On Vervaat’s sup vague topology

Tommy Norberg

1. Introduction and preliminaries

The topological space S is assumed to be locally compact, which means that
whenever s€G, where GSS is open, there is a compact K and an open G’ such
that scG'SKSG. Write 4 and & for the collections of open and compact sub-
sets of S, resp. Let I denote some compact interval on the extended real line [—eo, ],
e.g. I=[—eo, 0]. The topology on I is the usual one generated by the sets In[—<e, x)
and In(y,<] for x, y€L

We say a function g:S-1I is upper semicontinuous provided {s€S:g(s)<x}€¥
for all x€I. Itis a nice exercise to show that this holds if, and only if, the hypograph

hypo (g) = {(x, )EIXS: x = g(s)}

is closed in the product topology of IXS (cf. Vervaat (1988)). Clearly two distinct
functions cannot have the same hypograph. Write & (S, I) for the family of upper
semicontinuous functions from S to I.

Vervaat’s sup vague topology on % (S, I) is the coarsest topology containing
the two families

(1a) {ge# (S.1): g(s) < x for all s€K}, Kex, xcI}
and
(1b) {{geF (S, I): g(s) > x for some scG}, Ge¥, xclj.

Endowed with the sup vague topology, #(S,I) is a compact Hausdorfl space.
Our aim with this short note is to give a nonstandard proof of this fact. Its main
step is a characterization of the standard part map.

Standard proofs can be found in Vervaat (1988), Gerritse (1985) and, for Haus-
dorff S, Norberg (1986).

We continue with some remarks on topology. We write B° for the interior of
BCS. Moreover, B is called saturated if B equals its saturation, sat (B), which by
definition is the intersection of the open neighborhoods of B.
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Clearly KES is compact if, and only if, sat (K) is so. Thus, if s€G€¥, then
SEK°SKEG for some saturated Keof. Similarly, if g€ # (S, I) satisfies g(s)<x
for all seKe A, then g(s)<x for all s¢sat(K). Thus, in (1a) we may replace A~
by the collection 2 of compact and saturated subsets of S. It is easily seen that 2
and X coincide if S is Hausdorff.

We conclude this introduction with some remarks on our nonstandard setting.
Let N={1,2,...}. We work in a polysaturated enlargement of a superstructure con-
taining SUIUN (see Lindstrem’s article p. 83 in Cutland (1988) or Stroyan & Bayod
(1986), Section 0.4). The associated monomorphism satisfying the transfer principle
is denoted *. The members of SUIUN are treated as individuals in the super-
structure, so we write a instead of *a when a€ SUIUN,

The article by Lindstrem in Cutland (1988) is a short introduction to non-
standard analysis. Our main reference to nonstandard analysis is however Hurd &
Loeb (1985), but see also Albeverio, Fenstad, Heegh-Krohn & Lindstrem (1986)
and Stroyan & Bayod (1986).

Assume, momentarily, that S is an arbitrary topological space. The set

m(s) =n{*G: s€Ge%} S *S

is called the monad of s€S and we say that ¢¢*S is near standard if tcm (s) for
some s€S.

Note that S is a Hausdorff space if, and only if, monads of distinct points in
S are disjoint and that KC S is compact if, and only if, every #€*K is near stand-
ard. The latter result is Abraham Robinson’s nonstandard characterization of com-
pactness. (For proofs, see Hurd & Loeb (1985), Proposition III.1.12 and Theo-
rem II1.2.1.)

2. The compactness theorem

Let he*#(S,I). Then, by the transfer principle, A is a mapping from *§
into *I. We let £ be the unique member of # (S, I) satisfying the equivalence
(2) x = h(s) o Jyem (x) 3tem(s): y = h(P)

for xc€I and s€S.
To see that 4 exists and is unique, write

H={(y,)e*IX*S: y = h()}
and note that the set

H = {(x, s)EIXS: m(x)Xm(s)nH = 0}
is closed in the product topology on IXS (Hurd & Loeb (1985), Theorem I11.1.22).
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If (x,9)€H and y=x, then (y,s)cH as the reader easily shows. Thus A is the
hypograph of a unique upper semicontinuous function from § into I.

2.1. Example. Assume he¢*# (R,I) is increasing (R denotes the real line
(—oo,)). Then £ is increasing and right continuous.

To see this, let s<t¢ and take x=4#(s). Then, for some %€m (x) and §€m (s),
F=h(5). If u€m (), then u=>§ so we must have X=h(§)=h(u). But then x=A(¢).
Thus £ is increasing. Now right continuity follows because £ is upper semicontinuous.

Fix s€R and let

x=S8 —lIiJrsn h(?).

Recall from Stroyan & Bayod (1986), p. 170, that, this means that x¢R and that,
for some u€m (s), we have h(v)ém(x) whenever v€m (s), v=u. It is clear that
x=h(s) since h(u)e¢m (x) and u€m (s). If x<y=h(s), then F=h(5) for some
Fém(y) and §€m(s). But then h(§)dm (x), so we must have §<uwu. This implies
h(§)=h(u). Thus j=h(u) and we reach the contradiction h(u)¢m (x). We con-
clude that

h(s) = S—Ij}srl h(H, seR. O

Our first result characterizes the monad of g€ # (S, I).

