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1. Introduction 

We consider linear pseudo-differential operators L(x, D) of the Beals and 
Fefferman type. L(x, D) maps the Schwartz class S into itself. Furthermore, the 
formal transpose L'(x, D) of L(x, D) exists and L'(x, D) maps S into itself, 
as well. This enables us to define the minimal closed realization L ;  and the maximal 
closed realization L~ ~ of L(x, D) in the appropriate Hilbert space H k (cf. the Sub- 
sections 2.1 and 2.2). In the case when k = l ,  we see that Hk=L2(R"). We write 
L~ = L  ~ and L ~ = L  '~ when k = l .  

Our aim is to give sufficient criteria for the equality L" =L'~, that is, for the 
essential maximality of L(x,D) in L~(Rn). One knows classes of operators 
L(x, O): S ~ S  which are essentially maximal in L~(R") (cf. [2], [3], [6] and [7]) 
We consider also the bijectivity of L~ + aI when a is large enough. The bijectivity of 
L ~ +aI and L'~+aI implies the equality L ~ = L  '~. 

Employing the convolution theory we, at first, show the essential maximality of 
L(x, D), when L ( . ,  .) belongs to the Beals and Fefferman class S 1'~ of symbols 
(cf. Theorem 3.6). After that we apply our theory on the class r M, m~R of, oper- 
ators. When the solutions of L'~u=f belong to Hq with a suitable q( .)CS~g ~''-a, 
the essential maximality of L(x, D) is verified (cf. Theorem 3.7). In Chapter 4 
we deal with the bijectivity of L ~ +aI and L'~+aI. In addition, we obtain an 
algebraic criterion for the essential maximality and for the inclusion 

(l.1) D(L'~) c nq 

where q( . )  is suitably chosen from .r ~ ,  q~ 

Especially, applying our theory on the Hrrmander class of operators we obtain: 
Suppose that L ( . ,  .)C S~0,~; 6<  0, m_~0 such that with a constant t ( ]m-(0-6) ,  m] 
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one has 

(1.2) ReL(x ,  4) ~ c(I+I41Y for all 141 _~E. 

Then the corresponding pseudo-differential operator L(x, D) is essentially maxi- 
mal in L~(R") and L ~ +aI: Lz(R")--,-L2(R") is a bijection when a is large enough. 

2. General background 

2.1. Denote by K'  the totality of  continuous weight functions k: Rn-~R 
such that 

(2.1) c(l+l~12)- ' /2 -<_ k(~) <_- C(I+I~I2) R/2 --: CkR(4), for 4ER", 

where c, C, r and R positive constants. When k is in K'  one sees that the functions 
k s and k V defined by kS (4) = (k (4)) ~ and k V ( ~ ) = k ( - 4 )  are also elements of  K'. 
Let S denote the Schwartz class of  smooth functions ~0: R"-+C and let S" be 
the dual of S (cf. [4], pp. 1--33). We define a scalar product ( . ,  .)k in S by the 
requirement 

(2.2) @, 0>~ = (2=)-" f , .  (F~) (4) (F0) (4) k ~ (4) de, 

where F: S-+S is the Fourier transform. The completion of  S with respect to 
the scalar product ( . ,  �9 }k is denoted by Hk. Suppose that u belongs to Hk. Choose 
a representative {~o,}cS of  u. Applying the Banach--Steinhaus Theorem and the 
fact that by the Parseval formula one has 

(2.3) O)l := I f  R- ax [l oll  l[~lIl/kV, 

we see that the linear mapping 2 defined by 

(2.4) (2u)(qo) = !in~ ((p,, ~0) for ~oES, uEHk 

maps Hk injectively onto a subspace 2(Hk) of  S' .  In the sequel we denote the space 
2(H~) by Ht ,  as well. A familiar characterization of  the Hk-space is the following 
one: A distribution TES' belongs to Hk if and only if FTEL11~162 ") and 

(2.5) liT[Ix := ( (2~)-"fR . I(FT)(4)k(4)12d4) ~/~ <co. 

Here F: S'--,-S" denotes the Fourier transform. Furthermore, one knows that 
IlTIb,=lI~.-x(Z)Iln,, and in the following Hk is equipped with this norm. Hk is also a 
Hilbert space. The scalar product ( . ,  �9 )k is given by 

(2.6) (u, v)k = (2n)-" f . .  (Fu) (Fv) (4) k ~ (4) d4. 
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As a Hilbert space Hk is a reflexive Banach space. In addition, the next charac- 
terization of the dual H~' of Hk is valid 

Lemma 2.1. Suppose that l* is in H~. Then there exists a unique element ICHll,- 
such that 

(2.7) l*~o = l(~o) for all r 

On the other hand, suppose that l ix in H1/k-. Then l: S ~ C  has a unique continuous 
extension l* on H,. The linear mapping 2,: H ~ H I / , v  defined by 2,(l*)=l is an 
isometrical isomorphism. [] 

2.2. Let L be a linear operator S-+S. We suppose that the formal transpose 
L' of L exists, in other words, there exists a linear operator L': S ~ S  such that 

(2.8) (L~o,O):=fR.(Lqg)(x)~k(x)dx=(cp, L'O) for ~0,0(S. 

