On essential maximality of linear
pseudo-differential operators

Jouko Tervo

1. Introduction

We consider linear pseudo-differential operators L(x, D) of the Beals and
Fefferman type. L(x, D) maps the Schwartz class S into itself. Furthermore, the
formal transpose L'(x,D) of L(x,D) exists and L’(x, D) maps S into itself,
as well. This enables us to define the minimal closed realization L, and the maximal
closed realization L/# of L(x, D) in the appropriate Hilbert space H, (cf. the Sub-
sections 2.1 and 2.2). In the case when k=1, we see that H,=L,(R"). We write
L;=L" and LF#=L"* when k=1.

Our aim is to give sufficient criteria for the equality L™ =L, that is, for the
essential maximality of L(x, D) in L,(R"). One knows classes of operators
L(x, D): S-S which are essentially maximal in L,(R") (cf. [2], [3], [6] and [7])
We consider also the bijectivity of L™~ +al when a is large enough. The bijectivity of
L~ +al and L'*+al implies the equality L™ =L

Employing the convolution theory we, at first, show the essential maximality of
L(x, D), when L(-, -) belongs to the Beals and Fefferman class S3*, of symbols
(cf. Theorem 3.6). After that we apply our theory on the class S, M, mcR of, oper-
ators. When the solutions of L*u=f belong to H, with a suitable g(-)€SH, ",
the essential maximality of L(x, D) is verified (cf. Theorem 3.7). In Chapter 4
we deal with the bijectivity of L~ 4al and L¥+al. In addition, we obtain an
algebraic criterion for the essential maximality and for the inclusion

(1.1) D(LHc H,
where ¢(-) is suitably chosen from Sg ;=™ ",

Especially, applying our theory on the Hérmander class of operators we obtain:
Suppose that L(-, -)€Sh ;; <@, m=0 such that with a constant #¢]Jm—(¢—96), m]
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one has
(1.2) ReL(x, &) = c(1+&)) for all [{| = E.

Then the corresponding pseudo-differential operator L(x, D) is essentially maxi-
mal in Ly(R") and L” +-al: L,(R")—~L,(R" is a bijection when a is large enough.

2. General background

2.1. Denote by K’ the totality of continuous weight functions k: R"—-R
such that

eAY c(L+[E~ = k(8 = C(1+[EH™? = Ckg(§), for Z€RT

where ¢, C, r and R positive constants. When k is in K’ one sees that the functions
k* and k~ defined by k' (&)=(k(®))’ and k™ (&)=k(—¢&) are also elements of K.
Let S denote the Schwartz class of smooth functions ¢: R*~C and let S’ be
the dual of S (cf. [4], pp. 1—33). We define a scalar product (-, -}, in S by the
requirement

2.2) (@, ¥ = @m)~" [ (Fo)OEW) (OO dE,

where F: §—~S is the Fourier transform. The completion of S with respect to
the scalar product (., -, is denoted by H,. Suppose that u belongs to H,. Choose
a representative {p,}<S of u. Applying the Banach—Steinhaus Theorem and the
fact that by the Parseval formula one has

2.3) @ 0 = | [, 9C)Y () x| = ol Wl
we see that the linear mapping A defined by
24 (u)(9) = lim (¢,, @) for ¢€S, ucH,

maps H, injectively onto a subspace A(H,) of S”. In the sequel we denote the space
A(H,) by H,, as well. A familiar characterization of the H,-space is the following
one: A distribution 7€S’ belongs to H, if and only if FT€LY°(R") and

235) ITh:= (@0 [, ET) @K@ )V <eo.

Here F: S’—S’ denotes the Fourier transform. Furthermore, one knows that
ITI=1A"2(D u, and in the following H, is equipped with this norm. H, is also a
Hilbert space. The scalar product (-, - is given by

(2:6) (o) = @)~ [ (F)(F)( Ok (@) dE.
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As a Hilbert space H, is a reflexive Banach space. In addition, the next charac-
terization of the dual H; of H; is valid

Lemma 2.1. Suppose that I* is in H}. Then there exists a unique element 1€ H, -
such that
.7 "¢ =I(p) for all p€S.
On the other hand, suppose that lis in Hy;,-. Then I: S—~C has a unique continuous

extension I* on Hy. The linear mapping % H}—~H,,~ defined by 2,(I")=1 is an
isometrical isomorphism. [

2.2. Let L be a linear operator S—S. We suppose that the formal transpose
L’ of L exists, in other words, there exists a linear operator L’: S—S such that

(2.8) Lo )= [ LYY ) dx = (9, L'})) for ¢, YeS.