2.2. Theorem. Let he*% (S,1) and gcF (S,I). Then h€m (g) if, and only
if, h=g.

Our proof of Theorem 2.2 uses the following lemma, whose proof is a routine
exercise. Thus omitted.

2.3. Lemma. Assume h€¢m(g). Let Kc2, GEY and xcI. Then the following
two implications hold true:

(3a) Vs€K: g(s) < x = Vs€*K: h(s) < x,
and
{3b) Is€G: gls) > x = As€*G: h(s) > x.

Conversely, hém (g) if these implications are true for all choices of K2, GE%
and x€l.

Proof of Theorem 2.2. Firstly, suppose hem (g). Fix s¢S. Take x€I, x<g(s),
and let (G;) be the filter of open neighborhoods of s. By (3b),

{t6*G;: x < (D} = 0
for all i. By polysaturation,

N, {t€*Gi: x < ()} = 0.
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Thus x<h(t) for some ?¢(),*G;=m(s). But then x=h(s). Next, take x¢I,
x>g(s). Choose K¢2, ycI such that s€¢K° and x=y=g(t) for all €K. By
(3a), y=h(t) for all t¢*K and in particular for all 7ém (s)S*K°S*K. But z>y
for all zeém (x). Hence x>/#(s). This shows that h=g.

Conversely, suppose h=g. Take xcI, g(s)<x for all scKc2. Fix r¢*K.
Then tcm(s) for some scK. Now hA(s)<x so h(u)<y for all u€m(s) and
y€m (x). In particular A(#)<x. Thus (3a) holds true. To see (3b), let h(¢)=x
for all 1¢*G, where Ge¥. Fix s€G. If x<y, then h(u)<z for all uem (s5)&*G
and zE¢m (). Hence /i(s)<y, and h(s)=x follows. This shows (3b). By Lemma 3.2,
hem(g). O

Now the main result of the paper is easy to prove.
2.4. Theorem. The sup vague topology on % (S,I) is compact and Hausdorff.

Proof. It follows from Theorem 2.2 that if hc*# (S, I) then hem (h), ie.,
every member of *# (S, I) is near standard. By Robinson’s theorem, & (S, 1) is
compact. Theorem 2.2 also shows that if A¢m (g,)rm (g,), where gy, £2:€% (S, 1),
then g,=h=g,. Hence F(S,I) is a Hausdorff space. [J

2.5. Remarks. Endow the collection & of closed subsets of S with Fell’s topology
(¢f. Fell (1962)). This topology has the sets
{FEF: FNK=0, FnGy #9, ..., FnG, # 0},
Kea, Gy, ...,G.E9,
as open base. Let He*#, Then

A= {s¢S: m@G)nH = B} F.

(Hurd & Loeb (1985), Theorem II1.1.22). Let F€%. Then Hem (F) if, and only
if, A=F. To see this, either proceed as in the proof of Theorem 2.2 or identify F¢ %
with its characteristic function 1% (S,I) and use Theorem 2.2. We may con-
clude, as in Theorem 2.4, the well-known fact proved by Fell (1962) that & is a
compact Hausdorff space. [

2.6. Remarks. Write %(S,I) for the collection of ail lower semicontinuous
functions from § into I. If hc*%(S,I), we write k for the unique lower semicon-
tinuous function from S into I satisfying

h(s) =x o Jyemx)3tem(s): h(H =y
for xcI and s€S.
Endow %(S,I) with the topology generated by all sets of the form

{2€%(S, I): g(s) > x for all s€K},
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where K€2 and x€I, and all sets of the form
{g€%(S, I): g(s) < x for some scG},

where G€% and x€I. Thisis the analogue (or dual) of Vervaat’s sup vague topology
on F(S,I).

Assume he*%(S,I) and let g€%(S, I). Then h€m (g), if, and only if, h=g.
This follows by duality from Theorem 2.2. [

2.7. Remarks. Let €(S, DN=F (S, Nn%(S,I). We endow (S, I) — the set
of continuous functions from § into 7 — with the coarsest topology containing the
relative topologies from both F(S,I) and 4(S,I). Let gc%€(S, I). Write m, (g),
m, (g) and m, (g) for the monads of g relative to the topologies of #(S, I), #(S,I)
and %(S,I), resp. Then m,(g)=m, (g)nm, (g). It follows, e.g., that he*€ (S, I)
is near standard if, and only if, A=A.

In the case of a Hausdorff S, it is now easily seen that h€m, (g), if, and only
if, h()¢m (g(s)) whenever r€m(s). By Keisler (1984), Proposition 1.17, m, (g)
is the monad of g taken with respect to the familiar compact-open topology gen-
erated by all sets of the form

{g€%(S, I): g(K) S U},

where Ke# and UEI is open. Two distinct topologies cannot have the same
monads (in a polysaturated enlargement, see Cutland (1988), p. 86). So the topology
we have equipped €(S,I) with is the compact-open topology. Also this result is
known. Refer to Vervaat (1981). O
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