A unique continuation theorem for second order
parabolic differential operators

C. D. Sogge

1. Introduction

The purpose of this paper is to show that the unique continuation results in [10]
extend naturally to the setting of second order parabolic operators. Previously, we
showed that if P(x, D) is a second order elliptic differential operator with a C*
real principal part, and if |P(x, D)u|=|Vu| for some V¢ILI%(R"), then u must
vanish identically if it vanishes in an open subset. In this work (x, #) will denote a
generic point in R*XR, with n=2, and we shall assume that P(x, ¢, D) is a second
order elliptic operator acting on R® with bounded coefficients whose principal part

is real and C~. We shall be concerned with parabolic operators of the form

(1.1) L=L(x,t,D,D,) = —387+P(x, t, D).

Here we are using the notation D=D,=i"'(9/0x,, ..., 0/0x,). The natural (non-
isotropic) dilations associated to L are given by

1.2) d,(x, ) = (exy, ex, ..., £X,, £21), & >0,

and the homogeneous dimension of R"XR with this dilation structure is n+2.
Thus, the natural condition to impose on the potentials ¥ (x, ¢) in the unique con-
tinuation theorem for L is that V€ L{"I®2(R"XR).

To state our chief result we first need to recall the definition of the normal set
N(F)cT*(R"XR)\O associated to a closed subset FCR*XR. N(F) will be the

set of all (x,, %), &g, To) Where (x,, t)€F, 05(&,, 1o)€R*XR, and
Y(x, t) = ¥(xe, %,) when (x,,%)EF,
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for some real valued C= function satisfying d¥(x,, ty)= (&, 15). If the coeffi-
cients of L were analytic, then the classical Holmgren uniqueness theorem (see [5,
Chpt. 8]) implies that a solution u# of Lu=0 must have the property that if
(Xo0» 195 £o> To)E N(supp u) then &,=0. In other words, there is always unique con-
tinuation across non-characteristic hypersurfaces. We shall allow singular potentials,
and our main result is:

Theorem 1.1. Suppose that Luc L} (X) where X is a connected open subset of
R*XR. Then if

(1.3) |Lu(x, £)] = |Vul

Jor some VcL{"DR(X), it follows that N(supp u) is non-characteristic for L.
Thus, if (xy, tys &y To)EN(Supp 4), one must always have &,=0.

Corollary 1.2, Let Q be a connected open subset of R" and T=0. Assume that
VELEIPR(QX[~T, T1), and suppose that (1.3) holds. Then if u vanishes in an
open subset O QX[—-T, T, it follows that u must vanish identically in the hori-
zontal component of 0. This means that u(x, t,)=0 if (x,, tp)€0 for some x,.

If VeLy, this result is due to Nirenberg [7] in the constant coefficient case and
to Saut and Scheurer [8] under the weaker assumptions that the leading coefficients
are C. Our methods allow one to obtain the essentially optimal results concerning
the potential ¥ in the differential inequality; however, they require that one make
what are probably non-optimal regularity assumptions on the coefficients involved.
Nonetheless, even in the constant coefficient case, it seems that there are no previous
unique continuation theorems of this type involving V€L{  for g<o; however,
Garofalo and Kenig[3] proved certain results for constant coefficient operators
under restrictive assumptions regarding the support of u. Similar results for other
constant coefficient parabolic differential operators were also proved in Kenig and
Sogge [6].

To prove Theorem 1.1 we must show that there is local unique continuation
across any non-characteristic hypersurface §. If, locally, such a surface is given by
the equation ¥(x, t)=0, there is no loss of generality in assuming that ¥ (0, 0)=0
and that (0¥/9x,)(0, 0)><0. This means that S can be locally written as a graph
X, =y (x', 1), where x"=(x,, ..., X,_;) denote the first (n—1) coordinates. Further-
more, by making the change of variables (x, x,—y(x’, £), t), which preserves the
parabolic character of L, we see that we can assume that S is the hyperplane x,=0.
Next, if, as in Nirenberg [7], we now use the Holmgren transform

X'y Xus ©) ~ (&, X+ E+1X[3 D),

which takes the hyperplane x,=0 to the parabola x,=7%+|x'|?, we see that we
can assume farther that supp un{(x,?): x,=0}=(0,0). Finally, by using the
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natural geodesic coordinates associated to the principal part of P, we can make
one more change of variables so that, in the new coordinates, # has the same sup-
port properties, but, modulo a lower order differential operator in x, L is of the
form

(L.1) L= 7()37+D,2,+2’j’k<n g’*(x, 1) D; Dy
where g'* is a positive definite matrix.

Putting together all of these straightforward reductions, we conclude that we
need only show that # vanishes near (0,0) when supp# and L are as above. But
standard arguments as in, say, [10] now imply that Theorem 1.1 is a corollary of
the following Carleman inequalities.

Theorem 1.3. Let L be as in (1.1°) and put

(1.4) w, = X, —x2[2e.
If e=0 is sufficiently small but fixed and if 7.=>0 is sufficiently large
(L5) 3 e AHHOD=lsl o= dwe DLy 1y [le=MWep]| Lo = Cle™ ¥ Lo| 1o

whenever vECy is supported in a sufficiently small neighborhood of (0,0). Here
p=2(n+2)/(n+4) and p’ is the conjugate exponent p’ =2(n+2)/n which forces
1/p—1/p"=2/(n+2).

