Local regularity of solutions to nonlinear Schrödinger equations

Per Sjölin

In P. Sjögren and P. Sjölin [4] we studied the regularity of solutions to the Schrödinger equation $i\partial u/\partial t = -Pu + Vu$ in a half-space $\{(x, t) \in \mathbb{R}^n \times \mathbb{R}_+\}$. Here P is an elliptic self-adjoint constant-coefficient operator in x of order $m \ge 2$ and V = V(x) a real-valued potential. We assumed that $V \in C^{\infty}(\mathbb{R}^n)$ and that $D^{\alpha}V$ is bounded for every α , where $D = (D_1, ..., D_n)$ and $D_k = -i\partial/\partial x_k$.

To state the results in [4] we introduce Sobolev spaces $H_s = H_s(\mathbf{R}^n)$ and mixed Sobolev spaces $H_{\varrho,r}$ for $\varrho \ge 0$, $r \ge 0$. We set $H_{\varrho,r} = H_{\varrho,r}(\mathbf{R}^n \times \mathbf{R}) = (G_\varrho \otimes G_r) * L^2(\mathbf{R}^{n+1})$, where G_ϱ and G_r are Bessel kernels in \mathbf{R}^n and \mathbf{R} , respectively.

For $f \in L^2(\mathbb{R}^n)$ we let u denote the solution to the above Schrödinger equation with u(x, 0) = f(x). We also set

$$\mathscr{A} = \{ \varphi \in C^{\infty}(\mathbb{R}^n); \text{ there exists } \varepsilon > 0 \text{ such that}$$
$$|D^{\alpha}\varphi(x)| \leq C_{\alpha}(1+|x|)^{-1/2-\varepsilon} \text{ for every } \alpha \}$$

and

$$Sf(x, t) = \varphi(x)\psi(t)u(x, t)$$

where $\varphi \in \mathcal{A}$ and $\psi \in C_0^{\infty}(\mathbb{R})$. The following result was proved in [4].

Theorem A. If $\varrho \ge 0$, $r \ge 0$, then

$$||Sf||_{H_{a,r}} \leq C||f||_{H_{a+mr-(m-1)/2}}, f \in \mathcal{S},$$

where the constant C depends on φ and ψ .

Theorem A expresses a local smoothing property for the Schrödinger equation. Setting I=[0, T], T>0, we observe that it follows from the above estimate with r=0 that

$$\|\varphi u\|_{L^2(I; H_{\varrho+(m-1)/2}(\mathbb{R}^n))} \le C \|f\|_{H_{\varrho}}$$

for $\varrho \ge -(m-1)/2$.

We shall here consider analogues of this estimate for solutions to the nonlinear

Schrödinger equation

$$i\partial u/\partial t = -\Delta u + F(u), \quad t \ge 0, \quad x \in \mathbb{R}^n.$$

Our results are based on the work of Kato [3] on this equation.

We introduce some notation. We let p satisfy 1 for <math>n = 1, 2 and $1 for <math>n \ge 3$. Then set r = 4(p+1)/n(p-1) so that $2 < r < \infty$. We write $\partial = (\partial_1, ..., \partial_n)$ where $\partial_j = \partial/\partial x_j$ and set $\partial^2 = (\partial_i \partial_j)_{i,j=1}^n$.

Bessel potential spaces are denoted L_s^q , $1 \le q < \infty$, $s \ge 0$, so that $H_s = L_s^2$, and we set $L^{q,s} = L^s(I; L^q(\mathbb{R}^n))$, $1 \le s \le \infty$, $1 \le q < \infty$.

We assume $F \in C^1(\mathbb{R}^2)$, F complex-valued, F(0) = 0, and

(1)
$$|D^{\alpha}F(\zeta)| \leq C|\zeta|^{p-1} \text{ for } |\zeta| \geq 1 \text{ and } |\alpha| = 1.$$

Then assume $f \in H_1(\mathbb{R}^n)$.

Kato [3] has proved that there exists a T>0 such that the nonlinear Schrödinger equation

(2)
$$i\partial_t u = -\Delta u + F(u), \quad t \ge 0, \quad x \in \mathbb{R}^n,$$

has a unique solution $u \in C(I; H_1)$ with u(0) = f. Also $\partial u \in L^r(I; L^{p+1})$. Here Δ denotes the Laplace operator in the x-variable and F(u)(x, t) = F(u(x, t)). We shall first prove the following theorem.

Theorem 1. Assume p and F are as above and let $f \in H_1(\mathbb{R}^n)$, $\varphi \in \mathcal{A}$. Let u denote the above solution to the equation (2). Then the following holds.

In the case n=1 or 2 $\varphi u \in L^2(I; H_{3/2})$ for 1 .

