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Introduction

We will prove that there exists a proper holomorphic map from BY (N=2),
the unit ball of C¥, to BV*! that cannot be extended in a C™ way to an open non-
empty subset of the boundary. This map can be extended to a continuous map from
BY to BN*1,

E. Low[16] and F. Forstneri¢ [10] found such a map from BY (N=2) to
BM when M>>2N. Josip Globevnik [12] proved that for any N=1 there exists
My>2N so that if EcbhBY is an interpolation set for A(BY), M=M,, and
f: E-~bBM is continuous, then there exists a continuous extension F: BY--BM
which is a proper holomorphic map from BY to B™. He showed that f can be chosen
so that F(bBY)=bB™,

In the second and third section we will prove this result (for N=2) with M;=
N+1. This will give a positive answer to an open question by Globevnik [12].

A proper holomorphic map can not lower the dimension (Rudin [18], 15.1.3)
and when f: B¥—BY is a proper holomorphic map, then Alexander [1] proved
that fis an inner automorphism of B and therefore (see [18],2.2.5) f can be extended
holomorphically to RBY for some R=1. So if f: BN-BM is a “bad” proper
holomorphic map (which means a map that cannot be extended holomorphically
past an open non empty part of the boundary) then M=N. In the above men-
tioned examples M is always very big relative to N. So the question remained if
there exists a bad proper holomorphic from BY to B¥*1,

When f, g: BN-~BM are proper holomorphic maps they are said to be equiv-
alent if there exist @cAut (BY), Y€ Aut (BM) such that Yofop=g.

If f: BY~B"*! is a proper holomorphic map and f€C3(B") then Webster [21]
proved that when N=3 fis equivalent to z—(z,0) (for z€B") and when N=2
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Faran [7] proved that f is equivalent to one of the following maps:
@ z-(z0)
(i) z - (21, 2123, (25)?)
(i) z - ((z,)? 2Y2z, 25, (22)%)
(iv) z = ((z2), 3Y22,2,, (25)°).

Cima and Suffridge [3] showed that the Webster and Faran results hold under
the weaker assumption that f¢C2%(B¥UG) where G is a nonempty, relatively open
subset of bBY.

In a recent paper [4] Cima and Suffridge proved the Faran result using com-
pletely elementary means. Our paper shows that there exists a proper holomorphic
map from B?* to B?* which is not equivalent to one of the above mentioned four
maps and a proper holomorphic map from BY¥ to B¥*! (N=3) which is not equiv-
alent to a linear map.

A classification of all polynomial proper holomorphic maps between balls was
done in J. D’Angelo [6]. He also gave examples of polynomial proper holomorphic
maps between B? and B* which are not equivalent to monomial maps [5].

A proper holomorphic map from a ball to a polydisc (in finite dimensional
complex spaces) was first discovered by E. Lew who proved [16] that if DccC¥
(N=2) is a strongly pseudoconvex domain with a smooth boundary then there
exists M>2N so that there exists a proper holomorphic map from D to 4™ (the
unit polydisc in CM).

Earlier it was proved that there is no proper holomorphic map from 4" to BM
or from B" to A" for any M, N=2 (sece [18]).

So the question remained if there exists a proper holomorphic map from BY
to AN*1. A positive answer to this question in the case N=2 was given by Berit
Stensenes [19]. This paper uses methods and ideas from her construction. I would
like to thank her for describing in detail the ideas of her construction of proper
holomorphic maps from a strongly pseudoconvex domain in C2 to 43, I also thank
J. Chaumat and A.-M. Chollet for helpful discussions during their visit to the Institut
Mittag-Leffler.

It should be noted that all the above mentioned constructions (including this
work) of irregular proper holomorphic maps are based on ideas that were originated
by Hakim—Sibony [13] and E. Low [1l7] in the construction of an inner function
in the unit ball of C¥ (N=2).

In Sections I and 2 of our paper the fundamental construction lemmas (Lemma 1
and Lemma 2) are proved for dimension N=2 which is the relatively simple case.
In Section 3 an additional tool is developed (Lemma 3) to allow generalization
of the results obtained in Sections 1, 2 to dimension N=2,
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Section 1

Theorem 1. Let D=B", ¢=0, KCD compact and f: bD—~B ' a continuous
map, | f1=0. Then there exists amap g: D—~CN¥** continuous in D and holomorphic
in D so that for all zcbD | f(2)+g(2)|=1 and for all zeK, |g(z)|<e.

The proof of Theorem 1 shows that when a domain D admits a solution of
0 in the L™ norm then a construction of a map described in Theorem 1 depends
only on the local behaviour of local peak functions on D (see Sublemma 1 and proof
of Lemma 1). Our proof is almost elementary, the only non elementary result that
is used is the L™ solution of 9 in B". The proof of Theorem 1 clearly holds when
the target ball is B, for any M=N.

Using Theorem 1 we prove:

Theorem 2. There exists a continuous map F: BY —B"*' which is holomorphic
in BY such that F(bBY)SbBN+' and there is no nonempty open subset G of bB" such
that F extends to a C® map on BYUG. So F is a proper holomorphic map from BY
to BN*1 that does not have a C? extension to any open subset of bBY.

Proof of Theorem 2. Tt follows from [3] that if F: BY--B¥*! jis a proper
holomorphic map and there exists a nonempty open subset GCbBY such that F
extends to a C2 map on B¥UG then F is rational, and so by Theorem 2 in the
same paper, F takes affine hyperplanes of C" into affine hyperplanes of C¥*1. So we
look for a proper holomorphic map, F: B¥—~B¥*1, which does not take affine
hyperplanes into affine hyperplanes.

Define for z=(z,, ..., zy)€CV:

f(Z) = (2N)_1(1+Zla 1+(Zl)2’ 1+(Zl)3’ Tety 1+(ZI)N+1)'

Let wy, Wy, ..., wy1€C, where O<|w;|<1/2 and w;=w; for i%j (1=i,j=N+1).
It is clear that:

Det (f(wy, 0)—f(0), f(ws, 0)—f(0), ..., f(Wy11, 0)—f(0)) = O
(1) Let &=0 be so that for any vy, ..., vy,€2eB¥+1
Det(f(wn 0)—f(0)+v1, f(we, 0)—f(0)+wv,, ..., f(WN+la O)_f(0)+vN+1) # 0.
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Theorem 1 implies that there exists g: BY -~CN*! continuous and holomorphic
in BY so that for all z€bB", | f(z2)+g(z)|=1 and for all z£(1/2)BY, |g(z)|<e. If
F=f+g then (1) implies that

Det (F(wy, 0)— F(0), F(wy, 0)— F(0), ..., F(Wy 11, 0)— F(0)) = 0.

So F(4x{0}) is not contained in any affine hyperplane of CV*! and since
Ax{0} is a subset of a hyperplane of C¥, F fulfils the requirements of Theorem 2.

Since B¥*1CBM when M=N+1, itis clear that Theorem 2 holds when we
replace BY*! with B for any M=N+1.

Before we procede with the proof of Theorem 1 we will introduce the peak
functions that will be used in the approximation process.

0.1. Let D=B", Z,cbD, 0<d,<1/N, and let {e,, &, ..., e5}SC" be an ortho-
normal set of vectors in CY such that Z,=(1—(N—1)(d)?)"2ey+d, J1=;jsx-1€;-

0.2. Let O<d<d,-10~'" and define:

U’ = [dy—2d, dy+2dV -1 x [ 24, 2d]" X [0, 2d],
V' =[d,—2d, d,+2d]" -1 X [-2d, 2d]" X {0},
U =[d,—d, dy+dI" "2 X[-d, d]V X[0, d],
V =d,—d, d;+d¥*X[-d, d¥ x {0}.
We define for X=(x1, ..., Xy 1> V1s «oes Vn—1, 2, WEU":
0.3. Z=Z(X)= 3 ey Xi(1-w)exp (i(;+2))e;
+(1= 2 2 janoa X" 2(1L—w) exp (iz)ey.

(Throughout this paper Z=(Z,, ..., Zy) (in capital letters) will be used to describe
complex variables whenever there is a possibility of confusion with the real co-
ordinate z.)

We will view X as a coordinate system on a neighborhood of Z, in D which
is prescribed by 0.2, 0.3. This coordinate system is a slight variation of the standard
polar coordinate system.

The choice of U’ above (i.e. the choice of d, d; in the definition of U’) is not
necessary for obtaining the properties of the function that we will introduce in 0.5,
but it will be important in our later construction.

If ZeD and thereis X€U’ so that Z=Z(X) (as defined in 0.3) then we will
define X(Z)=X and we define:

04. W' =Z(U’) and W=2Z(U).

This definition is correct since the correspondence X -~Z(X) is one to one in
U’. Note that W is a neighborhood of Z, in the topology of D and Z(U")nbD=
Z(V"), Z{UNDD=ZV).

Fix X =(X;, ..., Xnv_1> V1 ---» Py—1» 2, )€V’ and let ZcC¥ we define:
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0.5.
ug(Z) = 1)2(1~(Z 2 j2n-1(Z; exp (- i(§;4+2)) —(Z; exp (— i(F;+2) — X,)*)?
+(Zy exp (—i2)—(Zy exp (—iD) — (1= 3, _ .y FI2))-

Throughout this paper when Z¢W’ and X=X(Z) then ux(X) o ux(Z).

The holomorphic polynomial uy is zero on Z(X) and has a positive real part
elsewhere in W’ (see Sublemma 1 below). In the construction of proper holomorphic
maps from a strongly pseudoconvex domain in C? to the unit polydisc of C® by B.
Stensenes [19] a different type of peak functions is used which have similar prop-
erties in the process of approximation (in the proof of Lemma 1). The properties
of the peak function developed by B. Stensenes in [19] has motivated the search
and use (in Lemma 1 and Lemma 2) of the local peak function defined by 0.5.

Sublemma 1. Let ZcW’ and let X=X(Z), where

X= (xh cees XN—15 Vis o3 YN-15 2 W),
then:

ug(Z) = w+ 23, s jana ®P 0 =¥+ 2= 2P +x;(x;— X))
(1= 21 jana G @2+ (1= 3oy ) 7 (E g janoy X F = %))
=1 2 cjaya G A=Wl —7)—i(1—w)*(z—2) + Rx (Z),
where the remainder term Ry(Z) is bounded in the following way:
Re(Z)| = 105w+ |z—2+ 3, _y o |yy=Fy+ 2= 20+ [, — % 1)

X(IZ—Z|1/2+21§J-§N lyj=3;+z=2M+w+ 3 v, 1% ~x;1)
and.
[lm (R ()| = 104 (w+|z— 212+ 2, 2 oy 19y =Fs+ 221+ 15, = 5,19

Xz =210+ 3oy 9= Tk 2= 2P).
We will conclude that the remainder is small enough in W’ so that:
Re(ux(2)) = 99/100(w+ 23, _ . _y_; ((6)* ;= F;+ 22+ x,(x;,— %,)*)
H((1= 2 1ajana CDCE=2+(1- 3y G ) (S 2oy KD E—x)))-

Note that Re (ug)>0 on W\{Z(X)}, ux(Z(X))=0 and for ZeW’, Rx(Z)=
o(Re (ug(Z))). This will imply that Ry is essentially negligible in the construction
process of the proofs of Lemma 1, Lemma 2. The remainder term, Ry, will be ob-
tained as a sum of five “smaller” remainders Ry, ..., Ry 5.
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Proof. Let ZeW’ and let X=X(Z) where

X: (xla EREF} xN—l’ Yis oo yN—l, Zz, W)
then

Z =2 janaXi(L=wexp(i(y;+2)e;+ (1= 3, Loy (x))2(L—w) exp (iz)ey.

0.6. To simplify our next calculations we define for 1=/=N—-1 7;=x;(1—w),
0;=y;+z and
tN = (l —21§j§1v_1 (xj)2)1/2(1 _W)s BN =z

So we have: Z=3 =yt exp (if,)e;, here (#,,0,, ..., %y,0y) are the stand-
ard polar coordinates of Z with respect to the basis e,, ey, ..., ey.-
Similarly we define for 1=j=N-1:

i, =%X;, 0;,=7;+z

= (1= ey G2 Oy =2

(So for Z*=Z(X) we have Z*=1, ;=5 1, exp (i0))e;.)
0.7. Using these notations we have:

2ug(Z) =13, _;an (t; exp (i(0;—0,))—(1; exp (i(8;—0,)) —1,)*)
= 1= _en ((z;)? exp (2i(6;—8)))
—2t;exp (i(0;—0,)) - (¢; exp (1(0;,—0,))—1;)* +(t; exp (i(6;—0,) — 1))
= 2w—wi+(1-wp+ 3, _ . (= (#)*(cos 2(0;,—8)) +sin2(0,—0,)i)
+2t;(cos (0;—8,)+sin(0;—8,)i)- ((t;—7;)+1;(cos (6, —6;)—1)+1; sin (8, —0,) i)*
—((t;=1)+1;(cos (8;—0,)—1)+1, sin (6;—8,)i)%).
0.8. Since (by 0.6) 3=;=n (t;)>=(1—w)? then 0.7 implies:

and

2ug(Z) = 2w—w+ 3 _._y(—(t)*(cos 2(0,—8) — 1 +sin 2(6, - 8)) i)
+2t;(cos (0;—0,)+sin (0, —8,)i)- ((1;—F;)+;(cos (8;—8,)—1)+1; sin (6, —F,)i)*
—((t;—1;)+t;(cos (8; —8;) —1)+1; sin (0, —8,)i)}).

0.9. Using the trigonometric identity: 1—cos 24=2(sin A)* 0.8 yields:
2ug(Z) = 2w—w2+ 3 .y ((1;2(1 —cos 2(08;—0,)—sin2(8,—0))i)
+2t;(1—2(sin (6;,—8,)/2)*+sin (0, —8,)i)

X((t;—1;)—21;(sin (0,—0,)/2)*+¢; sin (0, —0,)i)*
—((t;—1;)—2t,(sin (0, —8))/2)>+1; sin (0, —8))i)*)
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(after a few trivial manipulations)
= ZW—w2+Z’1§j§N((sj)2(2(9j-91-)2—2(@—9,-)5)-%-21](!]-—i}-)“
+(t)*(1—cos2(0;—8,)—2(0;,—8,)*+2(0;,—8,)i —sin 2(6;—0))i)
+2¢;(1—2(sin (8;—8,)/2)*+sin (8, —0,) )
X(((t;—1;)—2t;(sin (6, —0,)/2)*+1; sin (8; - 8,)i)* —(1; — 1))
+(2t;(—2(sin (8;—8,)/2)*+sin (0, —B))i) - (1;—1))%)
—((¢;—t)—21,(sin (8, —8,)/2)*+ ¢, sin (6,—8)) i)").
0.10. Let us define the following remainder terms:
Ry (2)=1/223 _._ (2 (1—cos2(0;—0,)—2(0;—8,)2+2(0;,—0,)i —sin 2(6;—8,)i)
and
Ry, o(Z) = 1/2 5 _ ;o (2t;(1—2(sin (6, —8,)/2)*+ sin (CAAD)
X (((2;—1,) —2¢;(sin (8; —8,)/2)>+; sin (8, —8,}i)* — (t;—1;)?)
+2t;(—2(sin (8; —8,)/2)* +sin (0, —8,) i) (t; - 1,)*
—((t;—1p—21;(sin (8, —0,)/2)* + 1, sin (6, —8,)i)).
Then by 0.9:
0.11. 2ue(Z) = 2w—w2—+-2'1§j§N (1)2(2(6;—0,)*-2(0,—8,)i)+21;(t; —1,)*
+2Ry,1(Z)+2Ry,5(2).

