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1. Introduction

Let H'(R?) denote the collection of all distributions m satisfying

(i) meC=RN{0}),

(i) m is homogeneous of degree /, 1=0.

Let RY denote the operator which maps a function m to its Taylor remainder
of order N, i.e.

(L) R, An) = m(1-+dn) = 3, _y_, == Dom(n) (4n)".

In general we consider
RNv-Nam(y, Ay, ..., An,) = R¥~RNvNo-am(n, Any, ..., Af, -1, 4A1,).

In this paper we study the operator T, ., (R¥r~+"m) defined by

[Th,, ..., (R¥2 e £17()

(1.2)
= 2m)™ [ e [Ty B2 =) RY® = ¥om (g, 1y~ - o—110) F (1)

where dn=dny, ..., dn,, fo==E.

In fact many multilinear singular integrals have the form (1.2). Let d=1,
m(&)=|¢|, then [b, |D|]=[b, HD}=T,(R*'m), where H is the Hilbert transform.
According to Janson and Peetre [5], [b, |D|] is a paracommutator of the Toeplitz
type, it is bounded on L2(R) if and only if '€ L=, and it is never compact unless
b'=0. But D[b, Hl=T,(R?m) is a paracommutator of the Hankel type; it is
bounded on L%*(R) if and only if ¥’¢BMO, and D[b, H]¢S, (the Schatten—von
Neumann class) if and only if b€B,*@/P (1=p< o, the Besov space). This is the
motivation for studying the multilinear operator (1.2) using the Taylor remainder
RY m instead of the difference m(&)—m(n). Several authors have studied the bounded-
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ness of the multilinear operator (1.2) and obtained the BMO-results (direct results),
e.g. Cohen [1, 2], Coifman and Meyer [3], Hu [4], Qian [9, 10], Qian and Li[l1].
In this paper we study, in the framework of paracommutators (Janson and Peetre [5],
Peng [6], [7]) and multi-fold paracommutators (Peng [8]), the boundedness, com-
pactness, and the Schatten—von Neumann properties of the multilinear oper-
ator (1.2).

We adopt the notation for the Schatten—von Neumann class S,, the Besov
space B,, the assumptions A0, A1, 42, 43(x), A4, A4%, A5, A10(w), A* of the Fourier
kernel A(¢,n), fractional integration or differentiation I, ..., in [5, 6, 7, 8].

In § 2, we study the direct results. In § 3, we study the converse results and the
Janson—Wolff phenomena. In § 4, we discuss some examples.

2. Direct results

First of all, we study the case n=1, i.e. the bilinear operator.
Let @cCy(0, <) with @(#)=1 on [6% 63 for some small ¢ and define

_ o) REmn, E—m)

@) e = 1o (1)) HmiLon),
~(Inl) R¥m(n, &—n)

Thus

(2.3) T,(R"m) = Tp-,(A4)+ T3 (4y).

By Lemma 3.1, 3.2 and 3.4 of Janson and Peetre [5],
T,(R"m)€S, if and only if both T;-4,(4;) and Tp°(4p)ES,,
for 1=p=-o,
T,(R¥m) is compact if and only if both Tj-,,(4;) and TP%(4,)

are compact.
So we can treat the two pieces separately.

Lemma 2.1. Suppose that mc H'(R?), =0, N=[l]+1. Then A, satisfies AQ,
Al, A2, A3(=o) and A, satisfies A0, A1, A2, A3(==) of [3]. Also A, satisfies A0, A1, A2,
A3(N) of [5] and vanishes on A;X A, when |j—k| is large.

Proof. Tt is obvious that 4, and A, satisfy A0. If |j—k| is small, 4,=0; if
|j—k| is large, e.g. j>>k, n€d;, (€4;, then |g|<4|fl. By Lemma 3.6 of [3],
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we have
4, ’7)||M(A, X 4x)

- ”1 ( Int ]I 14} RVm(n, £—n)
[{] Mlistraxray It |E—nl* Hnmcd;x a0 [k M(4;x 4)
_ m(§) 1| D*m(m)(€—n)*
- c( [E]* M(ijAk)+2|“l§N*1? |} M(ijAk))

— ]| ™)
= C( —TélT-
So A, satisfies A41.

It is similar to show that A, satisfies 42 and A, satisfies 41. Notice that 4,
vanishes on a neighbourhood of {¢=#}, it follows that A4, satisfies 43(<o).

