
Hankel operators between weighted Bergman 
spaces in the ball 

Robert Wallst~n 

Summary and introduction 

Let rn denote the Lebesgue measure on the unit ball B c  C" and let, for - 1  < 

e < ~ ,  #~ be the measure c~(1 -Izl~)~'drn(z), where c~ is chosen such that .u~(B)= 1, 
i.e. c~ = (F(n +~ +2))/n"F(~ + 1). 

The closed subspace of  all holomorphic functions in L2(dp,) is denoted A" and 
called a weighted Bergman space. Since A" is closed in L~(dkt~) there is a self-adjoint 
projection P~ of  L2(d~,) onto A ", which is given by a kernel: 

f P~f(z) = (1--(z, w)) "+~+1 f(w)du,(w). 

The big and small Hankel operators can now be defined: 

Hi(g) = (I-V,)( fg) ,  
~7 s(g) = v , ( y g ) .  

Here, P, denotes the projection onto the subspace . ~ ' c  L2(d/~,) of  anti-holomorphic 
functions. Hy and /7r  will be studied as operators from A a into L2(dp,) and the 
s y m b o l f i s  assumed to be holomorphic. 

For an operator T between Hilbert spaces the singular numbers are defined by 
s.(T)=inf{IrT-gll}; rank {(K)=<n}, n=>0. We denote by S v (Schatten--von Neu- 
mann class) the ideal of  operators for which {s.(T)},~oE 1 p, 0 < p < ~ .  In accordance 
with this definition the class of  bounded operators is denoted by So.. In our case, 
operators from A a into L2(dp,), the corresponding Schatten--von Neumann class 
is written S~ ". 

Finally, for 0<p<=~ and - ~  < s < ~ ,  we define the Besov space of  holo- 
morphic functions by 

B~ = {f: (1 -IzI2)"-s~mf(z)ELP((1 -IzlZ) -a din)}, 
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where m>s is a non-negative integer and , ~ = ~ '  zjO/Oz~. Generalizing Janson's 
results [J] for the disk we have 

Theorem 1. Let ~ , f l > - l ,  n_->2 and 0<p<=o o. 
(i) I f  2n /p<l+~- f l ,  then HICSap" iff  f~B "/p+(#-~)/~ J J  J p * 

(ii) I f  2n/p>-l+~-fl ,  except in the case p=oo and f l = ~ + l ,  then HIES#p~ 
only i f  H s =0.  

Let b~ be the closure of the polynomials in B'=. 

Theorem 2. Let ~, /3 > - 1  and n >- 2. 
O) I f  f l < ~ + l ,  then Hy: Aa-~L2(d#~) is compact iff fEb~ -~)/~. 

(ii) If/3_->~+1, then HI: Aa~L2(dIQ is compact only i f  H f = 0 .  

For the small operators we have 

Theorem3. Let ~,/3>--1 and O<p -~oo. Then I~f~ S~ r iff fE B~ p+(#-~)/2. 

Theorem 4. Let ~,/3>--1.  Then -~I: A#-~A" is compact iff fCb~ -~)/~. 

The last two theorems are well-known (cf. Sec. 3) and included here because 
they are used in the proofs of Theorems 1 and 2. 

1. Besov spaces in the ball 

The purpose of this section is to state the facts about Besov spaces that we 
will use. For details and proofs, see e.g. [BB], [CR], [P] and [T]. 

To begin with, our definition of B~ is independent of the integer m. Indeed, 
we get an equivalent norm using the differential operators Dk=01kl/0~'0~'... 0~", 
k a multi-index: 

(1.1) B$ = {f: (1--]zl2)'-~Dkf(z)~ZP((1-Izl2)-ldm), Ikl <-- m}. 

It is immediate that Ru, u~R, defined by ~zk=[k["z  k, k a multi-index, and D ~ 
define continuous mapping between Besov spaces 

~': B ~  B~-U, 

Dk: B~ -," B~ -Ikl, 

and that the Besov spaces are decreasing in s 

B~,~ c B ~, => = p ,  8 1  $ 2  �9 

The property of Besov spaces that will be especially useful to us is decomposi- 
tion into "atoms": 
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Lemma 0. Let 0<p<=l ,  - -~o<s<oo and suppose that N>n/p-s .  
exists a sequence { ~ } c B  such that every fEB~ can be written 

with 
f(z) = Z ,  2 ,0  -Ir 1 -(~,  ~,))_N 

Z ,  l~,i ~ ~= Clif]i~g. 

