Closed ideals in the bidisc algebra

Hakan Hedenmalm?!

0.

Let D be the open unit disc in C, T=90D the unit circle, and let D*=D X... XD
be the n-dimensional unit polydisc. Let H*(D") be the algebra of bounded analytic
functions on D", endowed with the uniform norm on D", The polydisc algebra is the
space A(D")=C(D")nH>=(D"), also given the uniform norm on D". The spaces
A(D) and 4(D?) are known as the disc and bidisc algebras, respectively.

Let us introduce a weak-star topology on H = (D). The space L= (T") is the dual
space of LY(T"), so it has a weak-star topology. One can think of H* (D") as a sub-
space of L™ (T") via radial limits, and as such it is weak-star closed. We define the
weak-star topology on H=(D") by saying that a set Uc H*=(D") is open if there
is a weak-star open set V< L= (T") with U=VnH>(D").

For a collection & of functions in A(D"), associate the zero set

Z(F) = {zeD™: f(z) =0 for all feF},
and if EcD”, introduce the closed ideal
SJ(E)={fecA(D"): f=0 on E}.

In this paper, we will try to describe the closed ideals of the bidisc algebra.
The result we obtain is the following. Every closed ideal I in the bidisc algebra 4(D?)
has the form

I=4(Z()NT)
N{fecAD?: f(a, -)eu,H>(D) and f(-,x)cv,H=(D) for all acT}
N [I ]w* ’
where u, and v, are inner functions in H= (D) for each «¢T, and [I],. is the weak-
star closure of I in H*=(D?). It is easy to see that [I],. is a (weak-star closed) ideal
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in H*(D?). Unfortunately, there is no concrete description of the weak-star closed
in H*=(D?).

The above description of the closed ideals in 4(D?) can be generalized to A(D").
The result is the following, which we mention without proof. For a¢D and 1=j=n,
let #;,: A(D*)—~A(D"-") be the restriction operator

'%j,af(zla IS Zn) =f(213 rees Zj—-ls a£, Zj+ls sty Zn)’ fEA(Dn)'
Every closed ideal in 4(D") has the form
I={fcAD"): R;,fc®;,1 for all 1 =j=n and «€T}N[I],»,

where [I],« is the weak-star closure of I in H™(D"). Also, #; ,I is a closed ideal in
A(D" ) forall 1=j=n and a€T. For the unit ball in C", the author has obtained
a corresponding result, with much less effort [Hed].

Let 4 be arc length measure on T, normalized so that 1(T)=1, and set i,=
AX...XA (n-times), which is the n-dimensional volume measure on T", normalized
so that 4,(T")=1. Let M(T") be the space of finite Borel measures on T". We may
regard M(T") as the dual space of C(T") via the dual action

fHuy= [ fdu, feC(™), peM(T).

We will write fu for the Borel measure with d( fu)=fdu.
A representing measure for 0 is a Borel probability measure on T such that

fO) = [ fde, fedD).

We will denote by M,(T") the convex set of representing measures for the origin.
A measure g€ M,(T") is a Jensen measure if

log|f(O)| = [ log|fide, feA(D).

A band of measures % on T"is a closed subspace of M (T") such thatif uc &, ve M(T"),
and v is absolutely continuous with respect to u, then vc4.
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We shall need some results on measures that annihilate 4(D?). Let

(1) £, be the band generated by the representing measures at 0;

(2) 4, be the band generated by measures u€ A(D?)* such that u is carried by a
set EXT, where E is a Borel set with arc length zero;

(3) £, be the band generated by measures p¢ A(D?)* such that u is carried by a set
TXE, where E is a Borel set with arc length zero;

(4) %, be the band of measures singular to all the measures in %,, %,, and %,.

Remark 2.1. The band %, consists of those measures which are absolutely
continuous with respect to some representing measure for 0.

The following result was obtained by Brian Cole in the early 1970s (see [Gam,
pp. 143—146]), [Bek]).

Theorem 2.2. Every measure pcM(T?) has a unique decomposition

U= Uyt ps+ s

where o€ By, WMEB), By and ucB,. If pc AL, then p,=0, and
Los M1 € A(DDL; moreover,

A (21, 22) = g(21, 25) do(zy) dA(z,),

Aps(z1, 25) = h(zy, 25) dA(z;) di(zy),
where ¢ and © are two Borel probability measures on T carried by a set of zero arc
length, gc L'(oX2), h¢ LM(AX7), and g(a, -), h(-, 0)c HL(T) for every a€T. Here,

H{(T) is the restriction to T of the functions in H}(D)={ fe H'(D): f(0)=0}, where
H(D) is the usual Hardy space on the disc.

