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1. Introduction 

Let Hz(R a) denote the collection of all distributions m satisfying 
(i) mEC ~ (Ra\{0}), 

(ii) m is homogeneous of degree l, IE0. 
Let R N denote the operator which maps a function m to its Taylor remainder 

of order N, i.e. 

(1.1) RNm(tl, Atl) = m(tl + A t l ) -  z~t~l~N_x -~. D~m(tl)(Atl) ~. 

In general we consider 

R N1 ..... SnmOl, Ath . . . . .  A~l.) = RNnR N1 ..... N--lmO/, dt/x . . . . .  At/._x, d~/.). 

In this paper we study the operator Tb, ..... b.(R N ...... N"m) defined by 

(1.2) [Tb~ ..... bn ( RN" ..... N.m) f ]^  ( ~) 

-- (2=) -'~ f R., FI"j=  ~j(~j--1--t~j) RNI ..... N"m(tI., tl.-1--~I ...... t/o-- th) f(r/.) dr/ 

where d~l=d~h . . . . .  d~l,, ~/0=~. 
In fact many multilinear singular integrals have the form (1.2). Let d = l ,  

m(0=l~[,  then [b, [Dl]=[b, HD]=Tb(Rlm),  where H is the Hilbert transform. 
According to Janson and Peetre [5], [b, [D[] is a paracommutator of the Toeplitz 
type, it is bounded on L~(R) if and only if b 'EL- ,  and it is never compact unless 
b '=0.  But D[b, H]=Tb(R2m) is a paracommutator of the Hankel type; it is 
bounded on LS(R) if and only if b'EBMO, and D[b, H]ESp (the Schatten--von 
Neumann class) if and only if bEB~ +calv) (1-<_p< oo, the Besov space). This is the 
motivation for studying the multilinear operator (I.2) using the Taylor remainder 
R N m instead of the difference m ( 0 -  m (q). Several authors have studied the bounded, 
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ness of the multilinear operator (1.2) and obtained the BMO-results (direct results), 
e.g. Cohen [1, 2], Coifman and Meyer [3], Hu [4], Qian [9, 10], Qian and Li[ l l ] .  
In this paper we study, in the framework of paracommutators (Janson and Peetre [5], 
Peng [6], [7]) and multi-fold paracommutators (Peng [8]), the boundedness, com- 
pactness, and the Schatten--von Neumann properties of the mulfilinear oper- 
ator (1.2). 

We adopt the notation for the Schatten--von Neumann class Sp, the Besov 
space/Pp, the assumptions A0, A1, A2, A3 (e), A4, A4~-~, A5, A10(e), A* of the Fourier 
kernel A(~, q), fractional integration or differentiation I s, . . . ,  in [5, 6, 7, 8]. 

In w 2, we study the direct results. In w 3, we study the converse results and the 
Janson--Wolff phenomena. In w 4, we discuss some examples. 

2. Direct results 

First of all, we study the case n = l ,  i.e. the bilinear operator. 
Let ~PCCo(0, oo) with q~( t ) : l  on [~2,6-2] for some small 6 and define 

[ ( ]t/]]] R~m(rl, ~--rl) 
(2.1) AI(~, t/) = 1-~o I, ]r J) ]~-~/1 t ' 

( Ir/l'] RNm(th ~--rl) 
(2.2)  A2(~,  n) = (P t 141 ) I~1 z 
Thus 

(2.3) Tb(RNm) = Tt-,b(Ai)+ T~'~ 

By Lemma 3.1, 3.2 and 3.4 of Janson and Peetre [5], 

Tb(RNm)qSp if and only if both T~-,b(A 0 and ~,~ 

for 1 <_-p<= ~,  

Tb(RNm) is compact if and only if both T~-,b(Ai) and ~'~ 

are compact. 
So we can treat the two pieces separately. 

Lemma2.1. Suppose that mCHl(Ra), l>-O, N = [ I ] + I .  Then A1 satisfies AO, 
A 1, A2, A3 (~) and A2 satisfies AO, A 1, A2, A3 (~) of [5]. Also A2 satisfies AO, A 1, A2, 
A3(N) of [5] and vanishes on Aj• when ] j -k l  is large. 

