A multi-dimensional renewal theorem
for finite Markov chains

Thomas Héglund

1. Introduction and results

Let U, L and F be functions from Z¢ into the set of real square matrices of
finite dimension N, and let in addition L(¢) be positive for each . Define the con-
volution LxU by the formula

(1-1) L*U(t) = 2t1+t2=t L(tl)U(tz)a
and put
(1.2) R=3" L™,

provided the sum converges. Here L** =43, where §(0)=1 (the identity matrix)
and 6(¢)=0 for ¢+0, and L™=LxL"Y* for nz=l.

A solution U of the renewal equation U—L«U=F is then given by U=RxF,
provided the latter expression converges. The object of the present paper is to study
the asymiptotic behaviour of R+ F(t), as |[¢[—> <.

The result can be applied to first passage problems for sums of Markov dependent
random variables. See Héglund 1989.

Instead of a function L defined on Z* we could equally well have considered a
matrix valued measure on R?, but our restriction will save us some labour because it
makes smoothing unnecessary.

The approximation will be expressed in terms of quantities related to the ma-
trices A(6), 6¢©, where

(1.3) A(B) = 3, L(D)

and where @ denotes the interior of the set of ¢R? for which this sum converges.
Here 0-¢ stands for the inner product of 8 and . We shall assume that the func-
tion L is irreducible, by which we mean that for every i and jin {1, ..., N} there
is a positive integer n and a t€ Z* such that L (£)=0. We shall assume that @0
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and then irreducibility is equivalent to that the matrix A(6) is irreducible for some
(and hence for all) 9¢@.

The Laplace transform A(f) is thus a positive and irreducible matrix whose
coefficients are analytic in @, and hence A(6) has a maximal positive eigenvalue
A(6) corresponding to strictly positive left and right eigenvectors e*(6)={e} ()}
and e(@)={e;(6)}. This eigenvalue is simple and analytic in @, and ¢/ (0), and
€;(0) can be chosen to be analytic in @. Let E(6)=(E;(f)) stand for the eigen-
projection corresponding to A(0), where

(1.4) E;(6) = ————:(g;) ee’;((%))
and put
0? ,
(1.5) 2(8) = grad 2(8), A"(6) = (W;,(e)], 4 ={6c@; i) =1}.
Let o
(1.6) S =U_, {t: Lij (=0},

let G;; denote the smallest subgroup of Z? that contains
(1.7) Sij_Sij = {tl’—tg; tIES,-J-, tZESij}
and define the group G by G=\;; G;.

The role played by G is illustrated by the following lemmas.
Note that §;;#0 for all / and j if and only if L is irreducible.

Lemma 1.1. Assume that L is irreducible. Choose for each jc{l,...,N} a
v(/)€S,yj. Then S;Cv(i)—v(j)+G. G is minimal in the sense that if w(l), ..., w(N)
are real numbers and H a group and S;;Cw(i)—w())+H for some i, j, then HDG.

Proof. The inequality
Ly* ()L (1) = L2 (4 + 1),

implies Sy +5;;C S;;. Therefore Gy+Gy;C Gy; and hence also Gy < Gy;,-Gy; < Gy
for all i, k-and j. This cannot be true unless G;;=G,; for all { and j. Let ¢;; be an
element in the coset of G that contains S;;. Then S, +S;; is contained in the coset
Cxtc;+G, -and hence cu+o;=¢; mod G. Define v(i)=c;, then cu=v(i)—
v(k) mod G.

The group H contains the set (1.7) and hence also G. |}

Lemma 1.2. Assume that ©=0. The matrix 17(0) is strictly positive definite
(for all, or for some 8) if and only if dim G=d.

Proof. Theorem 1.2 of Keilson and Wishart 1964 says that if d=1 (and 0€®),
then A”(0)/A(0)—(4'(0)/A(0))*=0 with equality if and only if there is a real « and
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a real sequence (1), @(2), ... such that L;;()>0 only when t=a+w(@)—aw(})).
Note that A”(0)=0 if and only if A”(0)/A(0)—(4(0)/A(0))>*=0 and A’(0)=0, that
is L;;(t)>0 only when t=w(l)—ao()).