This assumption enables us to define a dense linear operator L#: Ly:=L,(R")~L,
by the requirement
{D(L’#) = {u€ L,|there exists f€ L, such that u(L’¢) = f(¢) for all €S},
L’#u:f
Here we denoted g(¢)= [g~ g(x)9(x) dx. One sees that L'* is a closed operator.
Furthermore, we define a dense linear operator L,: L,~L, by
{D (LO) = Sa
Lyp =Ly for ¢E€S.

2.9)

(2.10)

In virtue of (2.8) one sees that L, is closable in L,. Denote by L": L,~L, the
smallest closed extension of L, (cf. [8], pp. 76—79). One obtains that L~ cL’%.
The operator L~ (L’%, respectively) is called the minimal realization of L in L,
(and the maximal realization of L in L,, respectively). When the equality L' =L’#
holds, we say that L is essentially maximal in L,.

Remark 2.2. A) Let L*: L¥—~L; be the dual operator of L, and let
L**: Ly*—~L3* be the dual operator of L*. Since L, is reflexive, one knows that

(2.11) L~ =J-1oL**oJ,

where J: L,~L}* is the canonical isometrical isomorphism (cf. [5], p. 168).
B) The operators L'# and L™* (here L’* is the dual of (L’),) obey the relation

2.12) L'™* = )J71oL*o0),

where A: L,—~L} is the isometrical isomorphism announced in Lemma 2.1 {(one
must note that H,=L,, when k=1).
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3. On essential maximality

3.1, Let ¢ and ¢: R"XR">R form a pair of continuous weight functions in
the sence of Beals and Fefferman [1], that is, the following criteria hold: There exist
constants ¢=>0, C=0 and &=0 such that

(ia) e=d(x, )=C(1+|&]), for all x, £€R”,
(@ib) c(1+]E)*t=o(x, ©=C, for all x, ERY,
(i) D(x, Oe(x, E)=c for all x, E€R™,

(iii) For each r=0 there exists ¢,>0 such that

2(x,8) em  POhm) 9% _ g
p(x,8) 2(»n.n)  e(vm) (8 7

for all (x, y, (£, M)ER"XR"X{(&, NeR"XR|(|EI/ i)+ (nl/IE)=r}.
(iv) For each (x, £)éR*XR" there exists a constant C=Q such that

() |, P(x8) _ o (¥, 1)
s oo - C ™S9

for all (y, NeU,, g:={(3, PER"XR’||y—x|<co(x, &) and |5—El<cd(x, §)}.

For example, the functions @ and ¢ defined by @ (x, &)= +[£])? and ¢(x, &)=
(1+1&)~% 0=6=0=1, §<1 form a pair of weight functions.

Choose M and m from R. Then we say that the function L(x, )¢C” (R*XR")
is in the class S} provided that for each pair («, f)€N; XNy there exists a constant
C, >0 such that

3. I(D3 DELY(x, O = Co, g @~ (x, O 9™ (x, 0)

(x, &) _
o(,n) ¢

+

for all (x, £)¢R"XR"
Suppose that L(x, &)¢ Sg{';,". Define a linear pseudo-differential operator
L(x, D) by

(32 (L(x, D)¢)(x) = 2m)~™" f W LG5 O(FR)©) &6 g,

where ¢€S. In [1] one has proved that L{x, D) maps S into S and the the
formal transpose L’(x, D): S—~S of L(x,D) exists. In addition, L(x, D) and
L'(x, D): S-S are continuous. In [1] one has developed a fertile calculus for the
pseudo-differential operators (3.2), where L(-, -) belongs to [y mer Serm (the
elements of Uy, mer Sg,’,’;" are called symbols). In the sequel we shall apply this
calculus and, in addition, the following two theorems
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Theorem 3.1. Suppose that L(x,)€Sg’,. Then there exists a constant
C(L(x, &)>0 such that

(3.3) IL(x, D)ol := IL(x, D)gllz, = C(L(x, D)ll@l, for all @ES.
Furthermore, let A be a subset of S3°, such that

2230, 9) = sup Bl (x, &)l (x, &) (DLDEQ)(x, &) = C, 5 <=

Jor all Q(x, &)€A. Then the constant C(Q(x, £)) can be chosen to be independent of
O, &) ond. 0O

For the proof cf. the proof of Theorem 3.1 given in [1], pp. 12—17.
Theorem 3.2. Suppose that L(x, )€ Syr such that

(349 Lx, =0 for all x,EcR".