Then there 

Proof. For s < 0  this is Theorem2 in [CR]. If  0-<_s<l, then T: B ~ B  ~-~, p --p 

defined by T = I d + ( N - 1 ) - ~ I ,  is continuous and injective. T is also surjec- 
tire, since 

z~, 2,(1 -lr  (1 - (z, r 

is the image under T of  

Z ,  2,(1 --Ir 0 - (~, r 

By the Open Mapping Theorem, T is an isomorphism. The lemma follows b y  in- 
duction. [] 

The converse of  the Lemma is also true, because the B~-norm to the power p 
is a metric. 

2. The cut-off 

Proposition 1. Let a, f l > - - l ,  O<p<oo,  n=>2 and l e t f  be a homogeneous poly- 
nomial of  degree 1. Then 

(i) ~ scsg  � 9  2 n / p < l + ~ - ~ .  
(ii) H~ES~ iff O=<l+a - f l .  

(iii) Hf: AO~L*(dlz~) is compact iff O < l + a - f l .  

Proof. Since the properties in question are invariant under a linear change of  
variables and HyL=LHL_,s, where L is composition with such a change of  vari- 
ables, we may assume that f (z)=zl.  Let k=(kl . . . . .  k,) be a multi-index and let 
7k,. denote the norm of  z* in A *. Then, for kl_-->l, 

and 

IIH, I(~)][~--II~:,_z',ll.~-II~(~.m~)tl .~ = ~ Y,%, 
7(k,+l,k2 ..... kn),~ 

if ki = 0 

if kl -~ 1. 
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k!F(n+o~+ 1) 
Further y~ -- k,~, F(Jkl+n+~+l)  ' and a calculation yields 

g k 

z k 
It is easily seen that {H~(zk)} are orthogonal, and since - -  is an ON-basis in 

Yk, p 

1 ( A a, it follows that [ ~1~----~1][~ 

proves (ii) and (iii). 
As to (i) we have 

kl 
�9 J ( I k l+ l )  p/~<#-~-I) [ lH~[ i~g-~Zk 1 I k l + n + ~  

1)~_2( m + l  ' w / ~  X z~*~=o(l+ l) "/z~p-'-l) Z,,=ot (m + 1 , ~ )  .-. Z 2 o ( l  + . [] 

Now the second parts o f  Theorems 1 and 2 follow as in [J]. 

are the singular numbers of  H , .  Hence (2.1) 

3. The small operator 

Theorems 3 and 4 are, as stated earlier, well known, at least in the case 1 <=p<__oo 
a n d  ~=// ,  see [A] or [JPR], where the results are stated for the associated bilinear 
form tTs(gx,gz)=ffglg2dl~ ~. A proof  in the general case can be obtained fol- 
lowing e.g. [A]. When 0<p_<-I the sufficiency part is a simple consequence of  
Lemma 0. For the necessity part one picks an even integer l>n/p+(~-~)/2 and 
considers the bilinear forms (g~,gz)~*lTi(Dk, g~,D~,gz), Ikil<=l/2, which are Sp- 
forms on/~/~)-(x+p)/z X B(21/2)-(1+~)/2. Then Semmes' method [S] yields fEB(~/p)+cs-~)/2. 

4. The case p_~ l  

Lemma 0 reduces the sufficiency proof  to an estimate of  the Sp-norms for sym- 
bols of  the type ( 1 - ( z ,  ~))N, which will be done in this section. Let M~f(z)= 
( 1 - ( z ,  ~))-~f(z), sER. We then have 

Lemma 1. I f  0 < p ~ 2 ,  ~--~>2n/p, s<n/2[(~-~)/n] and (~-~)/ndiZ, then 

~[[ M ST[ ~ ~ C. 
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Proof .  By uni tary invariance we may  assume that  ff=(t ,  0 . . . .  ,0) ,  t > 0 .  I f  
s <  1/2, then 

]lM~(z~)ll~ = c l B .  l1 -- tZxl-2s IZ~I2(1 _ IZIZ)~ d m  (z)  

does not  change i f  t is replaced by ei~ ei~ Then  integrate over T with respect 
to dO/2n to get 

and the Sp-estimate follows by the inequali ty llZl[~ < -Z i  [ITei[I n, {e~} any ON-  
basis. 