First let us evaluate Ry ,(Z). When we look at the Taylor expansion of sine
and cosine it is apparent that:

and _
Il —cos 2(0,—8;)—2(6,— ;2| =210,~B,* (for | =j= N).

0.12. We conclude that: [Ry (Z)|=2 ;== 0,8,

Before evaluating Ry 2(Z) we need the following simple inequality (which is
designed for this evaluation).

Let 1=a,b=0 and take n=1, k=0 so that n+k=4 then:

0.13. (a2 +bYal? = a"b*.
Proof. Put c=a'?, 0.13 is then equivalent to:
c®+cbt = b,

If b=c then cb*=c*b* and if c=b then c*=c*b*, and 0.13 is proved.
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0.14. It follows that if 1=a,b=0 and n=l1, k=0, n+k=4 then:
(a2+b4)a1/2(a +b)n+k—4 = a”b".
After opening brackets and collecting terms we can look at Ry ,(Z) as a poly-
nomial in the variables (#;—%), sin (9;—0,)/2, sin (§;—0;) (1=j=N), where each

monomial is of total degrec =4 and the coefficients are polynomials in #;, ;. So
Ry 2(Z) can be expressed in the following way:

0.15. Ry,2(Z2) = 3\ o jan Zomitmets Ham(t;— 1) (sin (6;—8,)/2)' (sin (6,—8)))™.

One can easily calculate that |aj,,|<10°® and, as we mentioned above, if af, #0
then k+I/+m=4. Since the term:

((;—1)—2t,(sin (8, — 0,22+ 1, sin (0, —B)) i)t —(t;—7)*
does not contain a monomial which is free from sin (0j—9j)/2 and sin (0;,-8,),
then the only monomial of Ry ,(Z) which is free from sin(6;—8,)/2 and
sin (8;—8;) is —(1/2)(¢;—%;)’. In other words, (for all 1=j=N) if aj, =0 and
I=m=0 then k=S8.
Since [sin 4]=|A| (for all 4cR) we have:

0.16.  |Rz,2(D)| = 3\ oy Dok mm1s |Hhml 18;—1;1410,— 8,17+

0.17. Claim. For every 1=j=N and 0=k,/,m=16 if aj, >0 then:

[£;—1¥10; 0,1 ™ = (10, — 8,12+ 1, = 1,1 (10; 8,1 + |, = 1,)*+1+"=*10, 8,/
or I=m=0, k=8.

Proof. If [+m=0 then (as we mentioned before) k=8. If m-+I/=1 then
since (/+m)+k=4 the claim follows from 0.14.
Using the fact that for every 1=j=N:
2okt m16, ket 14met |l < 20

and if 0=k, /,m=16, k+/+m=4 then |a], |<108
0.18. We obtain that:

(R, 2(D)| = 2t ) et 2 1=y [0l 11— 1110, = O, 4™
= 2125an 20000, = 0,12+ 12, —1,1910,— 0,12
+ 2okt mmte S 1= =y 10010, 0,12 +1; = 1110, — 0,1 +1t;— ;)10 — 0,|**
= 25(21§j§N |9j—9j12+|tj_ii|4)(21§j§1v |()j._(7j|1/2)

(0.2, 0.6 (i.e. the smallness of (¢;—1;) and (6;—0,)) were used in the last inequality).
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Combining 0.12 and 0.18 we obtain:
0.19. |Ry,1(Z2)+Ry,:(Z2)| = 30(21§j§~ IGj—9j|2+|tj—ij|4)(21§j§1v 10, —8;11/2).
Now by 0.11:
0.20. ug(Z) =w—(12we+ 3,y () (0;— 0, +1;(t;,—1))*
—1 3 2 jan (17(05—0)+ Ry 1 (2)+ Ry, 2(2).
Since i =<;=y (¢)*=(1—w)? then
0.21. sy 20,8
= (lejéN—l (170, — gj)) + ((1 —w)r— ZléjéN—-l (tj)z) (On—0y)
= (Z1zjzn-1 (1)*((0;—0)) =0y —8x))) + (1 —w)* (B —Oy).

This form of the imaginary part reduces the dimension of the target ball, in the
construction process, by one.

We obtain from 0.20, 0.21 (see also the definitions at 0.6):

0.22.

ug(Z) =w—(Uw*+ 3, 0P =T+ z=2R+1,(4;—1)*
(NP (z—2P+ ty(ty—Ty) —i 21§j§N__1 (tj)z(yj *‘J_’j)—i(l —w)(z—2)
+ Ry,1(2)+ Ry,2(Z)
=w—(1/2w+ 2y PA=wP ;=5 4+ 2 =22 +x;(1 —w) (x; — X; —wx)
+(tn)P (2 =2+ 1y (ty —1y)*
=1 2 ey @ A=Wl ;—7) —i(1=w)(z—2)+ Ry, (2)+ Ry, 2 (2).

Our main task is done now as we obtained a useful expression for the imaginary
part of ux(Z), and we are very close to the desired expression of the real part. We
also evaluated the size of the first two remainder terms which are complex functions.

Next we want to find a simple expression for Re (ug(Z)) in terms of the X-co-
ordinates. We will need again to select a principle part and to separate from it re-
mainders that will prove to be marginal. All our next remainders Ry 3(Z), ..., Rg 5(Z)

will be purely real. The most laborious part of our calculations will be the work to
simplify the term zy(ty—iy)%

0.23. tv—1ty = () — (@)D (ty +1w)
and
()= =(1 _Z1§1§N—1 ()t —-wp-(1 _Zléj‘éN—l &)
= Z1§j§~-—1 (551' +x.i) (xj _xj) +(w? _2W)(1 _ZléjéN—l (xj)z)

=2 21§j§N—1 x5 (%5 =)+ (w2 —2w)(1 _21§j§N—1 (x;)%) + ZléjéN—l (X;—x)%
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0.24. Let

Ry,5(Z) = ty(ty— 1)~ ty(ty + 1) (2 3, 2 gy 5 F = X))
0.25. Then:

Ry,a(2) = ty(ty+ 1) () = (PP — (2 32y % (55— ))9)-

The choice of U’ in 0.2 and the definition 0.6 imply that
12 <ty lixl < 1, [ty—iyl <107%" and (for 1 = j = N—1) |x,|x;| < 1/N,
therefore we can see from 0.23 that:

0.26. |Ry,5(Z) = 100(w+ 3 _ X=X 1w+ 2 ooy 1%—x)1)-
Let us now define:

0.27. Ry, o(Z) = ty(tx+1)7*(2 Zhzj=n-1%i(F— xp)t

~ty Q)2 D ey X E X))

We need the following calculation to evaluate Ry 4(Z)

(ty+1) ™ = Qi)+ (ty + ) = Q20y) 7 = Q) 7 (00— (D) 2t (ty + 1)) 7

So
-RX,4(Z) = t]‘l(2 21§j§1\1_1 xj(xj _xj))4((tN+iN)_4—(2tN)—4)

= tN(2 ZlgjéN_l x;(X; *3‘7j))4(((2"‘1v)_l + ((71\1)2 - (tN)z) (ZtN (tv+ fN)Z)_Iy —(2ty) _4)-

When we combine this with 0.23 and the facts that 1/2<|#y], [Ty <1, |ty —iy| <107,
we obtain the following (nonsharp) estimate:

0.28.  [Rya(D)] <1003, _\ o 15=x10(w+ 3,2 ons 15— %)
We conclude the following from 0.20—0.27:
0.29.

ug(Z) = w—(1/2)w*
+ 2 s iany (P A= WPy =5+ 2= 2P+ x,;(1 = w) (x; — X; — wx)*)
H(1= 3 an s G A =W =2+ (1= 3 oy ()2 (1 —w) ™3
X(Zajanaa X=X =1 2 oy P A=wP (=7 — il —w)*(z—2)

+ Ry, 1(Z)+ Ry, 2(Z)+ Ry, 3(Z) + Ry, +(2).
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0.30. Let us define:
Ry 5(Z) = —(1/2)w?

H(Z1mjang CPA=WP Q=5+ 2 =2 = () (r; = §;+2 2P
+x;(1=w) (x;— X; —wx ) —x;(x; —X;)*)
F((1= 2 e jana A=Wy —22 (1 -3 oy, (x)))(z—2))
(1= 2 2 janar G2 =w) () oy oy %K= X))

_(1 _ZléjéN—-l (xf)z)_3/2(21_<—_j§N—l xi(ii - x_,-))‘)
then

0.31.
ug(Z) = w+ 2 o ian P = i+ 2= 2P +x,;(x;—X)*

+ (1 _21§j§1v—1 (xj)“‘-)(z —z)y? +(1 —Zl§j§N~1 (xj)z)—3/2(21§j§1v—1 xf(xf _xf))4
—1 3 e CPA=WPG;—F)—i(1 =w)*(z—2) + Ry,1(2) + Ry.2(Z)
+ Rx,3(2)+ Rx,4(Z) + Rz, 5(2).

This is true simply because the definition of Ry ;(Z) (and 0.29) imply that we
add and subtract the same terms.

Looking again at 0.30 we see when we look at the terms within each set of
bold brackets separately, that:

0.32. |Ry,;(2)| = 103W(|Z—5|2+21§,-§N_1 IX; —x;3+17,— y;+ z—ZI+ w).
When we combine 0.19 with 0.6, 0.24—0.26 we obtain:
0.33. [Rx.1(Z)+ Ry, 2(Z)|
= 104(W+|Z—5|2+21§j§p,_1 |yj—)7j+z—2|2+|xj—>?j|4)
X(|Z—2[1/2+21§j§]\' U’j_fﬂ‘Z—f[m)

0.34. Define: Rg(Z)=Rx (Z)+ Ry o(Z)+ Ry 5(Z)+ Rx,«(Z)+ Ry, 5(Z).
0.35. Combining 0.26, 0.28, 0.32, 0.33 we have:

|Rx(Z)| = 105(W+IZ—Z|2+21§]§N_1 ly;—7;+z2—Z12+ |x;— %;1%)
X(z=212+ 3, _y =5+ 2 =212 4w+ 3y 1% =)
0.36. Since Im (Rg(Z))=Im (Rx,l(Z)—FRX,z(Z)) 0.33 yields that:
|Im (RX(Z))I = 10“(w-|—|z—2|2+2'1§j§1\,_1 ly; =7, +z—Z2+|x;— X%

XUz =212+ 2,y 15T+ 2 2.
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Now if we look at 0.34, 0.31, 0.2 we can see that the neighborhood we have chosen
is small enough so that the effect of the remainder term is so limited that:

Re (uX(Z)) = 99/100(W+21§j§1v_1 (xj)z(yj —yj+z~2)2+xj(xj—5fj)4
+(1 ‘21§j§N—1 (x)?)(z—2)*+(1 — 2 1=j=N-1 (xj)z)—slz(zléjéN—l x;(%—x,)")-

We have completed the proof of Sublemma 1.

The following Lemma is the first step toward constructing the map in Theorem 1
(B=B(N) is a positive constant that will be defined for N=>2 in the third section,
B(2)=1).

Lemma 1. Let D=B", Ry=0, g,=10"M"Re’ gnd Z cbD. There exists an
open neighborhood (in the topology of D) WS D of Z,, so that when f: bD-~B"*!
is continuous, | f}=Ry, KC D is compact and £,>¢=0, ¢ >0 then there is a smooth
map g: D—-CN*Y, holomorphic on D such that the following hold:

(a) when Z¢bD: D) +2(Z2)] < 1+¢%

(b) when ZEbDAW: |fZ)+g(Z)P -2 > &(1-|f(Z)) —&®
(c) when ZebD: IA(2)+g(2)2—11(2)|2 = — 3100

(d) when Z¢K: 1g(Z) < ¢

(e) when Z€bD: lg(2)2 < e/2(1—| f(Z)|?)+e%.

Proof of Lemma 1 (for N=2):

We will present here a proof of Lemma 1 when N=2. The proof for e >N=2
(which is based on Lemma 3) will be presented in Section 3. The ideas of the proof
in the case N=2 originate from B. Stensenes [19].

1.1. Let X=(x,y,z w) be the coordinate system in a neighborhood of Z,
described by 0.1—0.3and U’, V’, U; V, W, W’ described by 0.2, 0.4 where d,=1071,
d=10-*, For X=(X, 7, z, 0)c U’ we will define the polynomial uy as in 0.5. Sub-
lemma 1 implies then that uy has the following properties (we suppress the distinction
between X and Z(X)):

1.2. () Re(up)=0 on W\{Z(X)} and ux(Z(X))=0

(i) Let X=(x, y, z, w)e X(W’) then:

ug(X) = w+x2(y—y+z—22+x(x —3)*+ (1 —=x2)(z - 2>+ (1 —x) 732(x (X — x))*

—ix?(1—wl(y—=3—i(1-w)*(z—2)+ Rx(2)
where:
[Ry(X)| = 10°(w+[z—Z]*+|y—F +2z—Z|*+|x—X|*)

X(|z—2[V2+y—F+ 222+ w|Z—x)
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and:
[Im (Rg(X))| = 104w+ |z~ 21 +|y —F+z—Z] +[x —F19) - (12— Z[V2+ |y~ +2—Z|"2).
It was also proved in Sublemma 1 that for X=(x, y, z, w) e X(W"’):
1.3. Re (ux(X)) = 99/100(w+x2(y —y+ z—2) + x(x —0)* +(1 ~xH(z —2)
+(1=x)~*2(x (X —x))).

1.4, For XcX(W’), the following notation for the coordinates of X will be
used: X=(Xy, X,, X, X)=(x, y, z, w).