This assumption enables us to define a dense linear operator L'$: L2:=L~(R")~L, 
by the requirement 

fD(L'*) = {uELzlthere exists f~L ,  such that u(L'~o) =f(~o) for all ~o~S}, 
(2.9) ~,~tL # u = f  

Here we denoted g(cp)=fa.g(x)qffx)dx. One sees that L '~ is a closed operator. 
Furthermore, we define a dense linear operator L0: L2~L~ by 

ID(Lo) = S, 
(2.10) 

1Lo~o=L~o for ~0~S. 

In virtue of (2.8) one sees that L0 is closable in L2. Denote by L" : L2--,L~ the 
smallest closed extension of L0 (cf. [8], pp. 76---79). One obtains that L ~ c L  '~. 
The operator L" (L '~, respectively) is called the minimal realization of L in L2 
(and the maximal realization of L in Lz, respectively). When the equality L ~ = L  '~ 
holds, we say that L is essentially maximal in L~. 

Remark 2.2. A) Let L*: L'~L'~ be the dual operator of Lo and let 
L * * :  r * *  T** ~2 ~ 2  be the dual operator of L*. Since L~ is reflexive, one knows that 

(2.11) L ~ = Y-x oL** 03, 

where J :  L2~L~* is the canonical isometrical isomorphism (cf. [5], p. 168). 
B) The operators L '~ and L'* (here L'* is the dual of (L')0) obey the relation 

(2.12) L'* = 2-1oL'~o2, 

where 2: L2~L* is the isometrical isomorphism announced in Lemma 2.1 (one 
must note that H~=L~, when k= l ) .  
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3. On essential maximality 

3.1. Let �9 and ~o: R"XR"-~R form a pair of continuous weight functions in 
the sence of Beals and Fefferman [1], that is, the following criteria hold: There exist 
constants c>0,  C > 0  and e>0  such that 

(ia) c<=4,(x, r for all x, ~ER", 

(ib) c(l+[~l)*-~<-~0(x, !)<=C, for all x, ffER", 

�9 (x, ~)q~(x, ~)->c for all x, ~ER", (ii) 

(iii) For each r > 0  there exists q ,>0 such that 

(x, 4) ~o(y, 7) ~(Y, 7) q)(x, 4) 
e(x, 4) ~(y, 7) ~ e(y,  7------3 ~(x, O --< q" 

for all (x, y, (~, 7))ER"XR"X{(G 7)ER"XR"I(ICl/171)+(171/Ir 
(iv) For each (x, C)ER"XR ~ there exists a constant C > 0  such that 

~(y, t/) q~(x, 4) < C and (p(y' 7) q~(x, 3) <= C 
~(x, ~-------~ q" ~(y,r/~ = r ~) [ ~o(y,r/) 

for all (y, ~/)EUx.e:= {(y, rl)ER"• 4) and [7 -~]<c~(x ,  4)}. 
For example, the functions �9 and q~ definedby ~(x, ~)=(1 +1~1) ~ and ~p(x, 0 =  

(1+[~[)-~; 0~6~0~1 ,  6<1 form a pair of weight functions. 
Choose M and m from R. Then we say that the function L(x, C)EC=(R"• ") 

is in the class S~'~" provided that for each pair (~, t )  E N~ X N~ there exists a constant 
C~,~>0 such that 

(3.1) I(/)a~ Dg L)(x, ~)t ~- C~,p ~r-ltJI (x, 4) qr (x, 4) 

for all (x, 0ER"• 
Suppose that L(x, M,m OES, , , .  Define a linear pseudo-differential operator 

L(x, D) by 

(3.2) (L(x ,  = f.. L(x, C)(F~o)({)e '(~'~) dG 

where cpES. In [I] one has proved that L(x, D) maps S into S and the the 
formal transpose L'(x, D): S--,-S of L(x, D) exists. In addition, L(x, D) and 
L'(x, D): S--,-S are continuous. In [1] one has developed a fertile calculus for the 

i i S u'~ (the pseudo-differential operators (3.2), where L ( . ,  -) belongs to ~M,m~R ~,, 
elements of U~,,.~R U,m S . , .  are called symbols). In the sequel we shall apply this 
calculus and, in addition, the following two theorems 
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where 

fly, (170')(0 d~ = f R. (FO')(Oei(~ d~ = (2~)"0'(0) = 1. 

~l:=FO~. Then we obtain for any uEL2 

II 0z u -  ull -~ 0 with I -~o 

Write 

0 . 6 )  

and 

(3.7) IIr  -~ 0 

The next lemma is easily proved 

Lemma 3.3, Suppose that L(x, OES~,,.U'm 
NER such that 

(3.8a) IL(x, D)~oH <= Cl~ollk~ 

with 1 -~ ~ .  

Then there exist constants C>O and 

Theorem3.1. Suppose that L(x, 4)ES~,~ Then there exists a constant 
C(L(x, 4))>0 such that 

0.3) [IZ(x,D)cPll := IIZ(x,D)~01lL~ <= C(Z(x, O)II~oll, for all ~oES. 

S~ '~ such that Furthermore, let A be a subset of ~,~, 

O 0  p~:#(Q(x, 4)) := sup ~l#l(x, 4)q~lal(x, Ol(O~Dga)(x, 4)1 ~- C~,# <o0 

for all Q(x, 4)EA. Then the constant C(Q(x, O) can be chosen to be independent of 
a ( x , O  onA. [] 

For the proof  cf. the proof  of  Theorem 3.1 given in [1], pp. 12--17. 