Proof. It is obvious that Aa and As satisfy A0. If ]j-k[ is small, AI=0 ;  if 
]j-k] is large, e.g..i>>k, rlqAk, ~6Aj, then Iql<61~]. By Lemma3.6 o f  [5], 
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we have 

1 ~0 I~1 

cfll ] tll I~1 t IL_t~j)+ZI~I~N_IC~ sup Ill~l~l--~llL.t~)ll/~m0/)l~/l~llL.t~) ! 

c ( 1 + 2  tk-j)0+~-N)) ~- c. 
So A 1 satisfies A1. 

It is similar to show that A~ satisfies A2 and A2 satisfies A1. Notice that A~ 
vanishes on a neighbourhood of {~=~/}, it follows that .41 satisfies A3(oo). 

Let us show that A2 satisfies A3(N). For any B=B(~o,r) with r<~S]~0] , 
by Lemma 3.10 of  [5], we have 

( J  IIA~(~, ~/)IIMtB• <= C sup sup 14011"11D~A2(~, r/)l <: c . 
I~l~-m ~,~ e B(g0,2r) 

It is obvious that A2 vanishes on Aj>(A k when Ik-j[ is large. [] 

Remark. By the definitions of Apl, Ap3 of Peng [7], we can also show that .41 
satisfies Apl, Ap3(oo) and that A~ satisfies A~I, Ap3(N), for 0<p<=l.  

Combining Lemma (2.1), Theorems 7.3, 8.1, 13.1, 13.3 (and its extension) of 
[5], and Theorem 1 of [7], we get the following. 

T h e o r e m  2.1. Suppose that mE Ht(Ra), I>:0, N = [ I ] +  1, s, t > m a x  [--d/2, -d/p], 
s+t+l+d/p<N, l<p:<oo.  Then 

(i) b6II(BMO) implies that Tb(RNm)6S~, 
(ii) bEIt(CMO implies that Tb(RSm) is compact, 

(iii) bE tPp +t+~+(a/p) implies that T~'t(RNm)ESp, 
(iv) bEb~ +~+~ implies that T~'t(RNm) is compact. [] 

Now we study the case n=>2. Let X~, denote the space B~/p (if p <  ~)  or the 
space BMO (if p = ~,). 

T h e o r e m  2.2. Suppose that m6 H~(Ra), 1>-0, 0<~i<-l ,  Ni6N, d/~<p~<-r for 
i=1  . . . .  ,n, and that ~=1 (Ni-~ti) =1, 1/P=~?=I lips, l<-p<=oo. Then 

(2.4) IIT~, ..... b . ( R  N` ..... N"m) l ls ,  <= C H~"=x Ilb~ll:,--,~x~?- 

Proof. I f  1=0, Ni=~i= l ,  for i=1, ...,n, then Theorem2.2 implies Theo- 
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rem 3 of [8]. We prove this theorem using the procedure of the proof  of Theorem 3 
in [8]. 

Let ~o(C~(0 ,~)  be such tha t  r on (0, n + l )  and q~---0 on (n+2,  ~), 
= 1 - q~. Then we have 

RN1 ..... N"m (~/,, t/,_ 1-- r/ . . . . . .  r/0- r/1 ) 

- I'li-n~-~l 
-- Zj~G Aj0lo, ~h ..... r/n) 

where G, is the set of subsets J of {I, ..., n}, 

Aj(r/o, rh, ..., r/n) -- R N~ ..... N"m0/n, ~]n-1--~ ..... ' /~0--~/1) 

I~/ j --~j-n)/ /J 'eJ '~~ ('l~/~-~/~-lll'l~ .), I~01 

J '  is the complement of J in {1 . . . .  , n}. 
It suffices to show (2.4) for each Aj.  
Let AI-----R s~ ..... ~-rn(t/,, r/n_l--~/n , ..., ~/0--~h) 

( It/o[ ) 1 ( [r/ol ) 1 
"]fJEJ~/ [r/j-r/j_1[ ' [tljl Nj-=j I[J'CJ'q9 l~/~-r/~-l[ " ' ~ -~"  ' r/j-r/j_~ 

then 
So, sl ,  " "" j Sn 

Tbx ..... b. ( RN~ ..... N.m) = Tla, b ...... za,,b. (Aa), 

where flj=O if j~J, f l j ,=Nj , -~ ,  if j ' 6 J ' ,  

s j=Nj+~-a j+~ if j+l~.J,  s i , = 0  if j ' + l ~ J ' ,  s . = 0 .  

