ry, 05, 05 and ¢ so that +<e&<1. Hence, by the contraction
principle, we see that equation (3.10) has a unique solution in the space
H® (R, g, R?, 0, R?, 6) for every |t]<t, and every R=>Rj}.

3.11. Theorem 1 is proved as follows. Let f,, R;, 05, 03 and ¢ be such as
stated above. Suppose f(2) is holomorphic in {z; [zy—1|<7r?, |Z| <7, |z"]<r?} with
r>0. Taking ¢, so that O<c,<Vg,, put R=(c;r)1; then r~'<Vg, R<R<Vg; R.
We easily see that fEH™ (R, 0,R% 0;R?), and besides

f = t(09 sery 07 T—lf)eH(f)(R, QzRZ, 93R2a G').
If R=R, and [t|<t?,, then the equation (3.10) has a unique solution
u= ,(u(b veey m—l)EHﬁ)(R> Qng, 93R2’ 6)-

As noted in the paragraph 3.5, u=u, gives a solution to the Cauchy problem (1.3)
with v=0. From the definition, the Taylor expansion w=2Zu,(z— 7)? 2 [pI P!
satisfies

gl = lul§? [IB1, 1871+ p) R} (0, R (o5 RE)P

= [ul§ (p+1BD! (1er )1 (204/ci )71 (205/c5 7).
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Hence u is holomorphic in

[z] 4 ... +1z 20,114+ ... F12,]) | 204127l
cLr + it ar
1 1 1

et

Take ¢=0 so that (he/c))+(2¢,(n—h) ¢*/c?)+(20s¢%cf) =1. Then uis holomorphic in
{z; lzg—1l =< (er) 2’| < cr, |2"] < (cr)?}

This completes the proof of Theorem 1.

References

1. GRAUERT, H. and Fri1szcHE, K., Several complex variables, Springer, Berlin 1976.

2. Igary, K., Les équations aux dérivées partielles ayant des surfaces caractéristiques du type de
Fuchs, Comm. Part. Diff. Eqns., 10 (1985), 1411—1425.

3. Icary K., The characteristic Cauchy problem at a point where the multiplicity varies, to
appear in Japan. J. Maih., 16 (1990).

4. Qucwy, S., Bxistence of singular solutions and null solutions for linear partial differential
operators, J. Fac. Sci. Univ. Tokyo, Sect. 1A, 32 (1985), 457—498.

5. PALLU DE LA Barriirg, Existence et prolongement des solutions holomorphes des équations
aux dérivées partielles, J. Math. pures et appl., 55 (1976), 21—46.

6. PerssoN, J., Local analytic continuation of holomorphic solutions of partial differential equa-
tions, Ann. Mat. Pura Appl. (4), 112 (1977), 193—204.

7. PerssoN, J., On the analytic continuation of holomorphic solutions of partial differential
equations, Arkiv for Maz., 19 (1981), 177—191.

8. PerssoN, J., Singular holomorphic solutions of linear partial differential equations with holo-
morphic coefficients and non-analytic solutions of equations with analytic coefficients,
Astérisque 89—90 (1981), 223—247.

9. Tsuno, Y., On the prolongation of local holomorphic solutions of partial differential equa-
tions, J. Math. Soc. Japan, 26 (1974), 523—548.

10. Tsuno, Y., Localization of differential operators and holomorphic continuation of solutions,
Hiroshima Mazih. J., 10 (1980), 539—551.

11. Urasg, J., Hamada’s theorem for a certain type of operators with double characteristics,
J. Math. Kyoto Univ., 23 (1983), 301—339.

12. WaascHAL, C., Probléme de Cauchy ramifié pour une classe d’opérateurs a caractéristiques
tangentes (1), J. Math. pures et appl., 67 (1988), 1—21.

13. ZerNER, M., Domaines d’holomorphie des fonctions vérifiant une équation aux dérivées par-
tielles, C. R. Acad. Sci. Paris, 272 (1971), 1646—1648,

Received August 7, 1989 K. Igari
Department of Applied Mathematics
Ehime University,
Matsuyama, Ehime 790
Japan



