Local regularity of solutions to nonlinear
Schrodinger equations

Per Sjolin

In P. Sjogren and P. Sjolin [4] we studied the regularity of solutions to the
Schrédinger equation idu/dt=— Pu+Vu in a half-space {(x, t)¢R*XR,}. Here
P is an elliptic self-adjoint constant-coefficient operator in x of order m=2 and
V=V(x) a real-valued potential. We assumed that V¢C=(R") and that D*V is
bounded for every a, where D=(D,, ..., D,) and D,= —id/0x;.

To state the results in [4] we introduce Sobolev spaces H,=H (R") and mixed
Sobolev spaces H, , for ¢=0,r=0. Weset H,,=H, ,(R"XR)=(G,® G)*L*(R"+?),
where G, and G, are Bessel kernels in R” and R, respectively.

For fc L*(R") we let u# denote the solution to the above Schrédinger equation
with u(x, 0)=f(x). We also set

A={pcC>(R"); there exists >0 such that
[D*¢(x)| = C,(1+]x])~Y2—¢ for every «}
Sf(x, ) = ()Y Du(x, 0
where g€/ and Y€Cy (R). The following result was proved in [4].
Theorem A. If ¢9=0, r=0, then

18fla,,, = Clfla,mn-sye> S€F>
where the constant C depends on ¢ and .

and

Theorem A expresses a local smoothing property for the Schrodinger equation.
Setting I=[0, T], T=0, we observe that it follows from the above estimate with
r=0 that

loulra; B,y uesyyu®en = Clf |,
for g=—(m—1)/2.
We shall here consider analogues of this estimate for solutions to the nonlinear
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Schrédinger equation
iou/ot = —Au+F(u), t=0, xcR™

Our results are based on the work of Kato [3] on this equation.

We introduce some notation. We let p satisfy 1<p<e for n=1,2 and 1<p=<
(n+2)/(m—2) for n=3. Then set r=4(p+1)/n(p—1) so that 2<r<oco. We write
0=(01, ..., 0,) where 9;=0/0x; and set 9*=(0,0;)} ;-

Bessel potential spaces are denoted LI, 1=g<c, s=0, so that Hssz, and
we set L?5=L%(I; LY(R"), 1 =s=c, 1=g=<co.

We assume FeC1(R?), F complex-valued, F(0)=0, and

() ID*F(0)] = C|¢|P-* for |¢|=1 and |of = 1.

Then assume f¢ H,(R").

Kato [3] has proved that there exists a T=0 such that the nonlinear Schré-
dinger equation
) iu=—Au+Fw), t=0, xcR",

has a unique solution ue¢C(I; H) with u(0)=f. Also dueL’(I; L»*'). Here 4
denotes the Laplace operator in the x-variable and F(u)(x, t)=F(u(x, t)). We shall
first prove the following theorem.

Theorem 1. Assume p and F are as above and let fc H{(R"), pc€sf. Let u denote
the above solution to the equation (2). Then the following holds.

In the case n=1 or 2 ou€L*(I; Hyy) for 1<p<eoo.

In the case 3=n=5 @ucL*(I; Hy,) for 1<p<p,, where

_ n+4+Vn*+24n+16
1= 2n )
In the case n=6 set
- 3
5(p) = p(B—n)+n+

2(p+1)

Jor 1=p=(n+1)/(n—1). Then oucL2(I; Hj,y) for 1<p<(n+1)/(n— 1).

We remark that 2<p, <3 and p,<(n+2)/(n—2) for 3=n=5 and also that
d(p) is a decreasing function of p on the interval [1, (n+1)/(n—1)] with §(1)=3/2
and 8((n+1)/(n—1))=1.

Kato has also proved that if #(0)=s¢ H, then the solution » of (2) belongs to
C(I; H;). We shall prove the following result.

Theorem 2. Assume that 1=n=7 and that p and F are as above. Also assume
that FEC2(R®) and that |D*F(Q)|=C|{|™*®-29 for |({|=1 and |a|=2. Assume
that feH, and @csf. Then the above solution u of (2) satisfies qué L3*(I; Hyp) if
T=0 is sufficiently small.
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We remark that in' the case n=3 Theorem 2 was essentially proved by
Constantin and Saut [2].

Following Kato-[3]. we introduce the following spaces:

Xy = E*=n [Pt~

X =C{; LHNELPHLT

X = L»=ALr+or

Xl — L2,1+L1+1/p,r’

Y= {veX; dvcX}

Y = {veX; 0veX}

Y = {veX’; dveX'}

Y = {veXy; dvEX,).
We also set
W = {veX; dveX, P*veX)},

W = {v€X; oveX, 0?vEX}
and
W = {vcX’; dveX’, *veX'}.