We shall need the following related lemma.

Lemma 2.3. 4 measure g-(o6X1), where a is a singular Borel probability meas-
ure on T, and gcL'(oX1), annihilates A(D?) if and only if g(a, -)EHI(T) for
o-almost all ac'T.

Proof. If g(a, -)€Hy(T), then if fc A(D?), we have
sz f(z1, ) g(21, 23) do (zy) dif(zy) = le f(z1, 25)8 (21, 25) dA(25) do(z) = O,

so that g:(6XA4) 1 A(D?. I, on the other hand, g-(6x1)1 A(D?, we have for
integers n, m=0,

S 22788 (21, 22) di(z0) do(z) = O,
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from which we can conclude, since ¢ is singular to 4, that
[, ez, 2)di(z) =0

for g-almost every z,€T. It follows that g(z;, -)€H (T) for o-almost every
z,€T.

A sequence {f;};2, of functions in 4(D?) is said to be a Montel sequence if
sup; || fill<e= and f;(z)=~0 as j—-e for every z¢D? Following G. M. Henkin
[Hen], we say that a measure p€M(T2) is an A-measure if

szfjdu—»O as j oo

for every Montel sequence {f;};.,. Observe that this definition does not agree
with that of Bekken [Bek]. Also observe that the 4-measures form a closed sub-
space of M(T?). The proof of the following theorem is identical to that of Valskif’s
theorem in {Rud, p. 187].

Theorem 2.4. If uc M (T2 is an A-measure, then there exist vé A(D)* and
gelM(Ay)=LY(T?) such that u=v-+gi,.
The following result is a reformulation of Corollary 3.3 in [Bek].

Theorem 2.5. For a measure pc€ M(T?), the following are equivalent:

(a) upE€B,, thatis, pis absolutely continuous with respect to some representing meas-
ure for 0,

(b) every ve M(T?) with v<pu is an A-measure.

In other words, 4, is the biggest band contained within the set of A-measures.
On the other hand, the smallest band containing the 4-measures is %, B, S B,.
We now state our main result.

Theorem 2.6. Every closed ideal I in A(D?) has the form
I=S(Z(I)nT?)
N{fcAD?: f(a, -)eu,H*(D) and f(-,x)€v,H*(D) for all 2T}
N[,
where u,, v, U {0} for each a€T, and[I],« is the weak-star closure of I in H™ (D?).
Here, U denotes the collection of inner functions in H= (D).

Proof. For a€T, let I(x, -) and I(-, ) denote the ideals { f(«, -)€ A(D): f€I}
and {f(-,a): fEI}, respectively; observe that these ideals are closed in 4(D)
because {a} XD and DX{«} are peak sets for the bidisc algebra. Consider the
weak-star closure of I(a, -) in H= (D). By the well-known description of the weak-
star closed ideals in H* (D) [Gar, p. 85}, it has the form u, H* (D), where #, is either
an inner function in H* (D), or vanishes identically on D. This determines the func-
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tions u, up to unimodular constant factors. These are the #,’s mentioned in the
theorem. The functions v, are defined similarly. Observe that with this choice of u,
and v, we have
IcH(Z(HNT)
N{feAD?: f(x, -)eu,H*(D) and f(-, x)€v,H*(D) for all ucT}
NI,
so what remains to be shown is the reverse inclusion.

Let @€ 4(D?* annihilate I. By the Hahn—Banach theorem, there is a meas-
ure p€ M(T?) such that

(froy={fimy= [, fdu, feAD;
then p i I. If we can show that ’
pLF(Z(HNT?)
N{fedd?: fla, -)€u,H(D) and f(., x)€v,H=(D) for all a€T}
N[ ]yx,

the assertion will follow, again by the Hahn—Banach theorem. By Theorem 2.2,

H= potpy+ s+ g,

where po€ %y, € B, , 1€ B,, and pcAB.. Weintend to show that p, 1 [1],+ N A(D?),
s LF(Z() AT,

ul_l_{fe.f(Z(I)nTz): Sfa, - )eu,H*(D) for all «€T},
and

e L{FEF(Z()NTY): f(-,0)€v,H=(D) for all acT}.

