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R. Pardini 

Introduction 

The theory of  triple covers in algebraic geometry has been developed by R. 
Miranda in his paper [3], in which he establishes a 1--1 correspondence between 
triple covers o f  varieties over fields o f  characteristic not equal to 2 or 3 and sections 
of  certain vector bundles. 

The purpose of  this work was to analyse in the same spirit the characteristic 
3 case, since this has some special features, e.g. the existence of  inseparable triple 
covers. 

Actually, it turned out that it is possible to extend Miranda's theory in such 
a way to describe triple covers of  schemes of  finite type over any noetherian domain 
R with the property that 2 is invertible in R. In doing so, we think we have reached a 
more conceptual view of  the problem and we hope this may also lead to applica- 
tions in number theory. 

Sections 1, 2, and 3 contain the general description of  triple covers in terms 
of  sections of  vector bundles; the example of  Section 4 shows that the general situa- 
tion is indeed more complex than the case of  varieties over a field of  characteristic 
different from 2, 3. Ramification, branch locus and local structure of  triple covers 
are described in Section 5, while inseparable triple covers are analysed in Section 6. 
In Section 7, we set up the problem of  lifting a triple cover in characteristic 3 to 
characteristic 0 and provide a couple of  examples to clarify the matter. Section 8 
is devoted to computing the invariants of  triple covers of  surfaces: these are ex- 
pressed by the same formulas both in the separable and inseparable case, although 
the usual computational methods cannot be applied in the latter situation. Finally, 
an appendix takes care of  the characteristic 2 case. 

Acknowledgements. I wish to thank particularly Fabrizio Catanese and Rick 
Miranda for their patient help and encouragement. I am also indebted to T. Ekedahl 
for several useful remarks. Finally, I am very grateful to the Mittag-Leflter Institut, 
where a part of  this work was carried out, for support. 
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1. Preliminary facts 

Let R be a noetherian domain such that 2 is invertible in R and let Y be an 
integral separated scheme of  finite type over spec R. 

Definition 1.1. A triple cover o f  Y consists o f  the data (X, ~o) o f  a scheme X 
over specR and o f  a flat finite R-morphism ~ : X ~ Y such that ~o , 0 x is a rank 3 
O r-bundle. Triple covers (X, qo) and (X',  (p') are isomorphic iff there exists an iso- 
morphism ~: X o X "  such that the following diagram commutes: 

X o ~ X  

Y. 

To a triple cover (i ' ,  ~0) there corresponds a short exact sequence of  locally free 
sheaves on Y: 

0 ~ 0r -~ ~p,0 x ~ E - ~ 0  

E is locally free of  rank 2, since the map:  0 r ~ c p , 0  x has no zeros on Y. In what 
follows E will be called the associated vector bundle of  the cover (X, cp). cp,0 x is 
a rank 3 0y-algebra and the natural projection p:  s p e c c p , 0 x ~ Y  gives a triple 
cover isomorphic to (X, cp). 

So, i f  we are given a scheme Y and a rank 2 vector bundle E on Y, the problem 
of  describing the triple covers of  Y whose associated bundle is E is completely equiv- 
alent to that of  determining the pairs (V,/~), where V is an extension 0 ~ 0  r 
V~--~E~O and #: S 2 V ~ V  is a 0r-linear map defining a commutative ring struc- 
ture on V compatible with the 0r-module structure. It  may be worthwhile remarking 
that compatibility with the O r -module structure is equivalent the to the requirement 
that/~ split the following short exact sequence: 

0 ~ V - L *  S 2 V ~ S2E -~ 0 

where i: V ~ S 2 V  is the natural inclusion. 
Since V is locally free, given LCHom (V, V), the trace of  L is a well defined 

element of  Or. Given p, VzCV L~: V ~ V  is a 0y-linear map whose trace 

y ~ p(zy) 

we will call the trace of  z and denote by Tr  (z). Tr:  V ~ r  is 0 r-linear, i.e. it is a 
section of  V v. 

1 Tr:  V ~ 0  r is a splitting o f  Proposition 1.2. i) I f  3CR is invertible, then -~ 
the sequence 0-~0r--~-V~E~0 and therefore V is the trivial extension; 

ii) i f  the characteristic o f  R equals 3, then the trace map gives a well defined 
map on the quotient, Tr:  E-*Or ; 



Triple covers in positive characteristic 321 

iii) let ~E Y be the generic point and assume Vr is an integral domain (and there- 
fore afield). Then Tr: V~IV r vanishes identically iff the characteristic of R is equal 
to 3 and Or, r ~= V~ is an inseparable fieM extension. 

Proof To prove i) and ii) it is sufficient to remark that VyEOr one has 
Tr (y)=  3y. To prove iii) observe that Y is integral and V is locally free and there- 
fore Tr: V~d) r vanishes identically on Y iff Trr Ve~Or,r is the zero map. Hence 
(see [4] page 93--94), the trace map of  V~ over (Pr,r vanishes identically iff the 
extension is purely inseparable. 1 

We will now introduce another global section of a locally free sheaf related to 
(V,/~): Vx, yEV define: Q(x,y)=Tr(xy) .  Q is a symmetric bilinear form on V 
and therefore it induces a linear map L: V ~ V  v. Taking exterior powers, we get a 
map: A3L: AsV-~A3V v. Since A3V is isomorphic to A2E, ASL can be identi- 
fied with a section B of  Horn (A~E, A2EV)_~(A~E) -~. 

Corollary 1.4. Assume V~ is a domain. Then BEH~ (A2E) -2) is the zero 
section iff the characteristic of R is 3 and Oy, r c V~ is an inseparable extension. 

Proof B is the zero section iff the form Q is everywhere degenerate iff Q is 
degenerate at the generic point ~ of  Y. In turn, this means that there exists zE V~{0} 
such that VyEV~ Tr (zy)=0, i.e. VwEV~ Tr (w)=0, since V~ is a field. The corollary 
now follows from Proposition 1.2. 

2. Triple covers and sections of vector bundles 

The purpose of this section is to establish a 1--1 correspondence between the 
pairs (V, ~) described above and the elements of H~ S3E| Before 
we can do this, we have to introduce two short exact sequences of  locally free 
sheaves on Y. 

Proposition 2.1. i) For every rank 2 vector bundle E on Y one has the following 
short exact sequence: 

(A) 0 ~ E |  A2 E--L~ - S2ENE--L* - SSE ~ O. 

I f  3 is invertible in R, then the sequence is split exact. 
ii) I f  R is a field of characteristic 3 and F: Y ~  Y is the Frobenius morphism 

one has also: 

(B) 0 ~ F*E--L-~ S3E---L§ EQ/\2E ~ O. 