Fix 0c®, 0#y¢cR? and let & be real and so small that 8+¢&n€®. Apply
the above result to the matrix A(&)=A(6+¢En). The result is that 7. A(@)n=0
if and only if €**L;(#)>0 only when 7-t=w(i)—w(j). Choose a sequence
w(1), w(2), ... in R? such that w(i)=n-w(i). Then n.- A(@)n=0 if and only if
L;(1)=0 only when #.(t—w(i)+w(;))=0. It follows from Lemma 1.1 that this
is equivalent to G beeing orthogonal to . |

Lemma 1.3. Assume that dim G=d. Either X' (0)#0 for all 6¢A, or else A
is a one-point set.

The proof is the same as the proof of Lemma 1.1 in Hoglund 1988.
We shall first consider the case when A(6)%0 on 4. In this case we are able
to determine the asymptotic behaviour as ¢ tends to infinity in the cone

(1.8) {z4’(0); © =0, 6¢4},
provided F is sufficiently regular.

Lemma 1.4. Assume that dim G=d and that %' (6)=0 on A. Then the func-
tion A50->1(0)/|X(0)| is one to one.

The proof is the same as the proof of Lemma 1.3 in Hoglund 1988.
We shall write §(¢) for the solution 8=08(t)c4 of the equation A’()/}1(6)|=
t/|t| when t belongs to the cone (1.8).

Theorem 1.5. Assume that L is irreducible, that G=12° and '(0)#0 on A.
Let Oy denote the interior of the.set of @ for which.

(1.9) s €S| F ()] <o

If |t|—>o= in the cone (1.8) in such a way that (1)@, then

(1.10) R*F(2) = e (2n|i|/|X (O))=@=V2C(0)~V2(E(H) 3 e**F(5)+0(1)).

Here 0=0(t), and C(@)=1(0) - 1(0)~21'(0) det A”(6). The convergence is uniform
in t/|t| as 8(t) stays within compact subsets of ANOy.

If we write E(0) to the right of F(s) in formula (1.10), we get the corresponding
approximation for V(¢)=F=R(t), which is a solution of V—VxL=F.

The moment conditions on F and L are not optimal, but chosen to facilitate
the proof.

An alternative to (1.10) is the approximation

(1.11) R(1) = e~0(2aT)~G=D13C (9)~/2(e~ WD+ HT E(0) +0(1))
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as T~- o, which holds uniformly in 0 as 6 stays within compact subsets of 4. Here

t-A7(8)~1X ()
IHOBXORHOR

112) T= -3t = (t=TX(0)- 17 (0)(t—TX (6)).
The two approximations are roughly equivalent.
Note that the relative error in the approximation (1.11) equals

(1.13) o(exp (5 (t—TX(8))- 2" (6)™*(t— T (6))))

and that the expression between the main brackets is minimized and equals 1 if 8
is such that A’(6) and ¢ have the same direction. This is why we let 0=(7(t) in the
theorem.

The condition G=2Z* is just a normalization. To see this, let by, ..., by,
d’=d, be a basis for G, and define for (3, ..., };)€Z%

(1.14) Ly = L;(0()~v(j)+ 3%_ 1.b,).

Then G=27, and R;;(t)=R;;(i) when t=v(i)—v(j)+ 3¢, bb, and R;(#)=0
when ¢ v()—v(j)+G.

Furthermore if B is the dXd’ matrix whose columns are b, ..., b;, then
BT B is non-singular and A,;(f)=¢""® A,;(6)e~*", where §=B"6. Therefore
X(@)=BX'(®), 1(©)=BI"@)B", and E@)=D(®)1E@®)D(6), where D(0) is the
diagonal matrix with D;;(§)=¢’"®. The general case follows from these identities.

The next theorem is the result that corresponds to Theorem 1.5 when A°(8)=0.

Theorem 1.6. Assume that G=17°, that L is irreducible, and 3/(0)=0. If

(1.15) S Isl42e0 5| F(s)]| <eo
then
(1.16) Rx*F(f) = e=*(t- 17 (6)~ 1)~ -2 K(6)(E() e SF(s)+o(1))

as |t|= —~<o, provided d=3. Here K(6)=(det \"(6))~"2n~V2I(dj2)/(d—2).

The counterpart to these theorems for independent random variables were
given by Ney and Spitzer 1966 (Thm. 1.5), and by Spitzer 1964 (Thm. 1.6).