Theorem 3.2. Suppose that L(x, ~ "  OES~,~ such that 

(3.4) L(x, 0 ~- 0 for all x, 4ER*. 

Then there exists a symbol l(x, ~ ) E S ~  1'm-1 such that 

(3"5) Re((L(x,D)+l(x,D))rp, cp) >-0 for all cpES, 

where ( . ,  �9 ) denotes the L~ scalar product. [] 

For the proof  cf. Theorem 3.2 showed in [1], p. 19. 

3.2. Let OEC~:=C~(R") such that 0 ( x ) = l  for xEB(0, 1):--{xER"[lxl<l}.  
Define 0 ' :=(2n)-"0,  Ot:=O(x/l) and O;:=O'(x/l). Then one sees that 

(FOl)(,7) = f O'(x/O e -~(~'") d x  = l"(FO')(lq),  
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and 

(3.8b) IlL(x, O)~ol[L,, ~ ClkoU for all tpES. [] 

Here we denoted as above k,(~)=(1 +]~l~) ~/z. 

Since Ol*U(Nk~r, Hk one sees by (3.8a) that 

0.9) OI.uCD(L') for any ICN and uEL~. 

For M = m = l  we have 

Lemma 3.4. Suppose that L(x, ~) S~.a'x~. 
Ri,~(x ' o o ~) ~ S~, ~, such that 

(3.10) ~P,*(OiL(x, D)q~) = OiL(x, D)OP,*~o)+ Rj.,(x, D)~o 

for all ~p~ S and that 

(3.11) IlR~,,(x,O)ell <--CIl~oll for all q~ES, 

where the constant C > 0  is independent of j, I(N. 

Proof. A) Define a pseudo-differential operator ~(D)  by 

Then for any (L I)ENXN there exists 

( ,~, (D) e) (x) = (2=)-" f~,  (Fg,,)(~)(V~o)(0e '~'~o de. 

S~ Furthermore, write Lj(x, ~)=OjL(x, ~). Trivially one has ~t(~)E ~/~ and so we 
obtain 

(3.12) [~h*(OjL(x, D)tp)] (x) = (2n)-" f ~o F(q,,,(OjL(x, D)e))(Oe "e'x) de 

= ( 2 n ) - "  fR. (F~h)(r D)tp)(~)e/(r d~ r 

= [(,~,W)oLj(x, D)) ~o] (x) =: [#,oLj)(x,  D) ~o](x). 

In addition, we obtain (cf. [1], p. 5) 

f3.13) (r 0 = (Vr ~)G(x, ~)+ Rj.l(x, O, 

where 

R~.l(X, 0 = ZH=, (~/~ ~) f~ fR~ fR" O~(Fd/')(r + t(q-r r ` ' ' - ' " -0  dy. 

The symbol (~zLj)(x, ~):=(F~)(~)Lj(x, 0 induces the operator 

(3.14) ((~,Lj)(x, D)q~)(x) =- (2r0-"fR" (F~O,)(OLj(x, ~)(fqO(Od ~'~) d~ 

--- (2=)-"fR" L~(x, ~)F(e ,*e) (0  e ,(r d~ = O~(x)(L(x, D)(et*~))(x) 
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then our task reduces to show that Rj ,~(x,O(S~~ and that the esti- 
we know that 

O~Co~S we 

sequence {R~,~(x, r is bounded in S~; ~ (cf. also the proof of Theorem 1 of  [1]), O, tp 

that is, 
O, 0 P,,,a(Rht(x, 4)) <= C,,,a for all l,j~N. 

Thus by Theorem3.1 the estimate (3.11) is valid. This completes the 
proof. [] 

and 
mate (3.11) holds. Since ~(4)ES~ ~ and since L~(x,~)CS a'1 , O,q~ 

Rj,,(x, O~ s~?~,. 
B) Since ~z= FO;, one has F~9 t=(2r0"(0;)v =0~. Because 

can (for any flENg) choose a constant Cp>0 such that 

[(D~0)(Ol <-Cp(l+141)-l~l for all 4~R'. 

Furthermore, one has (recall that O(x, O<-C(1 +141)) 

(I+[~[)-IPl <= CIplO-IPI(x, 4) for all x, 4ERn, 

and so we obtain 

(3.15) pO: ~ (~,(4)) := sup (OlPl (x, 4) [D~ (~)(O1) = sup (~lP[ (x, O l -  IPl [(DP0)(_ 4//)1) 

<-C a sup ~l~l(x, ~)l-lPl(l+l~/ll)-IPl <= C~sup (OIPl(x, ~)(1 +]~[)-IPl) = C~CIPl. 

Hence the sequence {~,(~)}l is bounded in S~; ~ (for the definition of the Frechet O, tp 
M,m space topology in Sv, ,  we refer to [1], p. 3). 

C) Since for any jEN and ~tEN] one has 

I(D~Os)(x)l =j - I~ l  [(D~O)(x/j)] <_ sup [(D~O)(x)[, 

one sees by the Leibniz rule 

(3.16) I(/~D~L~)(x, 01 ~ Z,~_, u I(O~0j )(x)l I(DI-~D~ L)(x' 4)1 

(~)( .0 c~_,., ~ - ,  , , -< Z.~, u supl(D )(x)l) (x, 0~-t ' l+l"l(x,O 

and so  

p,,a, tp (L~(x, O) := sup (O-l+l~l(x, O ~p-~+l"l(x, OI(D~DgL1)(x, 4)1) ~-- C',~. 