The proof of Theorem 1.3 is modeled after the corresponding result for second
order elliptic operators in [10]. Replacing v by e**=v one sees that it is enough to
obtain the appropriate estimates (see § 3) for the conjugated operators

L, = e~ *w:Le*w:,

Note that (for fixed (x, 7)) the symbol of this operator only vanishes for certain
(&, 1) with

€l ~ 4
where | -|| always denotes the parabolic norm:
(1.6) I D = VIEE+ Il

Inverting L, microlocally far enough away from the zero set of the symbol is easy.
To handle the other part of the inverse, as in [10], one constructs a parametrix
using singular Fourier integrals with complex phase. Choosing the “correct” phase
function is the key step, and, as before, it is constructed from an eikonal equation
which comes from the factor of the symbol of L, which vanishes for large (&, 7).
This phase function will basically be a sum of two types: the main part will reflect
the Euclidean dilations, while the other part will vanish of order two in the space
variables along the diagonal, and will reflect the parabolic dilations. To make the
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necessary estimates for the non-trivial part of the parametrix (and the associated
remainder term) we shall use a parabolic version of the equivalence of phase func-
tions and certain variants of the oscillatory integral theorem of Carleson—Sjolin,
Ho6rmander, and Stein (see [1 1]) that was used in the study of Carleman inequalities
for elliptic operators. It is surprising that essentially “elliptic oscillatory integral
theorems” alone should be what is needed for proving our Carleman inequalities
for parabolic operators, rather than say a variant of the “parabolic restriction
theorem” of Strichartz [12]. However, in a different setting, a similar phenomenon
was observed in Seeger [9], where estimates for non-isotropic operators were de-
duced from operators having the standard dilation structure. The experts might
also notice that Lemma 2.5 involves both types of operators that were used by Carle-
son—Sjolin {1] and Fefferman [2] in their different proofs of the disc multiplier
theorem.

This paper is organized as follows. In the next section we shall collect the tools
which will be needed for our proof of Theorem 1.3. In § 3 we shall complete the proof,
and in an appendix we shall prove the “non-isotropic” oscillatory integral lemma
that is used. As usual C will denote a generic constant which is not necessarily
the same at each occurrence, and log p will always denote the base-2 logarithm
of u. Finally, we are very grateful to Anders Melin for helpful criticisms and com-
ments.

2. Main tools

The easy part of the parametrix for L, will involve pseudo-differential operators
whose symbols respect the parabolic structure of R"XR outlined above. We shall
say that a is a parabolic symbol of order m, written as a€Sh,, if ais C* and
satisfies
2.1 [DE DD ca(x, 1, &, T)| = Cpp||(&, D)~ 1ol —22
for all multi-indices o;, B.

As in the usual case, the kernels of parabolic pseudo-differential operators are
C™ away from the diagonal. Furthermore, it is easy to estimate their size, and one
has the following result.

Lemma 2.1. Let a be in S™

par*
K(x, 1, y,5) = @u)=m f [ ele=20+C=a(x, 1, ¢, 7) d¢ dr,
is C= away from the diagonal (x,t)=(y,s) and

Then the kernel associated to a,

|K(x, t, 3, )| = C|(x—y, t—s)|~+D-m,

For fixed m, the constant depends only on finitely many of the constants in (2.1).
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Recall that the non-isotropic dimension of R* XR that is associated to parabolic
pseudo-differential operators as above is not n+1, but n+2. Thus, the estimates
in Lemma 2.1 are the natural analogue of those for the usual type of pseudo-dif-
ferential operators.

Next, to estimate the boundedness of the pseudo-differential operators which
will appear in our constructions, we shall require the parabolic analogue of the
Hardy—Littlewood—Sobolev inequality.

Lemma 2.2. Suppose that 1<p<q<< and that 1/p—1/g=a/(n+2). Let

Lfx, 0= [[ fle—y, 1=9)|(y, |~ "+D+=dy ds.
Then

I, fl Lamrxcmy = Copg | S| Le@rxcry-

We shall only require the estimates for the special case where o=2.
To prove Lemma 2.2, one first notices that, by Minkowski’s integral inequality,
if we fix ¢, it is possible to control the norm over R* as follows:

Ve fliswnan = [~ _||f fe=p, t=)(VIx—yF+Ts— )~ D+e dy|| o o o ds.

But, Young’s inequality for convolution in R”, and the relationship between p and
q give
If 7=y, t=)(VTe= 3P HTi=sl)y -2+ dp | o o

= Clt—s|7+ =10 (| f(x, 1—s)|P dx)*.

Thus,
Mo flLarsmy = € (fio [fio LFC s t—=9)| on, ay |t —s| 71+ /2= 4D ds]q dt]m,

and so the desired estimate follows from applying the usual fractional integration
theorem for R.

Similar arguments, which reduce the proof of the appropriate boundedness of
operators acting on functions of R*XR to estimating an operator acting on
functions of one less variable, will be used throughout.

Another tool we shall require is a parabolic version of the equivalence of phase
functions for pseudo-differential operators. This will be useful in constructing the
non-trivial part of the parametrix for L,.

Suppose that P, is a linear operator of the form

By ), 1) = @my=+D [ [ ot t089P(x, 1, y, 5, &, DYu(y, 5) dE de dy ds,

where the symbol Pe ST, is assumed to have fixed compact support in (x, ¢, y, ).
We shall assume that ¢ is C*, Im ¢ =0, and that

(2.2) Ve, .0l = cl(x—y, t—3)l,
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for some c¢=0. Note that the last assumption involves the Euclidean norm. On
the other hand, if we let ¢,={(x—y, &)+(r—s)t be the usual phase function for
pseudo-differential operators, then we shall also assume that

(2.3) o—¢1 = 0(|(x—y, t=9)[2[(&, D)]),
and so, in particular,

Velo—¢) = O(l(x~y, t—5)[?) and %((p—col):O(II(x—y,t~S)Ilzll(€, 7 7).

Under these hypotheses, we have the following result which is the parabolic analogue
of the usual equivalence of phase function theorem for pseudo-differential operators.

Lemma 2.3. Let ¢ be as above. Then if P(x,1,y, s, £, 1)€ Sy, P, is a parabolic
pseudo-differential operator of order m. Moreover, modulo an operator of order (m—1),
P, equals

(275)_("“)/feiK"‘y’é)"’("‘)']P(x, t,x t, & Duly, s)dédrdyds.

Proof. To establish this result we need only make some straightforward modifica-
tions of proof of the usual result in Hormander [4]. We first let ¢o(x, £, ¥, 5 &, 1)=
e(x,t,y,5 ¢ 1), and, as above, @,(x, 1, »,s, & 1)={x—y, &)+(t—s)tr. Then for
O<s<l1, we put ¢.(x, t,y,s & 1)=(1—¢€)@,+ep,, and

(Bu)(x, 1) = )0+ [ P (x, 1,3, 5, & Du(y, 5) dE de dy ds.
Since @,=¢ satisfies (2.2) and (2.3), we can assume that for all 0=¢=1,
2.4) (Ve .ol =cl(x—y, t—s)] if P>0 and [(& 1)) large.