Then there exists a symbol I(x, €Sy ™t such that

(35) Re{(L(x,D)+I(x,D))¢, ¢y =0 for all €S,

where (-, ) denotes the Ly scalar product. [
For the proof cf. Theorem 3.2 showed in [1], p. 19.

3.2. Let 6eCy:=Cy(R™ such that 8(x)=1 for x€B(0, 1):={x€R"|[x|<1}.
Define 0" :=(2n)~"0, 0,:=6(x/]) and 0;:=0"(x/]). Then one sees that

(F&)m) = [ 0'Cx/D) e dx = I"(FO') (),
where ‘

[ FONO dE = [ (FONED dE = 2n)0'(0) = 1.

Write y,:=F0,. Then we obtain for any ucL,

(3.6) 16, u—u| ~0 with [ -
and
3.7 lYxu—ul| -0 with [—»>eo.

The next lemma is easily proved

Lemma 3.3. Suppose that L(x, £)€ Sy, Then there exist constants C>0 and
NeR such that

(3.8a) - IL(x, D)ol = Cllely
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and
(3.8b) IL(x, D)olix_,, = Cli@l for all @€S. O
Here we denoted as above k/(&)=(14|E}2)2
Since Y% u€(,cx H, one sees by (3.8a) that
3.9 VpxucD(L™) for any leN and wu€lL,.
For M=m=1 we have

Lemma 3.4. Suppose that L(x, {)Sg},. Then for any (j,DENXN there exists
R;, (x, )€SG’, such that

(3.10) ‘/’t*(ejL(xa D)(D) = 0;L(x, D)(¢1*¢)+Rj,1(x, D)o
Jor all @€S and that
(3.11) [R;,1(x; D)ol = Clloll for all ¢€S,

where the constant C>0 is independent of j, IEN.
Proof. A) Define a pseudo-differential operator (D) by
(FD)e)x) = @0 [ (FI) @ (Fe)(E)e's™ de.

Furthermore, write L;(x, £)=0;L(x, £). Trivially one has V(&€ S%°, and so we
obtain

G12) [Vix(0,L0s DIR)] () = @m) [ F(hre(®;L(x, D)) (£
= @0 [ (PR F(L(x, D)g)(©)ee de

= [(§(D)oL;(x, D)) 0] (x) = [(}10L,)(x, D) ¢} (x).
In addition, we obtain (cf. [1], p. 5)

(3.13) oL (x, &) = (FY)(x, E)L;i(x, &)+ R, (x, &),

where
Ry, ) = Zics D [, [ [0 (FW)(E+1—O)DIL)(, OE*>1-9 dy.
The symbol (f,L)(x, &):=(Fy) () L;(x, &) induces the operator
(3.149) (L) D))x) = @m)~" [ (FY(OL;(x, O)(Fp)(@)e's» dt
=)= [ Li(x, O FWix9)(©) €6 di = 0,()(L(x, D)(¥1*0))(x)
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and then our task reduces to show that R;(x,¢)€Sg’, and that the esti-
mate (3.11) holds. Since ¥,(£)€S3’, and since L;(x, £)€SHE, we know that
R, (x, E)ESG’,

B) Since ,=F0;, one has Fy,=(2n)"(0;)"=0,. Because 0cCycCS we
can (for any BENG) choose a constant Cp>0 such that

(DAY = Cp(1+EN~1#1 for all (eR™
Furthermore, one has (recall that @(x, &)=C(1+|¢]))
A +ED-18t = CIBIp-18l(x, £) for all x, E€R™,
and so we obtain
(.15) P& 3(0u() = sup (2"1(x, &) IDEWN(©)) = sup (21#1(x, &) 1171 |(DPO) (- &/D)))
=C, s:xg D8l (x, &) I-1B1 (1 4-|E/) -8l = C,,sxug (971 (x, E)(A+|EN1)y = C,pClAl.

Hence the sequence {i/;(&)}, is bounded in Sg?, (for the definition of the Frechet
space topology in Sg . we refer to [1], p. 3).
C) Since for any jEN and «€Nj one has

I(D*0,)(x)] = j =1 [(D*O)(x/j)] = sup [(D*O)(x)l,

one seces by the Leibniz rule
(16)  IDEDIL)( O = s} (06N (D5 *DE LI, &)
= oo (3] G0 IO o p 811105, 114115, &)

= Zusa(}) € (20 (D ) () Comap 01, D1 (5, O
and so

PEi(Ly(x, &) = sup (21411 (x, &) o1+l (x, E)(DLDE L)) (x, E)) = Cy -

Hence the sequence {L;(x, &)}; is bounded in S37,.