In the case $3 \le n \le 5$ $\varphi u \in L^2(I; H_{3/2})$ for 1 , where

$$p_1 = \frac{n+4+\sqrt{n^2+24n+16}}{2n}$$
.

In the case $n \ge 6$ set

$$\delta(p) = \frac{p(3-n)+n+3}{2(p+1)}$$

for $1 \le p \le (n+1)/(n-1)$. Then $\varphi u \in L^2(I; H_{\delta(p)})$ for 1 .

We remark that $2 < p_1 < 3$ and $p_1 < (n+2)/(n-2)$ for $3 \le n \le 5$ and also that $\delta(p)$ is a decreasing function of p on the interval [1, (n+1)/(n-1)] with $\delta(1) = 3/2$ and $\delta((n+1)/(n-1)) = 1$.

Kato has also proved that if $u(0)=f\in H_2$ then the solution u of (2) belongs to $C(I; H_2)$. We shall prove the following result.

Theorem 2. Assume that $1 \le n \le 7$ and that p and F are as above. Also assume that $F \in C^2(\mathbb{R}^2)$ and that $|D^{\alpha}F(\zeta)| \le C|\zeta|^{\max(p-2,0)}$ for $|\zeta| \ge 1$ and $|\alpha| = 2$. Assume that $f \in H_2$ and $\varphi \in \mathcal{A}$. Then the above solution u of (2) satisfies $\varphi u \in L^2(I; H_{5/2})$ if T > 0 is sufficiently small.

We remark that in the case $n \le 3$ Theorem 2 was essentially proved by Constantin and Saut [2].

Following Kato [3] we introduce the following spaces:

$$\begin{split} X_0 &= L^{2,\infty} \cap L^{p+1,\infty} \\ \overline{X} &= C(I; \ L^2) \cap L^{p+1,r} \\ X &= L^{2,\infty} \cap L^{p+1,r} \\ X' &= L^{2,1} + L^{1+1/p,r'} \\ \overline{Y} &= \{v \in \overline{X}; \ \partial v \in \overline{X}\} \\ Y &= \{v \in X; \ \partial v \in X'\} \\ Y' &= \{v \in X'; \ \partial v \in X'\} \\ Y_0 &= \{v \in X_0; \ \partial v \in X_0\}. \end{split}$$

We also set

$$\overline{W} = \{v \in \overline{X}; \ \partial v \in \overline{X}, \ \partial^2 v \in \overline{X}\},$$
 $W = \{v \in X; \ \partial v \in X, \ \partial^2 v \in X\}$
 $W' = \{v \in X'; \ \partial v \in X', \ \partial^2 v \in X'\}.$

and

The norms in these spaces are defined in the obvious way (cf. [3]).

We shall need the following well-known estimates (Sobolev's theorem).

Lemma. (i) If
$$1 , $s > 0$ and $1/q \ge 1/p - S/n$ then $||f||_q \le C ||f||_{L^p}$.$$

(ii) If 1 , <math>p > n/k and $k \ge 1$ then

$$||f||_{\infty} \leq C||f||_{L^p_L}.$$

Choose $\psi \in C_0^{\infty}(\mathbb{R}^2)$ so that $\psi = 1$ in a neighbourhood of the origin. Set $F_1 = \psi F$ and $F_2 = (1 - \psi)F$ so that

$$F=F_1+F_2.$$

We shall now prove the theorems.

Proof of Theorem 1. According to the proof of Theorem I in [3], p. 120, we have $u \in \overline{Y} \subset Y$ i.e. u and $\partial u \in \overline{X}$. It follows that

$$(3) u \in C(I; L^2) \cap L^{p+1,r}$$

and

(4)
$$\partial u \in C(I; L^2) \cap L^{p+1,r}.$$

According to Lemma 2.2 in [3] $u \in Y$ implies $F(u) \in Y'$ i.e. $F(u) \in X'$ and $\partial (F(u)) \in X'$. The proof of Lemma 2.2 really shows that

(5)
$$F_1(u) \text{ and } \partial (F_1(u)) \in L^{2.1}$$

and

(6)
$$F_2(u) \text{ and } \partial(F_2(u)) \in L^{1+1/p,r'}.$$

Now

$$u(t) = e^{it\Delta} f - i \int_0^t e^{i(t-\tau)\Delta} F(u(\tau)) d\tau$$

([3], Lemma 1.1). With $\varphi \in \mathcal{A}$ and $s \ge 1$ we obtain

$$\|\varphi u(t)\|_{H_s} \leq \|\varphi e^{it\Delta} f\|_{H_s} + \int_0^t \|\varphi e^{i(t-\tau)\Delta} F(u(\tau))\|_{H_s} d\tau.$$