We may have to decrease the support of the symbol P near the diagonal; however,
since (2.4) holds for £=0, P,— P, would have to be an integral operator with smooth
kernel.

Next, notice that

(2.5) ({c’—]jﬂu = (2r)~ ¢+ ff[i((p1 — @)l e P(x, t, 3, 5, &, Du(y, s) dé dv dy ds.

The symbol here
[i ((Pl—(Po)]jP(x, LYy,s, é; T)

is a priori only in S7.t/, but (2.3) implies that it vanishes like [(x—y, —s)|* near
the diagonal. To exploit this let

H=0|ot+4;, and a, = e 9<He'%.
Clearly, (2.3) and (2.4) imply that there is a constant ¢>0 so that

la.l > clix—y, t=9)|* for large [(&, 7).
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To use this, notice that if we let 4 be the adjoint of the operator (1/a,)H, then the
kernel of the operator in (2.5) equals (27)~+V times

./'ei¢£Aj{[i((p1—¢0)]iP(x’ t’ s Ss é’ 7:)} dé dT'

Since one can now check that the symbol in this oscillatory integral is actually in
Smod, it follows that this kernel becomes arbitrarily smooth as j—~4-co, since (2.4)
holds.

To use this set

0= S

Then, Taylor’s formula gives
By= 3370+ (- DKL [ 43 (d/de) P, de.

Thus, if we let Q be defined by the formalseries 3 Q;, it follows that Q is a pseudo-
differential operator, and moreover Py—Q has a smoothing kernel. Finally since,
modulo a pseudo-differential operator in Sp.—', Q, equals the pseudo-differential
operator with symbol P(x, t, x, t, £, 1) we are done. |

The last ingredient we shall require is a variant of the standard oscillatory
integral theorems of Carleson—Sj6lin, Hérmander, and Stein in [11]. These will
allow us to estimate the mapping properties of the main terms in the parametrix
for L,. Given the non-isotropic nature of the dilations (1.2) associated to L, one
should not expect to be able to use the results in [11] alone; however, it is fortunate
that in the arguments to follow, one can make a change of variables that allows
one to apply easy variants of the usual oscillatory integral theorems.

The operators we shall need to control are of the form

(2.6) R, f0) = f . 20-Dirzeiu 2 g (y, z) f(z) dz,

for 0=j=logpu, and send functions defined in R"~' to functions in R”. We shall
assume that both i and g; are in C=(R*XR"~"), with the a; being supported in a
fixed small neighborhood of A" of (0,0) and Y having non-negative imaginary
part. In addition we shall require several technical assumptions.

First, as in Stein [11], we shall assume that ¥ is non-degenerate in the sense
that its mixed Hessian has maximal rank. Specifically, we require

@.7) det[ &y ) oo
0Y; 0z, J1=i, k=n—1

In addition, we shall impose the following Carleson—Sjélin condition :

oy L ( 9 )
(2.8) 2,07 (0,00=0 Vj, but det 92,02, [0Y/oy,]} #0 on A,
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As we shall see, the non-degeneracy condition (2.8) insures that oscillatory integral
operators with phase function ¥ have better bounds as operators from L? into itself,
rather than form L? into the dual space L?, for certain exponents p.

Remark 2.4. The model case occurs when

lll(y, Z) = Kyl‘zly s Yn—17Zp—1s yn_l)‘

and, as above, both y and z are assumed to be close the origin. The phase functions
which will occur in the proof of the Carleman inequalities will be related to
this one.

Now let us describe the hypotheses for the amplitudes a; above. In addition to
assuming that they have fixed compact support, we shall assume that

(2'9) aj(y,z)z() if Kyl—_zlaﬂ"yn——l_zn—l)lzz_j'

Also, we shall assume that the derivatives of a; satisfy the natural bounds associated
to this support property:

(2.10) 1D, . D5 a; (v, 2)| = Cpp2, 3" = (31, o0y Y1)y

for constants C,; independent of j.
Having stated the various technical assumptions, the desired result is the
following.

Lemma 2.5. Let  and a; be as above, and let R, ; be as in (2.6), where p=>1,
and 0=j=logpu. Then, if /" above is small enough,

2.11)

Ry, ; Loy = C20=DICP—URIR Yy =C=DIF| f 1 p@n-1y, 1 =p =2,

1

p p
. n+1 :

Also, if 1=p=2, and r= ] p’, one has the estimates

(2.12) IR, fllra@e = C2=DIAR=IDE =M | || pgen-1y.

The constant C in these inequalities depends only on finitely many of the constants
in (2.10) and remains bounded when \ belongs to a bounded subset of C= functions
satisfying (2.7) and (2.8).

In the case where j=0, this result is the usual oscillatory integral theorem in
[11]. On the other hand, in the other extreme case where j=log u, the reader can
check that (2.11) and (2.12) are a trivial consequence of (2.9), and thus oscillation in
(2.6) is irrelevant. The proof of Lemma 2.5 for the other cases is a straightforward
modification of the arguments in [10]; however, for the sake of completeness it will
be given in an appendix,
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For the proof of the Carleman inequalities, we shall actually need a slight variant
the inequalities (2.12). By an easy argument which uses Hélder’s inequality, the
reader can check that (2.9) and (2.12) give

2(n+1)
n—1

=r=o,

(213) R, ; flr@y = C27O-DIAR-ANR =P | fll rgn-s)  if
and if p and r are related as in (2.12).

As we indicated in Remark 2.4, we shall only be interested in a special case of
Lemma 2.5. This will allow us to prove estimates for certain oscillatory integral
operators sending functions of »n variables now to functions of n variables. These
new operators will have phase functions ¢ which are close to the model function
|x—y| in the sense that

(2.14) ID*[o(x, »)—lx—yl]| =&, 0=la] =N,

and will be of the form
Sy f() = [, 20-DIewnena (x, ) f(7) dy, *€R".