The norms in these spaces are defined in the obvious way (cf. [3]).
We shall need the following well-known estimates (Sobolev’s theorem).

Lemma. (i) If l<p<g<oc, s>0 and 1/q=1/p—S/n then

1fla=Clfles.
(i) If 1<p<oo, p=n/k and k=1 then

[flee = Cllfllep-

Choose Y<C;°(R?) so that Y =1 in a neighbourhood of the origin. Set Fy=y F
and F,=(1—y)F so that
F=F+F.
We shall now prove the theorems.

Proof of Theorem 1. According to the proof of Theorem I in [3], p. 120, we
have ucYcCY ie. uand ducX. It folows that

?3) ucC(I; LHYnLr+ir
and
4 dueC(Il; LHNLP+Lr,

According to Lemma 2.2in [3] u€Y implies F(u)€ Y’ ie. F(u)c X’ and d(F(u))eX".
The proof of Lemma 2.2 really shows that

(5) F(u) and O(F(u)cL*!
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and
(6) Fz(u) and a(&(“))EL1+l/p"l.
Now

_ itdr_ s * it-n)a
u(t) = e*f. zfoe F(u(z))dt
((3], Lemma 1.1). With ¢€s/ and s=1 we obtain

lou®dln, = loef |+ [ |loe =94 F(u(@)|u, dr-
Hence

louluany = Lot [ ([ lloee™ ™ FuG@)fs, i)' .
From Sjogren and Sj6lin [4] it follows that

loula; my = Clfla,_ ,/=+Cf 12CTI0)] "R
Since f€H, it follows that for 1<s=3/2

@ oueL*(I; H) if FQu)EL (I, Hs—l/2)'

We conclude from (5) that Fy(w)€L'(I; Hy_,;,) (assuming 1<s=3/2) and it re-
mains to consider F,(u). We shall use (6). We have

® @ .. = CIE@O e

where
n n

e T2
((11, p. 153), and hence
_ _ n(p=1)
e=z¢(p) = m

It follows from the conditions on p that O<e(p)<1 and hence F,(u)€L*(I; L?)
according to (6). We shall now estimate ||0(F;(#))||.x:. We write u=u,-+iu, where
u; real. If u is smooth the chain rule yields

©) 0(BG) = o

( )31 1+ (u)a Us.
Choose ¢y£Cy"(R") such that @,=0, [ @,dx=1. Set @,(x)=¢~"@y(x/e) and
Uy (8)= @1/ m*(u(t)), m=3,4,5, ..., where % denotes convolution in R". Then (9)
holds with u replaced by #,,.

For a.e. t€I we have (because of (3) and (4))

(10) u(EL2ALPYY and Ju(HeL*nLP+L,
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We fix a ¢ such that (10) holds. To prove (9) we shall prove that

11 E(u, (D) ~ B(u(®), m e,
and
(12) Oy ()01 (1) ~ 22 (w00, (1), o,

3x1 axl
in the sense of distributions in R". In proving (11) and (12) we write u and u,, instead
of u(¢) and u,,(¢).
It is clear that F,(u,)—~F,(u) a.e. in R" since u,—~u a.e. Also

|F(um)l = Clu,|? = C(Mu)”,

where Mu denotes the Hardy—Littlewood maximal function of u. Then
Mue L*+*(R") and hence (Mu)”¢ L}(B(0; R)) where B(0; R) denotes a ball in R”.
It is then clear that

S0,V el —E:(@) dx = 0, 1 <=,

according to Lebesgue’s theorem on dominated convergence (for every R=0) and
hence (11) follows. To prove (12) we observe that

oF; oF, oF,

3x12 (um)aj Up,1 = 3;?’(”m)(¢1/m*(aj ul)) - 3x12 (u)aj Uy
a.e. and

8172 = p-1 = 14

3_x1(um)ajum,1 = Cluml M(ajul) = C[M(lul-'_laul)] .

It then follows from (10) that [M(|u|+]0u)]?€ L*(B(0, R)) and (12) follows from an
application of Lebesgue’s theorem on dominated convergence as above. Hence (9) is
proved and it follows that

(13) P(E@)| = CluP~2{0ul.