Proof i) The map o- is just symmetrization, defined by a(xax~Qxa)=XlX2X3 
for simple tensors and extended linearly. To define the map i, we set i(xl| ^ xs))= 
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x l x ~ | 1 7 4  2. It is easy to see that this is a good definition and that a o i = 0 .  
The fact that the image of  i and the kernel of  a coincide can be verified using local co- 
ordinates for the sheaf E. In case 3 is invertible, the map 

O: S ~E ~ S 2 E Q E  

1 
xl  x2 x3 ~ T (x~ x~ N x3 + x~ x3 N x2 + x3 x2 | x~) 

splits the sequence. 
ii) The map j :  F * E ~ S 3 E  is just the natural immersion. The map ~ can be 

defined by ~ ( x y z ) = y Q ( z ^ x ) + x N ( z ^ y ) .  To check that z is well defined one uses 
characteristic 3 and the identity e | (/~ ̂  ~) +/~ | (~ ̂  e) + ~ | (e ^/~) for c~, /~, 7 in 
ENA2E.  With the aid of  local coordinates as in case i) one verifies that the se- 
quence is exact. Tensoring with (A2E) -2 and using the isomorphism E V ~-E| 
(A~E) -~, we get two more sequences: 

(A') 0 -+ E v v S 2 E | 1 7 4  S3E| ~ 0 

(B') 0 ~ F*E|  ~'~ - S~E| e~ E ~ ~ O. 

The next step is to describe # locally. 

Proposition 2.2. Let  {Ui}i<l be an affine open covering o f  Y such that EIu, is 
trivial ViEI. Let  {1, zi, wl} be a base for  V lv  ,. Then #: S 2 V - ~ V  turns the r r- 
module V into an associative ~r-algebra iff  it has the following form on Ui V iEI  

(we omit the index i to simplify notation): 

# ( 1 ) = 1 ;  # ( z ) = z ;  / z ( w ) = w ;  

( z  2) = a z  + b w  + be +f2  _ a f -  b cl; ~ ( z w )  = e z + f w  + b c - el; 

#(w ~) = cz + dw+e2 + c f  - ac - de 

where a, b, c, d, e, f are in Or. 

Proof. See [3], Lemma (2.4). 

Corollary 2.2. Let  UC= Y be such that E[v is trivial and let {z', w'} be a base 

for  Ely .  Then there exists a unique base o f  the form {1, z, w} for  V[v such that 
t W p z, w lift z ,  and such that # has the following local form:  

It (z e) = bw + be + f~  

# (zw) = ez + f w  + b c -  e f  

# ( w O  = c z  + e~ + c f  . 
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Proof. Let z0, w o be any two elements of  Vlv that lift z" and w': by Proposi- 
a d tion 2.2, it is enough to set z=zo-~- ,  W=Wo-~. | 

Definition 2.3. The local form for Ix described in Corollary 2.2 will be called a 
"normal local form'" for V with respect to Ix and with respect to the local coordi- 
nates z, w. 

Remark 2.3b. Triple covers are locally determinantal varieties. In fact, the 
normal local form of  Corollary 2.2 is given by: 

[ z - f w + e  c ]  
=1. rank b z + f w - e  

We are now in a position to state and prove: 

Theorem 2.4. a) Assume we are given an integral separated scheme of  finite 
type Y over spec R, a rank 2 vector bundle E on Y and a pair (V, #), where V is 
an extension o f  Or by E and Ix defines an associative and commutative Or-algebra 
structure on V. 

Then there exists an dement a(V, Ix)EH~ S3E| -2) such that: 
i) I f  O: H~174 E v) denotes the coboundary map in the 

cohomology long exact sequence associated to the sequence (A'), then -~ Oa(V, Ix) 
represents the isomorphism class of  the extension 0 ~ 0 r  ~ V ~ E ~  0. 

ii) I f  R is afield o f  characteristic 3, then z" a(V, #), where 

�9 ": H~ S3E| -~) ~ H~ E ~) 

is the map on global sections induced by the map z" in sequence (B'), is the trace of  IX 
(see Prop. 1.2, ii)). 

iii) (V, #)---(V', Ix') as extensions and as Or-algebras iff a(V, Ix)=cr(V', #'). 
b) Conversely, given Y, E as above and ~CH~ SZE| -2) there is 

(V, IX) as above such that a(V, Ix)=o'. In particular, i f  R is afield of  characteristic 3, 
there is a natural 1--1 correspondence between H~ F*E| -z) and iso- 
morphism classes (V, It) with zero trace. 

Proof. Assume we are given (V, IX) as in the hypotheses. Define #':  S z V ~ E  
by composing IX with the projection re: V-~E. Consider the following map: 

qB (IX) : V ~  . . . . . .  SSE 

(x~ | x~ | xz) | (Y~ | Y~ | Ya) ~ -- Z ,~ ss (-- i) ~(') Hi=a, z,~ #" (x,Y,(o) 

where e(a) is the sign of  the permutation a ~ S  8. 
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Let q: V | 1 7 4  be the alternation map. One has the following 
diagram: 

V~6 ~(u) + SaE 
q| ~/'2t 

+/ at V, #) 
§ / 

(A22~) - 2  

It is easy to check that the dotted arrow is in fact a well defined map, i.e. an 
element a(V, # )EH~ SaE|  Using normal local coordinates for V 
with respect to # we get the following local expression for a(V,/1): 

(z' A W') 2 --" (1 A z A w) ~ + cz "3 - 2ez "2 w" - 2fz' w'2 + bw,Z 

where z', w' are the images of  z, w in E. 
From this and from the normal local form for # in Corollary 2.2, it is immediate 

to deduce the statement in the theorem about the uniqueness of (V,/z) up to iso- 
morphism of extensions preserving multiplication. Using again normal local coordi- 
nates, we get the following expression for the trace map of  (V, y): 

1 Tr Tr Tr .~3; z -~f; w . , e .  

The statement about the trace map in characteristic 3 follows at once. To determine 
the class of the extension V we shall use a trivialization {{U~}, {z~, w~}liEI} of 
the bundle E and denote by {1, z~, wi} the corresponding local normal base for 
V on U~. Assume the following relation holds for the bundle E on U;c~ Uj: 

[Z;l  
w;J =  ][wa 

The corresponding relation for the bundle V on UinUj will have the form: 

o~ [tj, 1 

(tji, si; ) represents on UdaU j the element of Hi(Y,  E ~) corresponding to the 
extension V. By imposing the condition that {1, zj, wj} and {1, zi, wi} be normal 
local coordinates, we get the following equalities: 

1 
tii = 2(~6 - f l?)  ( -  flZaci+?aZb~-~ 2fi)+~fl5(- 2e,)) 

1 (fla~c~_~,~bi_afly(_2e3+o~a~,(_2f3). s j , -  2(~a-/~) 

A computation with transition matrices for the bundles involved shows that (tj~, sji) 
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1 
represents on Ujc~Ui the element ~0a(V,  #)EHI(y, Ev). The converse part of  

the theorem now follows by remarking that the local formulas computed above 
allow one to construct explicitly a pair (V, p) whose associated section is any 
chosen element of  H~ SSE| The last statement of  the theorem is 
just a consequence of the exactness of  

0 -~ H~ F*E| -2) ~ H~ SSE| ~ H~ Ev). | 

Remark 2.5. Theorem 2.4 also gives another proof  of  Proposition 1.1, i). In 
fact Proposition 2.1, i) implies that the map 3: H~ SZEQ(/\2E)-2)~HI(Y, E V) 
is zero and so we conclude that V is always the trivial extension. 