The analogues of (2.9) and (2.10) for the new function ¢;€Cg (R"XR") will
be that

2.9 a;(x,y)=0 if |x—y|€[1/2 1] or |[¥—y|=2"
(2’10’) le’,y x,, y,, (x: y)] = C 2.I|ﬂ|

If one keeps in mind Remark 2.4, then the usual Carleson—Sjolin arguments (see
[1], [11] and the arguments in §4) together with (2.11) and (2.13) imply that the
operators S, ; satisfy the same bounds as R, ;. In particular, we know the L?—~L”
normof §, ; when pis as in the Carleman mequahty Also, by (2.11) and (2.13), one
knows bounds for its L?~IL? norm when p is equal to 2 or 2(n+1)/(n—1). But, by
interpolating between these two estimates and using duality we can also estimate its
L7717 norm when g is one of the exponents in the Carleman inequality. In fact,
we can conclude that, for these exponents, the norm must satisfy better bounds?®

than the estimates in (2.13) for r=2(n+1)/(n—1). We collect these facts which
will be useful later on in the following.

Corollary 2.6. Let a; and ¢ be as above and assume that Im ¢=0. Then if, in
addition, ¢, is sufficiently small and N is sufficiently large in (2.14),

2(n+2
(2.15) “ Su,jf”LP’(R") = C2n— 1/n+2)1” (n— 1/n+2)(n/2)”f"Lp(Rn)’ p= __(n_ﬂ_)_

1 For the exponents g which occur in the Carleman inequality, the sharp mapping properties
of the S, ; from LIR™)-~LI(R") are not known (even when j=0). Fortunately, the bounds cor-
responding to g=2(n+1)/(n—1) are good enough for our applications.
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Also, one has the estimate

(2.16)
”Su,jf”L‘l(R") = Cz—("—1/"+1)(J'/2)u—("—1/"+1)("/2)”f”Lq(R,,), q=

An+2)  2(n+2)

n+4 n

3. Proof of Theorem 1.3

Recall that w,=x,—x%/2e. If ¢>0 is sufficiently small but fixed, and
L, = e=*weLeve,
we must show that if 1=0 is large
G I AT DL o] omery + [0 rmexry = C Ly v owexmys

when the function v and the exponents p and p” are as in Theorem 1.3.
If we recall (1.1°), then we see that the symbol of L, is

L}.(xr ta 6’ T) = iT + 2j,k<n gjk(x’ t) cj fk'*‘frzn_zllw:: én—(}'W;)z—Aw:'
Consequently, if we let 4, be the differential operator whose adjoint 43 has symbol
B2 At &) =—itt 3, e 0E G+ E420Aw 8, — (Aw,)?

1
w,

=00 [~ (o) () 2t 06804 () B2 -]

&

then (3.1) follows from
(3.1) 3 PO DS o [0 = C Azl

By adapting the calculus in [10], we claim that we can choose a phase function
& satisfying the hypotheses of Lemma 2.3 so that the integral operator T*=T}
with kernel

13 D) eid’(x,r,y,s,{,t) d

G n /Az(y,s,é,r) dedz

is a suitable right parametrix for 43. To be more specific, we claim that if v is sup-
ported in a small ball B around (0, 0)¢R"XR, then @ can be chosen so that if T
is the adjoint of T*,

(3.4 T(A4;v) = v+ Rv,
where
(3.5) IT ey, Loy = € and | DET | (reemy, Loy = CA~1- e+,

while the remainder term R=R; only satisfies
(3.6) 1D% Rl zaca, Lopy = CA~VO+DHIE, g =p, p’,
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for |«|=1. Here we are of course using the notation that | - || ), Lsz, denotes

the operator norm from L'(B) to L°(B). Since it is easy to check that (3.5) and

(3.6) would imply (3.1), we are left with constructing @ and proving these estimates.
Next, notice that (3.2) implies that

1% 1,810 =0 (& 1)€0,(X),
where J, denotes the non-isotropic dilations defined in (1.2), and
BT =X, ={¢): 843, 8% NEE = W) and = 2w[E).

This set is shown in the following figure.

H

Figure 1

The first step in constructing 7T is to notice that one can use standard arguments
to microlocally invert 4; away from §,(X). Specifically, let B€Cy (R) equal one
near the origin, but have small support. We then define f,=f, , by setting

Bo(€, 1) = 1B —1El/A) B(c/32—2L,[4).

Then if, as we may, we assume that
2j,k<n g’k((), O)DJDk = —Axr, x, = (xl, vees x,,_l),

it follows that B, vanishes on J,(Z) (if |(x, #)| is small enough). Moreover, one even
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has the bounds:
l45(x, 1, & D)) = c((&, 1) +4)* on supp By

for some ¢>0. Thus, if we let T be the integral operator with kernel

L [ et nora-sm
(2n)= ¢+ b Wﬂ()(é’ 1) d¢ dr,

easy arguments would show that its adjoint satisfies
To(4s0) = @u)=4D [ [ Ue=n 0T C=Do(E, )0 (p, 5) dE dr dy ds+ Ryv,
where R, is an integral operator whose kernel is majorized by a fixed constant times
V(e =y, 1—s)| O,

To prove this one would use Lemma 2.1. If one uses this along with Young’s in-
equality, one sees that R, actually satisfies better estimates than those in (3.6) when
a=0, namely

IRl aesy, Loy = C27Y, g =p, p"-

Similar considerations show that DR, also satisfies better bounds than those
in (3.6).

Likewise, the operator T, satisfies better bounds than are needed. In fact, note
that 7, belongs to a bounded subset of 5,2, and also 2*~1*| D37, is in a bounded
subset of S, when |a[=1. With this in mind, one can use Lemmas 2.1 and 2.2,
together with Young’s inequality to see that T, satisfies the analogue of the first
inequality in (3.5), as well as an improved version of the second estimate where
1/(n+1) is replaced by 1 in the exponent.