D) Due to Theorem 1 of [1], p. 4, one obtains that (3.13) holds and that the
sequence {R;;(x, &)};,; is bounded in S3°, (cf. also the proof of Theorem 1 of [1]),
that is,

PeY (R (x, &) =C,, for all I, jeN.

Thus by Theorem 3.1 the estimate (3.11) is valid. This completes the
proof. O
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Lemma 3.5. Suppose that L(x,&)S3,. Let u be in D(L'}). Then one has
(3.17) IL# W)l = CIL#ull +|1ul),
where C is independent of .

Proof. In virtue of (3.10)-—(3.11) we get
(3.18) 16, L(x, DYWix @)l = [[ix (6;L(x, D)@Y+ R, (%, D) g|

= Y, x0;L(x, D)ol +Clel.
Since [[6;L(x, D)y, *@)| ~|L(x, D)(Y,* )] with j—-oo and since (cf. [4], p. 39)
(3.19) [[¥%(6;L (x, D) )y #(L(x, D) o)
= [¥ill»,110;L(x, D)p—L(x, D)g|| ~0 with j—eo

we obtain that
(3.20) IL(x, DY(W* )] = W *L(x, D)o +Clloll.

Choose a sequence {p,}cC; such that |@,—u]—-0 with n—e. Furthermore,
choose NeN such that (3.8b) holds.Then we obtain (cf. [4], p. 39)

321) WL D))= 1L D)ol Will e = CHON Wil iy

and so [y, * L(x, D) p,—y, % L’!u] -0 with n— oo, (this follows from the fact that
by (3.21) {y,*L(x, D)¢,}, is a Cauchy sequence in L, and that .

(Ui L(x, DY) (x) = 0n(L'(x, DY (x—(-))) > (Yix L' u(x)).
Thus by (3.20) {L(x, D)(¥;*¢,)}, is a Cauchy sequence in L,. Since
(L(x DYWi*0))(@) = @k o) (L'(x, D)9) —~ (rxu)(L(x, D) o) = (L*(*w))(9),
we obtain that
|LG, DYk )~ L) ~ 0 with 1 —oo.
This implies finally (together with (3.20)) that
1L W)l = I L ul +Cllull = [l o, IL#ul +Cllul,

Wi,z = sup IFU)(E) = sup 16} ()] = sup 16(2)] <<=

where

This proves the assertion (3.17). O

We are now ready to establish

Theorem 3.6. Suppose that L(x, £)€Sg?,. Then one has
3.22) L~ =L%,
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Proof. Let u be in D(L'¥) and let L*u=f. Then by (3.17) {L*@,*u)}, is
bounded in L, and so we find a subsequence {L’*(lp,j *1)}; such that

”(l/r) 2’;=1 L’#(t,b,j*u)—-g" -0 with r—>e
where g€L, (cf. the Banach—Saks Theorem). Since
(3.23) (1/r) 2y LWy = LE((1/r) 5, Wi*w)),
(/1) 37 _, (hy*w)—u|| -0, with r oo
and since by (3.9) (1/r) P l//,j*u)ED(L”), we get that u¢D(L”) and that
L u=g. Because L"cL™* we get that g=f. Hence ucD(L") and L"u=f
and so L*cL”. This finishes the proof. [

3.3. From Theorem 3.6 we obtain the following criterion for L~ =L’¥, when
L(x, &)eSym; M, meR.

Theorem 3.7. Suppose that L(x, )¢ Sq","’q’," and that there exists a symbol
q(&ESy W™ (which is independent of x) such that q(£)=1 and

(3.24) q(&) = cdM(x, o™ 1(x, &)
and that
(3.25) D(L'#) < H,.

Then the relation L™ =L"* holds.

Proof. Choose u in D(L®) and denote L*u=f. In virtue of (3.24) one ob-
serves that g 1(E)€Sy % " ™*" and so (Log™)(x, &)€S3Y, (here we denoted
g71(&)=(¢(%) ™). Furthermore, we obtain (we denote ¢q(x, D)=g(D))

(¢#u)((Log™Y (x. D)) = (¢*u)(((g™Y) oL')(x, D) 9) = u(L'(x, D)9) = f(9)

and so
(Log~Vy¥(q*u) = f

(note that H,cD(¢™). Due to Theorem 3.6 one has, g*ucD((Log™)") and
(Log™) u=f. Choose a sequence {p,)cS such that |@,—q%u|~0 and that
I(Log ™ (x, D)p,—fll -0 with n—o. Then {g~(D)g,}cS is a sequence such
that |lg~*(D)p,—u| +||L(x, D)(¢7*(D)@,)—f||~0 with n—> (note that g=1).
Thus u€D(L™) and L”u=f, which completes the proof. O