Corollary2.6. Assume E=oW-~ESJ# -1, .W, Jg  invertible sheaves on Y. I f  
(V,/t) is an extension ofd~ r by E that is also an tPr-algebra, then V~-(~yESE. 

Proof. One has: 

H~ SSE| -z) = no(y, d#2.W-1)@Ho(y, ~II)~)Ho(y, ~ )eH~  ~ dr 

H~ E ~) = H~ dl)~SH~ ..W), 
no(y, S2E|174 -~) 

= 2H0(y, s176 &~174 , dl)@H~ d/2~-~) .  

Looking at the addenda involved, one sees immediately that the sequence of global 
sections associated to sequence (A') is exact. The result then follows from Theo- 
rem 2.4. II 

Remark 2.7. By what we have observed in Section 1, all the statements in this 
section can be reformulated as statements on triple covers. For instance, Theorem 2.4 
gives a 1--1 correspondence between triple covers of  Y whose associated module 
is E and elements of  H~ SSE| 2 E) -2) modulo the natural action of  Aut (E). 
Following the terminology of [3] we will say that a section a~H~ SaE| 2 E) -2) 
"builds" a triple cover (At, ~o) and we will call the section of  H~ SSE| -2) 
corresponding to a given triple cover the "building map" of that cover. Moreover, 
given a triple cover (,t, 9) with building map o-, we will denote by B(a) or by B(X, q~) 
the element of  H~ (A~E) -~) that corresponds to tr as described in Section 1, 
Proposition 1.4. 

3. Conditions for the triple cover to be reduced 

A triple cover map ~: X~Y, as we have defined it, is closed and affme, and 
therefore the set {9-1(U)[U~ Y afflne} is a basis of affme open sets for X. So X is 
reduced (integral) iff cp.r e has no nilpotents (is an integral domain). The problem 
of  determining whether X is integral amounts then to deciding when a given rank 3 
algebra over the field of  rational functions of  Y is an integral domain. Up to a linear 
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change of coordinates in ~p.0x,r it is always possible to solve for, say, z in the 
expression of Corollary 2.2 at the generic point, obtaining a relation of the form 
z3+tz2+sz+q=O.  Then ~P.r162 is an integral domain iff the polynomial above 
has no root in Cr, ~. This shows that, although it may be possible to get an answer 
in special cases, there does not seem to be a general solution in terms of the properties 
of the building section of the cover. However, we end this section with a "geomet- 
rical" criterion of irreducibility suggested by F. Catanese. 

I.emma 3.1. Let zE(p.Ox, r be nilpotent; then za=0. 

Proof. VzEq~.0x,r define Lz: q~.0x,r162 Lz is of course linear and one 
X.--~ Z X  

has: (L~)n=Lzn=O~.z"=O, since z~=L~n(1). On the other hand, q~,r is a 
vector space of dimention 3 over ~)y, r and so any of its endomorphisms A is nflpotent 
iff As=0. 1 

/_,emma 3.2. I f  the characteristic o f  R is equal to 3, then to every element 
zEH~ F*E| 2 E) -2) there corresponds an element A(z)EH~ Horn (A2E, ~x)) 
in a natural way. I f  z builds a triple cover (X, ~o) we will also write A(X,  ~p) for  A(z).  

Proof. Let {Ui}~c I be an affme open covering of Y such that Ely, is trivial 
with basis {zl, wi} ViE L Let z be represented by (bi, ci) on U i with respect to 
the given trivialization. Assume the following relation holds for the bundle E on 
v,~uj: 

I:;l = I, 
If we set A(~)i--bi dci-c i  dbi, a computation shows: 

.4 (~)~ = ( ~  - / ~ )  .4 (~)i. 

Therefore the map A(~): A 2 E ~ ,  defined by ziAwi~A(z)~ on Ui is well de- 
fined on Y. | 

Proposition 3.3. Let ~o : X-* Y be a triple cover with zero trace. Then X is re- 
duced iff  A (X, q~) does not vanish at the generic point o f  Y. 

Proof. By Proposition 1.2, iii), the characteristic of R is equal to 3. Assume 
X is not reduced. We can choose a normal local base for q~.~x,~ such that z + t  
is nilpotent for some tEOy,~. By Corollary2.2 and by tr(z)=f ,  tr(w)=e, the 
following relations hold in q~.~x,r 

Z = b w  

zW= bc 
W 2 : -  CZ. 
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By Lemma 3.1 we have: O=(z+t)3=z3+t3=b2c+t3. Taking differentials we get: 
b(bdc-cdb)=O and therefore A(X, 9 ) = 0  at the generic point. Conversely, if 
bdc-cdb=O, then b2c-~t 3 for some tE0r,r and z - t  is nilpotent. II 

Proposition 3.4. Assume (X, q)) is a triple cover with nonzero trace. Then X is 
reduced iff B(X, q)) does not vanish identically. 

Proof Recall that B(X, q)) vanishes identically iff the bilinear form Q on 
q~.Ox (see Section 1) is degenerate at the generic point 4, By Lemma 3.1, zCtp.Ox, r 
is nilpotent iff for the characteristic polynomial p=(t) of the linear map 
Lz: qo,(gx,~-~o,#)x, ~ we have: pz(t)=t ~. In particular, Tr(z)=0.  Assume now 

X--~ Z X  

zC~o, Ox,r is nilpotent. VxE~O, Ox,r zx is nilpotent too, and therefore Q(z, x)=  
Tr(zx)=OVx and Q is degenerate. Conversely, assume Q is degenerate. Then 
there exists zEg,(gx, e\{O) such that Tr(zx)=0 VxCq~,(gx, e. This implies that the 
image of  L, is contained in the kernel of the trace map, which is a 2-dimensional 
subspace by the assumptions. So det (Lz)=Tr (Lz)=0 and the characteristic poly- 
nomial of L, has the form: p=(t)=t3+2t. If 2~0,  we are set. So assume 2 # 0 :  
considering if necessary an algebraic extension of Or, e containing ~=l/-'L'~, we 
see that the matrix of L= can be put in diagonal form: 

~ 

0 - 

This implies Tr (z2)--2e 2= - 2 2 # 0 ,  contradicting the assumption that Tr (zx)=0 
VxEg,0x,~. So we must have 2--0 and z is nilpotent. | 

Criterion 3,5. Assume that X, Y are varieties over an algebraically closed field 
K, that f:  X ~  Y is a triple cooer map, that the branch locus o f f  is reduced and that 
the set of  points o f  Y over which f is totally ramified is nonempty. Then X is irreducible. 