Concerning one-dimensional markovian renewal theory we refer to Runnen-
burg 1960, Orey 1961, Pyke 1961, Cinlar 1969, Jacod 1971, losifescu 1972, and
Kesten 1974. Further one-dimensional renewal results can be found in Berbee 1979
(process with stationary increments) and Janson 1983 (m-dependent variables).
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2. Proofs

We shall first show that the theorems hold under the additional assumptions
that A(6) is aperiodic and F=¢ (theorems 2.1 and 2.2). In proposition 2.7 we
remove the assumption F=§, and in proposition 2.8 the assumption that A(f) is
aperiodic.

Theorem 2.1. Assume that G=2° that A(0) is irreducible and aperiodic, and
that 2’ (0)#0 on A. Then

2.1) sup (e IRMN) <
and
(2_2) R(t) — e—e.:(znT)—(d—1)/2C(0)—1/2(e—(1/2)t.2t/T+0(T—1/2))

as T-, 0¢d. The error in (2.2) is uniformly small and (2.1) is uniformly bounded
as 0 stays within compact subsets of A. Here T and X are as in (1.12).

Theorem 2.2, Assume that G=1Z% d=3, that L is irreducible and aperiadic,
and that 2/(0)=0, 6¢4. Then

2.3) sup (e IRO|) <=

and

24 R(t) =% (¢- 27(0)"11)~U-I2K(0)(E(6)+O(j1I™Y)),
as |t| > oo.

Proof. Define Ly(t)=e°*L(f) and Ry(t)=e’*R(¢) then

@5) R(t) = S L= [ B ds
where
2.6) B() = 35 et S I3 )

The Fourier transform of P equals

.7 $(1) = exp (sA(0+in)—s)= T e* %A(O—i—in)".

We shall approximate A(6+in) by A(0+in)E@+in), E(0+in) by E(f), and
A(@+in) by 1+in-X(0)—%n-1"(0)n. (Recall that A(f)=1 when 6€4.) Thus

@8) B~ exp(shO-+in—s)E@+in) ~ expisn- ¥ @)~ 311 @n) EO).

The expression to the right is the Fourier transform of the function R?>7~Q5(#),
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where
exp (— 3 (t—s¥(8)) - " (0) (¢~ s (®))s)

@9 &GO =nOEO. &0 = TG

We shall therefore approximate R,(z) by [ O3(t)ds. This approximation is made
precise in proposition 2.5. Proposition 2.3 describes the asymptotic behaviour
of Q5(2).

Given these propositions, theorems 2.1 and 2.2 follow if we show that
Ry(?) is bounded, but this follows from, for example, the local central limit theorem
for Ly*.

Proposition 2.3. If A(6)=0- on A, then

(2.10) fo"“ 5(1) ds = (2aT)~“-D2C (6) =12 (e~ WA T L O(T 1))

as T—~oo, 0€A. The error is uniformly small as 0 stays within compact subsets of A.
If 2(0)=0, then

(2.11) fo‘” g5(t) ds = (- 17(8)~11)=9-D12K(6)
Jor all 10,

The function
2.12) G,(x) =fw .s~“"<3)(p[—i(s+l/s~2)]f,i x>0
* ° 12 s’
will appear in the proof.
Lemma 2.4. G,(x)=V2x]x (14+0(1/x)), as x-co.

Proof of Lemma 2.4. Define' G} (x) as G,(x) but with the domain of integra-
tion 1<s<oo instead of O<s<o. Then G,(x)=G}(x)+G7,(x), and

(2.13) Gr(x) = [ e H,(du).

Here

: »_,dS‘_ tw) _, ds

@10 = [ [0,

where

213 Q= {S >1; —;*[S +‘%,—2) <u} =(Ltw), (W= 1+u+y2utu.
Therefore

(2.16) Hw) = 1(6)~* Qu+ud) V2 = (Qu)~2— o+ O(u?),



A multi-dimensional renewal thieorem for finite Markov chains 279

as #—0, and hence
2.17) Gr(x)=T (.}) (2x)~V2—a/x +O(x~%?),
as Xx— oo, l

d
Proof of Proposition 2.3. Put m=(6)X(6), 1=4"(6)7*1, a=>~1, ‘and
x=(2m)~%/*(det 17(0))~"/2. Then