1.5. Since fis continuous there exists an r, &/*=r=0, so that when X, X’¢V”,
|X—X’|<(log (1/r))~* we have:

|/X)—f(X)] < &

1.6. Define c;=r"*, c;=10r*% and c¢,=r42.

We can assume that r is chosen so that (log¢)/(rY/2-4x) is an integer (this
assumption is possible since &Y*=>r=0 and there is no positive lower bound on
the choice of 7). This assumption combined with the form of Im (uy) in 1.2 above,
“saves” one dimension of the target ball. An equivalent assumption (for the same
purpose) can be found in [19].

1.7. For a=(ay, a,, a;)€Z® we define X,=(a,c;, as¢;3, ds¢3,0) and define:

L={acZ3: d(X,,V) <15}, L' ={acZ? XV},

{X,: acL’} forms a lattice-like set that “covers” V' (=Z(W’nbD)). {X,: acL} is
a smaller lattice that “covers” V(=Z(WnbD)) with a very small margins around it.
1.8. Define for a€L:

u, = uy, and R,= Ry, (the remainder term).

By 1.2 when a€L, X=(Xi, ..., Xp)=(x, y,z,w)eU’ and t,=X,/c; 1=i=3 then:

L. u,(X) = w+x%(cy(ty—a0) +c3(ts—ag))2+ (1 —x2) (5 (13— ag) 2+ x(cr (i — a))!
+ (1 =x2) 73 (xc, (t; —ap))t — ix* (1 —w)?(cy (8 — as)) —ics (1 —w)2(t;— ag) + R, (X)
= w4x2r(10(ty— ap) + (13— ag) 2+ (1~ xDr (t; — as)? +r (x + (1 — x2) ~32x4) (t; —ay)*
—10ir2x2(1 —w)?(t, —as) —ir'2(1 —w)(t, — az) + R, (X).

We define for Ze¢D and acL:
1.10. Pa(Z) = exp (u,(Z)- (log g)/2r)

and for ac I\ we define p,=0.
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Capital Z (for an element in C¥) is used in this work whenever there is a pos-
sibility of confusion with the real coordinate z. Property (i) in 1.2 implies that
{p,: acL} is a set of local peak functions that peak on the lattice {X,: a€L}.

Throughout the proof of Lemma | and Lemma 2 we will suppress the distinction
between Z and X(Z) when ZeW’. Let acL and X=(X, ..., X,)=(x, vy, z, w)e U’
(t;=X;/c; 1=i=3) then 1.9 and 1.10 imply:

1.11. (We will use the notation & i—efa.)

P (X) = SUDW/r+ 2 A0ty —ay) + (65— + (L= xNeg—a)* +(x+ (L= xD~2x)(ty~ )+ Re (R (X)/r)
2 = ¢

X exp (—i((loge)/2)(10r "1 2x2(1 —w)A(t, — az) + 1 "Y1 —w)X(t; — ag) —r L Im (R,(X)))).
Thus if we add the assumption that X€V”’ (i.e. w=0) then:

p (X) — éz,(lﬂ)(x?(l()(t:-—az)+(t3—a3))2+(l —x)(t;—a)? +(x+ @ — xz)‘3/2x4)(!1—al)4+Re (R (X))
a

xexp (—i((log £)/2)(10r =2 x2(t,— az) + r~121,)) - 0,(X)

where 0,(X)=exp ((i/2)(log ¢)-r ~*-Im (R,(X))). Note that |0,|=1.

The second equality holds since we assumed (1.6) that (log £)/(r'/2-4n) is an
integer.

1.12. We need an estimate for 8,(X) when X€V’ is close to X, (in a sense that
will be soon explained).

Let acL, XV’ (t,=X,/c; 1=i=3). We have from 1.2, 1.6 and a calculation
like the one in 1.9:

[((og &)/r) Tm (R, ()|
= 10*(log¢) ((10(t2 —as)+ (13— ‘13))2 +(t3—az)*+(t —ay)?)
X r1/4(|t3—a3|1/2+ 110(#, _“2)+(’3—as)ll/2)'

If we assume (for example) that for all 1=i=3, |t,—a;]<10°® then since 10-10>
g>=&=>0 and &/>r=>0 (see 1.5) we have that:

ldog &)r—* Im (R, (X))| < 1077,
[0,(X)—1] < 1010
and, as mentioned after 1.11, [8,(X)j=1.
1.13. 2.(X)- p,(X)
= exp ((log &) r "1 (Re u,(X) +Re u, (X)+i(Im u,(X) —Im %, (X))))
= £FHA00~ )+ (5= a (100, —by) + (b2 | ol =3 (eg— ) +(t3—b)?)/2

X é”(1/2)((x A= x2)"32x)((t, —a ) (1, — b D (Re(R LX) Ry, (YY)

Xexp (—i(log &)(5r =2 x%(by —ay))) - 0,(X) - 0, (X).
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It follows that if a,=b, then:

Pa(X) By (X) = | pa(X) - Bp(X)] - 0.(X) - 0p(X).

The fact that 8,(X), 6,(X) ate very close to 1 when X,, X, are close enough
to X (see precise computation in 1.12) will prove to be crucial later (following 1.19).

Let vy, 050 V'—C? be continuous maps such that for every XeV’

{f(X), v,(X), v,(X)}

are mutually orthogonal and [v,(X)[2=|v,(X){2=1. Such maps exist since f is
continuous and | f]> R,>0. By shrinking r further (in 1.6} we can assume that for
X, X’€V”’ such that | X — X"| <(log (1/r))~* we have (fori=1, 2): |v;(X)—v,(X")| <£®.
For acL’ we define i(a)=1 whenever a, is odd and i(a)=2 whenever a, 18 even
and we denote 7,=(2e(1—]f(X)I))2. We define for a€L’: v,=1,1,,(X,), (so
when a, progresses our choice between 7,v,(X,) and 7,v,(X,) alternates).

The set {v,: ac L’} has the following properties:

1.14.

(i) (va, f(X,))=0.

(ii) lvl>=2e(1 - fX)P).

(iii) If a,b€L’, |a—bl<1000, and b,—a, is odd, then:

I(Ua’ Ub)' = 860~
(iv) If a,b€L’, |a—b|<1000, and b,—a, is even, then:
'(Utn vb)_lvalzl - 860'

Properties (i) and (ii) are obvious from the definition of {v,}. To prove property (iii)
and (iv) notice that when |a—b|<1000 (or even when |a—b|<—logr) then by
1.6 and 1.7 |X,—X,l<(—logr)~! and thus |v;(X,)—v;(X,)|<e® (i=1,2) and
(by 1.5) |AAX)—f(Xp)<e®. Using (v, v,)=0, |p,]=1 we have for a, beL’,
la—b|<1000:
(1) I(tavi(Xa)9 tbvi(Xb))_Itavi(Xa)lzl = l(tbtavi(Xb)_ta tavi(Xa)9 Ui(Xa))l

= 2|(t.)* — (4,7 + 210, (X)) — 0, (X (1,4 1,) < &
and

V)] I(ta 01 (Xo), By Uz(Xb))l = I(Ul(Xa)s Uz(Xb))I
= I(Ul(Xn)_vl(Xb)5 Uz(Xb))l = [0,(X) — o1 (Xp)] - [0a(X5)| < &%
Now if b,—a, is even then i(a)=i(b) and (iv) follows from (1). If b,—a, is odd

then i(a)=i(b) we can assume that i/(@)=1 and i(b)=2 and then (iii) follows
from (2).
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Properties (iii) and (iv) will play a very important role in our construction.
1.15. We define for Z¢D

h<Z) = ZagL pa(Z)Ua = Zagy Pa(Z)va'

The map hk is the first and most important stage in the construction of g of
Lemma 1. The map g will correct i only slightly on W’nbD (so that it will not
have a significant effect on its properties in W’nbD) and will make it very small
out of W’. The motivation behind this definition of 4 is to add to f a holomorphic
function h which is almost perpendicular to f(X) at each point X of W’nbD. This
will add to | f(X)|* almost [A(X)|? so we need to show that |h(X)|? is sufficiently
large (i.e. uniformly bounded from below) on WnbD but not too large on W,
It is important to realize that in this correcting method we can not have a full control
on the direction of A. It is impossible (for example) to provide a correction function
h that will be almost in the same direction as f'at each X¢W’ and will be of suffi-
cient size everywhere in W. Such a construction seems to be impossible regardless
of the co-dimension. When the co-dimension is 1, then the best control we can have
on the direction of 4 is that it will be almost perpendicular to f. Our construction is
based on the fact that in the evaluation of |h(X)|%, |( A(X), h(X ))| the dominant
part of h(X) is > X, is close to X) Pa(X) 0, and the rest sum up to a small proportion
of it plus a small error term.

The evaluation of [A(X)[2, |(f(X), h(X))| will require a division of L, L’ into
appropriate subsets. Fix X=(X,, ..., X,)¢U’, and t#,=X;/c; 1=i=3. We choose
a;(X) to be an integer so that |a,(X)—7;/=1/2. Next we choose a,(X) to be an
integer so that [10(f,—ay(X))+1,—ay(X )|=5 (note that a,(X) is chosen first and
then a,(X)) and we choose a;(X) to be an integer so that [a,(X)—#|=1/2. We
define a(X)=(a,(X), a.(X), a3(X)).

1.16. Define:

L'(x,0) = {a = (ay, as,a3)€L: |la;—a;(X)| =1 for all 1 =i=3}
and for n=1:
L'(x,n) = {a€ I'\L'(x, 0): n® < (1/2)(x2(10(t, — a5) + (13— ag) > + (1 —x¥) (t;— a5)?
+(x+(1—x)732xY) (1, —ay)?) = (n+1)%}
and we define L(x, n)=L'(x,n)nL, for n=0. The positive numbers
{1/2r)(Re (u,(X)— R, (X)): acL'(X, 0))}
are the smallest in the set {(1/2r)(Re (u,(X)—R,(X)): acL’)},

{(1/2r)(Re (u,(X)~ R, (X)): acL'(X, 1))}
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are the next smallest, etc. There is a computational convenience in this division of
L’, L into subsets as we will see later.
Let XcV’, then:

|fX) +h (X)) = | f(X)|2+1h(X)[2+2 Re (f(X), k(X))
= | O+ 1X0E-2|(f(X), h(X))|-
We will prove the following for X¢V”’,
L17. (&) |[(f(x), h(X))| < &
(B) [h(X)|2 < &/2(1—| f(X)]2)+&*
(C) when XecV then |A(X)|2 > &2(1—|f(X)|?)—e.

The proof of 1.17 is the main step in the proof of Lemma 1. Careful considera-
tions will be needed to prove (C).
1.18. We will freely use the following facts. When a€L(X,n), n=0 then:

(1) card (L(X, n)) = (10n+10)3
2 |p.(X)| = ™2

Proof. Since |x—10"1<10-" (see 1.1) then (1) is a simple consequence of
Definition 1.16.
It follows from 1.3 that
Re (u,(X))

= (99/100) r(x2(10(ty —as) + (f3— ag) 2+ (1— x) (t;— ag)*+(x + (1—x»)~32x4) (t,— a))?)

and then Definitions 1.10, 1.16 immediately imply that (2) is true.

These are by no means sharp estimates, but they are sufficient. To simplify our
calculations we will not try to obtain the sharpest estimates with the smallest error
terms but rather estimates that are sufficient for our needs and are easy to work
with. When XeU’ is fixed and a€L’(X,n) we define [a]=n (there is only one
such n).

Proof of (A) (using 1.14 (i), (ii) and 1.5, 1.6):
(£, h(X0)| = |2, (XD, ) Ba(X))]
= |2 oznz1o0 2 ae i, O —FXD, 0P|+ Z 100 < S rizmy (FXD, ) (X0
= Zoanmio0 Zacrirn FEOFEN 10+ 3 100 Zac 1oy 122X
<2 Zoénémo g100. £12(10n+ 10)-°'+2'100<,l g2, (10n+ 10)® < g0,

Now (A) is proved.
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Proof of (B). Fix Xc¢V’: We will use 1.18 and the fact that when
a,be U {L(n, X): 0=n=100} then (by 1.6, 1.7, 1.16) |X,—X{, |X,—X|<r"*, and
1.5 with 1.14 (ii) imply:

[(vas vl = (l0al® +1052)/2 = &2 — | fXE~ | X))
= 2e(1 =1/ +e(1 /12— fXD1) +e (L F X1~ 1/ (X)I?)
< 2e(1—|fAX)?)+sr.
RO = |3, e 1 (vas ) Pa(X) 5y (X))
= D10 Zover, s 1o |Fas 20 PalX) By (X))
+2100<m Za,bEL, [al+(b]=m |22 (X) B (X)|
< 2 ozmeion (26(L=1f(X)[®)+£) - (10m + 10)¢ - g™*/4

t 3 00wy (10m+10)° - £™/% < 10%e(1 —| f(x)]?) + £®.
(B) is proved.

Proof of (C). Fix Xc¢V,
1.19. RXOR = 3, 41 (00 0)pa(X) By (X)

= 3 berono) Tar 0P B O+ 3,1 S o (0, 09)pa(X) By (X)
=Re(S, e rono Cos ) POB ) =3 1 Dt 1o Bar 20)Pa(X) B (X)].

We will prove that the second term is a small proportion of the first term (plus
a marginal error term), and the lower bound of the first term is close to
P2y |? | Pacry (X)12. We will first estimate the first term, and divide the summands
to four cases.

When a, b€ L(x,0) and a=»b, then

1) (Va5 1) Pa(X) Py (X) = 10a[?[ pa(X)I? > 0.
When a, beL(X,0), a=b, and a,=b, then by 1.13:
Pa(X)Pp(X) = |Pa(X) - Bp(X)] - 0,(X) - 0, (X),

and by 1.12: [6,(X)—11, |0,(X)—1|<10719 therefore it follows from 1.14 (iv)
that:

(2) RC ((va 3 vb)pa (X)ﬁb (X)) - -860'
If a,b€L(X,0) and a,#b,, then if a,=b,+1 1.14 (iii) implies that:
(3) l(vas Db)l = 860-

The remaining case is of a, b¢L(X,0) and a,=b,+2. After possibly inter-
changing a and b, we have a,=a,(X)—1 and b,=a,(X)+1 (a, b will be fixed until
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1.20). Since —1=da;—a;(X)=1 the following unsharp estimate follows from the
definition of a(X) before 1.16:

(( 0(t,—a)+(t5— “3))2 +(10(32 —byy+(t3— b:;)\)z)
—2((10(ty— a2 (X)) + (t; — a5 (X)))?) > 80.

This and the definition of a(X) (and the fact that 1—-10"2<x/10<1+10"% (see
1.1)) imply that:

(1/2)(x2((10(ty—az) + (ts— a5))* + (10(ts — by) + (13— by))?)
+(1=x)((t3— a5)*+ (13— bg)®) + (x + (1 = x) 32 x4)((ty— a4 (1, — b))
—(x2(10(1, — a5 (X)) + (s — a5 (X)))2 + (1 —x3)(t;— as (X))
+(x+(1=x3)32 x5t —a, (X))*) > 0.3.