Hence

$$\|\varphi u\|_{L^{2}(I; H_{s})} \leq \|\varphi e^{it\Delta} f\|_{L^{2}(I; H_{s})} + \int_{0}^{T} \left(\int_{0}^{T} \|\varphi e^{it\Delta} e^{-i\tau\Delta} F(u(\tau))\|_{H_{s}}^{2} dt \right)^{1/2} d\tau.$$

From Sjögren and Sjölin [4] it follows that

$$\|\varphi u\|_{L^2(I; H_s)} \le C \|f\|_{H_{s-1/2}} + C \int_I \|F(u(t))\|_{H_{s-1/2}} dt.$$

Since $f \in H_1$ it follows that for $1 < s \le 3/2$

(7)
$$\varphi u \in L^2(I; H_s) \text{ if } F(u) \in L^1(I; H_{s-1/2}).$$

We conclude from (5) that $F_1(u) \in L^1(I; H_{s-1/2})$ (assuming $1 < s \le 3/2$) and it remains to consider $F_2(u)$. We shall use (6). We have

(8)
$$||F_2(u(t))||_{H_{1-r}} \leq C ||F_2(u(t))||_{L^{1+1/p}_{1}},$$

where

$$1 - \frac{n}{1 + 1/p} = 1 - \varepsilon - \frac{n}{2}$$

([1], p. 153), and hence

$$\varepsilon = \varepsilon(p) = \frac{n(p-1)}{2(p+1)}.$$

It follows from the conditions on p that $0 < \varepsilon(p) < 1$ and hence $F_2(u) \in L^1(I; L^2)$ according to (6). We shall now estimate $\|\partial (F_2(u))\|_{L^{2,1}}$. We write $u = u_1 + iu_2$ where u_i real. If u is smooth the chain rule yields

(9)
$$\partial_j(F_2(u)) = \frac{\partial F_2}{\partial x_1}(u)\partial_j u_1 + \frac{\partial F_2}{\partial x_2}(u)\partial_j u_2.$$

Choose $\varphi_0 \in C_0^{\infty}(\mathbb{R}^n)$ such that $\varphi_0 \ge 0$, $\int \varphi_0 dx = 1$. Set $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi_0(x/\varepsilon)$ and $u_m(t) = \varphi_{1/m} * (u(t))$, m = 3, 4, 5, ..., where * denotes convolution in \mathbb{R}^n . Then (9) holds with u replaced by u_m .

For a.e. $t \in I$ we have (because of (3) and (4))

(10)
$$u(t) \in L^2 \cap L^{p+1} \quad \text{and} \quad \partial u(t) \in L^2 \cap L^{p+1}.$$

We fix a t such that (10) holds. To prove (9) we shall prove that

(11)
$$F_2(u_m(t)) \to F_2(u(t)), \quad m \to \infty,$$

and

(12)
$$\frac{\partial F_2}{\partial x_1} \left(u_m(t) \right) \partial_j u_{m,1}(t) \to \frac{\partial F_2}{\partial x_1} \left(u(t) \right) \partial_j u_1(t), \quad m \to \infty,$$

in the sense of distributions in \mathbb{R}^n . In proving (11) and (12) we write u and u_m instead of u(t) and $u_m(t)$.

It is clear that $F_2(u_m) \rightarrow F_2(u)$ a.e. in \mathbb{R}^n since $u_m \rightarrow u$ a.e. Also

$$|F_2(u_m)| \leq C |u_m|^p \leq C(Mu)^p,$$

where Mu denotes the Hardy—Littlewood maximal function of u. Then $Mu \in L^{p+1}(\mathbb{R}^n)$ and hence $(Mu)^p \in L^1(B(0; R))$ where B(0; R) denotes a ball in \mathbb{R}^n . It is then clear that

$$\int_{B(0;r)} |F_2(u_m) - F_2(u)| \, dx \to 0, \quad m \to \infty,$$

according to Lebesgue's theorem on dominated convergence (for every R>0) and hence (11) follows. To prove (12) we observe that

$$\frac{\partial F_2}{\partial x_1}(u_m)\partial_j u_{m,1} = \frac{\partial F_2}{\partial x_1}(u_m)(\varphi_{1/m}*(\partial_j u_1)) \to \frac{\partial F_2}{\partial x_1}(u)\partial_j u_1$$

a.e. and

$$\left|\frac{\partial F_2}{\partial x_1}(u_m)\partial_j u_{m,1}\right| \leq C|u_m|^{p-1}M(\partial_j u_1) \leq C[M(|u|+|\partial u|)]^p.$$