Next, let

ﬁl(é’ T) = 1—ﬂ0(67 t)'

We wish to construct integral operators T, and R, satisfying the analogues of (3.5)—
(3.6) whose adjoints have kernels which are similar to the one in (3.3), and

(3.8) Ti(4,v) = 2n)~+D [ [ Me=r O+t g, (£ 1) 0(y, s)d¢ drdy ds+Ryv.
As we shall see the adjoint T7* will have a kernel of the form
(39) Cryen [ g ac ar

A3y, 5, ¢, 7)

where @ will have to be chosen with some care, but will be as above, and R, will
behave like AT;. Thus, if we could construct @ and prove these estimates, then, by
adding T, and T, and applying Lemma 2.3, we would get an integral operator T as
above, and the proof would be complete.
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To finish the construction, recall that in the elliptic case studied in [10], the
phase function was constructed from an eikonal equation arising from the non-
elliptic factor of the symbol. A similar thing happens here. Recall from (3.2) that
the imaginary part of A4 vanishes when ¢&,/w,—1/[22(w,)?]=0. On account of
this, it is natural to factor the symbol with respect to this variable. By using the
quadratic rule and (3.2) one finds that

A30 1,8, 1) = Galx, 1, & D)(E/we— /24w =i, (x, £, &, 1) — AD),

where G, is in S}m on supp B; and is elliptic with respect to the parabolic norm.
In fact, it satisfies
1G] = e(I(&, 7)| +4) some ¢ >0.

The other factor, of course, does not enjoy this property since it vanishes on
0,(X). The function b, appearing is real (on the support of ;) and is given by the
formula

1

W

72

i p Lt T

sz,k<n g (x’ t)‘fj ék }vw; + 4/12(w;)2 .

The important thing, though, is that if &¢=>0 is small, then on the support of 5,
|bl(x, t) Ca T)‘ = C”(é’ T)”

bl(xs t; é: T) =

(3.10)

b, =ce (&, 1) some c¢=0.

ox,

In the last expression, we have to assume, as we may, that both |x;] and the support
of f§ above are small, and use the fact that (3/dx)w,~e™ ™.

Since G, is “elliptic”, we are led to construct the phase function @ in (3.9) from
the other factor of A;. Specifically, if we let

Bl(x> ta é& T) = én/W;_T/[ZA‘(W;)zl—"ibl(x> t, éa T))

then, following [10], we would like & to satisfy the eikonal equation

(3'11) Bl(xa t’ Qxa T) = B}.(y3 S, és T)> (é, T)Esupp ﬂl
and, in addition, have the properties that

(3.12) & = (x—y, &+ ({—s5)t+O0(|(x—y, t—9)|*(& D))
(3.13) Im® =0.

Here we are using the notation that &,=V,®. We should emphasize the fact that
(3.11) does not involve ¢ derivatives of @; this is because the parabolic nature of the
problem requires us to treat the space and time directions differently. On the other
hand, since (3.12) implies that d®/0r—t=0(||(¢, 7)||), we shall be able to handle
the error term which arises from the fact that (3.11) involves only x derivatives. It
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is mainly for this reason that it is crucial that the quadratic term in (3.12) involve
the parabolic norm and not the Euclidean norm of (¢, 7).

Since B, is complex valued and in general only C=, a solution to (3.11)—(3.12)
need not exist. However, let us now argue that if certain natural conditions are
placed on & which would guarantee (3.12), then an essentially unique approximate
solution will exist which will satisfy (3.13) if the number ¢=0 occurring in the
definition of w, is small enough. We shall then see that this approximate solution
to the eikonal equation will serve our purposes.

To construct @ let us first “freeze” x,=y, in the coefficients. Then, we must
consider the real boundary value problem:

bl(x,’ yna t, q)xa T) = b}.(y’ S, éa ‘C)
©=0 when (x—»,&=0 and ¢,=¢ when (x,1)=(y,>9).
This equation has a unique solution ¢(x, 1, y,s, £, 1) for small (x,t) is close to
(», s). Further, one can check that ¢ must be real and be of the form
¢ = (x—y, &+0(|(x—y, s— D[], D).

Next, we try to solve the following complex boundary value problem involving
an unknown function ¥ (x, ¢, y,s, &, 1):

B}.(x’ t’ (px+¢x’ T) = B}.(y; S, 69 T)
Yy=0 when x,=y, and ¢,=0 when (x, ¢ =(y,5).

As in (3.11), we need only worry about the case where the parameters (&, t) belong
to the support of §,. Since (9/9¢,)B;(0,0, @, +&, 1)0 this is an elliptic non-linear
boundary value problem; however, as we pointed out before, an exact solution need
not exist since B, is complex valued. Nonetheless, results in Treves [13, Chpt. 10],
[14] imply that an (essentially unique) approximate solution ¥ must always exist
when (x,?) and (y,s) are close and small. This function will be an approximate
solution in the sense that, for every N,

(3.14) By(x, t, 0.+ ¥, ©)— B, (3, 5, &, ) = O(|Im Y|V [(&, DY),
and because of the choice of ¢, it must be of the form
(3'15) lp = O(Ixn_~yn|2|](é’ T)”)‘

Furthermore, by using (3.10) and Taylor’s formula, one can argue that if the ¢=>0
appearing in the definition of w, is small enough and B, (&, 1)=0,

(3.16) Imy = clx, —yal* (€, DIl

where ¢=0. For similar arguments see [10]. As usual, (3.14) will allow us to argue
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essentially as if  were an exact solution in what follows, while (3.16) will be crucial
for the L? estimates of the parametrix.