In the next Chapter 4 we shall establish a sufficient condition for the inclusion
(3.25). Also the essential maximality will be considered.
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Remark 3.8. A) The proof of Lemma 3.4 shows also the following fact: Sup-
pose that L(x, &)€ Sy Then for any (j, /)éN? there exists Rj,(x, O)ESy ™"
so that

'//t*(OjL(x: D)(P) = OjL(x, D)(‘l’l*¢)+Rj,z(x; D)o,

where
pRFE YR, (%, &) = sup (@~ M1+l (x, E)@-m+1+1l(x, £)|DLDER; i (x, E)I)
x, &
=C,p <o for all (j,)eN2

B) Suppose that g(&)€Sy ™' so that (3.24) holds. Then one has for
L(x, &)cSgy

(3.26) 1Yi*xL(x, D)o —L(x, D)W *@)l| = @], for all ¢¢S,

where C is independent of /.
The proof of (3.26) follows by applying Lemma 3.4 to L(x, D)og—*(D).

4. On bijectivity of minimal realizations

4.1. In this chapter we shall deal with the bijectivity of L™ +4al: L,~L,.
Also the essential maximality is considered. When (@, ¢) forms a pair of weight
functions, one sees that also (@7, ¢~) forms a pair of weight functions, where
D7 (x, )=P(x, —&) and ¢~ (x, =0 (x, —&). We need

Lemma 4.1. Suppose that L(x, &)€Sy 'y such that
“.1) Lp(x,8)=ReL(x,&) =0 for all x,EcR"
Then there exists a a(-, -)ESy ;™ such that
4.2) Re((L(x,D)+a(x,D))p, o) =0 for all @ES.

Proof. Due to Theorem 3.2 there exists (-, -)€Sy »™ ! so that
4.3 Re{(Lg.(x, D)+I(x,D))p, ) =0 for all o€S.
Furthermore, we know that (cf. [1], Theorem 1)

L'(x,{) = L(x, —{)+b(x, =),
where b(-, -)€SH ™" and so
(4.4) Re (L(x, D)@, ¢) = (1/2)(L(x, D)p+L'(x, D)§, ¢)
Re (Lp(x; D)o, )+ (1/2) Re (b(x, D)o, @),
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where b(-, -)=b(-, -). Here we noted that

(L'(x, D)(/—))(x) = (Zn)‘"fR" L'(x, O)(Fp)(&)e&® de
= @ny [ D06 —B)(Fo)(§)ee™ d
= n)~ [ LG O(Fp)(©)e® +(5(x, D)) ().

Thus the assertion follows from (4.3) by choosing a(x, &)=I(x, )—(1/2)b(x,&). O
Suppose that Q(&)¢C~(R") obeys the estimate

“4.5) DEQY()] = Cp @MV (x, &)™ (x, &)

Then the mapping Q(x, &) defined by Q(x, £)=0Q(¢) belongs to Sy and we
denote (as above) Q(x, D)=0Q(D), O(x, )=0Q(¢). Suppose that Q(¢) is real-valued
and that with ¢=0

(4.6) () = e (x, o™ (x, &)

Then the mappings Q°(x, &) defined by Q°(x, &)=(Q(&))° lie in Sy5™ for any
s€R. The corresponding operators are denoted by Q°(D). 1t is easy to see that
Q¢K’, when (4.5)—(4.6) hold. The following lemmas are needed

Lemma 4.2. Suppose that L(x, g’)ESq",’,’(;" and that there exists Q(é)ES;f;’“"‘.
Then there exists a constant C=0 such that

4.7) IL(x,D)ollg = Clol
and
(4.8) 1L (x, D)ollg- = Clloll for all ¢€S.

Proof. The composite operator Q(D)oL(x, D) belongs to L3S, and so by
Theorem 3.1 there exists a constant C>0 such that

IL(x, D)gllg = [(Q(D)oL(x, D))g|| = Cloll for all g€S.
Here we utilized the fact that by the Fourier inversion formula
4.9) F(Q(D)9)(€) = Q) (Fp)(&)

(note that by (4.5), Q(-)Fp€S). Since L'(x, &)€Sy:™. and Q7 (ESF,-™, the
inequality (4.8) is similarly shown. 0O

Remark. Suppose that Q(&)€ Sy such that (4.6) holds. Then Q~(&)€ S5 ™.
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Lemma 4.3. Suppose that P()€Sy¥r and that q(§)€Sy U™ such that

(4.10) P(&) =0

(4.11) g(&) = c®M1(x, o™ (x, &)
and

(4.12) q(©/P() ~0 with [&] —><e.