It then follows from (10) that $[M(|u|+|\partial u|)]^p \in L^1(B(0,R))$ and (12) follows from an application of Lebesgue's theorem on dominated convergence as above. Hence (9) is proved and it follows that

$$\left|\partial \left(F_2(u)\right)\right| \leq C|u|^{p-1}|\partial u|.$$

Then define α by $2/(p+1)+1/\alpha=1$ so that $\alpha=(p+1)/(p-1)$. Hölder's inequality yields

$$\int_{\mathbb{R}^n} |\partial (F_2(u))|^2 dx \le C \int_{\mathbb{R}^n} |u|^{2p-2} |\partial u|^2 dx$$

$$\le C \left(\int_{\mathbb{R}^n} |u|^{(2p-2)\alpha} dx \right)^{1/\alpha} \left(\int_{\mathbb{R}^n} |\partial u|^{p+1} dx \right)^{2/(p+1)}.$$

Now $(2p-2)\alpha=2(p+1)$ and it follows that

(14)
$$\|\partial(F_2(u))\|_2 \leq C \|u\|_{2p+2}^{p-1} \|\partial u\|_{p+1},$$

where the norms are taken over \mathbb{R}^n and we have written u instead of u(t). It follows from (i) in the Lemma that

$$||u||_{2p+2} \le C ||u||_{L_1^{p+1}}$$

if $1/(2p+2) \ge 1/(p+1)-1/n$, which is equivalent to

$$(16) p \ge \frac{n}{2} - 1.$$

Now assume $3 \le n \le 5$. Then (16) holds for n=3 and 4 and we may also assume that it holds for n=5 by increasing p (since $5/2-1 < p_1$). A combination of (14) and (15) yields

(17)
$$\|\partial (F_2(u))\|_2 \leq C \|u\|_{L^p_1+1}^p.$$

Hence

$$\int_{I} ||\partial (F_{2}(u))||_{2} dt \leq C \int_{I} ||u||_{L_{1}^{p}+1}^{p} dt$$

and it follows from (3) and (4) that $\partial(F_2(u))\in L^1(I;L^2)$ if $p\leq r$. The last inequality is equivalent to

$$p^2 - \left(1 + \frac{4}{n}\right)p - \frac{4}{n} \le 0,$$

which is easily seen to hold for $1 . This completes the proof of Theorem 1 in the case <math>3 \le n \le 5$.

In the case n=1 or 2 we replace (15) by the inequality

$$||u||_{2p+2} \leq C||u||_{L^2_*},$$

which holds since $1/(2p+2) \ge 1/2 - 1/n$ according to the Lemma. We can then replace (17) with

$$\|\partial(F_2(u))\|_2 \leq C \|u\|_{L_1^{p-1}}^{p-1} \|u\|_{L_1^{p+1}}$$

and it follows from (3) and (4) that $\partial(F_2(u)) \in L^1(I; L^2)$.

It remains to study the case $n \ge 6$. Because of (8) and (6) $F_2(u) \in L^1(I; H_{1-\epsilon})$, where $\varepsilon = \varepsilon(p) = n(p-1)/2(p+1)$. According to (7) it then follows that

$$\varphi u \in L^2(I; H_{3/2-\varepsilon})$$

if $1 < 3/2 - \varepsilon \le 3/2$ i.e. $0 \le \varepsilon < 1/2$ and this holds for p < (n+1)/(n-1). It is easy to see that $3/2 - \varepsilon(p) = \delta(p)$ and the proof of Theorem 1 is complete.

Proof of Theorem 2. We first assume that $1 \le n \le 5$ and 2 for <math>n=1, 2 and $2 for <math>3 \le n \le 5$. We set

$$Gv(t) = \int_0^t e^{i(t-s)A} v(s) ds.$$

It then follows from Lemmas 1.2 and 2.1 in [3] that G is a bounded mapping from W' to $\overline{W} \subset W$ and that

(19)
$$||Gv||_{W} \leq C ||v||_{W'}$$

with C independent of T. We shall then prove that F maps W into W'. Therefore assume that $u \in W$ i.e.

(20)
$$u, \partial u, \partial^2 u \in L^{2, \infty} \cap L^{p+1, r}.$$

It follows from Lemma 2.2 in [3] that F maps Y into Y' and

$$||F(v)||_{Y'} \leq C(T+T^{1-\alpha}||v||_{Y}^{p-1})||v||_{Y},$$

where $\alpha = n(1/2 - 1/(p+1))$ so that $0 < \alpha < 1$. Thus

(22)
$$||F(u)||_{X'} + ||\partial(F(u))||_{X'} \leq C(T + T^{1-\alpha} ||u||_{W}^{p-1}) ||u||_{W},$$

It remains to study $\|\partial^2(F(u))\|_{X'}$.