We can now finally say what the phase function @ in our parametrix (3.9) is. If
¢ and y are as above, we shall take

D(x, t, 5810 =0ktys1¢, DY, t,p, 5 & D+H(E—9)T.
Clearly, then @ satisfies (3.12), and

(3.13) Im & = c|x,—y,l* (¢, D).
Next, set
a = id5(x, t, Dy, D)(@+Y)E Sps;.
Then,
(38)  Ai(TFv) = 2n)~ "+ [[e®B(E v)o(y, ) dE du dy ds+ R v,

where Rj , is an integral operator whose kernel equals (2r)~*+" times

ﬁlae i G}.(x1 ta (px+¢/x9 T) —
317 / 0,550 d““’f G s ) P dr+ o0,

The last term comes from (3.14) and (3.13"). Equation (3.8") resembles (3.8), and,
in fact, if we let R} equal Rj , plus the operator

(3.18)
(211)‘("“)f/ei[<x"”§>+("s”]ﬁlvdf drdy ds——(2n)‘("+1)'[‘/'e""’ﬂlvd§ drdyds,

then we get (3.8) by taking adjoints. But the equivalence of phase function lemma,
Lemma 2.3, implies that the adjoint of the operator in (3.18) satisfies the same
bounds as the operator R, above. Also, since ¢, +y,.=¢ when (x,t)=(y,s), if
one recalls that G, is bounded below in the parabolic norm, then it is not hard to
argue that the integral operator corresponding to the second summand in (3.17) has
an adjoint satisfying the same bounds.

Putting all of this together, we have shown that, if we now set

(3.19) Riq v = (21)" <"+1>ff (ﬂyl“seé vdEdrdyds,

then our task would be over if we could show that T; satisfies the bounds in (3 5),
while R, satisfies those in (3.6). For later reference we note that, since a€S
the support properties of f; imply that R, ; behaves like AT;.

Let us first concentrate on proving the desired estimates for T;. First, we define
the dilated (and transposed) phase functions

(3.20) ®D,(x,t, 5,8, & 1)=—A"1B(y, s, x, t, AL, A21).

Then, a change of scale argument and (3.9) implies that the kernel of T; equals a

par »
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constant multiple times
APa(x1.3,5,¢,7)

(B.9) Kty S)Zl",/ L(x, t, £—iVw,, 1)

Here we have used the fact that A,(x, t, A, A221)=A2L(x, t, E—Vw,(x), ), if 4,
denotes the complex conjugate.
Notice that (3.12) implies that on the support of the integrand

P, ={x—y, O+ A(t—9)T+0(x—y*+|s—1)),

which means, that, if A is large but |[x—y| is small, @; is close to the model phase
function {x—y, &)+ A(t—s)t. The extra factor of A with the ¢—s variable compli-
cates things, and we basically have to split the operator T; as T;=T,+T,', where
T comes from the part of the kernel where |f—s| is small compared to i~ To
handle the first piece, we shall apply the estimates in Corollary 2.6 corresponding
to the special case j=0. On the other hand, to estimate the norm of 7}, we shall
need to use all of the estimates in this oscillatory integral lemma.

Let us now be more specific about the splitting of T;. Let #€Cg°(R) have the
property that

B —IENB(x—28,) dE dr.

nG)=1 if {sj=1 and n(s)=0 if |s|=2.

We then let 7} be the integral operator with kernel

kP = 11()~(t—s))K1,
and let T;! be the difference between 7; and 7. Of course this means that the kernel
of T;! vanishes for [¢t—s| smaller than A~1. By Minkowski’s inequality, we would
have the desired bounds for T; if we could show that both T;? and T satisfy (3.5).
Let us first handle 7. We noted before that in K; the s and ¢ variables are
weighted more heavily by an extra factor of 1. On account of this, it is more natural
to consider a dilated version, T2, of 7;". This will be the integral operator whose

kernel is
K (x, 1, y, 5) = K)(x, /4, y, 5/ 4).

We would have the right estimates for T3 if we could show that the scaled version
satisfies

(3.5.0) || T? s, 1y = CAA-/p=1) and || DLTY| (e, Lry = CA~HE+D+lal,
To prove these, we shall need to take a closer look at the kernel. By (3.9,

i28,(x,1,%,5,8 1)

620 RiGot,39 = -9 [ e gD e~2)de i,
where
511 = ¢l(x’ t/)“’ Y S/)\,, éa T) = <x_y9 €>+(t—s)‘t+0(|x—y|2+I(t_s)/;"l)-
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Since we need only prove (3.5.0) when T acts on functions with small support, we
see that @, is close to the usual Euclidean phase function {x—y, &)+(t—s)t when
A is large. This fact will allow us to compute the oscillatory integral in (3.21) and
eventually apply Corollary 2.6.

To rewrite K in a more useful way, recall that the symbol in the last oscillatory
integral is singular on the set X defined in Figure 1. Away from X, however, it is
C®. And, in fact, since L(y, s, &—iVw,, t) vanishes only of first order on this set,
we are in a situation that is similar to the one studied in [10].

In fact, let I=1I1 = R"+!'>R"*+! denote the projection onto the n dimensional
subspace

H=H, ={x0: t=2w,(y,)x,)CR*"L.

This is the hyperplane containing the set X in Figure 1. Unfortunately, X is not
a sphere in H, so matters are complicated slightly. Nonetheless, if one repeats the
stationary phase arguments in [10], one sees that

(322) K?= 2y AT

eilwv(x,t,y,S)
a,\x, t, s S — s
s b3 ) T T =, =]

where a,=a,; and ¢, ; are C* when II(x—y, t—s)=0 and have the following
properties. First, there is a fixed non-singular transformation A: H—~H, sending
the unit sphere into an ellipse so that (—1)"¢, is close to |AII(x—p, t—s)|. To be
more specific, given g,>0 and N finite, if (x, #) is close to (y,s) and A is large,

(323) D=0, ~ |4l (x—y, t—s)]]| = & (x—y, t=5)*"1, 0 =a] = N,

provided that |II(x—y, t—s)|=A~t. On the other hand, for each fixed N, the
functions a, in (3.22) satisfy

(3.24) |D*a,| = C,(1+ACGxe,—y)?) NI (x—y, t—s)| 1.

The rapid decay in the x,—y, direction of course occurs because of (3.13%).