Then define a by 2/(p+1)+1/a=1 so that a=(p+1)/(p—1). Holder’s inequality
yields

S PE@Edx=C [ [ut=21du?dx
= C(f, e ) (], ol )
Now (2p—2)a=2(p+1) and it follows that

(14) o(R@)|le = Clulg;tal0ul p41,

where the norms are taken over R” and we have written u instead of u(t). It follows
from (i) in the Lemma that

(15) lul2pse = C”“"L{’“
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if 1/2p+2)=1/(p+1)—1/n, which is equivalent to

Iy

(16) p=——1.

n
2
Now assume 3=n=5. Then (16) holds for n=3 and 4 and we may also assume

that it holds for n=5 by increasing p (since 5/2—1<p;). A combination of (14)
and (15) yields

a7 PE@). = Cluliye.

Hence

[ pE@)ld=C [ [ulfge dt

and it follows from (3) and (4) that d(F,(1))€ L*(I; L?) if p=r. The last inequality
is equivalent to

4 4
2 —lp——=
? [H_n)p n_o’

which is easily seen to hold for 1<p=p,. This completes the proof of Theorem 1 in
the case 3=n=5.

In the case n=1 or 2 we replace (15) by the inequality
(18) lull2pte = C"uﬂLf,
which holds since 1/(2p+2)=1/2—1/n according to the Lemma. We can then
replace (17) with
(Rl = Clulfy™ [l zes
and it follows from (3) and (4) that d(F,(w))c LY(I; L?).

It remains to study the case n=6. Because of (8) and (6) F,(u)e L*(I; H,_,),
where e=¢(p)=n(p—1)/2(p+1). According to (7) it then follows that

oue LA(I; Hypp )

if 1<3/2—e=3/2 i.e. 0=g<1/2 and this holds for p<(rn+1)/(n—1). It is easy to
see that 3/2—e(p)=4(p) and the proof of Theorem 1 is complete.

Proof of Theorem 2. We first assume that 1=r=5 and 2<p<e for n=1,2
and 2<p<(n+2)/(n—2) for 3=n=5 We set

Go(f) = f; =94 p(s) ds.

It then follows from Lemmas 1.2 and 2.1 in [3] that G is a bounded mapping from
W’ to WcW and that

(19 1Golw = Clolw
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with C independent of 7. We shall then prove that F maps W into W’. Therefore
assume that u€W i.e.

(20) u, ou, QPuc L>»= N LP+Lr,

It follows from Lemma 2.2 in [3] that F maps Y into Y’ and

@21 [F@y = C@+T 4ol D oly,

where a=n(1/2—1/(p+1)) so that O<a~<1. Thus

(22) E@ ]+ [PFE@)x = C@ +Tulf) luly

It remains to study ||9*(F @)|x-
Defining u;, u, and u,, as above we shall prove that

(23) &mumm_. (W&,ﬁ{az(@3m+aaa (9,1 0
°F
(o i+ )y

This follows from the chain rule if # is smooth and the general case follows from
an approximation argument of the type which led to (9). In fact, it is not hard to
see that for instance

Fun () > Fu()), m —<,

OF oF
—3}1—(%(’))3@; Uy, 1 () — o (u(®)0:0,u,(), m oo,

and
2F :F
?)xz (um(t))aiam,l(t)aj um,l(t) - g 2 (u(t))ai ul(t)aj U (t)a m — oo,
1 X1

in the sense of distributions in R” for a.e. 7. This can be proved using Lebesgue’s
theorem on dominated convergence and the fact that

u(®), du(?), Pu()c L: A Lr+!

for a.e. ¢. Similar convergence results hold for the other terms on the right-hand
side of (23). We omit the details.

From (23) we obtain
(24) P2 (F)| = CA+1ulP=)19%ul + C(1+[uP~%) ouf?

= C|0%u|+ Clul?~"10%u| + C|0ul®+ C|ulP~*|0u|* = A+ Ao+ A3+ 4,4.
We have
T

29 i = C [ ([, 10U dx)" dr = CT|0u] = = CTluly.
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Using Holder’s inequality we also obtain

/’Rn |4,J1 P dx = C (fR" || (P=D(@+1/P | g2y |1 +1/P dx]”’
= C(fRn [P+ dx)(P—l)/p (fR" |92u|P+1 dx)llp — C“ungpﬁl)(za—l)/p “32u“ (pp++11)/p’

where we have written A4, and u instead of A,(#) and u(z). We have 1/(p+1)>
1/2—1/n and it follows that
el pyr = Cllul
and
14al 141/, = Clulps110%ul pra = Clufa" [0%u] 4.