Defining u_1 , u_2 and u_m as above we shall prove that

(23)
$$\partial_{i}\partial_{j}(F(u)) = \frac{\partial F}{\partial x_{1}}(u)\partial_{i}\partial_{j}u_{1} + \left(\frac{\partial^{2}F}{\partial x_{1}^{2}}(u)\partial_{i}u_{1} + \frac{\partial^{2}F}{\partial x_{1}\partial x_{2}}(u)\partial_{i}u_{2}\right)\partial_{j}u_{1} + \frac{\partial F}{\partial x_{2}}(u)\partial_{i}\partial_{j}u_{2} + \left(\frac{\partial^{2}F}{\partial x_{1}\partial x_{2}}(u)\partial_{i}u_{1} + \frac{\partial^{2}F}{\partial x_{2}^{2}}(u)\partial_{i}u_{2}\right)\partial_{j}u_{2}.$$

This follows from the chain rule if u is smooth and the general case follows from an approximation argument of the type which led to (9). In fact, it is not hard to see that for instance

$$F(u_m(t)) \to F(u(t)), \quad m \to \infty,$$

$$\frac{\partial F}{\partial x_1} \big(u_m(t) \big) \partial_i \partial_j u_{m,1}(t) \to \frac{\partial F}{\partial x_1} \big(u(t) \big) \partial_i \partial_j u_1(t), \quad m \to \infty,$$

and

$$\frac{\partial^2 F}{\partial x_1^2} \big(u_m(t) \big) \partial_i \partial_{m,1}(t) \partial_j u_{m,1}(t) \to \frac{\partial^2 F}{\partial x_1^2} \big(u(t) \big) \partial_i u_1(t) \partial_j u_1(t), \quad m \to \infty,$$

in the sense of distributions in \mathbb{R}^n for a.e. t. This can be proved using Lebesgue's theorem on dominated convergence and the fact that

$$u(t), \partial u(t), \partial^2 u(t) \in L^2 \cap L^{p+1}$$

for a.e. t. Similar convergence results hold for the other terms on the right-hand side of (23). We omit the details.

From (23) we obtain

$$\begin{aligned} \left| \partial^2 (F(u)) \right| &\leq C(1 + |u|^{p-1}) |\partial^2 u| + C(1 + |u|^{p-2}) |\partial u|^2 \\ &= C|\partial^2 u| + C|u|^{p-1} |\partial^2 u| + C|\partial u|^2 + C|u|^{p-2} |\partial u|^2 = A_1 + A_2 + A_3 + A_4. \end{aligned}$$

We have

Using Hölder's inequality we also obtain

$$\begin{split} &\int_{\mathbb{R}^n} |A_2|^{1+1/p} \, dx = C \Big(\int_{\mathbb{R}^n} |u|^{(p-1)(p+1)/p} |\partial^2 u|^{1+1/p} \, dx \Big)^{1/p} \\ & \leq C \Big(\int_{\mathbb{R}^n} |u|^{p+1} \, dx \Big)^{(p-1)/p} \Big(\int_{\mathbb{R}^n} |\partial^2 u|^{p+1} \, dx \Big)^{1/p} = C \|u\|_{p+1}^{(p+1)(p-1)/p} \|\partial^2 u\|_{p+1}^{(p+1)/p}, \end{split}$$

where we have written A_2 and u instead of $A_2(t)$ and u(t). We have 1/(p+1) > 1/2-1/n and it follows that

$$||u||_{p+1} \leq C||u||_{L^2_1}$$

and

$$||A_2||_{1+1/p} \leq C ||u||_{p+1}^{p-1} ||\partial^2 u||_{p+1} \leq C ||u||_{L_1^2}^{p-1} ||\partial^2 u||_{p+1}.$$

Invoking Hölder's inequality we obtain

$$\begin{split} \int_{I} \|A_{2}\|_{1+1/p}^{r'} \, dt &\leq C(\text{ess} \sup_{I} \|u\|_{L_{1}^{s}}^{p-1})^{r'} \int_{I} \|\partial^{2} u\|_{p+1}^{r'} \, dt \\ &\leq C \|u\|_{W}^{(p-1)r'} \left(\int_{I} \|\partial^{2} u\|_{p+1}^{r} \, dt \right)^{r'/r} T^{1/q}, \end{split}$$

where q is defined by r'/r+1/q=1 so that q=(r-1)/(r-2). Hence

$$\|A_2\|_{L^{1+1/p,r'}} \le C \|u\|_{W}^{p-1} \|\partial^2 u\|_{L^{p+1,r}} T^{1/qr'} \le C T^{1-2/r} \|u\|_{W}^{p}.$$

