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O. Introduction 

The theory of hyponormal operators in Hilbert spaces is now well developed. 
We refer to [1] for a good presentation of the theory. In this work we generalize 
the notion of hyponormality to unbounded operators. It turns out that unbounded 
hyponormal operators share some properties of bounded ones. However it is un- 
known whether other properties of bounded hyponormal operators also hold in 
the unbounded case. 

The paper is divided into three parts. Part I contains a few simple results 
concerning mostly spectral properties of unbounded hyponormal operators. Part II 
introduces a class of hyponormal operators which have their spectra contained in 
an angle {zEC, ]argz[~O<~/2}. We also prove that hyponormal operators with 
spectra contained in the half plane {zE C, Re z ~0} are maximal accretive operators. 
Part III gives certain examples of unbounded hyponormal operators (differential 
operators of the order one or two and a class of composition operators in L~(#)). 

In what follows the following notation will be used. For an operator T in a 
complex Hilbert space H we denote by D (T), T*, o-(T), the domain of T, the adjoint 
to T, the spectrum of T; respectively. If DcD(T),  then TtD stands for the clo- 
sure of the restriction of T do D. Other symbols are standard or will be defined in 
the text. 

i) 

ii) 

I. 

Let T be a densely defined operator in H. 

Definition. We say that T is hyponormal in H if 

D(T) c D(T*) 

[[Ix[] >-I]T*x[], xED(T). 
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Remark 1. If, moreover, T is closed then ~T+fl is hyponormal for any ~, fie C, 
and the operator TIo is hyponormal for any dense, linear subspace DcD(T) .  

Here are simple examples of unbounded hyponormal operators. 

Example 1. Let ~E C be a sequence such that I~k[ <- I~+11 for every k. Then 
the weighted shift with the above weights is hyponormal. 

Example 2. If T is hyponormal and V is an isometry, then T=VTV* is also 
hyponormal. 

Example 3. Let A and B be hyponormal operators. Then T = A |  is hypo- 
normal in H| Here A|  denotes the closure of the algebraic tensor product 
A | B, defined on the algebraic tensor product D(A)| D (B). 

Example 4. If S is an unbounded subnormal operator (see [9] for the definition) 
then S is hyponormal. 

Later we shall give more interesting examples of unbounded hyponormal 
operators. 

The following proposition states a few simple properties of unbounded hypo- 
normal operators. 

Proposition 1. Let T be a densely defined operator in H. We have 

i) T is hyponormal iff T*ID(T):KT, where K is a contraction. 
ii) I f  T is hyponormal, Ker T={0}, R ( T ) : H ,  then T -1 is hyponormal. 

iii) I f  T~ and T2 are closed hyponormal operators and there exist injective, bounded 
operators X and Y with dense ranges such that XT~C:T2 X, T~YD:YT2, then a(TO 

= a(T2). 
iv) I f  Tk are hyponormal, D(Tk)cD(Tk+l)CD(Tk*+l)CD(Tk*) and for any 5>0 

there exists n0=n0 (e) such that for every m>n>no 

for all xED(T.) and 

for all y~O(Tm*), 
normal and 

IIT~.x-T.xll <= e(llxll +llT.xll +llT,.xll) 

IIT*my-T*Yll <~ e(llYll + IIT*Yll + IIT,:*YlI) 

then there exists limkTkx=Tx, xEU, D(T,), T is also hypo- 

~(T) = N,,=I U~: .  G(Tp. 

Proof. i) The proof is similar to the one given for bounded hyponormal opera- 
tors, see [1, p. 3]. 
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ii) Let y, wED(T-1)=R(T) ,  so y=Tx ,  w=Tv. Using i) we can write 

T*ID(r) = KT, IIKII <-- 1. 

We have 

(T-Iw,  y) = (v, Tx) = (T'v ,  x) : (KTv, x) = (Kw, x) = (w, K 'x ) ,  

and so yED((T-1)*). 
A similar reasoning gives 

[I(T-9*Y[[ =< [IT-lyI[. 

iii) By symmetry it is enough to prove that XT~C=T2X implies that a(T2)c 
a(T0. Suppose that 2~a(T1) (if a(T1)=C then there is nothing to prove). Let 
c=[ l (A-T~) - l l l .  Following ideas of  [2] we define the sequence 

g ,  = c - " X ( , ~ - T O - " f ,  n = 0, 1 , . . . .  