Let us show that A, satisfies A3(N). For any B=B(&,,r) with r<§|&,
by Lemma 3.10 of [5], we have

oyt Ziasn Ca 5P NIy DDl

= c(1+2<k~1><'+1—N>) =c.

N N
1426 Dlarn = € () sup  sup  peaipraemi = o1 )"

|al=m &n¢B(&,2r

It is obvious that A, vanishes on 4;X 4, when |k—j| is large. O

Remark. By the definitions of 4,1, 4,3 of Peng [7], we can also show that 4,
satisfies 4,1, 4,3() and that 4, satisfies 4,1, 4,3(N), for O<p=1.

Combining Lemma (2.1), Theorems 7.3, 8.1, 13.1, 13.3 (and its extension) of
[5], and Theorem 1 of [7], we get the following.

Theorem 2.1. Supposc that mé H'(R?%), =0, N=[[1+1, s, t>max [—d/2, —d/p],
s+t+l+d/p<N, l<p=oo. Then

() beI'(BMO) implies that T,(RNm)ES...,

(i) beI'(CMO implies that T,(R¥m) is compact,

(ili) bEBLHHHUD implies that T3 (RVm)ES,

(v) bebsF'tt implies that TS'(R¥m) is compact. 0O

Now we study the case n=2. Let X, denote the space B;”’ (if p<<) or the
space BMO (if p=o).

Theorem 2.2. Suppose that mé H'(R%), 1=0, 0O<w;=1, NN, dja,<p,=-oo, for
i=1,...n, and that 27 | (N;—a)=I, 1/p=2 | 1/p;, 1=p=co. Then

24 1Zs,. ....5, (R¥> - Nem)ls, = C [T;_, B3] v,

L4 (Xp‘) .

Proof. If 1=0, N;=a;=1, for i=1,...,n, then Theorem 2.2 implies Theo-
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rem 3 of [8). We prove this theorem using the procedure of the proof of Theorem 3
in [8].
Let ¢€C=(0, =) be such that p=1 on (0,n+1) and ¢=0 on (n+2, «),
Yy=1—¢. Then we have
RN Moy, Nymy— M e o —11)
= R Yo (R, Haer— s ~e> Ho— " [ [ (70l )+ [ |10 )]
(o> faa =1 M=) ITia |V 7 —7;-1l ¢ 17— 11
= 2]66" Al(n()a His -eos ﬂn)
where G, is the set of subsets J of {l, ..., n},
Ay (as My oos M) = RYS - Nom (i, 0oy~ Ty o5 No—11)
|70l ] [ |nol )
Hyeot () s o L)

J’ is the complement of Jin {1, ..., n}.
It suffices to show (2.4) for each A4;.
Let Ay =R N em (i, flyo1 =M, - No—M)

1ol 1 [ %70l ) 1
. N st i ’ (p ’ 4 s ’ —a, ’
Mses¥ (52 ) o Mver o (= T
then
Ty, ...os (R¥ o om) = Tf," ", (4)),

Where ﬂj=0 i.f ]EJ, Bj»=sz—-otj: if ]"EJ’,
Sj=N-+1—‘aj+1 lf j+1€.], Sj,=0 lf j,+IEJ,, Sn":O.

J
It is not too hard to check A4, satisfies the assumption A*(Ny;—ay, ..., N,—%,)
in Theorem 2 of [8]. So Theorem 2 of [8] shows that

ITs, ....5.(ADlls, = C IT;_y 10ill v~ O

Xp)

3. Converse results and the Janson—Wolff phenomena

We need some non-degeneracy assumptions on m.
NDI. If /is an integer, mec H'(R?), for any &€S,_;, there exists 0zn€R?

such that
1
m(éo)—Z,a,=,jJD“"1(ﬂo)éﬁ # 0.

ND2. If I is a non-integer, mc H'(R?%), for any &,€8;_;,
m(&,) # 0.
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ND3. If me H'(R?Y), I=0, N=[l]+1, for any £,€S,_,. There exists 0z7,€R?
such that
DE,m(no) # 0,
where DgJ m(#,) denote the direction derivative of order N along &£,€.S;_;.
We consider the converse results and the Janson—Wolff phenomena only for
the case n=1.

Lemma 3.1. If mc H'(R%), 1=0, N=[I]+1, m satisfies ND1 (when / is an integer)
or ND2 (when [ is a non-integer), then A, in (2.1) satisfies A4y and A5. (For A4,
see Peng [6].)

Proof. When [ is an integer, N=[41. For any &,€S;_;, by NDI, we can
take 0>=n;€R? such that

k=|mE) =3, gy DO G| 0.