Let f€I be arbitrary. Then ful A(D?), and
Ju = fuo+ S +fus+uE Bo D B D B, D B,

is the unique decomposition of fiu. By Theorem 2.2, fu,=0, and fu;€ A(D?)* for
J=0,1,2. It follows that u, is supported on Z(f)nT? and by varying f€I, we
realize that p is supported on Z(I)nT?, so that p, 1 S (Z(I)r\Tz); we also get
p; LI for j=0,1,2. We will now show that p, 1 [I],«n A(D?. By Theorem 2.5,
U is an A-measure, so that by Theorem 2.4, pu,=v+@l,, where v€ A(D?)* and
@€cIt(Ay). Since py1 I, we also have @i, 1 I. Now @i, [I],s, because @l; is
in the predual of L™(T?), so we get o L [I],+N A(D?). It remains for us to show
that y, annihilates

.= {f€L(Z(D)nT?): f(o, - )Eu,H=(D) for all z€T};

the verification process for the related assertion concerning p, is identical. The meas-
ure 4, has a decomposition p, =pé+ 8, where il is supported on the set Z(I)nT?2,
and [p§|(Z(I)NT?)=0. Since x annihilates F(Z(I)nT2) and g, 1.1, we obtain
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u; L1 If we can show that uf 1 I,, the assertion u, 1 I, follows. In what follows,
we shall write 4, instead of yf. Just as before, let f€I be arbitrary. By Theorem 2.2,
Jfuy, has the form

Az, 25) dpy (21, Z,) = gf(Zu Zp) do'f(Zl) di(zp),

where o, is a Borel probability measure on T carried by a (Borel) set E, of arc length
0,g,6LY (o, xX4), and g,(a, -)EH,(T) for all «€T; we use subscripts on ¢ and
g to indicate that they may depend on f. We will now show that we can choose &
independently of f. Since A(D?) is a separable Banach space, the closed subspace I
is separable as well, which means that I has a countable dense subset #. Let {e;}, 5
be a sequence such that &,>0 for all fc# and J,.s¢,=1. Moreover, let ¢
be the Borel probability measure 6= z&,06,, which is carried by the Borel set
Uses#E,;, which has arc length 0. Then fi,<oXA if f€&, so that

fz, 22 A (zy, 2) = Gf(zl , 22) do(21) dA(z,),
where G €L'(aX1). We conclude that

talrziry = (Glf) (@ X Dlrenzen

for every f€#, so that in particular, G,/f¢ LN(T?™\Z(f),0X4), and two quotients
Gfl/ 'fy and sz/ 'fas where fi,f,€6%, are equal o¢XA-almost everywhere on
TN(Z(f)VZ(f). Since F was countable, this means that we can find a Borel
measurable function ¢ on T2, which is 0 on Z(F)NT*(Z(F)=Z(I) because F is

dense in I), and for every f€F, equals G/f oXxA-almost everywhere on TXNZ( f).
From the estimate

fT’\Z(f) IGlf1d(ex2) = |m|(T?)

and Lebesgue’s monotone convergence theorem, it follows that &€ L*(s X 4); in fact,

Hdillu(au) = |#1|(T2\Z(I)) = || (T?).
Moreover, since [i,[(Z(I)nT?)=0, we have

ﬂl = Q(O’Xl).
If felI, we get

S = ®f (e XA (DM,

so by Lemma 2.3, it follows that (&f)(x, -)€HZ(T) for c-almost every a«€T.
Since PcL'(eXA), we have ®(a, -)€L'(1) for g-almost all acT. Let acT be
such that &(x, -)¢LY(1) and (®f)(x, -)EH)(T) for every f¢F; observe that
the collection of such « has full s-measure. Then &(x, )AL f(a, - )H=(T) for every
ife#, where H=(T) is the restriction to T of the space H(D), and since & was
dense in I and @(a, - )ELY(T), we find that &(x, -)A annihilates the weak-star
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closure u, H*(T) of I(x, -) in H(T), so that

uu¢(°‘a : )GH(}(T)
Now let €¢I, be arbitrary. Since (o, -)€u, H”(T), we have

@ (2, -)P(a, - )€ Hy(T),
and because this happens for o-almost every a€T, Lemma 2.3 says that
o = (pP) (6 X )€ A(DHL.

In particular, u, | ¢, and the assertion u, 1 I, follows. The proof is complete.
Let us make the following observation. It has some implications concerning the
choice of #,’s and v,’s in Theorem 2.6.

Proposition 2.7. Let fc A(D?), and assume f(a, -)cuH= (D) for all «€E,
where u is an inner function in H=(D), and E is a subset of T. If A(E)=0, then
Sla, YeuH=(D) jor all acT.

Proof. Let pucM(T) be such that uluH=(D)nA(D), and introduce the
function F,: D—~C defined by the relation

E@) = (f@, ), ), a€D.
Now because fc A(D?), it is easy to see that F,€ A(D). By assumption, F,=0 on
E, and by continuity on E, and since A(E)=0, we may conclude that F,=0 on
all of D. If we vary p and apply the Hahn—Banach theorem, the assertion follows.
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