Invoking Hélder’s inequality we obtain
S Al yp dt = Cless sup [ul 7Y [ 10°ully 41 dt
= Clulp=> (f 102ullyra de) " T,

where g is defined by r’/r+1/g=1 so that g=(r—1)/(r—2). Hence
(26) | sl rerror = Clul§ | 0*uf Lo+ T = CTY =" Julfy .

To estimate 4; we observe that
[43ls = Cluli.

Then first assume p+1<4. According to the Lemma we have
Huly = Clou] g+

if 1/4=1/(p+1)—1/n ie. 4n=(p+1)(n+4). However, this inequality holds since
p>=2 and r=5. Hence

louls = C(|oulLp+2 + [Oul)
and this inequality obviously holds also for p+1>4. Thus

(27) 452 = C(”“Hi;’u + [9u]|3)
and
(28) |slae = C [ Jul g di+C [ loulidr

= C(f, luliges ) 7+ CTlully = CT"Jully + CTluf}y

where y=1--2/r.
We then have
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where wy=|ul+|0u|. It is clear that

29 Il Lo+1,= = Clluly
since L3cLP*'. We have

fR" AtUP dx = Cva- ubtldx
and

[Aall141/p = Cluolh 41
and it follows that

(30) g rormr = C( f o252 A1) = ClulfTV".

Combining (22), (25), (26), (28) and (30) we obtain

IF@)lw = CT luly + CT*~*|ulfy + CT" |ulfy + CT 7 [ulfy + CT |ullfy + CT*= " [ull .
It follows that there exists a number §, O<f <1, such that

(31) 1F@)lw = CT*(fulw +lul})
for 0<T<1.
We introduce an operator G, by setting

Gy f(1) = e™f.
It then follows from Lemma 2.1 in [3] that G, maps H, into W and

(32) 1Goflw = Clfln,
where C is independent of T.
Now fix feH, and set

(33) ®(v) = Gy f—iGF(v), vEW.
Combining (19) and (31) we obtain
(34) IGF®)w = CIF@)lw = CT*(Jofw +[v[f)-

Then set Br(W)={veW,; |vlp=R}. We choose R=>1 and v€Bg(W) and
then have

I2@lw = Clflg,+CT (ol +10l%) = C| f g, +CTPRE.
We choose R=>C|| fll, and then T so small that
Clflm+CT’R? < R.

It is then clear that & maps Biz(W) into Br(W). According to [3], p. 120, we
also have

IGF()—GFW)|x = C(T+T'"RP Y [v—wllx = dllv—wlx,
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where O<d<l, if v and weBR(W) and T is small. It is not hard to prove that
Bi (W) with the X-metric is a complete metric space and we have proved that & is
a contraction on this space. The contraction theorem then implies that ¢ has a
fixed point w€W and we have u=®(u)cW. It follows from Lemma 1.1 in [3]
that # is a solution to the Schrédinger equation (2) with #(0)=f.

We have to prove that @uc L*(I; Hy;;,) and arguing as in the proof of Theo-
rem 1 we see that it is sufficient to prove that F(u)c L*(I; H,).

The argument in the proof of Theorem 1 shows that F(ux) and d(F;(u))€ L?*
and to study d(F,(u)) we shall use (14). According to the Lemma we have

(35) [llpse = Cluf,z

if 1/2p+2)=1/2—2/n, which is equivalent to 4p+4=np. This inequality holds
since n=5 and we obtain

0Bl = Clulfi* 19ul -

Invoking the facts that u¢ L=(I; L2) and dué€ LP+"" we conclude that 0(F,(u))e L¥*.
It remains to prove that 9*(F(x))€ L**. As above we have

(36) 02(F(w)| = Av+ A, + A3+ Ay,
where

A; = C|d%u],

Ay = Clul|P~0%ul,

A3 = Claulza
and

Ay = ClulP~2|dul®.
1t is clear from (25) and (28) that 4, and A4; belong to L*»!. We have

2 —_ 2p-2192,,12
S 1 4elPdx = C [ 1ul?P=*[0%u]* dx
and the argument which gave (14) now gives

[4alls = Clul8rfa10%u) p1a-
Invoking (35) we obtain

14l = Cllulfy " 10%ul, 41

and using the facts that u€ L=(I; L?) and 0?u€L*+"" we conclude that A,cL*1,

It remains to study 4,. We may assume that 4,=C [u|P~2|0u|2y when y is the
characteristic function of the set where |u|>1. We first assume 1=n=3. We have
p+1=n and the Lemma yields

|0u] = Cl0ul ypor = Cluger.
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Hence we obtain
fR" Adx=C fm lul*=49ul*y dx = Cul g+ fm lu|22—%y dx.