Proof X is Cohen--Macaulay by Remark 2.3b, and therefore it is nonsingular 
in codimension 1. X is also connected, since there is at least a total ramification 
point. So we conclude that X is irreducible. II 

4. An example of triple cover with non trivial associated extension 

Now that we have characterized the building maps such that the corresponding 
cover is reduced, we are able to show that there exist triple covers such that the 
extension O~Or~q),Ox-~E~O is not split. The following example was pointed 
out to the author by T. Ekedahl. 
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Example 4.1. Let Y be a smooth complete variety over an algebraically closed 
field of  characteristic 3. Let ~ be an invertible sheaf on Y such that the following 
conditions hold: 

.s ~ 0 ;  H~(Y,.s r {0}; Ha(Y, s = {0}; H~ a) :D Ho(y,  5g) 3. 

For  instance, one may take Y a nonsingular plane quartic and ~ =0r(0) ,  where 0 
is an effective half-canonical divisor. Let 0 ~ 0 r ~ W - - - ~ - a ~ 0  be a non trivial 
extension and let E be the rank 2 vector bundle defined by: 

(*) 0 ~ Or -~ S 2 W ~ E -* O. 

We wish to show that there exists a triple cover (X, q0) of  Y such that the associated 
module is E and such that the extension 0 ~ 0 r ~ q 0 , 0 x ~ E ~ 0  is isomorphic to (*) .  
We remark that E is an extension, too : 

and therefore one has: 

0 -~ .L# - t  -~ E -~ L# -2 ~ O, 

0 -~ ~3  _~ F*E| ~ Or ~ O. 

Let {Ui, {1, zl}}i~x be a trivialization of  the bundle W over Y such that the fol- 
lowing relation holds over Ujc~Ui: 

Then the transition relations for the bundle E on Ujc~U~ are: 

[zq=i 01[ , 1 
Since we have assumed Ha(Y, L:a)={0}, there exists tEH~ F*E |  ~ E)  -2) that 
lifts the section 1EH~ 0r). Assume t is represented by (h, 1) on U~ with respect 
to the given trivializations of  the bundles involved. By means of  the formulae com- 
puted in the proof  of  Theorem 2.4 it can be checked easily that AtEHI(Y, EV), 
where A is the coboundary map for (A'), is represented on Ujc~Ui by (At)ji= 
(ej~, a~). This amounts to saying that the extension associated with the inseparable 
triple cover corresponding to the building map t is isomorphic to ( . ) .  I f  the cover 
corresponding to t is not reduced we consider on U the building map t '  obtained 
by adding to t an dement  ~EH~ L#3)\H~ ~)a.  The cover (X, cp) corre- 
sponding to t '  will be reduced and the extension 0 ~ 0 r  ~ P ,  Ox~E-~O will again be 
isomorphic to (~).  Since the covering map ~0 is inseparable, X and Y are homeo- 
morphic and therefore we can conclude that X is integral. | 
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5. Branch locus and singularities 

Throughout  this section we shall assume R =  K, where K is an algebraically 
closed field. Proposition 1.2, ii) can be reformulated as follows: 

Proposition 5.1. Assume that the characteristic o f  K is 3 and that cp: X ~ Y  is 
a triple cover with X integral. Then q~ is a separable morphism iff the trace of  (X, q)) 
is not zero. 

Proposition 5.2. Let (X, q)) be an integral triple cover. Then the branch locus 
of  ~p is the zero locus of  the section B(J2, q))C Ho(y, (A~E)-2). I f  the characteristic 
of  K is 3, then the locus of  points o f  Y over which there is total ramification is defined 
by the vanishing of  the trace; i f  the characteristic o f  K is different from 3, it is defined 
as the locus where the form Q has rank 1. 

Proof. We refer to [1, Proposition 6.6, page 124] for the proof  of  the first 
statement and we just prove the last part of  the proposition here. Let Yo6 Y be a 
dosed point and let A=q~.OX, yo| A is a 3-dimensional K-algebra, and there- 
fore it decomposes as a direct sum of  local algebras. I f  q~ is not totally ramified 
over Y0, then there exists an isomorphism A_~KOAz, where As is a 2-dimensional 
K-algebra. In this case, TralK=IdK@TradK and rank Q=>2. Conversely, assume 
q~ is totally ramified over Yo. Then A is a local algebra with maximal ideal M. We 
may choose t, sCM in such a way that {1, t, s} is a basis for A over K. The corre- 
sponding matrix representation for Q is: 

0 . 
0 

The conclusion is now evident. I 

Corollary 5.3. Assume the characteristic o f  K is different from 3. The set o f  
points o f  Y over which there is total ramification is the zero set o f  a symmetric map 

: E-*E v such that det (~)=3B. 

Proof. Taking the second exterior power of  the exact sequence 0 - - - 0 r ~ 0 . 0 x ~  
E - - 0  one obtains: 

0 ~ E  ~ , A 2 ( p . 0 x - * A 2 E ~ 0  
and dualizing: 

0 ~ (A~E) -1 -* A~o.O~-2-~-~ E V ~ 0. 

Also the bilinear map Q defines a linear map L:  ~O, Ox~q).O x. Define { as 
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follows: 

E r , -E  ~ 

Choosing normal local coordinates {1, z, w} for ~0,~) x 
one gets : 

and 

over an open set U = F ,  

1! e I Q =  4 b e + 3 f  2 3 b c - e f  ; ( = [  9 b c - 4 e f  4(3cf+2e  2) 
3 b c - e f  4cf  + 3e 2 

det (() = 3 (72bcef+ 32be 3 + 32cp + 16e2f 2 -  27b 2 c2). 
By Proposition 5.2, there is total ramification over a point Y0E Y iff the rank 

of  Q is 1. It is immediate to check that this is true iff ~ vanishes at Y0- | 

Proposition 5.4. Let T denote the set o f  points yC Y such that the triple cover 
(X, q~) is totally ramified over y. I f  cp is separable, T is in general a codimension 2 
subset o f  Y and the branch locus B is singular at the points o f  T. Assume Y is smooth. 
Then X is not smooth over a point yE Y iff : 

a) yE B, y r  and B is singular at y. 
b) cha r (K)=3 ,  y ~ T  and: 

i) b = c - - - 0  at y.  

ii) b ~ O, - z~df + bzde + b(cdb - bdc) = 0 at y. 
iii) c ~ O, - w~de + cwdf + c (bdc -  cdb) = 0 at y. 
In particular, i f  ~o is inseparable then X is singular over y iff A (y)= O. 
c) cha r (K)~3 ,  y ~ T  is a point o f  B of  multiplicity >2 .  