We obtain from this and the estimate of the remainder term in 1.12 and from
1.13 that
[Pa(X) Py (XD < 64| pacxy (X2

It follows from 1.14 and from 1.5 that |(vs, v,)—|vac)®|=|(0a 05)—10pl%+
|I95[2— )% <2 €% so we conclude that:

4 (Vg 0) Pa(X) Pp(X)] < &M% |Ua(X)|2 lPa(X)(X)|2+360-
Since a(X)€L(X,0) (and car (L(X, 0))=27), then combining (1)—(4) yields:
1.20. Re (3, e .0 (%> 26)Pa(X) o (X)) = (3/8) 0aciol? | Pagry (I 2.

Looking again at 1.13, 1.16 we can calculate (using an argument as in (4)) that when
a,bel and [a]+[b]=m=1, then:

1.21. 12a(X) P (X)] = /%] pagxy (X1,
|Pa(X) Py (X)] = e™/*
and when [a]+[b]=m=2, then
[Pa(X) By (X)] < e A=Y« | pyy (X)I2.

An important part of the proof of Lemma 1 is contained in (1.20), (1.21). We
are now ready to estimate the second term in 1.19. We will be using (1.20), (1.21),
the fact that {(a, b))c LX L: [a]+[b]=m} has less than (10m+10)® elements and
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the fact that (see 1.5, 1.14(ii)) for a€L such that [a]=100, |v,)*—|v,) (X))} =
26 || AP =] f(Xyxy) Y| <.

1.22. 1212 Zaser, s iprem (o> 90 Pa(X) Bp(X)]
= et (UD 3ot wrsirom (2l +159)12a 0 5, (X1
+ Sraem Saser. wsprm PGB X
= 21§m§100 Za,bé L [a]+[1z]=m(lv“(")l2‘*_“3100)81/4 |Pac (X)I?
+ Zi0em Dapes @epr=m®
= ([0a)l*+ ") Pacry AN (2 2, 2 100 (10m + 10)°) ¥/
F 2100 (10m +10)° ™74 < [0, || Pagy (X2 - £1/° 4.
Combining 1.19, 1.20, 1.22 we obtain:

1.23. [AXOIP > B[4 acry*] Pagry (XD =% —(|0a0x)1* [ Pagry (X)IF - /7 + %)
> |0ag) | Paay (XD (3[4 — %) =% = (1 —| (X)) e* — .
We used [v,x)12=2¢(1—] f(X,x)I?) (see 1.14 (i) and 1.5 which implies :
[lag) 2 —26(1 ~ | O] < &
We also used the fact that |p,q,(X)|*=>¢ (follows from 1.13 and the definition
of a(X)).

(C) is now proved.

We will now obtain an estimate for |h(X)|? away from V. We will prove the
following:

(D) For every 6=0, u=0 there exists r,=>=0, ro=r,(J, p) so that if O<r<r,
in the definition of & (at 1.5, 1.6) then for every X=(x, y, z, w)¢ U’ (U’ is defined
in 0.2) such that d(X, V)= (distance in the coordinates) we have |h(X)|<pu.

Proof. Define:
1.24. q(X) = d4(x, [dl__d_ro-l, d1+d+r0.l])
_I_dz(y’ [_d____ro.l’ d+r0.1])+d2(z’-[_d_r0.1’ d+r0,1])

(see 0.2 for the definition of V. Here the first term is the distance, to the power 4,
of x from the interval [d;—d—r*', d,+d+r""] etc.). When 1=n and a¢L(X, n)
we have by 1.16 that (we put #,=X/c;, 1=i=3):

1.25. x2(10(t; — ay) +(t;—az))*+ (1 —x?)(t;—ag)?
F (1 =3 ) (1 — )t = 217
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by 1.6 this is the same as:
1.26. X (Y —caas+z—c3a5)* +((1 — %2 (z—c5a3))?
+((x+ (1 —x2)732x4) (x —cya))t = 2r(n+1)2
We need the following trivial (and non sharp) inequality:
1.27. For &, WcR: (1/200)(Z+ )2 +(1/2) @ = (1/400) %+ (1/400) %>
this is equivalent to
(1/400) 22+ (1/2+ 1/400) @2 +(1/100) £¥ = 0
o (1/400)(Z+29 )2 +(1/2 — 3/400) @2 = 0.
We obtain from 1.26 and from x€[1071—2.10-%, 10-1—-2.10-%] (see 1.1):
2r(n+1)* = (1/200) (¥ — ca a2+ z— cyag)*+((1/2) (z — c3 a5) )2+ (1/10) (x — ¢; ay)*
(using 1.27) = (1/400)((y —c2a2)* +(z —c3a3)*+(x —cy a,)%) = (1/400)q(X)

(the last inequality is a simple consequence of the definition of L in 1.7 and the defini-
tion of g(X)).

1.28. We obtain that when XcU’ and L(X,n)=0 then 2r(n+1)*=
(1/400)g(X) so n=(1/30)(q(X)/r)*—1. We define now

1.29. M(X) = (1/30)(g(X)/r)2-1.
Fix X=(x, y,z, w)¢U’ such that d(X, V)=45 then:
1.30. BQOR = 3, e (t0r 0)P.(X) B (X)

= 2M(X)§m Za,bgL, [al+[bl=m (04, 1) Pa(X) Pp(X) = ZM(X)ém (10m + 10)88m2/482w/r'

It is evident that by shrinking #>0 we can make this sum as small as we want,
uniformly on {X€U’: d(X, V)=6}.

Let ASD, t=0 we define: A'={zeD|d(z, A)<t} where the metric is the
one of C? (not of the coordinates system).

1.31. Fix (until the end of the proof) =0 so that if z&(WnbD)* then

(i) X(2)€ldy—1.5d, d,+1.5d]1 X[ 1.5d, 1.5d]2[0, 0.5d]
and
(i) z¢ K.

1.32. Let 0<¢&’ <g'%%. By (D) if r=0 is small enough in the definition of A,
then for all zEW\(WnbD)® we have [h(z)|<(¢)2. We will assume it is so from
now on.

Summarizing our results and assumptions so far yields that A has the following
properties (compare with the desired properties of g in the statement of Lemma 1):
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1.33.
(A) and (B) imply:

(a)’ when zEW’AbD:
(D +h@I* = 1f@P+IR(2)12+2|(f(2), h(2))]
=< If(2)12+3]/2(1 _lf(Z)|2)+650+281°° < 14¢&*

(C) and (A) imply:
(b)Y when z€bDnW:

I7(2)+h (@D~ /()1 = |h(2)*=2|(f(2), k()|

= (1= 1f(2)Y) e =26 = &(1 — | A2)|?) —o*
(A) implies :

(¢ when zeW’nbD:

(D) + 12— f@IF = k(D)1 =2|(f(2), h(2))| > 21
1.31, 1.32 imply:

(d)’ when zEKnW’:

[h(2)l < (&)
from (B):

(e) when zeW’'nbD:
lh(2)|? < 31/2(1 —1f(2)|2)+e>.

So the function h satisfies the requirements of Lemma | (with smaller error
terms) in the domain WW’, but we do not have control over k out of W’. The follow-
ing claim is necessary to construct a map g that will fulfil the requirements of Lemma 1
globally in D. To do so we have g that differs very little from 4 in W’ and is very
small in DN\W’. The globalization process that will follow is essentially the one in
Stensenes [19].

1.34. Claim. There exists g: D—~C® a C= function, holomorphic in D,
such that:

(i) for all zew’:

g(2)—h(z)| = (&)*

1g(2) = ).

(ii) for all ze D\W":
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Proof. Let ¥ be a C* function on D with the following properties:
1.35. (1) x=1 on (WnbD)y

2 x=0 on D\(WnbD)*®

(3) 10x(2)l < C/§ for zeD

where C=0 is a universal constant.

Since d(3h)=0(x)h on D, and (by 1.35) d(x)=0 on (D\(WnbD)?*)u(W nbD)’;
also (by 1.32) |h|<(&")? on (WnbDY*\(WnbD)’ (note that by 1.31 (WnbDY?’ciW’)
therefore :

1.36. 1D(eh)| < (£):C/5 on D.
There exists a C= function /, on D so that (see [14])
1.37. ohy =0(xh) on D, and |[m|2 = CloGhI2

where C;=0 is a constant.
1.38. Define now g=yh—h,. Then g is C= on D and holomorphic in D.
(1) For all zéW’ we have (using 1.32, 1.35 (1)):

lg(2)—h(2)| = [ @l +1x (@)= UIh()| < [m[2+()? = (CLCIO) (P +(&)
(2) For all ze DNW’ (since by 1.31, 1.35 y=0 on D\W’):
lg(@ = ()l = (C,C/o) )

We can assume that ¢ was chosen small enough relative to the constants C,
Cy, 0 so that claim 1.34 would follow from (1) and (2). Note that we needed here
the fact that % decreases very rapidly as we move (in W’) away from V.

When we look again at 1.33, 1.34 we can see that g (defined in 1.38) fulfils the
requirements of Lemma 1. To do this we have to check that (a)—(e) in the state-
ment of Lemma 1 hold for g. We first check for Ze¢W’. In 1.33 we proved (in W)
(a)—(e) for h with smaller error terms. Since |g—h|<(¢)"® in W’ it is clear (from
looking at the error terms in 1.33 and in (a)-—(e)) that (a)—(e) in the statement of
Lemma 1 hold for g in W’. We do the same check in D\ W’ and there since |g|<
(&3, (a)—{e) trivially hold.

So Lemma 1 is now proved, for N=2.

Proof of Theorem 1.

2.1. Let W, ...,W,, be open subsets of D so that U {W: 1=i=M}2bD,
and W, (1=i=M) has the properties of W in Lemma 1. Such a cover is possible
since bD is compact. As in the statement of Theorem 1 f: bD-~BY*! is a con-
tinnous map such that | f]=0, K is a compact subset of D and ¢=0. We choose
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Ry,=>0 so that |f|=R,. Define:
2.2. K, = {z€D: d(z, bD) = d(K, bD)/2%}, 1 =n<eco,

then K, is compact and KCK,CK,,,CD (1=n<co).
2.3. We will use the following notation, when # is an integer there are unique
integers a, b 5o that aM +b=n and 1=b=M. We define:

A=bh.
2.4. Define for n=1 ¢,=(100M/(n+ A4))"/* where the constant A4>0 is to
be chosen later. There is no upper bound in the choice of 4 but there is a lower

bound. We require that A is large enough so that (i)—(iii) below are satisfied.
(i) &, <&, where ¢, is defined in the statement of Lemma 1 with respect to Ry/2.

(i) 2, (6" <e/2
(iii) 4/M?*>100.

The constant 4 might have to be magnified later to provide for additional
properties.

2.5. Let S=max {| f(z)|: z¢€bD} so 0<R,<S=1.

2.6. We define b,=1, b,=1—(g)* for 1=k<e and B,=1,

anb()ble"'bn—la = <o and leim B".

We will assume that the constant A4 is large enough so that S<B<1.
2.7. Define g,=0 and f,=B~Y/, then | fil.<1.
2.8. The induction hypothesis; let n=1 and assume that f;,
8o» --» 8n—1 are defined so that the following hold:
(i) f;: bD~B"*! is continuous, 1=i=n
(ii) g;: D~C"*! is continuouns and holomorphic in D
(i) for zebD:

f;,(Z) = (Bn/B)f(Z)+(BII/BO)gO(Z)+(Bn/Bl)g1(Z)+ +(Bn/Bn-1)gn—1(z)'

By Lemma 1 there exists a C* map g,: D—~C¥*! which is holomorphic in D
such that:

and

v/ n

2.9. (a) when z€bD:
/2 (2)+ 84 (D] < 14(e)*
(b) when z€bDAWj:
(242,212 > (&)2(1-11.(21?)— ()%
(c) when z¢bD:
11D+ 8@ > —(e)®
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(d) when z€K,:

18(2)] < (en)®
(e) when z¢hbD:

|ga (D < V(L ~1£,(2)ID)+(&,)®.

2.10. We define for z€bD: f,,,(2)=b,( f,(2)+g.(z)). We can see from prop-
erty (a) that the induction hypothesis 2.8 (i)—(iii) now holds for n+1. Property (b)
implies: when z€bDnW;:

o a@P 1@ > @2~ £E@) @)
= (1=-14£@B) ~(1~ £+ > )21 =1/ — ()"
2.11. We conclude the following:
(A) for all zebDnW;:

(1=1£o:2(DP) < (1 =1~ £ + (@)
(B) for all z¢bD:
[fos1DPE =11 (D2 = —(g,)®.

For the inductive process to work we need to have |f,|>R,/2 for «=n=1 so
that we can choose g, with respect to R,/2 and then Lemma 1 can be applied to
Jus & for every n=1 (as g,<g,). By choosing 4 large enough in 2.4, we can assume
that Si=y (89" <(Ry)*/2.

2.11. (B) imptlies that for n=1, z¢bD:

L@ = AGE-2, aier @ = (RSP~ oy (6™ = (Ry)/2

S0 | fu(2)|=Ry/2.

2.12. Define for zeD, n>1: G,(2)=y=izu-1 (B,/B)g:(z). Then 2.9 (d) im-
plies that G, converges uniformly on compact subsets of D.

2.13. We define for zé€D g(z)=I1im,,., G,(z), g is then holomorphic on D.

2.14. Define for n=1, z€bD: g,(z2)=1—|f.(2)]2. The next claim is the main
step in proving Theorem 1 from Lemma 1.

Claim 1. There exists a constant C>0 so that for all z¢bD and a positive
integer s:
0 < g,(2) <= C/s®

(C does not depend on s and z).
Proof. We define for z€bD.

2.15. m(z) = min {l =j = M: zeW}.
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Let zcbD and k>1 and n=kM+m(z), then zEW,=W,,, so:
216, foum@P=1L@1F = (2 2 japs fos 1 D=1, DP)
H @B =L@ = 3o oo~ s 0+ (L= 11D
> — M (e} +(e)*(1 = | (D).
(A) and (B) (of 2.11) were used here. 2.16 implies :
2.17. M)+ (1—(e)) (1 =1L = 1=/ n (2
M (e +(1—(e,)*) 0(2) = Quim (2).

Fix zebD and define for k=1

2.18. A = Oum+mzy(2)-

or

Definition 2.4 and 2.17 imply now that for k=1 (we denote A4,=2A/M):
2.19. A+ = a,(1—100M (kM +m(z)+ A))
+ M(100M (kM +m(z)+ A))* < a, (1 —100/(k + A,)) + M10%/k=,
Define C,=2M10"4,=4.10*4.
Claim 2. For k=1 a,=(C)"/k™".