We are now in a position to prove (3.5.0). In the second inequality there, it is
easy to see that the arguments giving the estimates for «=0 can be adapted to
prove those for |a|=1 since D*T?~ATY when |a|=1. Therefore, for simplicity,
we shall only treat the case of a=0. To prove these estimates, we shall need to
break up the kernel dyadically with respect to the H variables. To this end, choose
2€Cy (R) satisfying

suppoc[l/4,1], and 37_oQ2*s)=1, s=0.
We then, for k=0,1,2, ..., let Ti" . be the integral operator with kernel

N o(A2~ I (x—y, t—9))KP, k=0
0 = . o~
2= =3, o2 T (x—y, t—9D] RS, k=0,
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We claim that, if B is a small enough ball around (0, 0)¢R*XR and if 1 is
sufficiently large, then Young’s inequality and Corollary 2.6 yield

(3.25) 1724 fllor = CAl=Wp=Up =2+ | £} ,p
(3.26) VT2 & flliem = CAHE+D(A2-K)= =12+ | £l

whenever f€Cy°(B). By summing a geometric series, it is plain that these two
sets of inequalities imply the desired result. The series converge since 'ffk F(x)=0
when x€B if k=log A and B is small.

Let us start with (3.25). One can check that, when k=0, the L" norm of the
kernel is O (A'~/P=1P)) if r satisfies 1/r=1—(1/p—1/p)=n/(n+2). Consequently,
the estimate in (3.25) for k=0 follows from Young’s inequality.

To prove the bounds for k=0, we shall first estimate the mapping properties of
an operator acting on functions of one less variable. Recall that a similar argument
was used in the proof of Lemma 2.2. This time, if x, and y, are fixed, and if x'=
(X¢5 ---s X,~1), the new operator will be given by

3.27) (T2 g, 1) = /R" R (x,t, y,5)g(y, s)dy’ ds.

Of course the LP(R")-L”(R") norm of this operator equals (2*/A)"it-(/P=1/P)]
times the norm of the dilated operator

(3.28) fff{{,,(ocx’, X, oty oy, ¥, 05)g (¥, s)dy’ ds, o = 2¥/A.

However, if we use Corollary 2.6 (where the parameters there are j=0 and p=2%),
we see that the operator in (3.28) must have an LP—~L? norm which is

majorized by
A(n—l)/2(2k/l)—(n—1)/22—k(n—1)/p'((xn —y,,)2+(2"/,1)2)*1/2.

But, then a little arithmetic shows that if #=(n+2)/n, as above, then the I?—~L¥
norm of the operator in (3.27) is controlled by a constant multiple of

J1~(1/p—1/p’) ) —2k/(n+2) X [(/1/2")*1+1/'((x,, _y")z +(2k/z)2)—1/2].

Finally since the L" norm of the term in the brackets is uniformly bounded, we get
the desired result from Young’s inequality for R, if we repeat the argument in the
proof of Lemma 2.2.

Notice that so far we have not used the rapid decay of the kernel in the x,—y,
direction, i.e. (3.24). However, to prove the LP—L? inequalities (3.26) this will
be crucial. In fact, if one argues as above, except uses the L?-IL? estimates in
Corollary 2.6, then one finds that the L?-~L? norm of the restricted operator
(3.27) is dominated by

}.'1/("*'1) (2,2_].)_("_1)/2("'*'1) X [)_1/2(1 +A(x,, __yn)z)—N]



A unique continuation theorem for second order parabolic differential operators 177

for every N. However, because the term in the brackets is uniformly in L* when
N=1, it is clear that we also get (3.28). This finishes the proof of the estimates
for T.

To finish the estimates for the main part of the parametrix, we must prove that
T} satisfies

(3.5.1) T ar@, vy =C and | DiTY o), Lecey = CA~ 1 HOHDTIR,

Since the estimates for DT}, |aj=1, follow from the same arguments, we shall
only consider the case where «=0 in the second inequality.
Recall that the kernel of T3\,

Kl =[1=n(AGs—)]K,

vanishes when A71=|s—t[=¢, where ¢, can be assumed to be as small as we wish.
Thus, if we let @ be as above and set

K} ;= o(A27s—1))KY,

then the desired estimates would follow if we could show that the associated integra
operator satisfies

(3.29) ITE e, oy = CA— U+ 3~ ))/n(n+2)
and
| T2 e, 1y = CJ—1-1(n+ D)~ ((n—1)j)/2n(n+1)

when O=j=log A.
As before, it is more natural to consider a dilated version of the operator. But
in this case the dilated operator, 73 ;, will have a kernel of the form

I?]"j =K31,027x, x,, A2t 27y, y,, A2V ).

Note that I?ll ; vanishes when |x"—)’| is larger than a constant times 2-J or
{t—s|¢[1/4, 1]. Furthermore, the stationary phase arguments that give (3.22)
imply that

ki, = o1 MV a, (x, 8, y, §) 2= +1)/2) B APy, (5,679
where now (if the support of B is small) ¢, ; can be assumed to satisfy

D [(= 1)@, ;,—|AI (¥ =y, 27 (x,—y,), t=5)]]| = &, O=lal =N,
while
ID?C', y'Dtﬂ;sav,jl = Ca(l +)"(xn _yn)z)_Ny
for every fixed N.
If one keeps in mind the support properties of a,; and repeats the
above arguments, then the estimates in Corollary 2.6 for p=4 and O=j=logi
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give that

ITE e, 1oy = CAL GIP=12) Q0IQ 2= 12 )] 3¢ f= 0+ 2) 2=+ Dt +2))

I Tll,j] @r, Lry = CA~ Y&+ 2n)] X 2~ ((r=1)jj2n(n+1))

Since these estimates are equivalent to (3.29), this finishes the proof of (3.5).

To finish matters, we have to complete the proof of (3.6). That is, we need
to show that the remainder ogerator R, , in (3.19) satisfies the bounds in (3.6).
However, since R, ;~AT;, it is not hard to see that the arguments for 7; will also
give the desired estimates for R, ;. This completes the proof of the Carleman in-
equalities for the operator L.

4. Appendix: non-isotropic Carleson—Sjolin estimates

In this section we shall sketch a proof of Lemma 2.5. As we pointed out before,
this is just a modification of arguments in Stein [11]. One of the main ingredients
in the proof of our oscillatory integral lemma is the following L? oscillatory integral
theorem.