Proof. Assume first char (K)~  3. Let U be an open atfine neighbourhood of  y 
such that Ely is trivial and choose normal local coordinates {1, z, w} for ~o,0x]v. 
We have two cases to consider: 

i) b = c = 0  at y. 
I f  yCB, then X is smooth over y, so we may assume yEB. Using the for- 

mulas computed in Corollary 5.3, one sees that this implies ef=O at y. I f  e=f=O 
at y, then it is easy to check directly, using the local equations for the triple cover, 
the branch locus and T, that y~ T it is a point of  multiplicity ->4 on B and that X 
is singular over y. If, say, e ~ 0 ,  then y ~ T  and B is smooth at y iff db~O. The 
fibre of  ~0 at y consists of  the points x l=(0 ,  e) and x2=(0, - e ) .  It is easy to verify 
that x2 is always a smooth point of  X, while Xl is smooth iff db ~ O. The case f r  0 
follows by symmetry. 

ii) b ~ 0  or c ~ 0  at y. 
Say b ~ 0 at y. Then it is possible to solve for w in the equations of  the triple 

cover and x can be described locally around y as the zero locus of  a polynomial 
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t 
P(z)+z3+tz~+pz+q, t,p, qE0r. By a change of  coordinates of  the form z '=z+- -  

3 
it is possible to eliminate the coefficient of  z ~ from P. So we may assume that X is 
defined locally by: z3+pz+q=O. Then one has: 

Q =  - 2 p  - 3 q  ; B = { 2 7 q Z + 4 p  3 = 0 } ;  T = { p = q = 0 } .  
- 2 p  - 3 q  2p ~ J 

I f  yET, then X is smooth over y iff dqgO at y iff B has a double point at y. I f  

yEB\T,  X is simply ramified at the point ze= 3 q  over y. z" is a singu- 
3q 2p 

lar point of  X iff O=zdp+dql~,=--~dp+dqly iff, using the relation: 4p~+ 

+27qZlr=0, iff 2p ~ dp+9q dqly=0 iff B is singular at y. 
Assume now char (K)=3.  We distinguish again between two cases: 
i) b = c = 0  at y. Exactly the same argument as in characteristic different from 

3, case i), applies. 
ii) b e 0  or e r  at y. Say b e 0 ;  again it is possible to solve for w and get 

a local equation for X o f t h e  form zS+tz2+pz+q=O, p, t, qEO r. Assume t r  at y. 

Changing coordinates to z ' = z +  p one gets the following equation for Xin  a neigh- 
t 

bourhood of  y:  z3+tz2+r=O. Then one has the following local formulas: 

I~ l Q =  - t  ; 
t z --t  3 ta+r  

yEB iff r = 0  at y. Then X is ramified at the point z ' = 0  over y and it is singular 
there i f fd r=0  at y i f fB is singular at y. Assume now t = 0  at y and yEB. In this 
case y E T  and B is singular at y. The equation for X around y is : z 3 - f z  ~ + (be-f2) z -  
bef+j~-b~c=O. Since r is totally ramified over y, by Proposition 5.2 we have 
e = f = 0  and X is smooth over y iff b) ii) holds. The case c ~ 0  follows by 
symmetry. I 

Corollary 5.5. i) I f  the dimension of  Y is >=4, then the general separable triple 
cover of  Y is singular. 

ii) I f  the dimension of  Y is >=2, then the general inseparable triple cover of  Y is 
singular. 

Proof. i) (See [3, Corollary 5.3].) I f  the dimension of  Y is >=4, the building 
map will have in general at least a zero yE Y and by Proposition 5.4 X will be 
singular over y. 

ii) Same argument as in the proof of  i), remarking that the building map is in 
this case a section of a rank 2 bundle. 1 
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6. Inseparable triple covers 

In this section we will study in greater detail inseparable triple covers. We will 
assume that Y is a smooth variety of  dimension n over an algebraically closed field 
K of  characteristic 3 and that (X, q~) is a smooth inseparable triple cover of  I s" 
whose associated module is E. 

Proposition 6.1. In the hypotheses above, f2~ is an extension of  A 2 E by a locally 
free sheaf o~ of  rank n -  1. The map A ~ E ~  I2~ is given by the section 

ACH~ Horn (A 2 E, f2~)) 

defined in Lemma 3.2. Moreover, the image of  the tangent map ~o,: . ~ o * ~  1 is 
isomorphic to ~o*~ v. 

Proof. Since X is smooth, it is in particular reduced and so, by Proposition 3.3, 
A(X,  q~) is not the zero map. We have a short exact sequence of  sheaves on Y: 0 ~  
A2 A 1 E - - * ~ 2 r - * o ~ 0  , where ~ -=coke r  A, ~" is locally free iff A does not vanish 
anywhere on Y iff, by Proposition 5.4, b), X is nonsingular. Now let y~ Y: since 
X is nonsingular by assumption, we have b e 0  or c r  at y. Say b r  then 
we can solve for w and X is defined locally around y by z3-b2c=O. So the an- 
nihilator of  the image of  ~o. is generated by bdc-cdb around y and it is there- 
fore the pullback via (p* of  the image of  A. So Im q~. is isomorphic to ~p*~*. 1 

Corollary 6.2. Let  Y be a nonsingular curve and let (J(, go) be a nonsingular 
inseparable triple cover of  Y with associated bundle E. Then: o~ r-~ A ~ E. 

Proof. Immediate by Proposition6.1. 1 

Corollary 6.3. Let Y be a nonsingular surface and let (X, ~p) be a nonsingular 
inseparable triple cover o f  Y with associated module E. Then we have an exact se- 
quence of  sheaves on Y: 

0 -* A2E--A~ ~} ~ o)r| -1 -~ 0. 

In particular, i f  Y is complete, then the second Chern class c2(Y) is even. 