To estimate A_3 we observe that

$$||A_3||_2 = C ||\partial u||_4^2.$$

Then first assume p+1<4. According to the Lemma we have

$$\|\partial u\|_4 \le C \|\partial u\|_{L^{p+1}}$$

if $1/4 \ge 1/(p+1) - 1/n$ i.e. $4n \le (p+1)(n+4)$. However, this inequality holds since p > 2 and $n \le 5$. Hence

$$\|\partial u\|_4 \leq C(\|\partial u\|_{L^p_t+1} + \|\partial u\|_2)$$

and this inequality obviously holds also for p+1>4. Thus

(27)
$$||A_3||_2 \le C(||u||_{L_p^{p+1}}^2 + ||\partial u||_2^2)$$

and

(28)
$$||A_3||_{L^{2,1}} \le C \int_I ||u||_{L^p_x+1}^2 dt + C \int_I ||\partial u||_2^2 dt$$

$$\le C \left(\int_I ||u||_{L^p_x+1}^r dt \right)^{2/r} T^{\gamma} + CT ||u||_W^2 \le CT^{\gamma} ||u||_W^2 + CT ||u||_W^2,$$

where $\gamma = 1 - 2/r$.

We then have

$$A_4 \leq Cu_0^p$$

where $u_0 = |u| + |\partial u|$. It is clear that

$$||u_0||_{L^{p+1},\infty} \leq C ||u||_W$$

since $L_1^2 \subset L^{p+1}$. We have

$$\int_{\mathbb{R}^n} A_4^{1+1/p} \, dx \le C \int_{\mathbb{R}^n} u_0^{p+1} \, dx$$

and

$$||A_4||_{1+1/p} \leq C ||u_0||_{p+1}^p$$

and it follows that

(30)
$$||A_4||_{L^{1+1/p,r'}} \leq C \left(\int_I ||u_0||_{p+1}^{pr'} dt \right)^{1/r'} \leq C ||u||_W^p T^{1/r'}.$$

Combining (22), (25), (26), (28) and (30) we obtain

$$||F(u)||_{W'} \leq CT ||u||_{W} + CT^{1-\alpha} ||u||_{W}^{p} + CT^{\gamma} ||u||_{W}^{p} + CT^{\gamma} ||u||_{W}^{2} + CT ||u||_{W}^{2} + CT^{1-1/r} ||u||_{W}^{p}.$$

It follows that there exists a number β , $0 < \beta < 1$, such that

(31)
$$||F(u)||_{W'} \leq CT^{\beta}(||u||_{W} + ||u||_{W}^{p})$$

for 0 < T < 1.

We introduce an operator G_0 by setting

$$G_0 f(t) = e^{it\Delta} f.$$

It then follows from Lemma 2.1 in [3] that G_0 maps H_2 into \overline{W} and

$$||G_0f||_W \le C||f||_{H_2}$$

where C is independent of T.

Now fix $f \in H_2$ and set

(33)
$$\Phi(v) = G_0 f - iGF(v), \quad v \in W.$$

Combining (19) and (31) we obtain

(34)
$$||GF(v)||_{W} \leq C||F(v)||_{W'} \leq CT^{\beta}(||v||_{W} + ||v||_{W}^{p}).$$

Then set $B_R(W) = \{v \in W; \|v\|_W \le R\}$. We choose R > 1 and $v \in B_R(W)$ and then have

$$\|\Phi(v)\|_{W} \leq C\|f\|_{H_{2}} + CT^{\beta}(\|v\|_{W} + \|v\|_{W}^{p}) \leq C\|f\|_{H_{2}} + CT^{\beta}R^{p}.$$

We choose $R > C \|f\|_{H_{\bullet}}$ and then T so small that

$$C\|f\|_{H_2}+CT^{\beta}R^p< R.$$

It is then clear that Φ maps $B_R(W)$ into $B_R(W)$. According to [3], p. 120, we also have

$$||GF(v)-GF(w)||_X \le C(T+T^{1-\alpha}R^{p-1})||v-w||_X \le d||v-w||_X$$

where 0 < d < 1, if v and $w \in B_R(W)$ and T is small. It is not hard to prove that $B_R(W)$ with the X-metric is a complete metric space and we have proved that Φ is a contraction on this space. The contraction theorem then implies that Φ has a fixed point $u \in W$ and we have $u = \Phi(u) \in \overline{W}$. It follows from Lemma 1.1 in [3] that u is a solution to the Schrödinger equation (2) with u(0) = f.

We have to prove that $\varphi u \in L^2(I; H_{5/2})$ and arguing as in the proof of Theorem 1 we see that it is sufficient to prove that $F(u) \in L^1(I; H_2)$.