Hence the sequence {Lj(x, 0}i is bounded in S a'~ O, r �9 

D) Due to Theorem 1 of  [1], p. 4, one obtains that (3.13) holds and that the 
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Lemma 3.5. Suppose that L(x, ~'~ ~)S~,~,. Let u be in 

(3.17) [IZ'~(qh*u)ll --~ C([IZ'~ull + Ilull), 

where C is independent of  L 

Proof In virtue of  (3.10)--(3.11) we get 

0 .18)  

Since 

(3.19) 

D(L'~). Then one has 

IlOjZ(x, D)(~0,.q~)ll ~ [l~O,. (OiL(x, D)go)~ + I[Rj, t(x, 9) 911 
~- II~,.OsZ(x, D)~otl +Cll~oll. 

[lOsL(x, D)(q/t.q~)[l~llL(x, D)(~O,.~o)[] with j - . ~  and since (cf. [4], p. 39) 

m D)  )ll 
II~,ll.o,x IIOjL(x,D)q~-L(x,D)cPll --,- 0 with j ~o~ 

we obtain that 

(3.20) IlL(x, D)(q/~*~o)tl -<- II~Oz*L(x, D)~ol[ +Cll~01l. 

Choose a sequence {q~.}cC o such that [l%-ull-~0 with n ~ .  Furthermore, 
choose NCN such that (3.8b) holds.Then we obtain (cf. [4], p. 39) 

0.21) <= tlZ(x,D)q'll~_,,llr ~-- Cll~oll II~,ll-,k,, 

and so Ilff~*L(x, D)q~.--r with n---~, (this follows from the fact that 
by (3.21) {~/t*L(x, D)~o.k is a Cauchy sequence in L2 and that 

(4,,. L(x,  D) q,.)(x) = q,.(L'(x. D) q , , (x - (  . ))) -~ (q,,. L'~ u(x)). 

Thus by (3.20) {L(x, D)(~kt.tp,,)},, is a Cauchy sequence in L~. Since 

(L(x, D)(r ) = (~kt.~o.)(L'(x , D)~o) o (~kt.u)(L'(x, D)q3) = (L'$(~kt.u))(q~), 

we obtain that 

IlL(x,D)(~kl*cp.)-L'~(~z.u)l I ~ 0 with n ---~. 

This implies finally (together with (3.20)) that 

IIZ'~(~/t*u)ll <= N~*Z'~ull +CIIull = 114/~11..,1 IIZ'tull +CIlull, 
where 

This proves the assertion (3.17). [] 

We are now ready to establish 

Theorem 3.6. Suppose that L(x, ~)~S~a,~,. Then one has 

0.22) L ~ = L't. 
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Proof Let u be in D(L '~) and let L'r Then by (3.17) {L'#(~Ot.u)}, is 
bounded in L~ and so we find a subsequence {L'#(g, tj ,u)}j such that 

I1(1/) U 'e(O ) gll r j=~L ~ j * u -  ~ 0  with r~o~  

where gEL2 (cf. the Banach~Saks Theorem). Since 

(3.23) (l/r) z~.=l L'~(~btj*u) = L'~((1/r) ~ = ~  (~kts*u)), 

I ,  H(1/r) Z,= l  (0,zu)-ull  -- 0, with r ~ o  

and since by (3.9) ( I / r ) ~ j = l  eb  u)ED(L ), we get that uED(L') and that 
L'u=g.  Because L ' e L  '#, we get that g=f. Hence uED(L') and L ' u = f  
and so L'~cL ". This finishes the proof. [] 

3.3. From Theorem 3.6 we obtain the following criterion for L" = L  '~, when 
L(x, ::~c S M'm" M, mER. 

Theorem 3.7. Suppose that L(x, M,,, ~)ESo, q, and that there exists a symbol 
M - - 1  m 1 q(~)ESr ' - (which is independent of x) such that q(O=>l and 

q(r >= e ~ - l ( x ,  ~)~o'-l(x, 4) (3.24) 

and that 

(3.25) D (L'~) < H a. 

Then the relation L" =L "# holds. 

Proof. Choose u in D(L'~) and denote L'~u=f In virtue of (3.24) one ob- 
serves that q-l(r and so (Loq-1)(x,~)ES~a,~, (here we denoted 
q-l(r162 Furthermore, we obtain (we denote q(x, D)=q(D)) 

(q'~u)((Loq-1)'(x, D)~o) = (q'~u)(((q-1)" oL')(x, D)q~) = u(L'(x, D)rp) =f(rp) 

and so 
(Loq-1)'~(q'~u) = f  

(note that HqcD(q'~)). Due to Theorem 3.6 one has, q'~uED((Loq-X) ") and 
(Loq-1)'u=f. Choose a sequence {%}cS  such that Ilq~.-q'~ull~O and that 
I](Zoq-1)(x, D)~o,-f[I-~0 with n - ~ .  Then {q-l(D)q),}cS is a sequence such 
that Ilq-X(D)q~,-u[l+ltL(x,D)(q-l(D)~p,)-fll-+O with n-*~o (note that q_->l). 
Thus uED(L ~) and L'u=f ,  which completes the proof. [] 