Proof. The first statement is just Proposition 6.1. If  D is the divisor on Y cor- 
responding to A ~ E and K is the canonical divisor of  Y, then we have c 2 = D ( K - D )  
and so, by Riemann--Roch,  e 2 is even. II 

Proposition 6.4. Let (X, q~) be a smooth inseparable triple cover o f  Y with 
associated module E. Then we have the following short exact sequence o f  locally free 
sheaves on Y: 

0 ~ S2EV| ~ ~o.~-~ -* o~V| ~ O. 
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Proof. By Proposition 6.1 we have an exact sequence of  sheaves on Y: 0~La-~  

~ ~*, ~o*~ "v 40 ,  where ~e is a line bundle. Taking the direct image of  this se- 
quence, one gets: 0 ~ o . ~ a ~ 0 . ~ x l ~ V |  since ~ 1 ~ o , ~ = 0 ,  the map q~ 
being finite. So, to prove the proposition we must show that ~0,~ ~ is isomorphic 
to S2E ~ | A 2 E. We will do this by means of  an explicit computation. Assume that 
{Ui}i~ I is an affine open cover of  Y, that {1, zi, w~}i~z are normal local coordinates 
for q).OxluViEI and that the following relations hold on U~caUj: 

I ,l+l'J,1 
where tji and sjz are given by the formulas computed in the proof  of  Theorem 2.4. 
Then a local basis for q~, ~ over an open set Uj is the following: 

0 0 0 0 b 0 z 0 
= = = J-g 7" 

#zj #w~ #zj #wj 

An explicit computation of  transition formulas now yields: 

[v'l 1 [ 52 --2?5 72 l [v'] 
= --~,~ ~5+fl? /vii  

-2=,8 

Then one concludes by remarking that the matrix above is the transition matrix for 
S2E~| on Uff~Ui. | 

Corollary 6.5. Let Y be a smooth curve and let (X, (o) be a smooth inseparable 
triple cover of Y with associated module E. Then ~o,~-xl~-S2E~ | E. 

Corollary 6.6. Let Y be a smooth surface and let (X, q~) be a smooth inseparable 
triple cover of Y with associated module E. Then one has the following short exact 
sequence of locally free sheaves on Y: 

0 -~ S2E~| -~ q~,~7"xl -~ co~t|174 ~ O. 

Examples 6.6. i) Curves. All curves have a nonsingular inseparable triple cover, 
the Frobenius morphism. A necessary condition for the existence of  a reduced 
inseparable triple cover of  a curve C with associated module E is that (A ~ E) - a | C0c 
is a nonnegative line bundle (see Proposition 3.3). 

ii) Nonsingular inseparable triple covers of  surfaces. From Corollary 5.5, i), we 
know that the "general" inseparable triple cover of  a surface is singular. Corol- 
lary6.2 adds more: there are surfaces, e.g. PS(K), that do not have any smooth 
inseparable triple cover. On the other hand, if  there exists a curve C and a smooth 
morphism ~p: Y-~C, it is not difficult to check that the pullback of  the Frobenius 
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morphism of  C is a smooth inseparable triple cover of  Y. I f  E is a vector bundle 
associated to such a cover, then from Corollary 6.2 we have ~/*tOc-~A~E. Trivial 
examples of  surfaces admitting a smooth morphism onto a curve are products o f  
curves and ruled surfaces. 

iii) Inseparable triple covers of surfaces with "nice" singularities. 

From the local equations for an inseparable triple cover, one sees that at points 
where the building map aEH~ F*E| -2) vanishes the triple cover has a 
singularity with embedding dimension 4. Therefore a necessary condition for a 
triple cover of  a surface Y to have only hypersurface singularities is that the bundle 
F*E| -2 has a nowhere vanishing section. We propose here a method for 
constructing inseparable triple covers of  surfaces with singularities of  type zZ=xy, 
that are obviously the best one can get in this case. Take Lf a line bundle on Y 
such that (see Section 4): 

1) H~ .o~fa)~n~ .Lf) 8 ~ 0 

2) Hi(Y,  of a ) = 0 .  

Take E an extension 0 ~ - 1 ~ E ~ - 2 - ~ 0 .  Then one gets F*EQ(A2E) -2~- 
d~rGLf 3. Normalizing the building map trEH~ 0r)|176 Se3), we may as- 
sume it is of  the form a=(1 ,  ~) and we may identify it with "cCH~ .oca3). (Sec- 
tions of  type (0, v) do not build reduced covers!) The local description of  the cover 
is the following: 

Z = W 

Z W = C  

W e = C Z  

where c is a local representation for ~. Equivalently, the cover can be described 
locally by za=c. So the cover corresponding to a section ~ is singular over a point 
yEY iff dc=O at y. The singularity is of  type za=xy iff c has a nondegenerate 
critical point at y. Note that both these conditions are in fact conditions on 
the section ~, i.e. they do not  depend on the trivialization chosen for ~ .  Set 
W=H~ Lf3)\H~ Lf) 3. Define Vc=WXY as follows: V={(% y)ld~=0 at y}. 

Consider the following properties: 
a) the codimension of  V is exactly 2 and V is irreducible. 
b) there exists (~, y)6V such that �9 has a nondegenerate critical point at y. 
The general section of  H~ .W 3) yields a cover with isolated singularities 

iff a) holds. There exists an open set of  H~ if3) such that the corresponding 
covers have singularities o f  type z a = x y  iff both a) and b) hold. For  instance, if  
Y=p2(K)  and ~e--d~r(rn), m ~ l ,  both a) and b) are verified and the covers one 
gets in this case are the well known Zariski surfaces. 
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7. Lifting triple covers to characteristic zero 

Assume R is a discrete valuation ring of  characteristic 0, J//~= R is the maximal 
ideal and 3~J//. Denote by K the residue field R I l l .  Let Y be a scheme over 
spec R and let Ir 0 be the fibre of  Y over the closed point of  of  spec R: 

Yo ~" Y 

spec K -+ spec R 

Definition 7.1. Given a triple cover (Xo, ~P0) o f  Yo, we say that (Xo, ~P0) "'lifts 
to characteristic zero" i f  there exists a triple cover (X, q~) o f  Y such that (X  o, q~o) 
is obtained by (X, ~p) by base change. 

Assume now that E o is the vector bundle on Yo associated to (X  o, ~Po) and that 
E is a rank 2 vector bundle on Y such that E0=EIy.  Then theproblem o f  determining 
whether there exists a cover (X, ~o) o f  Y such that the associated module is E and 
such that its reduction rood ~ is (X, qg) is equivalent to determining whether a 
given section o f  S3Eo| Eo) -2 can be lifted to a section o f  S3E|  -2. Let  
t6 d// be a uniformizing parameter, let ~ be a coherent sheaf on Y and let ~  
Then we have the following short exact sequence o f  sheaves on Y:  0 ~ ~ * , ~ r _ ~ o ~ O  
and the corresponding cohomology long exact sequence: 

0 ~ H~ ~ )  t H o ( y  ' ~ )  ~ H o ( y  ' ~:o) ---~§ H*(Y, 5 )  . . . . .  

So aCH~ ~0) lifts to characteristic zero iff Oa=O. 