Proof. of Claim 2. It will be proved by induction. For k=C, it is trivial since
a,=1 (for all k=1). We will assume that it is true for k, k=C, and prove that
it is true for k+1.

By 2.19 and our induction assumption (of Claim 2), we have:

iy == (1 —100/(k+ A,))+ M1040/k2
= ((Cy) /K1) (1 — 100/(k + Ay)) + M 10%/k
= ((CM/K) (1 = 50/(k + A;)) + (M 10%/k2 — S0(Cy)®((k + A,) k1°))
< ((CMK)(1—50/(k+ Ay)) = ((C/k2) (1 —25/k)
= (1 =25/k)((k + 1)/KYO((C)(k + 1)19) < (1 —25/k)(1+25/k)((CLy/(k + 1))
= (CY/(k+ 1)

So Claim 2 is now proved.
We have proved in Claim 2 that for all k=1 and z€bD

2.20. kM +m(z) (Z) = (Cl)lo/klo'
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Let us fix zebD and k=1 and let n=kM-+m(z) and fix 0=j=M—1 then:
221, en+i(2) = (D + 2 aiz;o1 Crrit1 (D) —0n1i(2)
= 0,(D+ 2 gzizjoy Vari@PE=fosi 1 (DI
= (COOIRO+ 2o Ear ) < (C7KM+ M (e,)* < 2(C)OK.

Let us assume {as we may) that M =100 so we have k=(n+j)/M? 2.21 then
implies: @, ;(2)<2(C; M%¥/(n+;). It follows that for every integer s=1 g,(z)<
C/s*° where C=2(C,M?%)".

Claim 1 is now proved, and with 2.9 (e) it implies that G, converges uniformly
on bD and therefore on D. We will call its limit g which is a continuous extension
of the g that we defined at 2.13.

Claim 1 implies that lim,_. |f,(2)]=1, for z&bD, and by 2.8 (iii) and the
uniform convergence of G, on D lim,... f,(z)=f(2)+g(z) uniformly on bD, so
for zebD, | f(z)+g(2)|=1.

To complete the proof of Theorem 1 we have to show that {g(z)|<e for z€K.
2.4 (ii) and 2.9 (d) imply that for z€K:

gD = |30 (BB (D| < 3., €)° <.

Theorem 1 is now proved.

1t is apparent that the proof above is independent of the dimension of the target
ball, as long as the co-dimension allows Lemma 1 to hold. Thus Theorem 1 is proved
with target ball B, for any M=>N.

Section 2

Throughout Sections 2, 3 4(B") will denote the algebra of all the functions
that are continuous on BY and holomorphic in BY. Let EcbBY be compact, E is
called a peak set if there exists @& 4(BY) so that:

for every z€E: ¢(z)=1

for every z€BVE: |o(2)|<1.

We will call the function ¢, a peak function on E. A compact set EChBY is
called an interpolation set if every complex continuous function on E extends to a
member of A(B). These two definitions are equivalent, see [18], Chap. 10 for dis-
cussion of these and other equivalent definitions.

Theorem 3. Let ECbBY (N=2) be an interpolation set for A(BY) and
f1 E=bB"*! continuous, K BY compact and ¢=0. Then there exists F: BY—~BN*1,
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a continuous extension of f which is holomorphic in B", so that F(bBY)ChBV+!
and |F(2)|<e¢ for all zeK.

Like the proofs of Theorems 1, 2 the proof of this theorem clearly holds if the
target ball is any BY, where N<M. In order to prove this theorem we will use
the following Lemma 2, that will play the same role that Lemma 1 has in the proof
of Theorem 1. But additional control is now needed on g,, the correction function
of f,. We must have | f,+g,/=1, so that we can maintain f,=f on E for all
oo =>pz=1l. Thus we should have g,=0 on E and we need to control the growth of
g, as we move away from E. We are able to do so if we maintain in the induction
process that 1—|f,*=C,|1—¢|* for all n=1, where C,>0 is a constant and
@ is a fixed function in 4(B?), ¢ is zero on E and has a positive real part elsewhere
in B2

The difference between the proof of Lemma 2 and Lemma 1 is a consequence
of this additional control. To provide for such a control Globevnik [12] used a dif-
ferent method which is based on a topological observation.

Throughout this section, E will be a fixed interpolation set and @€ A(BY) will
be a fixed peak function on E such that Re (¢)=0; thus ¢(z)=1 for all z¢é E and

lp(2)|<1 for all z¢ B\ E. The constant f=pB(N)=>0 will be defined for N=>2
in the third section, B(2)=1.

Lemma 2, Let Ry>0, g,=10"UMYRD gnd z.cbBY. There exists W, an
open neighborhood of z, in the topology of BY, such that the following holds.
(0) Take f: BY—B"*' | f|=R,, a continuous map, holomorphic in BY such that:

D) |f(D=1ezcE

(2) there exists C=0 so that for all z€bBY: 1—| f(2)|2=C|1 —p(2)|%
Take also ey>e>0, & =0 so that:

(3) M8 C/H(C+1)=¢
(4) {z€BY: |1-0(2)|<e}S {z€BY: 1~|f(2)2<e},

and let Kc BY be compact.

Then there exists a continuous map g: BY—~CN*1 which is holomorphic in B¥
that has the following properties:

(a) There exist C’=0 so that for all zEbBY: 1—| f(2)+g(2)?=C’|1 —p(2)|2=0
(it is true for C’'=C/4)

(b) for all zeWnbB": | f(2)+g@)1—|/@PP>(1 -] f(2)|*)e*—&>

(c) for all zebBY: | f(2)+g(2)2—| f(DPP>—¢

(d) for all zeK: |g(2)| <&’

(e) for all zcbBY: |g(2))*<e*(1—| f(2)?)+¢

(£) for all z¢E: g(2)=0.
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The neighborhood W is the one chosen in the proof of Lemma 1. A significant
difference from Lemma 1 is in (a) and (f). Property (2) enables us to prove (a) which
preserves property (2) in the induction process and implies | f+g|=1. This is vital
in our construction.

Proof of Lemma 2.

In this section we will present a proof for the case N=2. The case N=2 will
be proved on Section 3 when the necessary tools for it have been developed. Our
constraction is similar to the one in the proof of Lemma 1 but a few changes will
take place to provide for the additional control mentioned above.

The set up in the proof of Lemma 1 until 1.4 will be adopted here unchanged
where D=B> U’, U, V’,V, W, W’, uy and the coordinate system will be the same
as there, and thus, they have the same properties.

3.1. Let (¢)"¥=r=0 be so that when X, Y€V’ and

IX—Y] < (log(1/r)
then:
@ 1f X)) =) < N,
(i) [L/(1=o O +(E))—1/(11—p(V)*+ ()9 < ),
(i) 3 i (D™ = (&)
where I(r) Sl —log r,
@iv) (loge)/(r'/*-4x) is an integer.

We might have to shrink r=0 later to have additional properties.

3.2. Next ¢y, ¢, 03, L, L, X,, u, (acL’) are defined by 1.6, 1.7, 1.8. Hence
u, is described by 1.8, 1.9 (where the remainder term is described in Sublemma 1).
Also p, (acL’) are defined by 1.10 and have the properties that are mentioned in
1.11, 1.12, 1.13.

We will now define for every a¢L’, v,6C3? in a way that is based on exactly
the same principal but is somewhat different in its details then in 1.14, a difference
that will be understood later. The set {v,: acL’} will have the following prop-
erties :

3.3. For a,bcL’
() (v, f(X))=0
(i) Toal2=26(1 = /XID/(11 @ (Xl +())
(iii) when a, b€L’, lJa—b]<1000 and b,—a, is odd then:

(vas v)| < (')
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(iv) when a, beL’, |a—b| <1000 and b,—a, is even then:

|(va’ vb)—lvalzl = (8/)50'

The proof that a set {v,: a€ L’} with the properties (i)—(iv) exists, is essentially
the same proof as in 1.14.
Define as in Lemma 1:

h(Z) = ZaEL Pa Vg = Zaeypa'vn‘

The sets L(x, n), L'(x, n) are defined as in 1.16.
We will now prove the following (compare with 1.17 (A), (B), (C) in the proof
of Lemma 1). For XeV’ (V’, V are defined in 0.2):

34. (A) [(f(X), hQXO)| < (&),
(B) [AQOI? < e 2(1 = fXO)R)/(I1 — o (X)) +(&)) + (&),
(C) when X¢V, then
(X2 = e2(1 = fX)B)/(I1 =@ (X)I* +(&)*) — ()"
We will freely use the facts that |v,[2<(g’)~1° for all a€L, and when X¢eV”,
acL(X,n) for n=1(r)%L -logr then since |X—X,|,|X,—X,pl<r it follows

from 3.1:
l2al® = loamy|?] < ()%, and | /(X)—f(X)] < ()
We will also use (without mention) the facts stated in 1.18 and assumption
3.1 (iii).
Proof of (A):
G0, B))| = |2, (A, 2P|

= | D omnmi) S acirm LX) 0a) B+ Z 1)< 2w zixmy FE)s 2a) BaX)!
= 3oy Zac e OO =LA 10 12aCON+ D02 Zacsixny 12O 2
- 20§n§l(r) (10n+10)3(e)00. ()5 . g™ + Zl(r)<n (10n+ 10)%e™ - ()% < ().
Proof of (B): Fix XeV’:
O =13, ey (0as 0) P (XD B (X))
= S emitry S w1 (Car ) PaE) B ()]
+ 2 iy<m Daver, aer=m | Pa B (X)) - €)1
= Zozmzien (PacoP+ @) (10m +10)° - ™44+ 3 () ~"°(10m +10)° . g™/
< 107 g P+ (&) = &2 (1 = FXOR) [(11 = OOI* +(&)) + ().

3.1 was used in the last two inequalities, (B) is now proved.
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Proof of (C):
Fix X€V then:

35. hQOR = 3, , . (0as 0)Pa(X) Bp(X)
= 3, veronn (o WPCOB+ Sy St i (o> 1)Pa(X) B (X)
= Re (2, e sy (Por 09 2a(X) B (X))
et Sver s prom (2l + 10D12. 0O B O

Let us look at the first term on the righ side of 3.5. This estimate is essentially
the one that follows 1.19, we will use the calculations done there, and 1.13, 3.3

Re(3, veroroWas P By(X)) = 3 1ix gy 16l P (X))
+Re(Z, pcrix.0, aseb, aymby [Vl Pa(X) Bo(X))
+RE(Z, e 1,0, amb, ag, (Vo> 96) —10al?) Pa(X) B (X))
= 3 e be 0,0y, ab, ayety1 | (Ve 06)Pa(X) Bp(X)]
— 3 e e 1,09, art, mybyte |(Bas ) Pa(0) By (O] > (3/4) 100y |2 | Pagy (X1 — (&)

Let us estimate the second term of 3.5. As mentioned in 1.21, when a, be L,
[a] +[p)=m=1 then:

|Pa(X) Py (X)] < ™%, | po(X) P (X)] = /%] Py (X)I?
and when [a)+4-[b]=m=2, then
|94 (X) Py (X)] < ™ 4=13 | po, (X))

36. St Sever. wemn (02 100120500
< Zismsie) 2 abel, @p1—m (0a” T 1061 122 (X) By (X))
+ 2 o) Zaper, wiprem 2E) €
< Zizmsie) Saver, wepi=m 2(Cacnl® + €)P) Pacry (X) 2 - emax Cm/A=1/D:18
+ 2 oty 2(00m + 1008 (€) ™10+ ™14 < o, 00| Pagaey (X - €1+ ().
Now 3.5 and 3.6 imply:

|R (X = {ax) 2| Pacxy (X1 (3/4 — /%) — (')°

> (1= /R —o (Xt +(E)) — (N

(C) is now proved.
(A), (B), and (C) in this section are similar to (A), (B), (C) in the proofof
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Lemma 1. The following (D) will be the same as (D) in the proof of Lemma 1 and
will be proved in the same way.

(D) For all =0, u=0 there exist ry=>0, ry=ry(d, #) so that if O<r<r,
in the definition of A then for every X¢U’ such that d(X, V)=0 (distance in the
coordinates) we have [h(X)|<p.

Proof of (D): Fix X=(x,y,z w)cU’ so that d(X, U)=é. Define M(X) as
in 1.29. Then:

lh(X)lz = IZa,bEL (V45 Ub)pa(X)ﬁb(X)l
= 2 u0y=m 2 ave, l+pi=m &) 1Pa(X) Pp(X)]
= 2 msm (&)1 (m+2) gm0,

Like the sum in 1.30 this sum can be made arbitrarily small uniformly on X¢U’,
d(X, V)=4, as we shrink r=0.

Let us now choose 6=0 as in 1.31 and u=(¢")® and r=>0 in the definition
of h will be chosen so that |h]<(¢)*® outside of ¥°. The proof of the claim in 1.34

makes it clear that if ¢ >0 is smaller than some constant (and we assume it is so),
then there exists a C= map g: B2—~C?, holomorphic in B2 such that:

3.7. for all zeW”,
18(2)—h(2)] < (¢)® and for z€BAW’, 18(2)| < (&)
This implies (among other things) that:
3.8. for all z€K,
12(2)] = ().
3.9. Let us define for z¢ B2:
2(2) = (1-0(2)4().
Then (A) and 3.7 and 3.9 imply that for all z¢bB?:
3.10. (12, 2(2)] = P11 -0 ()2
Now (B) and 3.7 and 3.9 imply that for all z¢bB2:
3IL g2 = (2(1~1 /D)1 - @I +E)) +E)) 1 —p(2)I*
=e2(1-f@P)+EPI1 o)
Thus 3.10 and 3.11 imply that for z€bB?2:
3.12. 1-1/(D)+2@F = 1-| f(2IP = 12D -2|(f(2), 2(2))]
= (1-1/@P)(1 -~ (EP(I1 - +2]1-0(2))
= (1-1f(2)P)[2-10EP|1 -0 (2)I®
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(using assumptions (2) and (3) in the statement of Lemma 2, for the first time)
= (C2)|1-e()I*~10EP|1 -9 (2)* = (C/A |1 — ()

So (a) (in the statement of Lemma 2) is now proved. We could, of course, ob-
tain a better (larger) constant then C/4, but it has no importance at all (as long
as we obtain a positive constant).

We have (by 3.10) that for all zcbB?2:

3.13. (D +g@E-1f@IF > —-2[(/(2), 8@)| = —¢
thus (c) is proved.

From 3.8 (and 3.9) (d) follows, and 3.11 implies (e). Now (f) follows from the
Definition 3.9, so it remains to prove (b).