I f  1 / 2 ~ _ s < n / 2 ,  we have 

IlM~(z~)l]~ = c~ f.. I1 - t z l l - s S l z k l S ( 1  - I z l S ) ' d m ( z )  

= cf~ r~ lk l+~-x(1 -  r~) ~ dr l  fs._~ I1 - - t r xqd -~ lqk l  da(q )  

t', I ' l r s l ~ q + 2 n - l r l _ r ~ a , ,  I" i i _ t r l z l i -2~ l z l l~k~  [Z ,_ i lSk , - , ( l _ l z l2 )k ,  d m ( z )  = " ' J O  I ~. 11 ~'i .]S._a ...  

l r ~ l k l + ~ , _ l  _ s �9 1 r~)k" = cf~ (1 ~) a,.~ f~ d,~,+ +~--,-~"-s(|- 

f s . _ ,  [1 - tr~ r~r/l[-S~ [qil2k~ ... [q,_~l 2k"-I da(t l )  . . . .  

_- c f 2 r ~ l k l + , n - l ( l _ r ~ ) , d r l  . . .  f2.~,,,:+~,,+,.-1-.,.-~-l,,,.._~ ,, - -  r'n_lI'k' 

f v l1 - tr l  r2 ... r , _ l  zl-~*]zl2k~ (1 --IZI~)~' dm (z)  

f ~ ]l-- 2S r2kl + l [ | _ ~2~kz ~.2(kx q- k2) + 3 <= C (1 - ra r2 . . . .  r , ,  - ,  , -  -,J - , - 1  

(1 "~' ak~... @kl+S,--l(1 - - ' , - l J  --r~) ~ dr1 dr2 .. d r ,  

r.) (r.) (1 . . ,  ~. ._~, ~ . - . . _ ~  , - , f ~  ( 1 - r x r ~ . . .  s ~ - ~  ~ k, 

1 
r~r~ . . . . . .  r ,  dr~ drz ... d r ,  ~. f: (1 - f i r  2 r n ) l - a s ~ ' (  1 --rn) k''k~+k'+l[l'n-1 k" - - rn -1)  k~ 

. . . . . .  r ~ l + n - ~ ( 1 - r l ) ' d r a d r ~  dr .  = ZT=o r ( j + 2 s - 1 )  f~ ~+~(1  r(j+ 1 ) r ( 2 s -  1) ~o 

X f l  rkj+k~+l+J(1 __ rn_l)k  a drn_x ...  1 t'" rllkl+n-l(1 - -  r l )~  d r 1  j 0  . - 1  , ~ 0  

= ~ o = o  P(j+2s-1) r(k~+j+~)r(k~§ 
r(j+l)r(2s-1) r(tq+k~+2+j) 

F(kl+kS+2+j)r(k~+~) F(Ikl+n+j)F(~+l) 
)g (  , . .  

F ( k a + k z + k n + 3 + j )  F ( I k l + n + ~ + l + j )  
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F ( j + 2 s -  1) F(k~ + j  + 1) 
= F(:t+ 1)k2t k3! ... k,[ ZT=o r ( 2 s - 1 ) r ( j +  1) F(Ikl + n+c~+ 1 + j )  

F(cr 1)kl (2s-  1)j(kx + l)j 
= r0kl+-------~+~+ l------~ 27.=o ( l ~ l + . + ~ + ~ ) ~ :  

F(~+ 1)k! F(Ikl + n + ~ +  1)F(Ikl + n + a +  1 - k l -  1-2s  +j) 

whence 

and 

if 
that 

F(Ikl+n+c~+ l) F(Ik[+n+o,+1-2s+ l)F(Ikl+n+ct+ l - k  1 -  1) 

r , < = c  I 

IIM*tls,(~,,,l-) <- c Xk 1 

kl 
.jx/z~ -~(Ikl + 1) (p ~ 2  

Ikl + 1 

kl /P(~/~-*)(Ikl + 1)pcca-~,)/2) 
Ikl + 1 1 

= 2~=o(l+l)p(,a_~,/2,~,t fm+n-2)f I ~ - 1  )p(1/2--s) 
~,,,=ot m ) t ~ !  