By the homogeneity of degree 0 of D*m(n), for any 1€(0, =),

1 ,
|60~ 3o a gy D] = .
Thus, if J is small enough, we have
R¥m(n, £—n)

|0 3y e Doy &5

e
- l %ﬁl—m(fo)ﬁa]g-z %Dam(")(é_")a/ml

M(UxV)

1
= Sgena gy DM 3, o Culnflel

lag| <0

1 a
~ Spena gy D D&, = [ e

M(UxV} L=V}

172 L=y

1 . 1
+2|“15N—2a_!”D m()|| L=v) ZGIHF,ICaJ T lle=cn

1 ¢ .
+Zlal=N-1?!_2f2jf%=“ |C| WHL“(U) | D*m () 172 Loy

o

£
Ej

1 ,
+ 2l =N-1 =T 1D*m () —D*m(tno)l| L=cv) L)

+ Zgen-a ;1T | D*m(t)] ”I—g—,——ég

L=(U)
1

1
=52 (choose ¢ so that [mjl = [g] =62) <k
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which implies that R¥m(y, E—n)/|El' is invertible in M(UXV), moreover by
Lemma 3.6 of [S], 4, is invertible in M(UXV).

When [ is a non-integer, /=0, N=[/]1+1, ND2 implies that, for any £,€S;_,,
Im(&)| =k=0. If 6 is small enough, we have

RNm(rla 6—’1) ‘
&f*

| meen-

MUxV)

m(&)

= "m(é(’)—_[a’__-*_zlalélv— —!—

1!

Dam(rl) 2114_%:“ Caléalnaz/lqll MExT)
1
al

_|m@
= el

I.D*(m)n°% L=y

Ea
L=(U) 2 apma|Cal H_I?I‘_ le(v)

= ¢6'+1-¥ (choose |n,| = 26) < k.

—m(&) +2]a|§N+1

This implies that R¥m(y, E—n)/|E]' is invertible in M(UXV), again by
Lemma 3.6 of [5], 4, is invertible in M(UXV).
Because 4, satisfies A0, that A4, satisfies 45 implies that 4, satisfies 445

Lemma 3.2. If mc H'(R?), =0, N=[I1+1, m satisfies ND3, then A, satisfies
A10(N). (For A10(N), see Peng[7].)

Remark 3.1. Tt is easy to see from the proof that 4, satisfies also 4,4% of [7]
for any O<p=<1.

Proof. Recall the assumption 410(N): for any 0s<6€R?, there exist a positive
number 5<—;- and a subset ¥, of R? such that if N, denote the number of integer
points contained in ¥;nB,, where B,=B(0,r), then Iim, _N,/r*>0, and for
every ncby,

1

= N B = .
“ A(' +n+t80, - -{-n) - C,_I}, , where B(Oa 5)

M(BxB)
For any 0s0€S,_;, by ND3, there exists 0#7,¢R* such that
Dllivm(no) = 2|¢]=NDam(rl0)61 # 0.

We can assume that |,|=1, k=|DY¥m(n,)|=0. By the continuity, there exists ¢
such that if [E—0]<, |n—n,|<3J, then

l2|a|=NDam(’7) & = k/2.

"
—l""lo

Let V,,={nER”:
In

<9, |11|>23/5}, then ¥, satisfies the condition of 4A10(N).
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Let nel,, if ucB, v€B, B=B(0, §), then
1 _ “ _
|R¥m(v+n, (u+n+0)—(v+n)| = ‘ZIa!=N-JD“m(n)(u+0—v) = ck|n|'-N.
Note that R¥m(v+n, (u+n+6)—(v+n))eC*(2BX2B), so
1/R¥m(v+n, (u+n+0)—(v+n))

can be expressed as the absolutely convergent Fourier series:

1
R¥m(v+n, (u+n+0)—(v+n)) =

ineza B kBi e ()75, @),

where
1
ajl=c D* - N-1
214l 2=u R¥m(- +n, (- +0+0)—(- +n)) llL=caxez) — ¢l
Therefore
1 _ N
‘ Ay (- +1+0, - +n) limexn ~ Il

ie. AIO(N) holds. O

Lemma 3.1, Theorem 10.1 of [5] and Theorem 2 of [6] and its extension give
the following converse results.

Theorem 3.1. Suppose that me H'(R?), =0, N=[I]+1, and m satisfies NDI
(when 1 is an integer) or ND2 (when [ is a non-integer). Then T,(RY m) is bounded on
L2(R?) implies that I-'b¢BMO, and T,(R"m) is compact implies that I-'b€¢ CMO.