The argument in the proof of Theorem 1 shows that F(u) and $\partial(F_1(u)) \in L^{2,1}$ and to study $\partial(F_2(u))$ we shall use (14). According to the Lemma we have

$$||u||_{2p+2} \leq C||u||_{L^2_a}$$

if $1/(2p+2) \ge 1/2 - 2/n$, which is equivalent to $4p+4 \ge np$. This inequality holds since $n \le 5$ and we obtain

$$\|\partial(F_2(u))\|_2 \leq C \|u\|_{L^2}^{p-1} \|\partial u\|_{p+1}.$$

Invoking the facts that $u \in L^{\infty}(I; L_2^2)$ and $\partial u \in L^{p+1,r}$ we conclude that $\partial (F_2(u)) \in L^{2,1}$. It remains to prove that $\partial^2 (F(u)) \in L^{2,1}$. As above we have

(36)
$$|\partial^2(F(u))| \leq A_1 + A_2 + A_3 + A_4,$$

where

$$A_1 = C |\partial^2 u|,$$

$$A_2 = C |u|^{p-1} |\partial^2 u|,$$

$$A_3 = C |\partial u|^2,$$

$$A_4 = C |u|^{p-2} |\partial u|^2.$$

and

It is clear from (25) and (28) that A_1 and A_3 belong to $L^{2,1}$. We have

$$\int_{\mathbb{R}^n} |A_2|^2 \, dx = C \int_{\mathbb{R}^n} |u|^{2p-2} |\partial^2 u|^2 \, dx$$

and the argument which gave (14) now gives

$$||A_2||_2 \le C ||u||_{p+2}^{p-1} ||\partial^2 u||_{p+1}.$$

Invoking (35) we obtain

$$||A_2||_2 \le C ||u||_{L_2^2}^{p-1} ||\partial^2 u||_{p+1}$$

and using the facts that $u \in L^{\infty}(I; L_2^2)$ and $\partial^2 u \in L^{p+1,r}$ we conclude that $A_2 \in L^{2,1}$. It remains to study A_4 . We may assume that $A_4 = C|u|^{p-2}|\partial u|^2\chi$ when χ is the characteristic function of the set where |u| > 1. We first assume $1 \le n \le 3$. We have p+1 > n and the Lemma yields

$$\|\partial u\|_{\infty} \leq C \|\partial u\|_{L_1^{p+1}} \leq C \|u\|_{L_2^{p+1}}.$$

Hence we obtain

$$\int_{\mathbb{R}^n} A_4^2 dx = C \int_{\mathbb{R}^n} |u|^{2p-4} |\partial u|^4 \chi dx \le C \|u\|_{L_2^{p+1}}^4 \int_{\mathbb{R}^n} |u|^{2p-4} \chi dx.$$

The Lemma also implies $||u||_{\infty} \le C ||u||_{L_2^2}$ (since 2 > n/2) and setting $q = \max(2, 2p-4)$ we get

$$\int_{\mathbb{R}^n} |u|^{2p-4} \chi \, dx \le \int_{\mathbb{R}^n} |u|^q \, dx \le C(\|u\|_2 + \|u\|_{\infty})^q = C_u.$$

It follows that

$$||A_4||_2 \leq C_u ||u||_{L_x^{p+1}}^2$$

and since $u \in L^r(I; L_2^{p+1})$ where r>2, we obtain $A_4 \in L^{2,1}$.

In the case n=4 or 5 we set $1/q_1=1/(p+1)-1/n$ and since p+1 < n we have $q_1 < \infty$. The Lemma yields

$$\|\partial u\|_{q_1} \leq C \|\partial u\|_{L_1^{p+1}}$$

and

$$q_1 = \frac{n(p+1)}{n-p-1} > \frac{3n}{n-3} > 4$$

since $n \le 5$.

Defining s by $4/q_1+1/s=1$ we obtain

$$\int_{\mathbb{R}^n} A_4^2 dx = C \int_{\mathbb{R}^n} |u|^{2p-4} |\partial u|^4 \chi dx \le C \left(\int |u|^{(2p-4)s} \chi dx \right)^{1/s} \left(\int |\partial u|^{q_1} dx \right)^{4/q_1}$$

and

$$||A_4||_2 \le C \left(\int |u|^{(2p-4)s} \chi \, dx \right)^{1/2s} ||u||_{L^{p+1}_x}^2.$$

We have $u \in L^r(I; L_2^{p+1})$ where r>2 and to prove that $A_4 \in L^{2,1}$ it is therefore sufficient to prove that

(37)
$$\int_{|u|>1} |u|^{(2p-4)s} dx \leq C_u$$

for a.e. $t \in I$. We shall use the fact that $u \in L^{\infty}(I; L_2^2)$. In the case n=4 we have 1/2-2/n=0 and it follows from the Lemma that $||u||_q \le C ||u||_{L_2^2}$ for every q with $2 \le q < \infty$. Hence (37) follows.