"-"-" ~ ' ~ = 0  ( l+ 1) p((a-")/2)+'-x < co 

ct-fl>2n/p. If s<n/2[(o:-fl)/n]=n/2.m and (a-fl)/nCZ, we pick Po such 

The lemma follows by the Schatten--H61der inequality 
S~o~S~. [] 

Lemma2. I f  ~- - f l>n-1  and N>=s+l, then 

2n/(~z-fl)<po<=min (p, 2/m) and put o:(i)=fl + i/m(ot-fl). Then 

[IM'/=II o( { Stop a~('), x,(~+~)) ----< C, 0 <-- i <_- m - 1 .  

and the inclusion 

Proof. Let b(z)=(1-(z ,  ())N(1 - ( z ,  ())-*. Then H(x_<z,o)~M~=H b. The first 
derivatives of b are bounded on B by a constant independent of (. Hence we have 

ff l ~(z,_~(w) (l_lwl2)~_p]2 dl~.(w)dlz~(z) llncx-<,,O)"M~llsf,, = l[nbllsg', <= (1--(z, w)) n+'+x 

f f  (1--1wlZ) ~-~ ~_ c ii_<z, w>pn+,~+l dm(w)d~,,(z) ~_ c f (1-1wlZ)'-a-ndm(w) = C. [] 



Hankel operators between weighted Bergman spaces in the ball 189 

I.emma 3. I f  0 < p ~ l ,  ~-~>2n/p-1 and N>=~-~-n/p+n+ l, then 

l[n(1-<z,~>),~ M~-allsg, <= C. 

Proof. Define q by 1/q=l[p-1/2. Choose y such that ~-n+l>7>~+2n/q 
and (7-fl)/n~Z. Let s = l / 2 ( r - f l ) - n / 2 < n / 2 [ ( r - f l ) / n ] .  Then, by Lemma 1, 

Since ~ - y > n - 1  and 2 ( ~ - / ~ - s ) = 2 ~ - / ~ - 7 + n  we have by Lemma2  also 

N ~--ff--S IIn(x-<z,o) Me Ils.(,~.u(a,.)) -<- C. 

The lemma follows by the Schatten--HOlder inequality. [] 

Lemma4.  I f  0<p<=l,  ~-fl>2n/p-1 and N>=~-#-n/p+n+l, then 

liB( II < C(1 Iffl 2 ,~-a)Z,)-N 1-<~,~>) -N sg'= ) 

Proof. Let cpr be the involution that takes 0 to ~ and define 

f 1-1~1 ~ ](.+.+w~. V~V(z) foqgr (1 -<z, r 

Then V~ ~ is an isometry of  L~(dl~) onto itself which maps A ~ onto itself, and 
we have 

V~H(I-<,.{>)-- = H(I-<,6,). ~>)-~V~ ~ = (I-- P~)(1 - <(or ~>) 'Nv~ 

.N 1-1~1 ~ (~-')/~ { ( I - ~ )  .1-<z, r r 

= (1 - IW)(~-~ /~ -  NH<I_ <=,~>~ M~-~ r;~ 

and Lemma 3 yields the required estimate. [] 

The sufficiency part of  Theorem 1 for p<_- 1 now follows by Lemmas 0 and 4. 

5. The case p =  r 

l_emma 5. Suppose that u > - l ,  s < l / 2 ,  - l < y < ~  and - l < y + s < u .  Then 

fB If(z)-f(w)l (l_lzl~ydm(z) C(1 IwlZY -~+s f �9 [1-(z ,  w)[ "+~+1 -<-- - II l b . .  

Note that we get cut-off s < l / 2  when n > l  in contrast to s < l  when n = l .  
This is connected with the boundary behaviour of  holomorphic Lipschitz functions 
(B'. =H(B)mA~ when 0 < s <  1). See Ch. 6 in [R]. 
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Proof If we can prove the inequality 

(5.1) i f (z)- f(w)l  < CH/]IB~[1 - ( z ,  w)[ S, 0 < s < 1 = 7 

then the lemma follows as in [J]. 
To prove (5.1) we assume, for simplicity, that n=2. By unitary invariance, we 

may also assume that w=(~o, 0), Q>0. Write z=(rlei~,,rzei~,), I(o~l_<-~, and put 
_ 2 ~ 2 2 / l -  (r 1 go i + r e q~z)/(r i + re). We have 

[f(z)-f(w)[ ~ z O + Q e (rl, r2 

+ l f (@zle"(r i ,  re))--f(-~z] (ri, rz)}l + ] f (t-~F (ri, re))-f(w)] = A1 + As + A3 + A,. 

Note that when z and w lie on the same complex line through the origin (5.1) 
is trivial, since then [z-w[<=ll-<z, w}I. This argument takes care of Ai and As. 