Example 7.2. Y = P ] ,  Yo=P~, Eo=dgp~(m)Od~p.(1), m, l~Z. Then every triple 
cover of  Y lifts to characteristic zero. In fact one just takes E=OF~(m)@Op~(l) 

and observes that the map: H~ Or(m))~H~ 0to(m)) is a surjection VmCZ. 

Proposition 7.3. Let Y be a projective R-scheme such that Y o = Y  )<sreeRspecK 
be a curve. Denote by K. the algebraic closure o f  K and assume Y=Y0 Xsp~x spec 
is irreducible o f  genus >:2. Let  F0: Yo~3)~Yo be the Frobenius morphism. Then 
Fo cannot be lifted to characteristic zero. 

Proof We wish to prove the proposition by contradiction. So assume F: X ~ Y  
is a triple cover that lifts F0 and assume E is the vector bundle associated to (X, F). 
By Proposition 3.4, H~ (A2E)-2)#{0}. Since Yis projective, H~ (A2E) -2) is a 
finitely generated R-module. Then the map H~ (A2E) -2) t--~H~ (A2E) -2) is 
not surjective by Nakayama's lemma. If  Eo = E  It o, it follows that H~ (A2E0) -~) # 
{0}. Let E be the pullback of  E o to Y, then one has H ~ 
H ~ 1 7 4 1 6 3  }. Let v: Y ' - ~ Y  be the normalization map. Then 
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H~ (A2E) -2) injects in H ~  ", v*(A~E) -2) and so the latter is~a nonzero module. 
On the other hand, v* E is the module associated to the Frobenius map on Y' and 
so, by Corollary 6.2, there is an isomorphism A'2E~ my, contradicting the existence 
of  a nonzero section of  (A2E) -z. I 

Remark 7.4. Proposition 7.3 can be proven exactly in the same way in the 
more general case of  a curve defined over any field of  positive characteristic. More- 
over, the proposition is almost trivial if  Y0 is a smooth curve. In this case Y is a 
regular scheme and the fibre Y~ over the generic point of  spec R is a curve of  the 
same genus as Y0, by flatness. Assume that X is a scheme over spec R with closed 
fibre Y and assume that G: X ~ Y  lifts F: Y0-"Y0. Then the corresponding mor- 
phism Gr X~-*Yr of  the generic fibres is an isomorphism, since Xr and Yr are 
smooth curves of  the same (positive) genus. It follows that the degree of  G is 1 
and therefore that the degree of  F is also 1, which is a contradiction. 

8. Invariants of triple covers of surfaces 

In this section we assume that X, Y are smooth complete surfaces over an 
algebraically closed field and that q0: X ~  Y is a triple cover. We wish to compute 
the invariant K~ and )~(0x) for the surface Xin  terms ofK~,  Z(0r) and of  the Chem 
classes bl and b2 of  the bundle E. 

Proposition 8.1. Let X, Y be smooth complete sulfaces and let ~o : X-~ Y be a 
triple cover, then: 

z( x) 3z(oy)+  1 = b x - y b l K r - b 2 .  

Proof. Since ~o is an affine morphism, Z(Ox)=z(q~,Ox)=Z(Oy)+z(E). The 
result now follows from the Riemann--Roch theorem. | 

To compute Kx 2 we need the following: 

Lemma 8.2. Let X, Y be smooth varieties and let ~p : X ~ Y  be a triple cover, 
then: 

(p.~0} = S2E v | 3. 

Proof. Consider the following short exact sequence of  locally free sheaves 
on Y: 

0 ~ ~ -~ ~o,~Ox | q~,O~x -~ q~,e~} ~ 0 

denotes the rank 3 subbundle of  ~p.co x | generated by 

{ sa~ | a2-  a~ | sE ~p, Ox, al, azE ~o, cox}. 
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Duality for finite flat morphisms implies: (p, COx~q~,Ox| r. Let U~=Y be an 
affme open set, let {1, z,w} be a normal local base for q ,  Ox on U and let o" be 
a generator for cor[ v. Xis described over U by the relations in Corollary 2.2. Denote 
by {~o 1, (p~, ~pa} the base of ~o,~ x dual to {1, z, w}. The following is a local basis 
for q~,r174 r on U: ~l=(pl| ~2=~o2| tpa=~o3| The structure of 
~p, Ox-module of (P, Ox |176 is given by: 

z~ 1 = (be +f2) ~= + (bc -  ef) ~s; 

z C  = C + e ~ ;  

z ~  = br ~ +f~3;  

W~I 1 = ( b c  --  e f )[ /J l  -t- ( c f  + e =) ~= 

w4,~ = er + c~,~ 

is generated by {z~ki|174 wtpiQ~bJ--lpi| 1, 2, 3,}. It is easy 
to chzck that the submodule of ~ generated by {z~bi|  i, w~i|162 i -  

~JQw~i)li, j =  1, 2, 3} coincides with the submodule A generated by: 

f(r174162 #3| c(#2|162 #3| 

Since X is nonsingular by assumption, c, b, e, f cannot vanish simultaneously and 
so A is just the submodule of alternating elements, generated by {~1 |  ~ |  
r174162174 ~2|174 Then it follows ~o.0 x|174 x |  
S~q~,Ox | and one has the following short exact sequence on Y: 

o - .  ~ / A  --  s = ~ , ~ ; , |  -~ ~o ,o~  - .  o. 

By abuse of notation we will denote the elements in ~0.O x |174 r and 
their classes in S'~174 by the same symbols. ~/A  is generated by 
{z~i|174 w~i|174 1, 2, 3, i<j}. A computation shows that 
a basis for ~/A  the following: 

Z ~ / r 1 7 4 1 7 4  2 = -$~|174174174 ~ 

wr174174162 3 = --#=|174174174 

Now consider the following short exact sequence on Y: 

0 --,- q~,~x "-" S2q~,(gx ~ S 2E ~ O. 

Taking duals and tensoring with o9~, one gets: 

We will prove the statement of the lemma by showing that the subbundle S~E ~ | 
of S~(P,~x | maps isomorphically onto ~p,o~. A local basis for $2E~|162 
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on U is : {~2|174 ff~| Then it is evident that this basis together with 
the basis of  ~ / A  written above form a basis of  Sa~o,0x | and therefore that 

2 ~ 602  2 map S E | r---cp, O)x is an isomorphism. | 

Corollary 8.3. Let X, Y be smooth complete surfaces and let q~: X ~  Y be a 
triple cover, then: 

K~: = 3K~-4b~Kr + 2b~-3b2. 

Proof. Applying the Riemann--Roch theorem on X yields: 

K I  = z(co~)-z(Ox). 
2 2 Since ~o is affine, one has: Z(COx)=Z(~o.COx) and, by Lemma8.2,  Z(q~.co~)= 

z(SZE~| A Chern class computation, together with Proposition 8.1, now 
gives the desired result. ! 