Let zéeWnbB2, (C) and 3.7 imply that:

3.14.
1212 = (1~ f@E)(I1 —@ DI+ 1 —p (D ~()PL—p (2]t
So by 3.10 we have:
3.15. 1f(2)+g@IE—1 @) = (D)1 -2|(/(2), g(2)|
= 2(1- DR (1 - @I +()) - [1—p@)I* - 10E ) 1 - e ()2

If 1—|f(2)2=>¢'%, then assumption (4) implies that {1—¢(z)|>¢" and by 3.15:
3.16.

/(@ +2@LE-1/@P = (1 -1fH) (1 + 1 -0 7*()*) "~ 10¢E)
> (1-1f(2})(1~-¢)—¢.
It is clear that (b) holds in this case. If 1—| f(2)|2=¢'%, then by 3.13 we have
/@) +8@IE—] f(2)]2>—& =1 — £’ >¢2(1—]| f(2)]*)—&*® and (b) holds also in this
case. Lemma 2 is proved.

Proof of Theorem 3.

By Lemma 1 of Globevnik [12] there exists a continuous extension of £
f: BY—~B"*!  which is holomorphic in BY such that for all z¢bB":

4.1. 1=|f(2)| = 1)2.
Choose an integer n,=>1 so that for all z€K:
4.2. (I1+ e (2)I/2)* < &/2.

Recall that we fixed the the function ¢ before the statement of Lemma 2, ¢ is a
peak function on E and Re (¢)=0.
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Define for ze¢ BY

4.3. filz) = ((1 +(p(z))/2)"°f(z).
Thus when z€bBY:

4.4. AG@)] = (11+02)I/2)°| f(2)| = 27"t D.
Define R,=2""*Y  Note that for all z¢K:

4.5, /(2] < &/2.

Before we proceed we need the following simple fact:
If A€C, |A|=1, then
4.6. 1—=I(L+A)/212 = (1/4) |1 — 212
Proof. This is equivalent to:
4—+)A+D) =1 -1 - o 3—|i2=0C+D) = 1+|2P—=(A+1) < 2 = 2]A>

So 4.6 is true.
Using 4.6 we have for all z€B2:

4.7. 1= 4@ = 1=|(1+0@)/2P[1+e@)/2["VIf(2)i*
=1-|(14+0(2)/2F = (1/8)|(1-¢(2)
So f; fulfils condition (2) in Lemma 2 with C=1/4.

We shall follow now a similar process, and in most parts identical, to the one
in the proof of Theorem 1 of constructing {f,: 1=n<<e}. We will not repeat
identical details.

4.8. Let W, ..., W, be relatively open subsets of BY which have the properties
of W in Lemma 2, and so that bBYC U{W: 1=i=M}. Let K, be defined by
2.2 (where D=B¥) and @ for n>1 be defined by 2.3 and 4, ¢, (for n=1) by 2.4.

49. Let n=1, and assume inductively that the maps gi,...,8u-1s f1>-->/n
are defined, and that for 1=i=n, f;: B¥—~B"*! is continuous and holomorphic in
BY, fi=f on E, and that there exists, C;>0, so that 1-|/f(2)?=C;|l —¢(2)|?
for all z€ BY. Assume also that for 1=i=n—1g;: B¥ ~C¥*! are continuous and
holomorphic in BY, and f,=f,+g +... +&u_1-

4.10. Let & >0 be so that

() CH(C+ 1) =&

and {z¢B¥: |1 —(p(z)[<s;}g{zEEN: 1| £, (2)12<(g,)1}.
By Lemma 2 there exists g,: BY—~B"*1, continuous and holomorphic in B¥
so that the following (a)—(f) holds (with C,,,=C,/4):

4.11. (a) for all zebhB¥,
1-1£,(2)+ 2,21 = C, |1 —p(2)|? =0,

2
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(b) for all zeW;nbB",

12(2)+ 8,2 = 1£,(D1? = (1= £,(2)*) () — (en)
(c) for all z€bBY,

| /2(2)+ 8. (D2 —1 £u (2)? = —¢],
(d) for all z¢K,,
8. (2} < &,
(e) for all z¢bBY,
|8x(2)I? < (e)2(1—1 £, (D)%) +e7,

(f) for all zcE,
g:.(2) =0.

4.12. We will define f,.,=f,+g,. Itis easy to see that our induction hypoth-
esis holds for n+1. Property (d) implies that f, converges on compacta. We will
call its limit F. Exactly the same proof (in fact, we do not need to change even one
word) as in 2.11—2.21 can be applied here to show that there exists C=0 so that
for n>1 and z¢hBV:

4.13. 1-1£ (22 = C/n.

It follows then from (e) that f, converges uniformly on B", so F can be extended
continuously to the boundary. By 4.13 |F(z)|=1 when z€bB", by (f) F(z2)=f(z)
for z€E, and by 4.5, 2.4 (ii), 4.11 (d), | f(z)l<e when z¢K. We choose >0
with respect to Ry/2 and by having O<eg, small enough, we can assume that
h=n6,<(Rg)*2. So (c¢) and 4.4 now imply that for n>1, z€bB¥, | £,(2)| > Ry/2.
The proof of Theorem 3 is now completed.

Theorem 4. Let ¢=>0. There exists a continuous map F: BY ~BY*1 which is
holomorphic in BN such that F(bBY)=bB"*' and F((1-—¢)B")SeB¥*'. The map
F can be the extension of any continuous map f: R¥nbBY -bB¥+1,

This gives a positive answer to an open question by Globevnik [12].

Proof. We will follow the Globevnik [12] proof. Let AcbA (4={zeC: |z|<1})
be a Cantor subset. Assume 1, —1¢ 4. The set 4=4x{(0,0, ...,0)} is an inter-
polation set of A(B¥) (see Rudin[18], 10.1.5). Let B=R¥nbB", so B is also an
interpolation set of 4(BY) and sois AUB (see [18, 10]). There exists g: 4-~bBY*?,
a continuous map so that g(4)=bB"*1 (see [15] p. 166). If : B—~bB"*! is con-
tinuous, then since 4nB=@, we can define for z€¢ AUB:

f(z) = g(2) for zc4 and f(z) =f(z) for z€B.

So f: AUB—~bBN*! is continuous and by Theorem 3 there exists F: BY—~BV+1,
continuous and holomorphic in B¥ such that F=f on AuB, F(bBY)ChB"+! and
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F((1—€)B")SeB *'. Since f(A)=bB"*' then F(bB")=bB"*'. Theorem 4 is
thus proved.

It is interesting that f can be any real analytic function, for example f(z)=(z, 0)
for z€B. So while F can not be C* in an open subset of bB" (it would imply
(by [3]) that F is rational) it can be real analytic in a smaller set like RYNbB".

Section 3

In this section the results obtained in Section 1, 2 are generalized to dimension
N=2. The following Lemma 3 will provide us with the basic tool that is needed
to generalize Lemma 1 and Lemma 2 to dimension N=2. We fix Nz=2 until
the end of the section. For an integer n we define here i to be the unique integer
in {1,2, ..., N} sothat n—# is an integer product of N. For 1=i=N we define:

5.1. Si == {a = (al, csey aN_l)EZN_I: al+...+aN_1 = i}

where Z is the set of all integers. The following standard notation will be used:
when x€RY™L r>0 then B(x,r)={yeR": |y—x|<r}.

Lemma 3. Let O<a<1/4 then there exist vy, ..., un€RY™1, Iy <a (1=i=N),
and =0 so that if we define
5.2. S = {a+vlacsy

then for every xcRN™Y there exists 1=i=N so that if d=d(x, S;) (the distance
of x from S then there exists only one element in B(x,d+p)nS;. The constant
B=0 depends only on the dimension N and on o and it does not depend on x.

In other words, after shifting each of the sets S;, we obtainsets {S;} such that
for every point x in R¥~1 there is S, and a point y€S; which is closer to x, by a
difference of a constant f=0, than any other point in ;.

Proof. When N=2 then Lemma 3 is trivial with f=1 and v;=0 (i=1, 2)
we will therefore assume throughout the proof of Lemma 3 that N=2. Choose
O<y,;;<o/N, for all 1=i=N, 1=j=N-1, so that the set (of N(N—1)+1 real
numbers): {y;|l=i=N, 1=j=N-1}u{l1} is linearly independent over Q. Where
R is viewed as a vector space over Q.

Define:

5.3. 0= Yas e Yinoy) 1=

A

N.

We will prove that Lemma 3 holds with these {v;}, for some f=>0, where (as in 5.2)
S;=S;+v, for all 1=i=N. We define for acS; and 1=/=N:

5.4- 6:a+vi.
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The following notation will be used, when v, weR¥~* then:
5.5. [v, w] = (w+w)24+(v—w)+

(we use here the standard notation, for veRY™* vt ={ucRY"': (4, v)=0}). Note
the simple fact that for x, v, weRV™1:

x—wl? = |x—o* & [x[P+ WP —2(x, w) = x*+|v]*—2(x, v)
< 2(x, v—w) = (v+w, v—w) & (x—(v+w)/2, v—w) = 0 o x€[v, w].
So [v, w] is the set of points in R¥~! which have the same distance from v and w.
The following claim is of central importance in the proof of Lemma 3.
5.6. Claim. If a;,bS;, 1=i=N and a;#b; then
N{d,bl: 1=i=N)=4.
Proof. Let us assume (to get a contradiction) that there exists
P = (P15 s Py-1)ERY?
so that p€l4;, l;,.] for all 1=i=N. Then we have for all 1=i=N:

(p—((a;+b)/2+v), a;—b;) = 0;
which is equivalent to:

57 (p, ai-bi) = (|a,~l2—|bi|2)/2+(v,-, ai_bi) for all 1 = l = N.

Let us look again at R as a vector space over Q and define:

W = spgo (D15 s Pn—1)
and

7 = (lal*—|bil*)/2+(v;; a,—b)) (1 =i=N).

Then 5.7 implies that y,€W for all 1=i=N. Since the dimension of W over Q
is no more than N—1 we must conclude that v,, ..., yy are linearly dependent.
But this contradicts our assumption that {y;|l=i=N, 1=j=N-1}u{l} are
linearly independent over Q. So claim 5.6 is proved.

In general a claim like 5.6 can not be proved if the number of families {S;} is
K<N. In this case we would have in claim 5.6 K<N hyperplanes in R¥~, we can
write them as V;=u;+(w;)* where u;, v R¥"! 1=i=K. Then N{V: 1=i=K}=0
is equivalent to saying that there is no pcR¥~! so that

(p—u;, w) = 0(‘:’ (P> w) = (u;, Wi))

for all 1=i=K. But when {w;: 1=i=K} are linearly independent then of course
there is such pcRY¥1,
The following is derived from claim 5.6.
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5.8. Claim. There exists f’>0 such that if a;, 5,¢S;, a;#b;, (1=i=N) and

i* Y

there is ac Sy such that for all 1=i=N, a;, b;¢B(a,2N) then
N {[d;, b1+ B, p): 1 =i = N} =0.
(d;, b; are defined by 5.4).

Proof. Let us define a,—a,—a, bj=b,—a (1=i=N) then [d;, b;]=a-+[d, b7]
so it is apparent that it is enough to prove 5.8 with the assumption that a=0, and
then with the same f’=0 it will be true for any acSy.

Define T;={[;, b,]: a;, ;¢ S;nB(0,2N), a;b;} for | =i=N and T=T; X... XTy
and let V=(V,...,¥)eT. Claim 5.6 implies that M {V: 1=i=N}=#, and since
W, ...,Vy are affine hyperplanes of R¥-' there exists f'(V)=0 so that
N{%+B(0, p(V)): 1=i=N}=0 (see Claim 5.11 after the end of this proof).

Take B =min {f'(V): VET} (B'=0 is well defined as the minimum is taken
over a finite set). Then for every V=(V,, ..., Vp)ET, N{V;+B(0, f): 1 =i=N}=0,
and 5.8 is now proved.

Define f=p'/N. Now take x¢R"~!, and choose for every 1=i=N 4S5, so
that d(x, ,)=d(x, $;) and b,cS\{a;} so that d(x, b)=d(x, SN\{d}) (& is the
closest element to x in S; and l; is the next closest). It is clear that there exists an
aeSy so that a;, bcB(a,2N) for all 1=i=N. Therefore 5.8 implies that
N{(&, b]+B(0, B): 1=i=N}=0. Thus there exist 1 =i,=N so that x¢[a;,, ,-0]+
B(0, §"). We calculate that:

59. 0= |x—b;|—|x—a| = (x—b; )2 =% —d|D/(1x = big| +|x —d,|)
= (Ix—by 2= x =, 22N = (2(x, G, —b;) + 1b:[2—1d;,|*) 2N
= (x—(di, +b;)/2, diy—by)/ N
Let us define t=(x—(di0+l;io)/2, 51'0—1;,',,) then:
500 ((e— 1+ (ds,—bi) /iy~ Bigl2) — (@i + B2, diy— i) = 0.

Since a;,—b,,=a;,—b

io

then by 5.10:
x—t(a,—b)\a;,— b;|*€[dy,, 51’.,]-

As Ia —b; |>1 we obtain that x¢c[g; , b ]+B(O t). But by our assumptlon (before
5.9) x({[a,o, ,0]+B(O B’) therefore t=p". Thus by 5.9 |x— b,0|—|x a,|=t/N>
p’'/N=f. Lemma 3 is now proved.

Note that the proof of Lemma 3 implies that we would obtain the same result
(using the same proof with trivial modifications) with some different definitions of the
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initial sets .S;. We could define for example (for 1=i=N):
S ={a=(a,..,ay_)EZ"': a, =i},

or (for I=i=N): S;={a=(ay,...,ay_)€Z""': P(a)=i} where P is a poly-

nomial of N—1 variables with integer coefficients, and P(Z¥-1)={l, ..., N}. The

main point in the proof of Lemma 3 is the way the sets S; are being shifted to S;.
We are using the following elementary fact in the proof of Lemma 3.

5.11. Claim. Let 1=n and let ¥, ...,V, (1=m) be affine hyperplanes of R"
such that N {¥;: 1=i=m}=0, then there exists ¢>0 such that

N{V;+B@O,¢e): Il =i=m}=0
(where B(0, e)={x<R": |x|<e}).
Proof. Let n=2, we will assume inductively that the claim is true for R"—!
(it is trivially true for R'). Let V¥, ...,¥, be affine hyperplanes of R" and

Uy, Wiy ooy Uy, W,,ER™ be such that V,=u,+(w)* (for all 1=i=m). Assume that
N{¥: 1=i=m}=0. This assumption is equivalent to the following:

(1) there is no p€R" such that (p—u;, w) =0 forall 1=i=m.
Let us assume (to get a contradiction) that there is no &=>0 so that
({V;+B@O,¢): l =i=m}=40.