Note that g, ED(T2). Moreover, by repeating the proof  of  Lemma A of [2] in our 
case, one can check that the sequence [1 g.[[ is monotone decreasing. In parti- 
cular, we have 

IFg~lt <--llgoll 
i.e. 

I[(,~-T~)X(Z-T1)-~ fll = IIXf[I >= c-1 IIX(,~-TO-~ fll . 

Thus (2-T2) is bounded from below on X D ( 2 - T 0 .  Let S=(2-~)[xD(~_TO. 
One can easily check that R(S)=R(X) .  Hence there exists S-16L(H).  

Thus (Z--T~)*c=S * has a bounded inverse on R((2-T2)*). Now R ( ( 2 -  T~)*)= D 
R(2- -T~)=H,  so (2--T~) *-1 exists on R ( ( 2 - T ~ ) * ) = H  and 2r 

iv) This result is implicitly contained in [4] and its proof  is omitted. 
The proof  of  Proposition 1 is complete. The next result concerns generators 

of  hyponormal semi-groups. 

Proposition 2. I f  R+ 3t ~Tt is a continuous semi-group of  hyponormal operators, 
then its generator 

A f =  lira t - l ( T , f - f )  
t~O+ 

is hyponormal. 

Proof. Let At=t-l(Tt--1).  For any f ,  g6D(A) we have 

[(Aft g)[ = liom + I(&f,  g ) l - -  liom + [(f, A'g)[ 

<- Ilfl] tliom+ ]]A~gll <= ]If I] lim I}atgll = Ilf[I Ilagll. t~0+ 

Hence gCD(A*) and IIA*gll<--I]Agll. 
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IL 

Now we shall restrict ourselves to hyponormal operators with spectra contained 
in angles. Namely, for 0<0-<_n/2 define So={zEC,  [argz]<0}. It turns out that 
hyponormal operators with spectra contained in So have nice properties. In what 
follows, by hyponormal operator we mean closed operator. 

Proposition 3. Let T be a hyponormal operator with a ( T) c= S.~12- o, where 0 < 0 ~_ 
7r/2. Then -- T generates a bounded holomorphic semi-group in So. 

Proof. Applying Th. X. 52 of  [7] it is enough to prove that for 0 < 0 1 < 0  

ll(~.+Z)-ll[ --< M01[dist(-2,  S~/2-ol)] -~, s 

Since ()~+ T) -1 is also hyponormal, this is immediate by the following inequalities 

II(~+Z)-ill <= [dist (2, a ( - T ) ) ]  -1 ~ [dist ( - 2 ,  S~/z_ol)] -1. 

Remark 2. Note that - - T  also generates a holomorphic semi-group (of ex- 
ponential growth) if its spectrum is contained in set 

So,, = {zCC, R e z  _-> 0}c~{z, ]arg (z+a) l  < 0, a => 0}. 

In fact, applying Th. 5.1 of  [3] we have to show that there exists 
b > 0 such that 

li(A+T)-llt <_- C[?l-a 

for all 2 with Re 2 = 0  and I Im2[~b.  
from the following picture. 

Let b > b l = a . t a n O .  

- b I  

- b  

Now this is clear 
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7C 
For a =  ~ - 0  we have 

1 1 b 
I](2+T)-111 < _ ~ . 

= d [2-b~[sina - ( b - b 0 [ 2 [ s i n a  

Corollary 1. I f  T is a hyponormal operator and a (T)cSo , , ,  then a(e -T)=  
{e-', {0}. 

It turns out that hyponormal operators with spectrum contained in the half 
plane C+ := {zC C, Re z-~0} are maximal accretive. 

Lemlna 4. I f  T is a hyponormal operator in H with ~r(T)=cC+ then T is a 
maximal accretive operator in H. 

Proof. For 2CInt C+ the resolvent (2+T)  -1 is hyponormal, hence 

H0~+T)-I][ "~- [dist ( - 2 ,  a(T)) -1] ~= (Re2)  -1. 

Hence T is m-accretive and so it must be maximal accretive [6, p. 729]. 

Corollary 2. Let T be a hyponormal operator with Ker T=  {0}, a(T )cSo ,  0 <  
0 <= n/2. Then for any bounded and holomorphiefunetionfin So +~ we have f (T)E ~ (H) 
and [1 f(T)[] <=Co ][ f[] =, 5>0. 

Proof By Lemma 4 we know that T is a maximal accretive operator in H. 
Hence T must satisfy the so called quadratic estimates, see [5, p. 227]. Applying 
the theorem in [5, Sect. 7] we obtain the desired inequality. 