= Y (leE ., .)ds
(2.18) j0 qa(t)ds—xfo 5 exp[—i[ +mlts — 2t m | —

s

{%(lml/lrl)’ exp [—|m| it +m-7]G,(Im| |z} when m =0, 7#0
%2 (2/|1719°T (&) when m=0, 70, a=0.
. 7|2 . s|m]
Here we made the substitutions 5 s respectively —”———>s.
s T
The proposition now follows from the lemma and the fact that if we define 7
by t=Tm+7%, then m.7=0 and

xl|2
(2.19) |2 = THmP+ 3% |mlltl—m-t Izl

VTP mE +T
Proposition 2.5. If 1'(0)=0 on A, then

=12t g

(220) R~ [, Q0 as]| = 0T~

as T—+oo, 0¢A. The bound is uniform as 0 stays within.compact subsets of A.
If X(0)=0, 6c4, then

2.21) [Re®— [ Q3(1) ds||. = O (111 =+
as |t|—e<.
The essential part of the proof is the following estimate.

Lemma 2.6. For any integer 0=k=d+1 and any compact KCA there is a
constant C such that

(2.22) IPF (D) — Q3D = Cs~@+D2)s=2/2(1—s1’ ()|~
for all =0, tcZ? and 0cK.

Proof of Proposition 2.5. Tt follows from the lemma that the expression on the
left in (2.20) and (2.21) is dominated by

(2.23) &C [T (s+it—sK @)I)+17 ds
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where ¢, is a constant that depends only on 4. An elementary calculation now gives
the proposition. |}

Proof of Lemma 2.6. We shall thus estimate the difference

(2.24) f(_md e By dn— [, e 05 () din.
Recall that

(225) Bn) = exp (sA@+im—s),  O5(n) = exp (isn - £ (@512 O)n) E@).

Let a(2) denote the spectrum of A(z). Then o(6+in) is contained in the closed
unit disc, and it follows from Lemma 2.2 in Hoglund 1974 that 1¢a(0+in) if
and only if G {t; € '=1}, ie. n=0mod 22Z°.

Given the compact Kc 4 choose ¢=>0, §>0 and ¢>0 such that

(i) A(@+in) and E(8+in) are analytic in a neighbourhood of the set K; =
{0+in; 6¢K, In| = &}

(ii) log A(6+in) has no branching point for 6-+in<K;.
(iii) [og A@+im)—m-X(O)+5n-A"(O)n| < 5 n-A"(O)n for 0+inekK;.

(iv) Rew = 1-3¢ for weo(@+in\{A(0+in)} and Rei(0+in) = 1—¢ when
0+inek;.

(v) Rew < 1-2¢ for weo(@+iy) when [g] >d, O¢K.

That such a choice is possible is seen in the same way as in the proof of theo-
rem 3.1 in Hoglund 1974,
Put

K (n) = exp.[s(A(@-+in)—1—in- 2(0))]
(2.26) Ly(n) = exp [s(2(0+in)—1—in- X(0))] EO + in)

M) = exp[~2n- @] B

and y=it—sA’(f). Then by repeated partial integrations

. Y _,
(2.27) (zy)“fml e~"I M, (n) dn = fm M) (_ W] e~ dp
= [ o M) i
R¢ on*

. . of
and since the functions x,(n)=e~"""” - K.(m), B¢ N¢, are functions of # mod.2xZ*
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(ie. xp(n)=u4(n:) when n,—n,€2aZ%) we also have

eI dn = [ e K

(—=,=]¢

(2.28) (iyy [

(—m,m}¢

Here a=(y,, ..., ;) and
& o
on* e T o
Therefore the norm of (iy)*(P5(r)—Q;5(t)) is dominated by I +7I,+I;+1, where

X

.0
L= ||f|,,|>5_(_,,,,,]d ey o Ks(ﬂ)dﬂ“

3«
on*

(2.29) L=|f, e 5 (Kam)—Ly(n) dn

By = [ f s o (L) = M)

L, 0
I = “fm»s e~ o M(m) d"“ ’

We are going to show that I;=0(s~“+~1=D/%) for |a|=d+1.