It follows that for every l=k<eoo, 1=i=m there exist p, v ;€R", |y, |<1/k so
that for all 1=k<oo, I =i=m:

(2 (pxtog,i—u;, w) = 0.
If {ph=x<- has a bounded subsequence then it has a converging subsequence,

we call its limit p’. It is obvious from (2) that (p"—u;, w;)=0 for all 1=i=m and
this contradicts (1), therefore

® Jim |py ===
We can assume that the sequence {p/|pl}i=i<~ converges, let g=lim,_. pu/lpil.

It follows from (2) that for all Isk<c, l=i=m (pk/lpkl + (v, ;—u )/ pil, wi)=0. If
we let k<o we obtain

4 (g, w)=0 forall 1=i=m.

After an orthonormal change of coordinates we can assume that ¢=(0, ..., 0, 1). De-
fine, for y=(y, ..., ¥ JER™, §=(p1, ..., Y1, 0). Since (from (4)) wy, ..., w,ER*X
{0} then (1) implies that:

(5) there is no p<R"'% {0} so that (p—d;, w)=0 forall 1 =i=m.
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It follows from (2) that for all 1=k<o, 1=i=m (§,+0,;—4;, w;)=0, but this
(with (5)) contradicts our induction assumption that the claim holds for R*-™.

Until the end of this section we will fix «=10-° and B=0 will be the con-
stant associated to «a=10"° by Lemma 3 (N is fixed).

Proof of Lemma 1 for dimension N (N=2)

6.1. Let X=(x, y, z, w) be the coordinates system in the neighborhood of Z,
described in 0.1—0.3 and U, U’, V, V’, W, W’ are defined by 0.2—0.4 where d,=
B-1074M! and d=(d,)?/2 (the meaning of this choice is explained by 6.11 and
later by 6.21—6.27). The functions uy (for X€V’) will be defined by 0.5, Sublemma 1
implies that uy (where X =(X,, ..., Xy_1, J1» -.-» In—1+ 2, 0)€V”’) has the following
properties :

6.2. (i) Re(ux)=0 on UN{X} and uy(X)=0
(1) If X=(x1, ..., XNy—1> Vi» --» Va—15 2, WEU’ then:
ug(X) = w+ 3oy 0P =5+ 2= 2P +x,(x, = X))
+(1 - 21§j§N—1 (xf)z)(z_2)2+(l _Z1§j§N—1 (xf)2)_3/2(21§j§1\’—1 Xy (ij -xj))4
—i 21§j§N—1 xPA=wy(y;—7)—i(1—w)(z-2)+ Rz (Z).
Where the remainder term Ry is bounded in the following way:
IRy () = 10%(w+|z—Z1%+ 3| _ .y 1p;=T;+ 2 =21 +1x;— %,1%)
X(lZ_le/2 + ZléjéN—l |yi_37j+z—2|1/2+w+21§j§1v—1 |xj —le)
and: [Im (Rx (X))| = 100 (w+1z—212+ 3, oy 1 ¥y =7+ 2= 2P+ |x;—%;14)

X(IZ—ZP/2 +21§j§N lyj—)_)j+z_2|l/2)‘

The significant point is that Rg(X)=o0(Re (ux(X))). It was also proved by Sub-
lemma 1 that:

6.3. Re(ug(X)) = 99/100(w+ 3, _ o\ ((x)2(r;~F;+2— 2 +x,(x; — X))
+(1 - 21§j§N—1 (xj)z) (2_2)2'}_((1 —ZléjéN—l (xj)z)—alz) (21§j§N—1 (xj) (xj _xj))4)‘

We will state an assumption parallel to the one in 1.5:



Proper holomorphic maps between balls in one co-dimension 89

6.4. Let &/®*)>r=0 be so that when X, X’¢V’ and [X—X’|<(log (1/r)}™*
then:

(X)) —f(X)] < &

and so that (log e)/(r*/2- N°-2m) is an integer.
We will present now a long (and tiresome) list of definitions and notations that
describes the locations of the peak points of our peak functions. This is a crucial

part of the proof of Lemma 1. The motivation for these definitions will be clear from
their use in 6.21—6.27,

The following convention will always be used: when we have
X = (Xqy, ..., Xoy_)ER?N-1,

we call (Xi, ..., Xy_y) the x-coordinates and (Xy, ..., Xay_») the y-coordinates and
we call X,y_, the z-coordinate, x, y and z each having a different role in the proof
of Lemma 1.

6.5. Define c;=c,=...=cy_1=(d) " r'* and cy=cCy41=... =Coy_p=(dy) 1 r1/?
and coy_1=r2

6.6. Define

L = {a = (als seey agN_1)€Z2N-1: d((alcl, . a2N—1c2N~13 0)’ V) - r0.2}

and
L= {aezzN—1: (aycrs ..oy Aoy _1Can—1, O)GV’}

(here d(,) is the usual distance in C*¥; V, V" are defined in 0.2).

6.7. When Z=(Z,, ..., Zyy_)ECN-Y, we define Z'=(Zy, ..., Zsy—3)-

Take aclL’. There is (one) 1=i=N so that a’¢€S; (S;is defined by 5.1). Let
v,6RY-? be defined as in 5.3, and define:

A

a= ((11, v d2N—1) = a+(03 oo {N—1times) "> 0: Uiy O)

(we move the y-coordinates by v,). Define also:

X, =(c16y, s Con_18on -1, 0)
= (1845 ---» Cay—1023y 1, )+ (0, ... (N—1timesy+++> 0, €y ;5 0, 0).

Note that the “shrinking” constants ¢;, ¢, ..., Coy_; act uniformly on each of the
coordinates X, y, z.

6.8. Next we define for a€L, u,=uy and R,=Ry (sce 6.2).

6.9. Now let L]={acL’: a’cS;} and I, ;={a€L: a’cs) for 1=i=N.
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Take acL and X=(Xj, ..., Xon)=(X1, .--s Xy—1s Vis --s Vy—15 2, WEU’ and
define #;=X;/c; (1=j=2N—1), using 6.2 we have:

6.10. u,(X) = ux, (X)=w+2, ..y, ((x*(ensj-1(tysjo1 =y j-1)
Fean—1(fav 1= oy )P +3;(e; (= a))) H(1 =3 2y, )P (a1 (faw 1 —aan —1))*
+(1 —21zj=N-1 (xi)z)_3/2(21§j§N—1 x;ei(ty—aj))

—i 2 jeNo1 ()21 —wreyyj1(nsjo1—8nyj1)

—icoy 1 (1= w)*(fay 1 — gy 1)+ Ry (X)
= W+Zl§j§[v_.1 *"((xj;/dl)z((fwrj—l“ézv+j—1)+d1("21v—1—“25'—1))2+(xj/d1)(tj—ajy)

+ r(l —21§j§N__1 (xj)z)(tZN—l—azN—l)z

(1= 2 oy D) D o jano Xid) T (=)
—i(d) (1~ w)? 21§j§‘y__1 ()N jr—dy s 1)
— (1 —w)P(ten_1 — Aoy _1) + R, (X).
Define now for acL, XcU”’:
6.11. Pa(X) = exp (u,(X)- (loge)/(rN%)),

and for ac L'\ L we (formally) define p,=0.

By 6.2 when a¢L 1=|p}=0 on UNJ{X,}, p,(X,)=1, and |p,(X)| decreases
rapidly as X¢U’ moves away from X,. We need a good estimate of |p,(X)|=
REGXEND Tt follows from 6.10 that:

Re ((ua(X)—Ra(X))/(rNs)) = Nhs(w/"+21§j§zv—1 ((xj/dl)z((tN+j—1—dN-!-j-—l)
+di(tay —a2N~1))2+(xj/dl)(tj - aj)4)+(l - Zlgjg]v._l (xj)z)(IZN—l ~aan_1)?
+(l —2151‘5;\’_1 (xj)g)-a/z(zléjglv‘—l xf(‘ll)‘1/4(rj "aj))4)‘

This term will will play a central role in the main step of the proof which is
in 6.21—6.27. Note that by 6.1 1—-d,=x;/d,=1+d, (for 1=j=N-1) and d,=
)8 . 10~(10N)!‘

We have from 6.10 and 6.11 that for

X=(%020=WX, . Xoy_1, 06V (t; =X;/c; (1 =j=2N-1)), (6Le):
Pa(X) = ERWONNexp (" i(loge)r=Y2N-3(dy)~* ZlgjgN_l (xj)z(tN+j—1—dN+j—1))
X exp (‘ i(log 5)"_1/2N—5(’2N—1“‘12N—1)) -0,(X)
= FReWLD/ONY exp (' i(logg)r—12N=-%(d;)~* 21§j§~_1 (P (tnsj—1 _6N+j—1))

Xexp (—i(loge)r VEN="315y_4) 0,(X)
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where
0,(X) = exp(i(loge)-r~1- N-3 Im(R,(X))).
The last equality holds since a,y_, is an integer and by 6.4 (log &)/(r\/2- N®.2xm)
is an integer.
We obtain that for all a, b€ L:

6.12.
DaX) - Fy(X) = EREULIENDFR (/N )
a

XeXp (— i(loge)r~12N=5(d;)* 21§j§N_1 (xj)2(5N+j~1_dN+j—l)) 0,(X) - By(X).
It follows that if @’=b" then:

2a(X) B (X) = |pa(X) - Bp(X)] - 0,(X) - 0, (X).
Note that &' =b" iff y-coordinates of X is equal to the y-coordinates of Xj.

6.13. The fact that 0,(X), 6,(X) are very close to 1 when X,, X, are close
enough to X is critical and will be used as in Section 1. We can evaluate
0,(X) in the way that it was done in Section } (1.12) and obtain that if
Re (u,(X)/(rN®))<10° then:

[0,(X)—1] < 1071°,
Note also that {6,|=1.

The following definition is equivalent to the one in 1.14.

6.14. Let vy, vy, ..., vy: V' —~C¥+1 be continuous functions such that for every
Xev’, { (X), v,(X), ..., vy(X)} are mutually orthogonal and |v,(X)|=1 (for all
1=i=N). By shrinking r further (in 6.4, 6.5) we can assume that when X, X"¢V’
are such that [X—X’|<(—logr)™' then we have for i=1,2,...,N:

|0:(X) —0,(X")| < &%
Let acL’. There exists unique i€{l, ..., N} such that a’€S;. Define:
v, = (2e(1=| X)) 0:(X,).
The set {v,: ac L’} has the following properties (compare with 1.14):
(@) (va> S(XW) = 0,
(i) val? = 2e(1— | f(XI2).
Let a,bel’, la—bl<—logr, where a’€S;, b’€S;. Then:
(i) if i =],
(va, vp)| < €%,
@(iv) if i=j,

- 860.

(Uaa Ub)-' Iva|2

The proof that (i)—(iv) holds is essentially the same as the proof in 1.14 and we
will not repeat it.
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The map 4 is defined as in Sections 1, 2.

6.15. For Z¢D:
WZ) =2, Pa(Z)v,.

As before the distinction between Z and X(Z) is suppressed. Define for
X=(X1, .0 XN_1> V15 eoes V-1, 2, WEU’ and n=0 (see 6.11):

6.16. L'(X,n) = {acL’: n® < Re((4,(X)—(w+ R, (X)))/(rN?)) = (n+1)}.

It is essentially the same definition as 1.16 with a slight technical difference.
The process that will follows is parallel to the one in Section 1. Propositions (A),
(B), (C), (D) are as there and the proofs of (A), (B), (D) are essentially the same as
there. The proof of (C) is different and Lemma 3 is the basis of it.

Let Xe€V’ then:

6.17. (A) |(f(0), h(X))| < &%,
(B) [h(X)|? < &2(1—| f(X)P)+e,
(C) when X¢V then |h(X)® > &2(1 —| f(X)[?) — &%,

Note that obtaining a holomorphic map that satisfies only (A) and (B) is trivial
(take h=0) and the same is true for a holomorphic map that satisfies only (C)
(take h=1). Obviously the difficulty is to construct a holomorphic map for which
(A), (B) and (C) holds. For the map h that we constructed above, the proofs of (A)
and (B) are rather simple and do not use arguments that depend on the co-dimen-
sion. On the other hand the proof of (C) requires careful consideration of the co-
dimension and the distribution of X, with use of Lemma 3.

6.18. We will use the facts that car (L(X, n))<(N(n+2))*" (not a sharp esti-
mate) and when a€ L(X, n) then |p,(X)|<e&"2. Simple implications of these facts
will also be used without mention.

6.19. As in Sections 1, 2, when X¢€ U’ is fixed we define for ac L [a]=n where
n is the only integer so that a€ L(X, n). Since the proofs of (A) and (B) here are
basically the same as proofs of (A) and (B) in Section 1, we will just go briefly
through them.

Proof of (A):
(70, RQO)| = |3, L (FX0, v)Pa(X))|

- IZOé”émo Zaerctm (fQO)—f(Xe), vs)pa (X)l + IZIOO<n Zacrxon (f(x), v,)Pa (X)I
= Zv0§n§100 ZaeL(x,n) |f(X) '"f(Xa)| : |Ua| + 2100<n ZaEL(X,n) Ip,,(X)|
= 4 20§n§100 2100, 81/2(N1o (n+2))21v+2100<n en?2. (NIO (rl+2))21v — gloo.
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Proof of (B): Fix X¢V’:
Ih(X)12 = |3, yer (0as 0)Pa(X) Py (X))
= 2 02m=100 2 a, b L (a4 b1=m [ (Vas 06) Pal(X) By (X))
+ 2 100<m 2 ape L, a4 s1=m [ Pa XD P (X
< Zozmeion (1= SO + YN (m+ 2N - em4 4 3 (N(m+2))N . gmit
< (4NY¥. e (1 -] f(X)|?) +e*.

Proof of (C):
6.20. Define for Z¢BY and 1=i=N:

WZ) = 3,1 Pe(2) 0s-
We have h=h;+h,+...+hy.

The following definitions and propositions (6.21—6.27) which are based on
Lemma 3 are the basis of the proof of (C) and therefore of Lemma 1. While (A) and
(B) use mainly 6.14 (i), (i) and the fact that p, are located in some “regulated”
(lattice type) way. In the proof of (C) we need to look closely at the properties of
the peak functions and their locations.

6.21. Let XeV, X=(x,y,2,0)=(Xq, ..., Xay_1, 0) (x, yRY-1, z¢R) and let
t;=X;/c; (j=1,..,2N—1) and t=(t, ..., t5y_;), X (and ¢) will be fixed until
the end of 6.27. We will make use now of the definitions in 6.7—6.9.

(#¥) By Lemma 3 there exists ic{l,..., N} and a€L; so that [¢'—&|+B<
|t’—&}| for every bCL; such that a'=b’ (note that only the y-coordinates are
involved here). Let us choose one such 7 and call it i(X).