Then for any I(x, )ESH, ™", €>0 and NEN there exists a constant C>0
such that

(4.13) KI(x, D)o, )| = ell@lir+Cliol_ for all  ¢€S.

Proof. The composite operator ¢~/2(D)ol(x, D)og="*(D) is a pseudo-dif-
ferential operator with a symbol in S%°,. Hence due to the Theorem 3.1 one has

(4.14) |(I(x, D)og~*(D), g~ *(D)¢)|
= [((g72(D)ol(x, D)og=*(D) @, ¢)| = Clioll*.
Since ¢2(D)p€S when €S we obtain from (4.14)
((x, D)g, ) = Clg"*(D)o|*
=ceu [, tPOIFQP

+COR [ (55 dORO)(FOk-»OP dE = Cllplius +ClolE .

where R is so large that q(&)/P(6)=¢ for |¢]=R. This proves the assertion. [
From Lemma 4.3 we obtain
Theorem 4.4, Suppose that L(x, &Sy and that k(EESg.," such that
(4.15) k(&) = @™ (x, O o™ (x, ).

Furthermore, assume that there exist P(&)€Sym and q(§)€Sy ™™ such that
(4.10)—(4.12) hold and that

(4.16) Re L(x, &) = cP(&) for x,lER™
Then for any NEN there exists a constant C=0 such that

(4.17) Re ((L(x, D)ok*(D))¢, ¢) = (¢/D]| llip1a—Cll @l _y-

Proof. The composite operator A(x, D) defined by A(x, D)=L(x, D)ok*(D)
belongs to Ly t"m+*", Similarly, one sees that the symbols B(©):=P)k2(&)



On essential maximality of linear pseudo-differential operators 355

(and b(&):=q(O)k2(Y)) belong to Sy t2M m+2m (and to SYIFEMIm-l+2m reqp)y
Furthermore, one has

(4.13) B(&) =0,

(4.19) b(8) = q(Ok* () = QMM (x, L)1+ (x, §),
(4.20) b(&)/B(S) = q(O)/P() ~0 with |¢] »<

and

(4.21) Re A(x, §) = Re L(x, )k*(&) = cP(OK*(E) = cB(?).

Define T'(x, §)=A(x, &)—cB(¢). Then T(x, )eSEEM ™+ and Re T(x, £)=0.
Due to Theorem 4.1 there exists A(x, £)€ Sy ;1 T2 ™12 such that

4.22) Re (T (x, D)+A(x, D))o, @)= 0.
Furthermore, in virtue of Lemma 4.3 there exists C=>0 such that
[<A¢x, D)o, @)l = (/D] @I} +Clloli_
where N’€N such that
4.23) k_y = Ckk_y:
Hence we obtain from (4.22)
Re {(A(x, D)o, p) = Re (T (x, D)@, p)+cl|ol|%us
= c|@llg:—A(x, D)o, )|
= (/2 ol —Clloli_,.
and so we finally have by (4.23)
Re ((L(x, D)ok*(D))¢, ) = Re {(4(x, D)o, p)

= (/)| olzprn—Clioli_y»
as desired. [

Corollary 4.5. Let L(x,¢), k(¢), P(¢) and q(&) be as in Theorem 4.4. Then there
exists a constant a,=0 such that for any a=a, the estimates

(4.24) (LG, D)+ al)off = ligll,
and
(4.25) (LG D)+ aD) g~ = llgl- for all pesS

hold.
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Proof. A) From (4.17) we get (with N=0) for a’'=1
(4.26) lol2 = (& +C)loli+Re{(L(x, D)ok*(D)) @, ¢)
= (C+a)lpl2+Re (k*(D)g, L'(x, D)3y = Re(k*(D), (L'(x, D)+(C+a) )p)
=Re(k(D)o, k(D)(L'(x, D)+(C+a)))) = ol (LG, DY+(C+a) D) -

where we observed that ||@|,=]l¢]x~-. Hence the assertion (4.25) follows.
B) To prove the inequality (4.24) we observe that