In the next Chapter 4 we shall establish a sufficient condition for the inclusion 
(3.25). Also the essential maximality will be considered, 
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Remark 3.8. A) The proof  of  Lemma 3.4 shows also the following fact: Sup- 
pose that u,m L(x, ~)ES~,~. Then for any ( j ,  I)EN 2 there exists Rj, t(x, ~ES  u - l ' " - l ~  ~, 
so that 

~kt*(OjL(x, D)(p) = O~L(x, D)(~kt*q~)+ Rj, t(x, D)9, 

where 

pM-1 m-at R f x 4)) := sUp(q~-M+I+I#I(X, ~)q~-m+x+t~l(X, r ' 4)1) 

<= C,, a <oo for all ( j , / )EN ~. 

B) Suppose that q ( ~ ) E S ~  1'"-1 so that (3.24) holds. Then one has for 
L (x, 4) E S u' m 

(3.26) II~bt*L(x,a)q~-L(x,V)(~kt*qOll <= 119llq for all q~ES, 

where C is independent o f / .  
The proof  of  (3.26) follows by applying Lemma 3.4 to L(x, D)oq-l(D). 

4. On bijectivity of minimal realizations 

4.1. In this chapter we shall deal with the bijectivity of  L'+aI:  L2--,-L2. 
Also the essential maximality is considered. When (#,  ~0) forms a pair of  weight 
functions, one sees that also (#v,  q v) forms a pair of  weight functions, where 

~ (x, 4) = ~ (x, -- 4) and 9v (x, 4) = q~ (x, - 4). We need 

Lemma 4.1. Suppose that L(x, ~)E u,~ Se, e such that 

(4.1) LRe(X, 4):= ReL(x ,  4) => 0 for all x, CER". 

Then there exists a a( . ,  .)ES~,~ x'm-x such that 

(4.2) Re((L(x,D)+a(x,D))q~, tp) >= 0 for all q~ES. 

Proof. Due to Theorem 3.2 there exists l ( . ,  . ) E S ~  i'm-1 so that 

(4.3) Re((LR~(x,D)+I(x,D))9, 9) >= 0 for all ~0ES. 

Furthermore, we know that (cf. [1], Theorem 1) 

L'(x, 4) = L(x, -~ )+  b(x, -r  

where b ( . ,  . ) E S ~  a ' ' -x  and so 

(4.4) Re (L (x, D) q~, q~) = (1/2) (L (x, D) q~ + L'(x, D) Up, q~) 

Re (LR~(x, D)9, q~)+(1/2) Re (/~(x, D)q~, ~p), 
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where ~( . ,  . ) = b ( . ,  .). Here we noted that 

(L'(x, D)~p)(x) = (2rt)-" Z'(x, ~)(F~p)(r ;(e-''~ d{ 

= (2,~) -o f.. L'(x, ~ 4) (Fo)(r e/(r dr 

= (2=)-. f. .  L (x, r (Fo) (~) e '(r x) + (~ (x, D) 9) (x). 

Thus the assertion follows from (4.3) by choosing a(x, ~)=l(x, ~)-(1/2)~(x, 4)- [] 
Suppose that Q(~)EC~(R ") obeys the estimate 

(4.5) I(Dg O)(~)] -<- Ca ~U-lpl (x, ~) om(x, ~). 

Then the mapping ~)(x,~) defined by O(x , r  belongs to S~'~" and we 
denote (as above) Q(x, D)= Q(D), Q(x, 4)= Q(~.). Suppose that Q(r is real-valued 
and that with c>O 

(4.6) Q(~) >- cq~M(x, ~)om(x, ~). 

Then the mappings Q~(x, ~) defined by Q~(x, ~):(Q(r lie in vM,,m~ for any ~q~, q~ 

sER. The corresponding operators are denoted by Q~(D). It is easy to see that 
QEK', when (4.5)--(4.6) hold. The following lemmas are needed 

1-emma 4.2. Suppose that L(x, "- ~,m S~,r g)ES~,~ and that there exists Q(~)E - ~ , - - m  

Then there exists a constant C > 0  such that 

(4.7) 

and 

(4.8) 

IIL(x,D)OIIQ ~ ClIoII 

IIL'(x,D)oIIQ- ~ C[IoII for all q)ES. 

Proof. The composite operator Q(D)oL(x, D) belongs to r ~176 and so by 
Theorem 3.1 there exists a constant C>O such that 

IlZ(x,D)olla = I[(aW)oZ(x,m)oll  <= C[IoII for all oES. 

Here we utilized the fact that by the Fourier inversion formula 

(4.9) F(Q (D) ~o) (~) = a (4) (Frp) (4) 

(note that by (4.5), Q(-)FoES).  Since L'(x, ~)ES,'M ,m~" and ~{)~[,~]ES - M ' - m , ~  ~., ~. , the 
inequality (4.8) is similarly shown. [] 

Remark. Suppose that g,m - m  Q(~)ES~,o such that (4.6) holds. Then Q-I(~)E -M, S~,  q~ 
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(4.10) 

(4.11) 

and 

(4.12) 

Then for 
such that 

(4.13) 

Jouko Tervo 

p S M m M - - 1  ra - -1  I.emma 4.3. Suppose that (4)E r162 and that q(4)ES~,~ ' 

P(4) > 0 

q(r >= c ~ M - - I ( x ,  4)~0m--l( x ,  4) 

such that 

q(4)/P(4) ~ O with 141-~. 

any l(x, 4)ES M-1'"-1 e>0  and NEN there exists a constant C > 0  ~, cp 

2 2 t(l(x,D)q~, ~o)[ <_- e[lqgllp~/~+C[]cpllg_~, for all ~oES. 