Lemma 3.1, Theorem 9.1 of [5] and Theorem 2 of [7] give the following con-
verse results.

Theorem 3.2. Suppose that me H'(R?), [=0, N=[/]1+1, and m satisfies NDI
(when [ is an integer) or ND2 (when [ is a non-integer). Then for 1=p=<, any
5,6, TP (RVm)ES, implies that beBST'V'*4P For 0<p<l1, s,t>—df2, and
T (R"m)€S, implies that the following a priori inequality holds

1Bllps+e+1sarp = | T3 (R¥)]s,-

Lemma 3.2 and Theorem 4 of [7] give the following results about the Janson—
Wolff phenomena.

Theorem 3.3. Suppose that me H'(RY), [=0, N=[I]+1, and m satisfies ND3.
Then for 1=p=d/N—I—s—t, T>"(R"m)€S, implies that b is a polynomial. For
O<p=min (d/N—I—s—t,1), beS’R* with b with compact support such that
T (RYm)€S, implies that b is a polynomial.
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Applications.
1. Combining Theorem 2.1, 3.1, 3.2 and 3.3, we get the following

Theorem X. Suppose that me H'(RY), 1=0, N=[l]+1, and m satisfies ND1

(when 1 is an integer) or ND2 (when [ is a non-integer) and ND3. Then

(i) T,(RYm) is bounded on L*(R?) if and only if I-'b¢ BMO,

(i) T,(R¥m) is compact if and only if I~'b€¢ CMO,

(iii) for d/N—I<p<e and p=1, T,(R"m)cS, if and only if bEBLHP; for
0<p<l1, directly, beBLHP implies T,(R"m)ES, and, conversely, an a priori
inequality holds.

(iv) for 1=p=d/N—I, T,(R"m)€S, if and only if b is a polynomial; for 0=p=
min (d/N—1, 1), b€ S"(R%) with b with compact support implies that b is a poly-
nomial.

2. Higher commutators of fractional integration.

In particular, if m(€)=|¢|’, I=0, then mcH'(RY), and m satisfies ND1 (or
ND2) and ND3. So Theorem X gives a generalization of Example 8 in [5] from the
commutators of fractional integration to the higher commutators.

3. Multilinear singular integrals.

Lemma (Qian [10]). Suppose that QEH°(RY), and [ga2 Q(x)x* do(x)=0,
for |Bl=I and 1>0. Denote, for Ny+...+N,=l+n,

T (@) f () = pv. [T, PYb,(x, y— x)l—(x—l%ﬂy) .

Then
Tl (@D f = By, (RY - Ym) f  for every  feCy (R),

b1y .eesbn

where

m@=clel' [ QULE W do(y), & =E/E, L= Li+Ly,

. itr +1
L) = 7S dr, Lo =S [ [ e dudr.

I+1

(See Qian [10], Theorem 1.) 0O

Many authors have studied the boundedness (direct results) of TNI’ »(Q)
Cohen [2] obtained the result for the case n=1, N;=1, Hu[4] obtamed the Tresult
for the case N;=...=N,=1. Qian[9] obtained the result for the general case.

Qian and Li [11] obtained the boundedness (direct results) of T, , (R¥v~Nam).

Theorem 2.2 of this paper gives the characterization of the boundedness and
the Schatten—von Neumann properties for 7, _, (R"v~*"m). It includes the
result of Qian and Li[11]. i
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Theorem 2.2 and Lemma 4.1 give the characterization of the boundedness and
the Schatten—von Neumann properties for T;'»3"»(). It includes the results
of Cohen [2], Hu[4] and Qian [9].

For the case n=1, Theorem £ and Lemma 4.1 give a perfect characterization
of the boundedness, the compactness, the Schatten—von Neumann properties and
the Janson—Wolff phenomena for both ;¥ (2) and T, (R m).

Remark. Finally, we say a few words why we deal only with the case N=[/]+1.
In this case, the operator T, (R m) behaves as a Hankel operator, so we can study its
compactness and Schatten—von Neumann properties. For the case N=[[] some
results on boundedness are obtained in [4], [10], [11]. But then T, (RY m) behaves as a
Toeplitz operator and, therefore, cannot be compact in general. We will study this
case elsewhere.

Notice also that in the proof of Lemma 3.1, the choice |7, =62 guarantees
that the fourth term is small; the choice |#|=25 can not do this job.
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