Lemma 4.1. Suppose that a;(x,y) is a function of x, yeR* which vanishes when
|x] or |¥iis =1 or |x—y|=2~4. In addition assume that
4.1 |D%a;(x, Y)| = C,29%  for all «,
where the constants are independent of j=0. Let ¢(x,y)c¢C~(R*XR?) be real
and satisfy the non-degeneracy condition
4.2) det (9%@/dx;0y) =0 for |x|, |yl =1
Then if

(L, NG = [, 2ieremotmna;x, )f() dy,

it follows that there is a constant C independent of j so that

4.3) i flewsy = Cum 2| flems.
Proof. The desired inequality holds if and only if
“.3) 15 i1 fla = Cu [l

But the kernel of the operator in (4.3') is

4.4 244 f _é eirotx—ot g (x, y)a;(x, z) dx.

The non-degeneracy hypothesis (4.2) on the phase function means that

(4.5) IV lo(x, ) -0, 2))l =cly—z| some ¢>0
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if x and z are sufficiently close. After possibly contracting the support of g; in the
definition of I, ; we can always assume that this is the case in the above oscillatory
integral. But then, (4.5) and a straightforward integration by parts argument which
takes into account (4.1) and the support properties of x-a;(x, y) (when y is fixed)
gives that (4.4) is O((1+uly—=z)~") for any N. This clearly yields (4.3). 1

We now claim that this gives the LP(R*~*)—~L” (R") estimates in Lemma 2.5
for the operators

R NO) = [, 20 Diredno:0a,(y, 2)f(y) dy.

In fact, if we recall (2.7), then Lemma 4.1 with d=(n—1) implies that whenever
¥, is fixed
IR, ; Nyl ey = Cp= =D fll oo -

Since we are assuming that a; has compact support, this clearly gives (2.11) for
p=2. Inequality (2.11) is trivial for p=1, and, hence, by the M. Riesz
interpolation theorem, the L7—LP estimates in Lemma 2.5 must hold for all
1=p=2.

To finish the proof of Lemma 2.5, we need to prove (2.12). However, by inter-
polating with the trivial inequality for p=1, one sees it is enough to prove the
estimate for the other endpoint, which by duality, would follow from

(46) RS, flin-n = C2O 0 =000 fl iy, p = 2t D
But, if T, ;=R, jR” j» then
\R:; F13= [ T [T dx = T, flirae | f e
Consequently, (4.6) would be true if
(46) 1Ty f sy = CHODIH DI =000 ]y, p = 2 L)

Note that, unlike R, ;, the operators T, ; send functions of n variables to func-
tions of n variables. Also, notice that the kernel of T, ;1s

4.7) K, (x, 2)= f o 207D VGG a, (x, y)a; (2, ) dy-

The notation may be a bit confusing since now y=(yy, ..., ¥,~1) denotes a
vector in R*~'. Keeping this in mind, let us define an analytic family of kernels as
follows. Fix a real n€Cy (R) satisfying n(s)=1 for s near 0. Then, like in [11],
we define for [€C, the analytic family of distributions

K: i(x, 2)

F(C) f 2m—1)j pi2dul(Y (o, =z, N+ (x,,— 2,7, g . (x, )a (Z’ y)nz(yn)(yn)+1+c dy dy,,
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Then, if ]f i is the associated integral operator, we have
TS, =T if {=0.
Consequently, by invoking Stein’s analytic interpolation theorem as in [11], we see
that (4.6”) follows from:
(4.8) 1T flle = C279u7"| flls, Re(D =1

n—1

(4.9) |75 = C2O Y flh, Re(Q) =——

Let us start with the first inequality. To begin, note that (4.8) holds if and only
if the oscillatory integral operators

2—1ynj fR" eizfuw;(x, M+ X3, aj (x’ y) n (yn) (yn)-—i—-1+ Cf(ya yn) dy dyn

send L?—~L? with norm O~ /?y~"*) when Re({)=1. However, for such {,
(y)3**¢ is a uniformly bounded function, and so, by taking adjoints, we see that
we would be done if we could show that the operators

2 —1)/2)i f " e-iub@ N+l (2, Y)n(y,)g(z) dz

enjoy the same mapping properties. This last statement is true if and only if the
integral operators with kernel

4100  20-vi f o C2 VAN TVEN v a (%, y)aj(z, y)N* () dy Ay,

send L?—~L2 with norm O(2~7u~"). But, by (2.7) and (2.8), we can assume that
the nXn matrix

(g s 2+

is non-singular. Therefore, by repeating the proof of Lemma 4.1, one can check that
the kernel (4.10) is dominated by

(I+plx—z)=N(A+2p|x,— 2D~

for any N, if x and z are sufficiently close, as we may always assume. Finally, since
this means that the L! norm of the kernel (4.10) is 02~/ u~"), we get (4.8).
To prove the other inequality, (4.9), first recall that

& e 1
—fE)_f eunmm g (5,) (1,)3 1 d,
n—1

2

= O((1+2ulx, = y,)*=V7%) if Re(f) =—



A unique continuation theorem for second order parabolic differential operators 181

Consequently, since (4.9) holds if and only if K{ ;(x,z)=0(2""/), we would be
done if we could show that the original kernel in (4.7) satisfies the bounds

4.9) |K,, ;(x, 2)] = C(14+27p]x —z])= =73,

To prove this we of course have to use our non-degeneracy assumptions (2.7)
and (2.8) for the phase function . First of all, if (x—z)/|{x—z| is in a small fixed
neighborhood of (0, ..., 0, 1)éS"1, the second half of (2.8) implies that

det [ﬁ— W (x, y)—¥(z, y)]]l =c|x—z| some ¢=>0.

This together with the usual stationary phase estimates (see e.g. [5], [11]) gives (4.9")
in this case. On the other hand, we claim that (2.7) and the first half of (2.8) imply
that, if (x—z)/|x—z| is outside of a fixed neighborhood of (0, ...,0,1), then
K, ;=0((1+277pulx—z|)~") for any N, provided that the amplitudes a; vanish
outside of a sufficiently small neighborhood A4~ of the origin in R*XR"~', Under
these assumptions, we have that in 4]

V[ (e, ») =¥ (z, I = clx—z| some ¢ =0,

which clearly yields the claim by integration by parts. Thus, if the neighborhood
A in Lemma 2.5 is sufficiently small we have the desired result, and this completes
the proof.
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