To deal with A~ and A4, recall that f is A~ along complex-tangential curves, 
Th. 6.4.10 in [R]. To finish the proof we need only find the appropriate 
curves. These are suitable portions of  t~-~(Q/lZlrl eiO~+t~ o~/Izlree~(~+t~ where 

2 e 2 0 2 e 2 Ol=re((Ol-(Oe)/(rl+re) and 2=rl((p~--q91)/(r1-~-re), and t~(Q/lzl cos t, ollzl sin t). 
The lengths of  these curves are clearly less than c [z-wl,  whence 

IA,I <= CIIf]IB, Iz--wl  eS <---- c l I f i lB~[1 -<z ,  w>] ~, i = 2 , 4 .  [] 

Define L~={fmeasurable:  (1-lzle)-'f(z)ELq}. Then we have 

B �9 Lemma 6. Suppose that - - 1 < ~ < ~  and s<l /2 .  Let fE ~ and define 

K(z, w) = f(z)  --f(w) 
(1-(z, w>) 

I f  O < t < ~ + l ,  O < s + t < ~ + l  and l ~ q ~ ,  then the mappings 

u(z) ~ f IK(z, w)l u(w) d#(w) 

and u(z)~-~f K(z, w)u(w)d#~(w) map L~ ~-' into L~'. In particular H I then maps 
B~ s-t into L~L 

Proof For q=  1 and q=oo this follows from Lemma 5 with y = t - 1  and 
~ = ~ - s - t .  The case l<q<~o  follows by interpolation. [] 

Taking q=2,  t= (~+ l ) / 2  and s=(/~-~)/2 we obtain HfES~ ~, provided 
s < l / 2  and s + t < ~ + l ,  i.e. /3 -~<1  and / ? - ~ < ~ + 1 .  The restriction / ? - ~ < ~ + 1  
can be avoided if we, as in [J], use the integral representation of HyP~+~, given by 
the kernel K of Lemma 7. 
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Lemma7.  Suppose that ~ > - 1  and s < l / 2 .  

f ( z ) - f ( w )  - (n+~  + 1) -1 
K(z, w) = (1--(z, w)) "+'+~ 

I f - - 1 < ~ , < ~  and - l < ~ + s < ~ + l ,  then 

Let fE B~ and define 

Rf(w) 
( 1 - < z ,  " 

f K(z, w)l (1 -Izle)rdm(z) <: c(1 -IwlZ) r-~-l+* II fllB=. 

I f  - 1 < ~ , < ~ + 1  and O < 7 + s < ~ + l ,  then f [K(z, w)[(1-[wl~)rdm(w) <- 
c(1 -IzlW -*-x+~ II fl[B= �9 

Consequently, i f  O < t < ~ + l ,  O < s + t  and l <--q<-oo, then the mappings u(z)~-~ 
f [K(z, w)lu(w)dg~+l(W) and u(z)~-~f K(z, w)u(w)dp~+~(w) map L~ ~-t into L~ t. 
In particular, Hf  then maps B~ "-t into L~ t. 

Proof. As in [J]. [] 

6.  T h e  c a s e  1 < p  < ~ and c o m p a c t n e s s  

This far we have proved Theorem 1 for p-<l  and p=o~. To settle the case 
1 <p<oo  we use, as in [J], interpolation. 

Suppose that ~ , f l > - i  and l < p < o o .  I f  2 n < l + ~ - f l ,  then the cut-off 
causes no trouble. Otherwise let ~,=fl+2n/p. Then - I < v < ~ + I  and ~ , -2 n <  
~ +  1 - 2 n .  Defines the fractional integration P,  for complex s, by 

Pg(z) = ~'~(k)(Ikl  + 1)-~z k, 

and define Tz(f) to be HzI~L Then P is an isomorphism of  A ~ o n t o  B~ (l+~'-~Res)/~ . 
As in w 5 the norm in SI(B~ (1+~'-2n)/~, L2(d#~)) of  H I can be shown to be bounded 
by a constant times the norm of  f in BCxr-~n-~)/2. It follows that {T~} map Br -~)/2 
into S ~  when R e z = 0 ,  and B(~ ~'-~~ into S~ ~ when R e z = l .  By the abstract 
Stein interpolation theorem [CJ], T1/p maps B (~-*)/2p into S~ ~. Therefore H I =  
TIIpI"/PE S~ ~' if  fEBg n/p)+(p-~O/~, and the proof  of  Theorem 1 is complete. 

The proof  of  Theorem 2 is the same as for n = 1. 
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