Proof. The composite operator q-a/2(D)ol(x, D)oq-a/2(D) is a pseudo-dif- 
ferential operator with a symbol in S~. '~ Hence due to the Theorem 3.1 one has �9 , q~ �9 

(4.14) I(l(x, D)oq-X/~(D)qL q-a/~(D)9)] 

l < ( q - l / 2 ( D )  l ( D )  -1/2(D)q~ ~o>[-< CIl~ol[ m. = o x, oq , = 

Since q~/~(D)~pES when q~ES we obtain from (4.14) 

(l(x, a)q~, qg) ~ Cllq~/2(V)cp[] 2 

_~ c(2~)-" flel-~. ~e(r d4 

+c(2~)-" f (sup q(4)k~(4))[(Fq~)(4)k_N(4)l z d4 ~ CIl~llh/2+C'll~ollL~, 

where R is so large that q(r for I~I=>R. This proves the assertion. [] 

From Lemma 4.3 we obtain 

Theorem 4.4. Suppose that L(x, M,,, ~)ESo, q, and that k(4)ES~('~ m" such that 

(4.15) k(4) >= c ~ '  (x, 4)~o~' (x, 4). 

Furthermore, assume that there exist M,m M--1 ra 1 P(4)ES~,~ and q(4)ESr - such that 
(4.10)--(4.12) hoM and that 

(4.16) ReL(x ,  4) => cP(4) for x, 4CR'. 

Then for any NEN there exists a constant C > 0  such that 

(4.17) Re ((L(x,D)ok2(D))q~, ~o> >- (c/2)][~oil~e,,-Cllq~llh_~. 

Proof. The composite operator A(x, D) defined by A(x, D)=L(x ,  D)ok2(D) 
belongs to ~,rM+2U"m+2m'o , Similarly,. one sees that the symbols B(4):--P(Ok~(O 
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(and b({):= q({)kZ(~)) 
Furthermore, one has 

(4.18) 

(4.19) 

(4.20) 

and 

(4.21) 

Define 

belong to r  (and to S M - l + h ~ / ' ' m - l + 2 m '  resp.). 

B ( ~ )  > 0, 

b(r = q(~)k~(~) ~_ c a #~-~  +~U" (x, ~)q~'~-~ +~" (x, r 

b(~)/B(~) = q(O/P(r -~ 0 with Ill -* 

Re A(x, ~) = ReL(x,  ~)k~(~) => cP(r = cB(~). 

T(x ,~)=A(x ,C)- -cB(~) .  Then T(x, ~ ~t+2M,,,.+~,., ~ S ~ , ,  and Re T(x, ~)>=0. 
Due to Theorem 4.1 there exists 2(x, ~aCS M-l+~''m-l+~m' such that ] ~, r 

(4.22) Re ((T(x, D)+ ~(x, D))go, r >= O. 

Furthermore, in virtue of Lemma 4.3 there exists C > 0  such that 

I(Z(x, D) cp, ~)l < (c/2)II~oll~/~ +CII~IIL~,, 

where N'EN such that 

(4.23) k-n,  ~-- Ckk_n;  

Hence we obtain from (4.22) 

Re (A(x,  D)~p, r = Re (T(x, D) q~, ~o) +clkoll~l/, 

-> c I1~11~1,.-1 (,~ (x, D)~,  ~,)1 
>- (c/2)11~o11~,, = -CI l~ l l~_~ ,  

and so we finally have by (4.23) 

Re ((L(x, D)oI,~W))~,, ~) = Re (a(x, D)q,, ~) 

- >  (c/2)II~oll~,~,-C Ikoll~_~, 

as desired. [] 

Corollary 4.5. Let L(x,~), k(~), P(~) and q(r be as in Theorem 4.4. Then there 
exists a constant ao>:O such that for any a>=ao the estimates 

(4.24) 

and 

(4.25) 

hold. 

[[(L(x,D)§ aI)~[l~ >: I1~11~ 

II(Z'(x,D)+aO~llk" =ll~ollk- for  all ~oCS 
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Proof. A) From (4.17) we get (with N = 0 )  for a ' ~ l  

(4.26) I1~01[~ -<- (a' +C)ll~oll~, + Re ((Z(x,D)ok~(D))~ o, ~o) 
= (C + a')[1 ~o [] ~ + Re (k 2 (D) ~o, L'(x, D) CO) -- Re (k 2 (D) q~, (L'(x, D) + (C + a') I) Co) 

= Re (k(D)q3, k(D)((L'(x, D)+(C+a' ) I )~) )  ~ II tl ll(Z'(x, O)+(C+ a')X) llk-, 
where we observed that ll~llk=II~ollk-- Hence the assertion (4.25) follows. 