The following application of Corollary 2 seems to deserve mentioning. For  
this we need to recall the notion of analytic vectors. 

Definition. Let A be a closed linear operator in H. We say that fEC ~ (A)= 
A~~ k) is analytic for A if there exist r > 0  and a > 0  such that 

[ IAkf [ l=ak! r  k, k =  1 ,2 , . . . .  

Let us denote by D~ the set of  all analytic vectors for A. In the case when 
A is a positive, selfadjoint operator in H, Nelson proved that 

D~'(A) = (.Jt>o e-ta(H). 

It turns out that the same equality holds for hyponormal operators which have 
their spectra contained in So. 

Proposition5. Let T be a hyponormal operator in H with ~(T)cSo ,  
0<0<7r/2. Then 

D'~ = Ut>o e-tT(H). 
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Proof. First note that e - t r  is well defined (by Proposition 3). Let fED~ 
then by the definition we can write 

llTkf[I <= ak!r  k, k = 1, 2 . . . . .  
1 

Take 0 < s < - - .  We have 
r 

IlTkfll S k 
Z =o k! a Z =0 

and so fE(.Jt:~o e - t rH.  To prove the opposite incIusion suppose that g=e -Srh  
for a certain s>O. Then for any kEN 

IITkgll ~_ lIT k exp ( -sT) l l  ILhll. 

By Corollary 2 we know that 

lIT k exp ( -  sZ)ll <-- C0 IIz%-=ll~. 

Therefore it suffices to estimate sup,~soIzke-=l. Denoting C E = t / l + t a n Z 0 ,  
z = x + i y  we have 

sup I(x + iy)kl e = = <- ~0ksupx~e - '~ = Q k ! (1/s) ~ 
z E S  0 x>0 

and so g must belong to D~ This completes the proof. 
We end this section with a lemma which will be useful in the next one, where 

some specific examples of  hyponormal operators will be given. 

Lemma. Let  A be a densely defined operator in H possessing a formal adjoint A + 
such that 

( * )  (Au,  v) = (u, A+ v) 

for all u, rED, where DC=D(A)c~D(A +) is a dense subspace of  H. Assume that 
[IA+ u[l<-IIAu[I for  uED. Then A is elosable and T=AIo is hyponormaL 

Proof. It  is obvious that A and A + are closable. Moreover, by (*) we have 
A + c T* and so 4 + c T*. One can check easily that D (T) ~ D (.4+). Hence D (T) 
D(T*).  Now for x E D ( T )  there exists a sequence xkED such that x k ~ x  and 
AXk-~ Tx. Thus 

tlTxll = lim llAxkll ~-- lira IlA+x~ll = IlA+xll = IlT*xll. 

III. 

Despite the simplicity of  the definition of  hyponormality it is far from trivial 
to check when a given operator is hyponormal. In what follows we shall give some 
nonobvious examples of unbounded hyponormal operators. We start with a dif- 
ferential operator of the first order. 
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Example 1. Let T= a0--~-a~--ia 1 , where a0 and al are functions 
c~(R) 

of C 1 class and satisfy the following conditions 
1) Re ao(x)#O 
2) al=ibl, where bl(X)=cx/Reao(x), cER. 

Proposition 7. Under the above conditions 1) and 2) the closure of T defines a 
hyponormal operator in L~(R)/f  

e) c < 0  and 2 -x (Rea ; /Rea0)>=0  
or 

13) c > 0 and 2 - x ( R e  do~Re ao) <- O. 

The proof can obtained by direct but tedious computations (integration by 
parts and the last Lemma). Note that nontrivial a0 satisfy the above requirements. 
For example: ao(x)=x ~, ~<=2, eo(x)=e -~'1~ or ao(x)=e -x for x > 0  (in the last 
case T is hyponormal in L~(R+)). 

Example 2. Let Dj=i-IO/Oxj, j = i  . . . .  , n. For aj, b~EC, define L=L(X, D)= 
~;=1 (ajx+bjDj)lep, where 5 a stands for the Schwartz space in R". Denote by 
L + = ~ i  (~jx+3jDj). By direct computation we find that 

(Lu, v) = (u, L + v) 
and 

(L+ L-LL+)w = 4 Im (a, b)w, 

where w, v, uE5 a and (a, b ) = ~ j  ajb i. Hence E (the closure) defines a hypo- 
normal operator in L2(R ") whenever Im (a, b)->0. Moreover by a recent result of  
[8] we know that E is even subnormal. 