The Lemma also implies [u]|..=C ||lu||rz (since 2>n/2) and setting g=max (2, 2p—4)
we get

S W g dx = [ Jultdx = C(lul+[u])* = C,.

It follows that

144l = C,Jullzges

and since uc L'(I; L2*Y) where r>2, we obtain A,€ L1,
In the case n=4 or 5weset 1/g;=1/(p+1)—1/n and since p+1<n we have
g, <. The Lemma yields
10u] gy = Cloul g+s
and
n(p+1) _ 3n

e i S

1 —
since n=35.
Defining s by 4/q,+1/s=1 we obtain

fnn A2dx = CfR" |u|2P=4|Qujty dx = C(f|u|(zp—4)sx dx]l/s (flaulqldx]ml

and
[4dl: = C ([ ul®P=y dx)* ul g e,

We have ucL'(I; L’z’“) where =2 and to prove that A4,€L*?' it is therefore
sufficient to prove that

(37) flu|>1 ‘ul(zp—ll)s dx = Cu

for a.e. t€I. We shall use the fact that ucL=(I; L%). In the case n=4 we have
1/2—2/n=0 and it follows from the Lemma that [u]l,=C]ullz: for every g with
2=g<eco. Hence (37) follows.

In the case n=5 we have 1/2—2/n=1/10 and it follows that u€I'®=. It is
therefore sufficient to prove that (2p—4)s=10. We have

_ n(p+1) _ 5(p+1)
(n+8p+4-3n  9p—11

and

_ S(+1)
2p—4)s = W(Zl"“)-

It is therefore sufficient to prove that (p+1)(p—2)=9—11, ie. (p—1)(p—9)=0,
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which is true since 2<p-<7/3. Hence Theorem 2 is proved in the case 1=n=$5
and p=2.

We shall then study the case 1=n=5, 1<p=2. Assume that F satisfies the
conditions in Theorem 2. Choose p, so that 2<p;<e for n=1,2 and 2<p,<
(n+2)/(n—2) for 3=n=5. Then F satisfies the conditions in Theorem 2 with p
replaced by p, . If f; ¢ and u are as in Theorem 2 the above argument therefore shows
that ouc LX(I; Hy,).

We shall then study the case n=6 or 7. We have l<p<(n+2)/(n—2) and
(n+2)/(n—2)=2 so that p<2. We shall modify the above argument in the case
1=n=5 and p=2.

We replace (24) with
(38) [02(F(w)| = Ay + 43+ 43,

where A4; are as above. We obtain (25) and (26) as above. In the proof of (28) we
need the inequality 4n=(p+1)(n+4). Since we may replace p with a larger number
1 as above it is sufficient to have

4n < ( :t; +1](n+4).
However this inequality holds since n=7.

We obtain (31) also in this case and the above argument gives a solution u€W
to the Schridinger equation (2). To prove that ¢@u¢L*(I; H;;) we then have to
prove that F(u)€ L*(I; H,). As above we have F(u)¢L*' and §(F,())€éL** and
to estimate 9(F,(u)) we shall use (14). As in the case 1=n=5 we can then apply
the inequality (35) if 4=(n—4)p. It is sufficient to have 4=(n—-4)n+2)/(n—2)
and this holds for n=6. In the case n=7 we replace (35) with

(39) ltl2pse = Clujpger,

which holds for 1/(2p+2)=1/(p+1)—2/7 ie. p=3/4. We obtain ||8(F2(u))||2§
C llull’ig“. Since u€L"(I; LE*') we conclude that d(F,(w))€L*' if p=r. How-
ever, in this case we have p<2 and r>2 and hence (F,(u))€ L**. It remains
to prove that 9*(F(u))¢L*»! and we shall use the estimate (38). The inequality
(25) can be applied to A4; and to estimate A, we can use (35) as above. In the proof
of (35) we need 4=(n—4)p which holds for n=6 since 4=n—4)(n+2)/(n—-2) in
this case.
In the case n=7 we replace (35) with (39) and obtain

[4slls = Clulltpen.

It then follows that 4,€L*' as in the above proof that 9(F,(u))€ L>1.
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To estimate A4, we use (28). In the proof of (28) we need the inequality 4n=
(p+1)(n+4) and it is sufficient to have

n+2 )
4n < [_11-——5+1 (n+4).

However, this inequality holds for n=6 or 7. The proof of Theorem 2 is complete.
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