6.22. Choose a(X)€L;x, so that the following holds:

Re (a0, (X) — Ryx) (X)) /(rN%)) = min {Re ((u,(X)— R, (X)) /(rN®)): a€Lix)}

(note that the choice for the minimum may not be unique). Looking at the explicit

term for Re ((4,(X)—R,(X))/(rN®)) in 6.11 and the definition of L; (and 6.1) we
can see that:

6.23. (1) Re ((ua(x)(X)—Ra(x)(X))/(rN5))< 1/3
and

(2) if acL and |a—¢|=N¥® (|| is the standard Euclidean norm) then
Re (u,(X)—R,(X))/(rN®)=2 (not the best estimates but they suffice).
When a€ Ly, it follows directly from 6.11 and the definition of a(X) that:

6.24.  Re ((4,(X)— Ro(X))/(rN%) — Re (1o, (X) — Rocx, (X)) /(PN9))
= N—5((21§j§1v__1 (ei/d)* ((ty 4 j—1— by g j 1)+ dy (o 1 — Aoy 1) )P
- 21§j§N_1 (xj/dl)z((tN+j—1 —ayp i1 (X)) +di(toy_r— 42N—1(X)))2)
+ (1 “Zléjélv_l (xj)2) ((tzN—1 —aay 1) _(tZN—l - a2N—1(X))2))'
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An equality occurs in 6.24 when a;=a;(X) for all 1=j=N-—1 (i.e. ais equal to
a(X) in the x-coordinates).

When we consider the facts that d,=8-10"0"" and 1-d,=x;/d;=1+d,
and the definition of a(X) we obtain (from 6.24 and the remark below it) the fol-
lowing.

6.25. (1) When a€L,y,, la—t|<N? and a;=a;(X) for all je{l, ..., N—1}u
{2N—1} (thus a is equal to a(X) in the x and z coordinates) then:

0 =Re ((u,,(X)—R,,(X))/(rN"’))—Re ((ua(x)(X)—R,,(X)(X))/(rN5))
< N73(|t' =@’ )P |’ =& (X)*+d>)
where d, &£ g.10-@oMY2,

Thus
() [t —d'|* > |t =& (X)|*—

Note that ([J) holds for all a€L;y,. First we can always assume that a is equal to
a(X) in the x and z coordinates, without effecting (1), then if |[a—t]|=N2, we
have [t’'—&|>>N?, and (1) is trivial.

(2) When a€L;y,, la—t|<N* and a;=a;(X) for all je{l, ...,2N-2} (ais
equal to a(X) in the x, y-coordinates), then:

0 =Re ((”a (X)—R,(X ))/ (rN 5)) —Re ((“a(X) (X) = Ruxy(X ))/ (rN 5))
< N—5((t2N—1 —ay_1)? "(tzN—l —42N~1(X))2+d2)-

Thus: (tzN—l—azN—1)2>(f2N—1—‘azN—l(X))z_dz-

(3) When a€L,y, and |a—t|<N* then:

Re ((u (X) —R, (X))/("Ns)) —-Re ((ua(X)(X) —Ra(X) (X))/(TN5))

> N_s(lf — ' =@ (X)2+(tey 1 "azN—l)z_(’2N—1—02N—1(X))2 _dz)-
From (O) (in 6.25 (1)) and the choice of i(X) in 6.21 (recall that Lemma 3 was
used there) it follows that for all ac¢ Li(x)

—dy < |t =& Pt =& (X)) = (|t =&| |t =& XNt =& |+t —& (X)),

thus since |t'—d'|+|t' —&(X)|=|d —d&(X)|=|a"—a'(X)| then: —d,<|t'—&|—
4'(X)]. Therefore in view of 6.21 (%):
6.26. |t'—d'(X)|=min {|t’—4&’|: a€L,y,}, which is equivalent to (using
6.21 ()): when a€L,y, and o' =da'(X):

| =@ =t =@ (X)) = (It =& | =1t =&’ NI —&'| +1' - & (X)]) > .

We conclude from 6.26, 6.25 (2), (3) (and the marginality of R,(X), R,x,(X)
which is described by 6.1 (see also 1.12)) that if a€L,y,, a’a’(X) and
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|a—1]<N2° then
Re (1, (X)/(rN*)) — Re (1150 (X)/(rN%) = BN .

6.23 (and the marginality of the remainder term) implies that this is true also when
la—t|=N?,

Thus we conclude the following (see 6.11):

6.27. If acL;y, and a’#a’(X) then:

Ipa(X)/pa(X) (X)l << gﬂN—lo'

Let us fix X€V until the end of proof of (C). The following is the first step
in the proof of (C).
6.28. When 1=i,j=N and i#j, then (see Def. 6.20):

(R (X), By (X))| < 5.
Proof (using 6.14 (iii)):

(A, 1, O = | Z g smmson Zacr ver, wrsiprom o> 26 PalX) By (X)
+ 2 100m D acty veL, e+ 1=m (o> 1)Pa(X) P (X))
< Doemeton & e (NO(m 42PN+ 3 o, €™ (N (2N < 6%,
6.29. Claim. |, (X)12=>e*(1—| f(X)[?)—&*.
The proof of (C) is concluded once we prove this claim since
AP = |1 (X)+ ...+ Ay (X)I?
= [ X+ ..+ OE+2 Re (3, oy ((X), (X))
and (C) follows from 6.28 and 6.29.

6.30. Let
A(X) = {a€Lyyxy: [a] = 100, o’ = a’(X)}
and
B(X) = {a€Lyxy: a’ # a’(X) or [a] = 100}.
Since
hi(X)(X) = Z“GL"(X) pa(X)va = ZaeA(X) Pa(X)va+2aEB(}() pn(X)Ua
then:

6.31. lhi()()(l‘,)l2 = IZaEA(X) pa(X)Da|2_2|2a€A(X)’ be B(x)(le Ub)pa(X)I-)b(X)|

Let us look at the first term:

]2a€A(X) pa(X)Ualg = Re (Za‘béA(X) (va9 vh)pa(X)l_)b(X))'
It follows from 6.12, 6.13 that that when a, b€ A(X), then since a’=b" and
[a], [b] =100
Re (pa(X)l_’b(X)) - 0
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and since a, b€ L,y then 6.14 (iv), 6.4 imply that
|(Ua, Ub)'_lva(X)|2| <%,
Therefore Re ((v,, v,)p,(X) P, (X))>—¢%.
Since a(X)€A(X) and card (A(X))=Sy=p=100 (N°(n+2))* we obtain that:
6.32. |3 e acy PaD 0l > 1000 % | P (X1 —&7.
Let b€B(X), then if »'24’(X) 6.27 implies that:
6.33. |26 (X)) Pagzy (X)| < &PV

and if ¥ =a’(X) then [b]=100 and by 6.3, 6.16 the claim of 6.33 clearly holds.
Using the fact that

car {b€ B(X): [b] = 100} = o100 (N (n+ 2 = My
we have:

6.34. lzaeA(X),beB(x) (va> v,,)p,,(X)ﬁ,,(X)l
= |3 e 400, b 50, m1=100 (B> 2 Pa(X) By (X))
|3 ae a0, e 500, 151100 (P> 0)Pa(X) B (X))
= ZaGA(X), b€ B(X), [b]=100 (IUG(X)|2+859) |Pacy (02PN
3 e a0 5 300, p1m100 1 Pa G BN = (Mo (aq P+ Py (X)[2688
+ 2 n=100 (Z 0= j=100 (N 0 +2))2N) ((N P(n+ 2))2N) em/?
< | Pagy (X)P]oa |2 6BV 427,

Combining the estimates 6.31, 6.32, 6.34 and the fact (6.11 and 6.23) that
Ipa(x)(X)|2>£ we obtain:

6.35. |hi(X)(X)12 = Iv,,(x)|2|pa(x)(X)|2(l —gfN) g%
> &+ pacy 2 - (1 -1 f(X)|2) =% > &2(1 | f(X)[?) —&.

Claim 6.29 is now proved and thus (C) is proved.

(D) will be exactly the same as in Section 1 and the proof is essentially identical
and will be omitted.

The globalization process is identical to the one in Section 1 and we will not
repeat it. Since 1.33 and 1.34 hold, then the proof of Lemma 1 is now completed.
This proof obviously holds when the target ball is B¥, for any M=N+1.

Proof of Lemma 2 for dimension N=2:
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It is quite clear at this stage that the proof that will follow is a composition
of the proof of Lemma 1 (for dimension N=2) with the proof of Lemma 2 (for
dimension 2).

The definitions and statements in the proof of Lemma 1 until (and including)
6.13 will be adopted here with one change, the constant r=0 in the definition
of the (first stage) correction function will need to be smaller (as in 3.1).

7.1. Let r be so that (¢)/¥>r>0 and when X,YcV’, | X—Y|<(—logr)™?!
then:

@) LD < )™,

(i) [1(I1—oX)+(E))—1/(1 - +(E))] < (),

(i) 3 ., (12" <(&)® where I(r)% —logr,

(iv) (loge)/(r'/?- N5.2%) is an integer.

The definition of v,, acL’ is slightly different than in 6.14 (see 3.3). The process
done in 6.14 (and 1.14) implies (after changing the constants that are involved in
the process and shrinking r) that for every a€L’ we can assign 1,6 C¥*1 so that
the following will hold (the projection into the y-coordinates g--a’ is defined in
6.7, S; is defined in 5.1).

7.2. For a, beL’

@ (va, f(X2)) = 0,
(i) 2012 = 2e(1 = FQ)ID (11 — 0 (X4 +(e)1°).
Let a,bcL’, |a—b|<2i(r), (where I(r) &£ —log r) so that a’¢€S;, b’cS; then:
(i) if izj
(025 vl < ()%,

|(Uaa Ub)—lvalzl = (8’)50'

7.3: We will adopt here 6.15, 6.16 without a change. We will prove now (A),
(B), (C) as in the case N=2 (Section 3). The proofs consist mostly of the changes
done (by the use of Lemma 3, as in the proof of Lemma 1 for dimension N=2)
to adapt to the higher dimension.

(iv) if i=j

74. For XeV’:

(A) (), h(X))| < )

(B) [R(X)P2 < (1= AX)P)/(11— @ (X)|*+(&')0) + ()%,

(C) when XeV then |h(X)P = &2(1—-|fOPR)/(I1 —oX)*+()0)— ()

The remark following 3.4 will be used.
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Proof of (A) (I(r) &L —~log r):
(A0, B (X)) = |3 e (FX), 0,) Pa(X))|
= | S ozt 2 aczoxm LA =F XD, 2a) B+ |2 14y < Zae i (FXD, 20) BalX))]
= 2ocnsit) 2 acrorm &) —SEN N0l PO+ 21y Z e Loxam [Pl 2dl
< Zomnsin N+ 2PN (E )0 2(e)5+2 3 ) (N (n+2))Nem™2(6)~° < ()"
Proof of (B): Fix XeV’:
OO = |3, 1. (0es 29 20 (X))
= Dosm=i) 2 abel, @+ bimm [(Pas 0)Pa(X) Pp(X)]
2 iyem D aver s p1-m PaE) P (X ()71
< Sy (Bac O (N L D)™t 3 ()N 4 ) ents
< (AN)YNe(1—-1 (X)) /(11— O +())+ ()"

Proof of (C): We will adopt definitions and propositions 6.20—6.27. The fol-
lowing is equivalent to 6.28:
7.5. When 1=i,j=N and i#j then:

(h:(X), B;(X))| < (&)
Proof.

|aX), By Q) = |Zocmmiy S aery ver,, @t p1-m (Par 6)Pa(X) 55 (X)
+ 2 i<m Zact, ber, [@+t1=m (Ve VPa(X) Py 0]
< Zozmaigy @ N+ 2) N+ 5 ()TN (m A2 < ().
7.6. Claim.
Vi, O = (1= 1) [(11 - o (1 + (&))"
Proof. Let A(X), B(X) be as in 6.30 then

hi(X)(X) = Z“GLi(X) pa(X)va = ZaéA(X) pa(X)va+2a€B(x) pa(X)va
and:

7.7. |hi(X)(1Y)|2 = lZaEA(X) Pa(X)UaIZ“ZIZ,,EA(x), b€ B(X) (Uas Ub)Pa(X)I_’b(X)I

It follows from 6.13 that when a, b€ A(X) then by using the fact that a’'=»
we have

Re(p,(X) 5y (X)) = 0
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and when a,b€L;y, and [a], [b]<2{(r) then 7.1, 7.2 imply that
7.8. [(@as 25) —lvagy|?| < (&)%.
Therefore for a, b€ A(X).
7.9. Re (v, 0,)Pa(X) Py (X)) > — ().
7.10. Looking at the first term we have:
12 ac s Pa@OBL = Re(Z, ¢ sy Vs 06) P.(X) By (X)).

Using 7.9 and the fact that card (4(X))=_y=n=100 (N°(n+2))™ & M, we ob-

tain that:
1= s acy PaD 0 > [00)|*] Pazy (K12 — (&)

When we look at the second term in the right side of 7.7 and apply 6.27, 6.18 we
have:

7.11. IZaQA(X),bEB(X)(Ua9 ”b)Pa(X)I_’b(X)I
= IZaQ 400, € BCO, =100 (Va> V) Pa(X) Py (X)I
+ IZ ac A(X), b€ BEX), 100<ip1=i(ry (Pa> vp) PalX) P (X )I
+ IZ a€ A(X), b€ B(X), Kr)<[b] (s> 05) P (X) Do (X )|
< 2 a€ A(X), b€ B(X), [b1=100 (,va(X)l2+(8’)40) lpa(X) X )fzgﬂNdo
+2 a€ A(X), b€ B(X), 100=<[b]=I(r) (lva(X)|2+ (3,)40) | Pagxy (X )|Pe@r-1/2
+ 2 aca, sen, i<m €)X P ()] = (Mo)*(Iaca)* + (6)) | Pay (X) |2
(2 z100 (Mo (N (14 2)))e* D) (|0g )2+ (')*°) | Pago DI+ (&)™
< [ Da)|?10agay| 26BN =%+ (7).
Combining the above estimates we obtain:
17;(X)1? = |Dagy|?| Pagry| 2(1 — 888 ) — (&)
= (1= fXP)/(11 - o X +()) - ().

So now (C) is proved. From this point the proof continues exactly like the
proof of Lemma 2 in the case N=2 (sec (D) there) as the dimension is not used
there (from (D) on) at all. Like the proof of Lemma 1, this proof holds (without
any change) in the case the target ball is B where M=>N.

Remark. After this work was completed I learned that Monique Hakim has
obtained similar results. Our work was done entirely independently.
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