4.27) Re (L'(x, D)o(k™)*(D) ¢, @)
=Re((k")*(D)o, L(x, D)@y = Re (k")*(D)@, L' (x, D) o),

where L (x, &):=L(x, —¢). Applying Theorem 4.4 to the case, where L(x, &) is
replaced by L (x, EESy:n-, P() is replaced by P7(&), q(&) is replaced by
g~ (&) and where k(&) is replaced by (k7)~1(£), we find that
(4.28) Re (L7 (x,D)o(k™) 2(D)g, @) = (/) |@lG-)-1 -y —C’ @G-k _y
for all ¢¢S. Since k*(—D)¢p belongs to S when ¢ belongs to S, we obtain by
(4.27)—(4.28) that

Re (L' (x, D)o(k™ (D)@, ¢) = (¢/2) | olli-p-ys—C @l k_y »
and then (4.24) can be verified as (4.25) (cf. the Part A)). T

4.2. We shall now prove the bijectivity of L™ +al and L*+al for a large
enough. The key is the following lemma

Lemmia 4.6. Suppose that L(x, &)¢ Sﬁ':‘ and that there exists Q(&)¢ S;f‘;""‘r\
S such that

(4.29) Q&) = e (x, o™ (x, &) and Q) =1.
Furthermore, assume that there exist a¢C, ¢>=0 and NeN so that
(4.30) I(Z(x, D)+al)o|| =clol

(4.31) (L(x, DY +al)ollg = clole_y

and

(4.32) (Z'Ge, DY+ al)g|lg- = cllgll_,, Sfor all @ES.

Then one has
(4.33) R(L~+al)=L, and N(L*+al)={0}.

Proof. A) Let u be in N(I'¥+al) and choose a sequence {¢,}<S such that
ll@,—ull -0. Then by (4.7) one sees that {L(x, D)¢,} is a Cauchy sequence in H,.
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Choose g€ Hy so that |L(x, D)¢p,—glo—~0. Since one has
g(p) = lim (L(x, D),)(¢) = lim ¢,(L(x, D)),
u(L(x, D)¢) = (L'*#u)(p)s
we obtain that g=L*4 and so (note that Q=1)
(L, D)+ al)g,|

with n—ce. Due to (4.31) one has [@,l,_ —0 with n>c and so w=0. This
shows that

o = |(LGx, D)+ al)g,— L u—aully ~ 0

N(L'#+al) = {0}.

Similarly one finds from (4.32) and (4.8) that (here L# is the maximal realization of
L'(x, D))

(4.34) N(#+al) = {0}.

B) Let U be in N(L*+al*)cLy(=H; with k=1). Then there exists u€L,
such that (cf. Lemma 2.1)

Up =u(p) and |U| = |ull
(this follows also from Riesz theorem). Since one has
u((L(x,D)+al)g) = U((Ly+al)¢p) =0,

we obtain by (4.34) that =0 and then U=0. Thus N(L*+al*)={0}. Since by
(4.30) R((L*+al*)*)=R(L" +al) is closed and since

N(L*+al*) = {0}
one sees that R(L™ +al)=L, (cf. [5], p. 234). This completes the proof. O
Combining Corollary 4.5 and Lemma 4.6 we get

Theorem 4.7. Suppose that L(x,{)eSy™ and that QE)ESy % NSy "
such that

(4.35) 0 =™ (x, o™ (x,¢) and QO =1
Furthermore, assume that there exist P(E)€Sy'™ and q(E)€Sp ™' such that
PQ>0,
q() = M1 (x, O™ (x, O),
q@)/PE)~0 with [{] >
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and
Re L(x, &) = cP(¢) for all x,E€R™

Then there exists a constant a,=0 such that
(4.36) R(L~+al)=L, and N(L*+al)={0} for a=a,.

Proof. The application of Corollary 4.5 with k=1(€Sg5%) gives (4.30). The
application with k=@ implies (4.31)—(4.32). Hence Lemma 4.6 proves the as-
sertion. [

Corollary 4.8. Let L(x, &), Q(&), P(&) and q(&) be as in Theorem A4.7. Then
the relation
L~ =L%
holds.

Proof. Choose a such that (4.36) is valid. Let » be in D(L'#%) and let L'#*u=f.
Then one has L*u+au=(L" +al)w with some weD(L"). Since N(L*+al)=
{0} and since L cL* one sees that u=we D (L"), which proves that L*c L. O

4.3. Let L; (and L/%): H,—H, be the minimal realization (the maximal real-
ization, resp.) of L(x, D) in H,. The definition of L] and L;* is given as the defini-
tion of L~ and L'# (cf. Section 2.2).

Theorem 4.9. Suppose that L(x, €Swr and that k(E)ESH ™ such that

(4.37) k(&) = @™ (x, ) 0™ (x, &)
Furthermore, assume that

(4.38) (koLok™1)% = (koLok™1)~.
Then the relation

4.39) L; =L}

holds.