Put z=0+in, let I'=I'(z) be a contour surrounding ¢(z), and let y(z) be a
contour that surrounds A(z) but no other point in ¢(z) when |g/=4. Then (Kato
1966, p. 39 and p. 44)

1

(2.30) A2 = 5— f o w(w—A(2)) L dw
for all z, and '
(2.31) A(2)E(2) = 7% f W —A@) aw

when |n|=0. Therefore
1

(2.32) K =+

(w=1—in-2'(0)) (4 __ ~1gy
f € 2O (w — A(2)) " dw

0
and hence 3_11“ K.(n)= f R Hdw, where

1 0* .
_ _pSw=1) ¥ (,—in-A(O0)s [y, . -
(2.33) H > e’ pre (e n (w—A(0+1n)) 1).

aa
In the same way we obtain FLS )=/, Haw.
n
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Let Q(r) denote the contour that sorrounds the rectangle {weC; —2=
Rew=r, —2=Imw=2}. H is a meromorphic function the poles of which coin-
cides with the spectrum of A(f+in). Therefore

(234) | Haw|| = || [, Hdw| = Const.e=(1+s")
for all |n|=é, n€(—=, =], and hence
(2.35) I, = Const. e~*(1 +s*l) = Const. s7#/2
for all O=h=d+1.
Similarly
@30 1, v f, ] = [ oy Ho]

for |yl=6 and hence I,=Const.s~"? for all O=h=d+1.

In order to estimate I, assume that s=1, and make the substitution &=ns"?.
Then

QI =R e g |
where
(2.38) J =exp [-%5 ) 5] (exp (s (Es~ V) E(B+ its™ %) — E(9))

and ¢ (n)=log A(@+in)—1—in. /1'(0)+§ n-4”(0)n. The functions

B
2.39) exp (50 (G57) gy explsy (Gs™), B o,
are polynomials in the variables
(240) s Y (Es7) = Sy G5, =,

and the latter expression is dominated by Const. (14|&[3)s~Y2 for all y. Further-
more any derivative of E(6+i&s~%?) is bounded for [¢]<dsV2, and |sy(Es~13)|<
-;— E-27(0)¢ for [¢|<ds¥2. The norm of I is therefore dominated by

(2.41)  sU-92 Const. j s™2p(&) exp (—5 & A7(0)¢) dE = O(stil=4-1r2)

where p is a polynomial.

It should be clear that I,=O(s~*) for any h=0.

When s<1 not only the difference but each term on the left in (2.22) is small.
This is obviously true for Oy, and

oa 5" . s"
42) FEO=2., e’s;'— ZDnuzne LoF(W)eT e = e 3 6_37'_ A@+n)"
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for any ncR% But | A(6+n)"||=Const. 1(0+n)" and hence the norm of the sum
above is dominated by

(2.43) Const. exp [s(2(8+m)—1--1- X(8))—n - (1—sX(0))]-

The choice n=5(¢r—s2(9))/|(t—s4'())| shows that this expression is dominated
by Const. exp [ —6|(r—sA(0))|] for & sufficiently small.

We shall now remove the condition that F=§ in theorems 2.1 and 2.2.

Proposition 2.7. Theorems 2.1 and 2.2 imply that theorems 1.5 and 1.6 hold under
the extra assumption that A(0) is aperiodic.

Proof of proposition 2.7. We shall consider the case when A(6)=0 on 4. The
other is similar but easier and will be omitted.
Define for u€RY,

u- 1" (0)"11(6)
©)-2O)X@O)°

Then T(uw)=T(4), and u-Zu=u.A"(0)"4 Let
Sy={s; 181 = 3101}, Se={s; |8 >3 1iI},
and write Fy(¢)=e"*F(t), and
(2.45) Ro# Fy(1) = s Ry(1—9)Fy(s) = Zecs, + Zsesa-
Assume that ¢ and A°(f) have the same direction and that s€S;. Put
x = (F =8 20 F —))QT— ),

=T (O), u=u—a.

(2.44) T(u) = =

then
=0, T() =IO T@¢—s) =T8I,

and O=x=Const. |§|?/T(t). Here and below Const. depends on the compact
KcAn®g.
The inequality 0=1—e~*=x and Theorem 2.1 now yield

|2 s,~@rld/|4 (B))~“~2C(0)V2E®©) Zs, F))|
(246) = Const. || 7D 37 (81/|t]+ |32/t + |1 =/2) | By ()
= Const. |1]=%2 37 (1+]s]?) |E ()]l

In order to show that this expression equals o(|t]~“~"/%) uniformly on the
compact KCAn@, it suffices to show that the last sum is uniformly bounded on K.
It is a consequence of Jensen’s inequality, exp (3;a;0;-¢)=3; «; exp (6;- 1), %;=0,
noy=1, that @ is a convex set. Choose a compact, convex simplex KD K in
Of. Let 6,,...,0, be the corners of Ky, and let 6= a;6;. Then by Jensen’s
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inequality
(247) Zs(I+IsPHFON = Zia; 2 1+ Isl?) [ Fo (9]
= max 3, (1+1s[9) |1, ()] <<,

from which the uniformity follows.
Another consequence of theorem 2.1 is that Ry(¢) is bounded. Therefore

(2.48) | Zs.l| = Const. Zs, I ()]
= Const. (If)~=01% S, [s[4-DRIFy ()] = o(ldl=-213).
The uniformity follows in the same way as above. [}

Proposition 2.8. If theorems 1.5 and 1.6 hold under the extra assumption that
A(0) is aperiodic, then they hold as they stand.