Remark 8.4. The invariants of  a triple cover of  a surface are computed in [3], 
Section 10, with a different method. 

Appendix: triple covers in characteristic 2 

For  the sake of completeness we describe here in short the structure of  triple 
covers in characteristic 2. So in this section we assume K is a field of  characteristic 2, 
Y is an integral separated scheme of  finite type over spec K, E is a rank 2 vector 
bundle on Y and (X, ~p) is a triple cover of  Y with associated module E as defined 
in Section 1. The approach to the problem presented in Section 1 applies here too, 
and therefore the trace map Tr:  ~ , 0 x ~ 0 r ,  the bilinear form Q and the section 
B(X,  ~o)CH~ (A2E) -~) are defined exactly in the same way. In particular, it is 
easy to see that Proposition 1.2, i) holds. 

Proposition A.1. Let V be a rank 3 0 r-algebra such that V is an extension o f  (9 r 
by E, when we regard it as an Or-module. Then the trace map Tr: V ~ O r  gives a 
splitting o f  the sequence 0 - + 0 r ~ V ~ E - * 0 .  

Proof. Just remark that Vt~0r  Tr ( t )= t .  | 

Therefore it is possible to choose local coordinates {1, z, w} for V such that 
{z, w} is a basis of  the trace zero submodule of  V. 

Definition A.2. Such coordinates will be call "special local coordinates". 

Proposition A.3. Assume V is as in PropositionA.l. Let  /~: S 2 V ~ V  be the 
map defining the multiplication on V and let {1, z, w} be special local coordinates for 
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V[ v, U an open affine subset o f  Y. Then It has the following local expression on U: 

tz(1) = l ;  r  = z ;  r  = w;  

#(z  ~) = az +bw; It(w ~) = cz+dw; 

It(zw) =- dz + aw + ad+ bc. 

Proof. Follows from Proposition 2.2, whose proof does not require any 
assumption on the characteristic of  K. II 

As in the general case, we have: 

Theorem A.4. Let K be a field o f  characteristic 2. Let  Y be an integral separated 
scheme of  finite type over spec K and let E be a rank 2 vector bundle on Y. Assume 
V is a rank 3 vector bundle that is an extension ofO r by E and #: S 2 V ~ V  defines 
on V an associative multiplication compatible with the Or-module structure. Then it 
is possible to associate with the pairs (V, #) an element a(V, #)EH~ SZE( A2E) -~) 
in a natural way. Given two such pair (V, It), (V', p'), we have a(V, #)=o-(V', #') 
i f f  there exists an isomorphism of  extensions ~O: V ~  V" which is also an isomorphism 
of  the algebras corresponding to It and #'. All such extensions are trivial. Conversely, 
given zEH~ SSE| it is possible to define on the trivial extension 
O~Or~Or@E-~E~O a multiplication p such that v=-o-(0r@E, #). 

Proof The theorem can be proven by using special local coordinates and 
arguing as in Theorem 2.4. II 

The results of  Section 3 hold in a slightly different form. 

Proposition A.5. Assume char K=2 .  Let (X, 09) be a triple cover o f  Y. Then 
B(~Y, 09) vanishes identically on Y iff  either X is not reduced or X consists o f  two 
irreducible components, one o f  which maps inseparably onto Y. 

Proof First of  all remark that the vanishing of  B implies that 09.0x,r is not 
a domain. In fact, assume B vanishes identically: then the form Q is degenerate 
at the generic point ~E Y. So there exist zE 09.0x, e\{0} such that Q(z, x) = T r  (zx) =0  
VxE09,0x,r If  09.0x, e were a field, then it would follow T r ( x ) = 0  VxE09,0x, e, 
contradicting Proposition 1.2, iii). So we may assume qg. Ox, r is not a field. Since an 
artinian algebra can be decomposed as a direct sum of  local algebras, we will prove 
the proposition by examining all the possible cases: 

a) 09. Ox, r is a local algebra. Then it has nilpotent elements and Q is degenerate. 
b) 09.0x,r  3, A~ a 1-dimensional 0r, e-algebra. In this case X is 

reduced and consists of three irreducible components and Q is nondegenerate. 
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c) qO,Ox.~-Al@A 2, where A1, A~ are local algebras of  dimensions i and 2 
respectively. We have two subcases to consider: 

c') A2 is not a field. Then it is easy to check that Q is degenerate and X is not 
reduced. 

c") A2 is a field. Then Q is degenerate iff A2 is an inseparable extension of  
Oy,~ iff X consists of  2 components, one of  which maps inseparably onto Y. II 

The branch locus and the singularities of  triple covers are described in the next 
two propositions. 

Proposition A.6. Let Y be a variety over an algebraically closed field K o f  char- 
acteristie 2. Let  (J(, ~o) be a reduced triple cover o f  Y with associated module E. 
Then the branch locus o f  qo is the zero locus o f  B(X,  (p)s176 (A2E)-2). The 
branch locus is not reduced and the form Q has rank 1 at branch points. The set o f  
points over which ~o is totally ramified is the zero set o f  a section o f  S2E|  -2. 

Proof For  the first statement see Proposition 5.2. To prove the rest of  the 
proposition, take special local coordinates {1, z, w} for (P,0x on an open affine 
set UC y. Then one gets : 

0 01 Q =  0 a d + b  ; B = ( a d + b c )  ~ 
ad + be 0 

and the second statement of  the proposition is now evident. There is total ramifica- 
tion over a point YCY iff A=q),O x @~. K(y)  is a local algebra. Denote by x '  
the image in A of  an element xCcp, Ox.y. At a branch point, one has: 

z 2 = a" z" + b' w" 

z" w' = d' z' + a" w" 
w p~ ~- c ' z '+ d ' w ' .  

The ideal generated by z" and w' is the only maximal ideal iff it is nilpotent iff z '3= 
w'3=0. One has: z'Z=(a'2+b'd')z'; w'3=(d'2+a'c')w ". So ~0 is totally ramified 
over a point yC Y iff a 2 +bd=ad+bc=O at y. To finish the proof  we show that these 
expressions represent Iocally on U a section of  S2E|  -2. q~,0x=~?r |  ", 
where ,~{'--E is the kernel of  the trace map. Define ~k as follows: 

$2~0, (9x = O r ~ |  " ~''~ Or@u~f "= q~,0x 
t 

S2 E ~ Sz ,~ " -  ~ ,~" ~- E 
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A~ff: A2S~Ar~A2~f"  has the  fol lowing local  f o r m :  

z 2 A w  ~ -~ ( a c + b d ) z A w ;  z 2 A z w  -~ ( a ~ + b d ) z A w ;  

w ~ A z w ~ ( c 2 + a d ) z A w .  W e  can regard  A2~b as g loba l  sect ion o f  

(A S E) v | S E|174 1 
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