Example 3. Let a(x, r z, xER, CER, where ao(x)=~x+r 
and a~(x)=~x+~ with /~,y, e, QEC. We associate with a(x, r the differential 
operator A =o- w (X, D) of  order 2 restricted to St', and given by the Weyl prescrip- 
tion [9]. For numbers/~, e, a we define the following conditions 

i) Im e => 0 

ii) Im~fl = 0 

iii) [Ira (e~+2~)] ~ <- 8 Im 8(Im O~-Im 8). 

Let A + be a formal adjoint to A i.e. 

(Au, v) = (u, A+v) for all u, vESP. 

From the general theory of the Weyl correspondence we know how to find the Weyl 
symbol of  A +. A--A.  A +. This enables us to prove the following result (whose 
proof will be given elsewhere). 
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Proposition 7. The closure ~ gives a hyponormal operator in L2(R) /f  fl, e, 0 
satisfy the above conditions i), ii) and iii). 

Example 4. The last example describes a class of composition operators C~ in 
L2(X, #) which are cohyponormal (i.e. C* are hyponormal). 

Let (X, B, p) be a measure space with a a-finite measure # i.e. X =  U~~ Xk, 
where #(Xk)< + ~ .  Suppose we are given a measurable bijection z: X ~ X  such 
that '/7 -1 is also measurable and #oz-l<<#. 

Let C,f-=-fov, fEL~(tt). We shall find a condition for C, to be a cohyponormal 
operator in L~(p). Let p=d(poz-1)/d# be the Radon--Nikodym derivative. Note 
that characteristic functions of sets of finite measure belong to the domain of  C* 
provided that p;~aEL"(#) for all A such that /~(A)-<oo, and 

C ' f  (z) = p (z) f (.c-1 (z)). 
Hence 

(1) iiC.f[i2 = f pe(y)lf(z-~(y))2 dlz 

= f if(w)l~p~(,(w)) d(#o~) = f ]f(w)12p(z(w)) d#. 

Take f=za ,  where p(A)< ~. Then by (1) 

IIC* f [1 z = f ~ p (, (x)) & < ~. 
Since 

(a) f Ifo~[ a d# = fa p(z)d~ <~ 
it is evident that fs 

Under the above assumptions we have 

Lemma 8. The operator C* is hyponormal in L2(#) if and only if poT~=p a.e. 

Proof. Necessity. 
If  IlC*~hllZ>=llC=hll 2 for every hED(C~) then put h=za , #(A)<oo into this 

inequality. 
We have 

IIC*hll  = - -  fAp=(r(W)) d(izov) = fap(z(w)) d# >= fap(w) d ~  = l lC,  hli =. 

Since A is arbitrary it follows that paz>=p a.e. Sufficiency. 

If  poz>=p a.e., then for fED(C**) we have by (1) and (2) 

IlC*f[] 2 = f If(w)12p(v(w)) dg >= f If(w)12 p(w) d# = IlC, f l l  ~. 

rhe  proof is complete. 
We conclude by considering special C, in L2(#) over the Heisenberg group 

X = H z = C •  Namely let d#=exp  (-IuI4/2)dV, where dV is Lebesgue measure 
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in C X R  and lul4= [(z, t)l~= Izl% t ~. The group Ha has natural dilations 6,(z, t ) =  
(rz, r 2 t), r > 0  (note that  16r(z, t)l = r  [(z, t)l). I f  r<= 1 they induce a bounded opera- 

tor  C, in L*~) .  By direct computat ion we find that  

p(z ,  t) = r -4 exp [ ( 1 - r - 4 ) l ( z ,  t)[*/2]. 

Hence po~,>-p for  all r -<l  and so, by Lemma 8, the C, are cohyponormal.  More-  
over the C, fo rm a semi-group 

(0, 1) r c , .  
I t  turns out that  its generator can be found explicitly and we have: 

Corollary 3. The infinitesimal generator C o f  the semi-group C, given by 

Of ,2. af c f =  z 

is cohyponormal in L ~ (1t3, dlO. 

Appendix. When this work was completed we learned f rom J. Stochel that  
S. Ota and K. Schmiidgen also defined unbounded hyponormal  operators. They 
called them formally hyponormal ,  probably  by analogy to formally normal  opera- 
tors. I f  in addition D ( T ) = D ( T * ) ,  then T was called hyponormal.  Moreover  they 
also proved an analog of  our Proposit ion 1 iii). 
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