Proof of proposition 2.8. Let p be the period. Then there are matrices
L,(z),...,L,(¢t) and a permutation matrix P such that

0 Li(m 0 . 0 |
0 Ly(» .
(2.49) L@ =~r| . . .. 0 P
0 . . 0 L,.,(®
L, 0 .. 0

Here the zeros on the diagonal are square matrices. Assume without loss of gen-
erality that P is the identity, and put L=L7*, Then

LMmo. o
(2.50) L = 0 O

0 .0L,®
where

z‘—1 = LI*Lz*"'*LP—l*Lp
(2.51) Ly = LyxLy¥ ... % L% L,
L,=L,%Li%.. %L, y%xL,_,.

Here the matrices 4,(6) = >, ¢’'L,(¢) areirreducible and aperiodic square matrices for
1=k=p. Also R¥ F=R«F, where R=23 L™ and F=(/+L+...+L?Y*)xF.

In order to apply the theorems to each one of the p parts R, ()=, Ly (1),
1=k=p, of R, we must check that the groups G, equal G, defined in Section 1
(see 1.7). Here G, is defined as G but with L replaced by L,.

Lemma 2.9. The groups G, satisfy G,=G for k=1, ...,p.
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Proof. Let X; denote the set of indices corresponding to L, and put for i, j€ X;,
St=Up, {t; L (1)>0). Then §%=S),;, and hence Gi=G,;=G. |

We must also relate the maximal positive eigenvalue of A(6) to 1(6).

Lemma 2.10. The maximal positive eigenvalue of A, (0) equals 1(6)°. Write
¥(6) and () for the corresponding left respectively right eigenvectors. Then there
are constants c¢*, and ¢ such that e*(@)=c*(I'(9), ..., P(®)), and e(®) = c(F*(H), ...

. fl’(e)),

Proof. We shall omitt the 0 when convienient, and write 1, for the maximal
positive eigenvalue of A,. Let A4,= 3, "' L, (), and write ¢*(0)=(,, ..., 1), e(®)=
(73, ..., r,) where the subvectors J, and r, have the same dimension as [,.

The spectrum of A, is contained in the spectrum of A” and hence A4, =47 for

each 1=k=p.
We have
(2.52) LAy = Ay, Lbdy =2, ..., 1,4, = AL,
and hence
(2.53) La, =L, k=1,...p.

But I,#0 and hence A7 is an eigenvalue of A, for each k=1, ...,p, and hence
A=/? for each 1=k=p. The remainder of the lemma follows from the fact that
e* and e are unique up to multiplicative constants. f

Another consequence of (2.52) is that if 0#c4, then

(2.54) E(l+A+...+AP"Y)y = pE.
Here
E®HOoO. 0
(2.55) Ep=| ° o b
0 .0 EQ)

where E, is the eigenprojection of /A, corresponding to the cigenvalue A?. Therefore

(2.56) E(0) 3 €% F(s) = pE(6) >, °F(s)
for 6€4.
Proposition 2.8 therefore follows from the following lemma.

Lemma 2.11. If 1(6)#0 on A, then

2.57) A(6) = pX(0), and C(0) = p*+*C(0).
Jor 0eA.
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If X(6)=0, and 6¢4, then
(2.58) @)1 =2 (0)"Yp, and det}(0) = p* det A7(6).

Proof. The second statement is obvious.
Consider the first. After an orthogonal transformation we may assume that
r(0)=(@,o0, ...,0), Y(0)=(a,0, ...,0). Write

co-(, 5. vo-(23)

Here D and D are d—1 by d—1 matrices.
We have 1(6)=pA(0), and 17(0)=p(p—1)A'(6)2+pi"(6) when 6¢cd4, and
hence a=pa, D=pD. The upper left corner of 27(8)~! equals

det D
det 17(9) ’
and hence
C=a*det D = p**1a® detD. 1
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