B) To prove the inequality (4.24) we observe that 

(4.27) Re (L'(x, D) o (k v)2 (D) r q~) 

= Re ((k~)2(D)q~, L(x, D)~p) = Re ((k')2 (D) r L v (x, D)cp), 

where L----~(x, ~):=L(x,  -~).  Applying Theorem 4.4 to the case, where L(x, ~) is 
replaced by L---~ (x, M m ~)ES~:,~-, P(~) is replaced by P~(r q(~) is replaced by 
q~(~) and where k(~) is replaced by (kV)-l(~), we find that 

C p 2 1 (4.28) Re (L~(x,D)o(k~)-2(D)~o, q~) = (c/2) l[~ol[~k-)-~(p-)~/,- II~011<~-)- ~_~ 

for all ~oCS. Since k2(-D)q~ belongs to S when q~ belongs to S, we obtain by 
(4.27)--(4.28) that 

i 1 2 p Re (L'(x, D)o(k~)2(D)q~, q;) >- (c/2)~l[~-(~-) , / , -C Ii~011~- k_~, 

and then (4.24) can be verified as (4.25) (cf. the Part A)). [] 

4.2. We shall now prove the bijectivity of  L ' + a I  and L'~+aI for a large 
enough. The key is the following lemma 

Lemma 4.6. Suppose that L(x, M.m S - ~  -m o r and that there exists Q(~)~ ~,q; 
M ~, rn ~ S~. ~ such that 

(4.29) Q(~) >= c~ (x, ~)tpm'(x, ~) and Q(~) < I. 

Furthermore, assume that there exist a~ C, c>O and N~N so that 

[[(Z(x,D)+ aI)q~][ ~- cI1~8 

[[(L(x, D ) +  aI) ~p[[ e => c I[~p][~_. 

(4.30) 

(4.31) 

and 

(4.32) 

Then one has 

(4.33) 

[[(Z'(x,D)+aI)~olla- ~ cll~ll~_N for all cpES. 

R(L~ +aI)  = L2 and N(L'#+al)  = {0}. 

Proof. A) Let u be in N(L'#+aI) and choose a sequence {q~,}cS such that 
II~n-u[I--0. Then by (4.7) one sees that {L(x, D)cp,} is a Cauchy sequence in He.  
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Choose gEHQ so that IlL(x, D)~o.-gl la~0.  Since one has 

g(~o) = lim (L(x, D)~o.)(~o) = lim ~o.(L'(x, D)q~), 

u( t (x ,  D)~o) = (L'tu)(~,), 

we obtain that g=L'~u and so (note that Q<= 1) 

I I ( L ( x , D ) + a I ) ~ , . l l  ~ = I I ( L ( x , D ) + a Z ) q , . - - L ' ~ u - - a u l I Q  --  0 

with n-~oo. Due to (4.31)one has II~0.1I~_,,-~0 with n-+oo and so u=0.  This 
shows that 

N(L'# + aI) = {01. 

Similarly one finds from (4.32) and (4.8) that (here L # is the maximal realization of 
L'(x, D)) 

(4.34) N(L~ + al) = {0}. 

B) Let U b e i n  * * * * N(L +aI ) c L 2 ( = H  ~ with k = l ) .  Then there exists uEL2 
such that (of. Lemma 2.1) 

U~o = u(cp) and II Ull = Ilull 

(this follows also from Riesz theorem). Since one has 

u((L(x, 1)) + al) ~o) = U((L o + aI) q~) = O, 

we obtain by (4.34) that u=O and then U=O. Thus N(L*+aI*)={O}. Since by 
(4.30) R((L*+al*)*)=R(L'+aI) is closed and since 

N(L* + aI*) = {0} 

one sees that R(L ~ +aI)=L2 (of. [5], p. 234). This completes the proof. [] 

Combining Corollary 4.5 and Lemma 4.6 we get 

Theorem4.7. Suppose that L(x,r and that Q(r 
such that 

(4.35) Q(~) >= cOU' (x, ~)r (x, ~) and a(~)  <- 1. 

Furthermore, assume that there exist P(~) M,m M--1 m I ES~,~ and q(~)ES~,~' - such that 

p ( ~ )  > o, 

q(~) >- c ~ - ~ ( x ,  r ~), 

q(~)/P(~) -+ 0 with Ill -+~ 
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and 
ReL(x,  ~) _~ cP(~) for all x, ~ER". 

Then there exists a constant ao>=O such that 

(4.36) R ( L ~ + a I ) = L 2  and N(L'~+aI)={O} for a~_ao. 

Proof The application of Corollary4.5 with k=I(ES~,  ~ gives (4.30). The 
application with k = Q  implies (4.31)--(4.32). Hence Lemma4.6 proves the as- 
sertion. [] 

Coronary 4.8. Let L(x, ~), Q(~), P(~) and q(~) be as in Theorem 4.7. Then 
the relation 

L ~ = L'# 
holds. 

Proof Choose a such that (4.36) is valid. Let u be in D(L "~) and let L'~u=f  
Then one has L'~u+au=(L'+aI)w with some wED(L'). Since N(L'~+aI)= 
{0} and since L" c L  '~ one sees that u=wED(L') ,  which proves that L '~cL  ~. [] 

4.3. Let L~ (and '~ �9 L k ). Hk-~Hk be the minimal realization (the maximal real- 
ization, resp.) of L(x, D) in Hk. The definition of L~ and L~, ~ is given as the defini- 
tion of L" and L'~ (cf. Section 2.2). 