In the case n=5 we have 1/2-2/n=1/10 and it follows that $u \in L^{10,\infty}$. It is therefore sufficient to prove that $(2p-4)s \le 10$. We have

$$s = \frac{n(p+1)}{(n+4)p+4-3n} = \frac{5(p+1)}{9p-11}$$

and

$$(2p-4)s = \frac{5(p+1)}{9p-11}(2p-4).$$

It is therefore sufficient to prove that $(p+1)(p-2) \le 9p-11$, i.e. $(p-1)(p-9) \le 0$,

which is true since $2 . Hence Theorem 2 is proved in the case <math>1 \le n \le 5$ and p > 2.

We shall then study the case $1 \le n \le 5$, 1 . Assume that <math>F satisfies the conditions in Theorem 2. Choose p_1 so that $2 < p_1 < \infty$ for n=1, 2 and $2 < p_1 < (n+2)/(n-2)$ for $3 \le n \le 5$. Then F satisfies the conditions in Theorem 2 with p replaced by p_1 . If f, φ and u are as in Theorem 2 the above argument therefore shows that $\varphi u \in L^2(I; H_{5/2})$.

We shall then study the case n=6 or 7. We have $1 and <math>(n+2)/(n-2) \le 2$ so that p < 2. We shall modify the above argument in the case $1 \le n \le 5$ and p > 2.

We replace (24) with

$$\left|\partial^2(F(u))\right| \leq A_1 + A_2 + A_3,$$

where A_i are as above. We obtain (25) and (26) as above. In the proof of (28) we need the inequality $4n \le (p+1)(n+4)$. Since we may replace p with a larger number p_1 as above it is sufficient to have

$$4n < \left(\frac{n+2}{n-2} + 1\right)(n+4).$$

However this inequality holds since $n \le 7$.

We obtain (31) also in this case and the above argument gives a solution $u \in W$ to the Schrödinger equation (2). To prove that $\varphi u \in L^2(I; H_{5/2})$ we then have to prove that $F(u) \in L^1(I; H_2)$. As above we have $F(u) \in L^{2,1}$ and $\partial(F_1(u)) \in L^{2,1}$ and to estimate $\partial(F_2(u))$ we shall use (14). As in the case $1 \le n \le 5$ we can then apply the inequality (35) if $4 \ge (n-4)p$. It is sufficient to have $4 \ge (n-4)(n+2)/(n-2)$ and this holds for n=6. In the case n=7 we replace (35) with

$$||u||_{2p+2} \leq C||u||_{L_{s}^{p+1}},$$

which holds for $1/(2p+2) \ge 1/(p+1)-2/7$ i.e. $p \ge 3/4$. We obtain $\|\partial(F_2(u))\|_2 \le C \|u\|_{L_2^{p+1}}^p$. Since $u \in L^r(I; L_2^{p+1})$ we conclude that $\partial(F_2(u)) \in L^{2,1}$ if $p \le r$. However, in this case we have p < 2 and r > 2 and hence $\partial(F_2(u)) \in L^{2,1}$. It remains to prove that $\partial^2(F(u)) \in L^{2,1}$ and we shall use the estimate (38). The inequality (25) can be applied to A_1 and to estimate A_2 we can use (35) as above. In the proof of (35) we need $4 \ge (n-4)p$ which holds for n=6 since 4 = (n-4)(n+2)/(n-2) in this case.

In the case n=7 we replace (35) with (39) and obtain

$$||A_2||_2 \leq C ||u||_{L_2^{p+1}}^p.$$

It then follows that $A_2 \in L^{2,1}$ as in the above proof that $\partial (F_2(u)) \in L^{2,1}$.

To estimate A_3 we use (28). In the proof of (28) we need the inequality $4n \le (p+1)(n+4)$ and it is sufficient to have

$$4n < \left(\frac{n+2}{n-2}+1\right)(n+4).$$

However, this inequality holds for n=6 or 7. The proof of Theorem 2 is complete.

References

- Bergh, J. and Löfström, J., Interpolation spaces, Grundlehren der mathematischen Wissenschaften 223, Springer-Verlag, 1976.
- CONSTANTIN, P. and SAUT, J. C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), 413—439.
- KATO, T., On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique théorique, 46 (1987), 113—129.
- 4. SJÖGREN, P. and SJÖLIN, P., Local regularity of solutions to time-dependent Schrödinger equations with smooth potentials, *Preprint 1988:15*, *Dept. of Math., Chalmers Univ. of Technology and Univ. of Göteborg.*

Received May 30, 1989

P. Sjölin Uppsala University Department of Mathematics Thunbergsvägen 3 S-752 38 Uppsala Sweden