Proof. Let u be in D(L;}) and let L}*u=f Then one has (here k(D)u and
k(D)feL,; k(D)u is defined by u(k(—D)g)=(k(D)u)(¢))

(k(D)u)((k (D)oL (x, D)ok ~(D)Y k(D))
= (k(D)u)(((k")~ (D)oL’ (x, D)ok™ (D)) ¢)
= u(L'(x, D)(k"(D)9)) = f (k" (D)) = (k(D)S)(9)
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and then (k(D)oL(x, Dyok *(D)Y*(k(D)u)=k(D)f. Choose a sequence {@,}CS
such that (cf. (4.38))

¢ —k(D)ull =k(D)oL(x, DYok~*(D)@,—k(D)f| ~ 0.
Then one sees that
Ik~ (D)@, —ully+ I L(x, D)ok~ (D)o, —flx -0 with 7 e,
which proves that u€D(L;) and that L u=f, as desired. [

Remark 4.10. A) Let L(x, &), k(&), P(€) and g(¢) be as in Theorem 4.4. With
the similar computation as presented in the proof of Theorem 4.4 one sees that

Re (PY2(D)oL’(x, D)o(P”)"Y2(D)o(k™)*(D) ¢, ¢)

= (/DN oli-@-ne—Clole-k_y

for any NeN. Hence one has
Re(L'(x, D)o(k" (D), (P")(D)p)
= (/D (P2 Ol -y —C NP Y2l iy = (/D01 p- ~C @I~ &_ycomy-1s-

Thus one gets (cf. (4.26))

(Z(x, D)+ al) ol = (/4) gl
for a large enough. This implies finally
(4.40) D(Ly)C Hyp C Hy,

and then the assumptions of Theorem 4.4 imply (3.25).
B) Since one has

@.41) (koLok™)(x, &) = L(x, &)+A(x, &),

where A(x, £)€ Sf‘,{;‘,l"""l, one sees that the assumptions of Theorem 4.7 imply

(4.39) for any k(&)€Sy ™, which obeys (4.37).

4.4. Let 6 and ¢ be non-negative numbers such that 0=§<p=1. Denote by
S5, m=0 the class of C™(R"XR")-functions L(x, £) such that for any («, BeN2
there exists a constant C, ;>0 with which

(4.42) IDEDEL(x, &) = C, y(1+]E[y"—elfl+3=  for all x, ECR™
One sees that the functions @ and ¢ defined by @(x, )= +{&])? and o(x, &)=
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(1+1€))~? form a pair of weight functions in the sense of [1]. Furthermore, one has

(4.43) (L+[g)r-atbl+alel = glmio 1Al (x, &) p=Iol (x, &)

and the ST ;=Sgn:°,

Corollary 4.11, Let L(x,&) be in S} ;; 0=0<g=1 such that with some con-
stants ¢=0, E=0 and telm—(¢—9J), m] one has

449 ReL(x,&) =c(1+|E)) for ]I =E.

Then the relations

(4.45) R(L"+al)=L,, N(L*+al)={0} and L- =L%
hold, when a is large enough.

Proof. Define functions P(&), ¢(&) by P(E)=(1+|¢{HD"2 and ¢(&)=
(1+[&[»m—e+9/2 Then one has P(£)€S ,C ST ,;=S5"° and

IDEq(&)] = Cp(1+[E—e+o=1ol = C,p(1+[Eym~eti-elfl
= Cy@m-1-1l(x, &) ~1(x, £).
Thus g(&)eSF/@-%-1, Furthermore, we get
P(§) =0,

q(&) = w1 +|E)m—e+D = 3 pmO=1(x, )p~1(x, §)
and

a(Q)/P(&) = A+[EP)m=1+2-0/2 ~ 0 with [{] ~e=.

Let C be a positive number such that C=2C, ,(1+R)™. Then one sees by (4.42)
and (4.44) that with some »=>0

Re(L(x, ©)+C) = =xP(¢) for all x, E€R™

Since m=0 we have that L(-, -)+CeST,=S3/° By virtuc of Theorem 4.7
we obtain (choose Q(&)=(1+I[£[®H~™%)

R(L"+al)=L,, N(L*+al)={0} and L~ =L%
as desired. O

Remark. The above method gives also that the operators L(x, D) satisfying
the assumptions of Corollary 4.11 are essentially maximal in the Sobolev spaces
H’(R"):Hk, with seR.
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