Theorem 4.9. Suppose that L(x, ~)Es~,M", and that k ( ~ ) E S ~  ~" such that 

(4.37) k(~) >= c ~ ' ( x ,  4) q~m'(x, ~). 

Furthermore, assume that 

(4.38) (koLok-1) '# = (koLok-X) ~. 

Then the relation 

(4.39) L ;  = L~ 

holds. 

Proof Let u be in D(L~ #) and let L k u=f. Then one has (here k(D)u and 
k(D)fEL~; k(D)u is defined by u(k(-D)~o)=(k(D)u)(~o)) 

(k(D) u)((k(D)oL(x, D) ok-X(D))'k(D)ep) 

= (k(D)u)(((k~)-~(D)oL'(x, D)ok ~ (D))~o) 

= u(L'(x, D)(k~(D)cp)) =f(k~(D)q~) = (k(D)f)(q~) 
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and then (Ic(D)oL(x, D)ok-i(D))'~(k(D)u)=k(D)f. Choose a sequence {rpn}cS 
such that (cf. (4.38)) 

I[%-k(D) ull =llk(D)oL(x, D)ok-~(D)q),-k(D)fll  --, O. 

Then one sees that 

l lk- l (O)p,-ul l~+ll t (x ,D)ok- ' (D)p,- f l[k  ~ 0  with n ~ o ,  

which proves that uED(L'~) and that L2u=f,  as desired. [] 

Remark 4.10. A) Let L(x, ~), k(~), P(~) and q(~) be as in Theorem 4.4. With 
the similar computation as presented in the proof of Theorem 4.4 one sees that 

Re (P1/ W) oL'r 9, 

for any NEN. Hence one has 

Re (L'(x, 19) o (k~)~ (1)) r (P~) (1)) @ 

>= (C/4) [l(e~)~/Z (oll~ev-)'/'--C Il(P~)X/Z ~ollk" k ,, (C/4) II~OII~," V" 

Thus one gets (cf. (4.26)) 

aI)r >= (c/4)I[(oLlkv 

for a large enough. This implies finally 

(4.40) D(L~) c Hkv c Hkq 

and then the assumptions of Theorem 4.4 imply (3.25). 
B) Since one has 

(4.41) (koLok-~)(x, r = L(x, r r 

where 2(x, ~)ES~,,-~ l '"-i ,  one sees that the assumptions of Theorem 4.7 imply 
(4.39) for any k(r m ,̀ which obeys (4.37). 

4.4. Let 5 and ~ be non-negative numbers such that 0~5-<Q<_-l. Denote by 
S~,~, m=>0 the class of C~~215 L(x, ~) such that for any (~, ~)EN0 ~ 
there exists a constant C~,p>O with which 

(4.42) IDID~L(x, ~)1 ~ C~,#(l+[~[) m-ql#l+~l~l for all x, CER ~. 

One sees that the functions r and cp defined by ~(x, r +l~l)  ~ and cp(x, ~)= 
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(1 + 141) -~ form a pair of  weight functions in the sense of [1]. Furthermore, one has 

(4.43) (1 + 14I) m-alpl +~1~1 = ~(m/~)-I~1 (x, 4) qg-I,i (x, 4) 

and the S~,~ = S~,/, ~176 

Corollary 4.11. Let L(x, 4) be in S"~',o; 0_--<6<QN1 such that with some con- 
stants e>0 ,  E>=O and t~]m-(~--6), m] one has 

(4.44) ReL(x, 4)->c(l+141)' for 141 ~=E. 

Then the relations 

(4.45) R(L" +aI) = L2, N(L'~+al) = {0} and  L "  = L'~ 

hold, when a is large enough. 

Proof. Define functions e(4),  q(4) by P ( 4 ) = U + I 4 1 ~ )  '/~ and q(4)= 
(1+[~12) (~-a+n)/z. Then one has , _ (~/o~,o P(4)ESI.o=S~,~,n-Sr and 

ID~q(4)l < = Ca(1 § ]~l) "-e+n-lal <= Ca(1 § [41) "-Q+o-elal 

= C ~ ( r a / Q ) - l - l [ J [ (  X, 4)(,0-1( X, 4)" 

Thus at4~E S (m/o)-1" -1 Furthermore, we get 

e ( 4 )  > o, 

at4) -~ ~(1 + 141) ('-~+~) = x~(m/o)-X(x, ~)~o-~(x, 4) 
and 

q(4)/P(~) = (1 +14l~)(~-'+n-a)/~ -~ 0 with 141 - ~ .  

Let C be a positive number such that C=2Co, o(I+R) m. Then one sees by (4.42) 
and (4.44) that with some z > 0  

Re(L(x ,  4 ) + C )  -~ • for all x, ~ER". 

Since m=>0 we have that L ( .  ~_t_t-c~,, _~mlg),o By virtue of  Theorem4.7 
we obtain (choose Q(4) =(1 + [412) -"/z) 

R ( L ' + a I ) = L ~ ,  N(L '#+al)={O} and L ' = L ' ~ ,  

as desired. [] 

Remark. The above method gives also that the operators L(x, D) satisfying 
the assumptions of  Corollary 4.11 are essentially maximal in the Sobolev spaces 
H~(R")=H~. with sER. 
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