It is not too hard to check Aa satisfies the assumption A*(N~-a~, ..,, N . - a . )  
in Theorem 2 of [8]. So Theorem 2 of [8] shows that 

][rbl . . . . .  b n ( A j ) i ] S p  ~ C / - / i = 1  [] 

3. Converse results and the Janson--Wolff  phenomena 

We need some non-degeneracy assumptions on m. 
ND1. I f / i s  an integer, rn6H*(Rd), for any ~o~Sa-1, there exists 0~r/oER a 

such that 

m(~o)--~, [~1= , ~.D~m(rlo)~ 0. 

ND2. If  1 is a non-integer, m~HZ(Rd), for any ~oESd_j, 

m(~0) ~ 0. 
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ND3. If mCHl(Ra), I>=O,N=[I]+I, for any ~oESa_ 1. There exists 0~t /06R a 
such that 

D~'omC,to) ~ o, 

where D~om(t/o ) denote the direction derivative of order N along ~06Sd-1. 
We consider the converse results and the Janson---Wolff phenomena only for 

the case n = 1. 

Lemma 3.1. If mCH l (R~), 1 ~ 0, N=[I ]  + 1, m satisfies ND I (when I is an integer) 
or ND2 (when l is a non-integer), then Ax in (2.1) satisfies A4~2 and A5, (For A4~-2 ~ , 
see Peng [6].) 

Proof. When 1 is an integer, N = I + I .  For any ~oESd-1, by ND1, we can 
take 0 ~ / 0 6 R  a such that 

k=lm(eo)--.~,t:,l=N_1-~. D+m(rl:>):~+[ >0. 

By the homogeneity of  degree 0 of  D~m(tl), for any t6(0, •), 

]m(~o)-- Z,~t=z+_a ~. D~m(tq;)~] = k. 

Thus, if 6 is small enough, we have 

11 m(~~ =N-x ~ D'm(trl;)?'~ R~m(rl' ~'--rl) l[uw• �9 I~L l 

11 m ( ~ )  
- -  - ~ O : m ( 1 7 ) ( ~ -  ~):/I ~1 ~ =11 141 '  m(~~ �9 

r =N--I ! o ~ t + ~ 2 = .  
" a 2 < 0  

-Xt~i=+v_ 1--~+ D~m(rl) -D'm(trt;)~ grwvj = --~--m(~o) 
�9 L = ( V )  

1 II ;I U ~ 

+ 1 ~ 

II ll 
+ m + +  ll++ll +, 

1 8+" + 

1 1 

~_ e8~ (choose  t so  that It+;i -- l+/ol = +m) < k 
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which implies that RNm(q, ~--r/)/l~[ t is invertible in M(UXV), moreover by 
Lemma 3.6 of [5], A1 is invertible in M(U• V). 

When I is a non-integer, l>0, N=[/] + 1, ND2 implies that, for any ~0ESd-1, 
Im(~o)] =k>0 .  If 5 is small enough, we have 

Ilm(~o) RNmOl' ~--71) l]~(v• 
l!l  t 

= m ( r  lhD'm(rl)Z=,+~,-=C=,{='rl='/r , , .  

-- -- ~ .  -- ll~t ux V ) 

II m({, )lL:(v + -~,. Z=,+~,== IC='l [l I1 i - g ~  -m({~ ZI,I~-N+I L-W, IID=(~) O=:IIL=<e) 

ca ~+I-N (choose I~ol - -  2a )  < k .  

This implies that RNm01, ~-~ ) /1~1  ~ is invertible in M(UXV), again by 
Lemma 3.6 of [5], Ax is invertible in M(UX V). 

Because A1 satisfies A0, that A~ satisfies A5 implies that A1 satisfies A4~- 2 . 

Lemma 3.2. 1_/" mEHZ(Rd), l=>0, N=[ I ]+ I ,  m satisfies ND3, then A2 satisfies 
A10(N). (For A10(N), see Peng [7].) 

Remark 3.1. It is easy to see from the proof that A~ satisfies also Ap4{- 2 of [7] 
for any 0 < p <  1. 

Proof. Recall the assumption A10(N): for any 0#0ER a, there exist a positive 
number 5<{- and a subset V0 of R d such that if N, denote the number of integer 
points contained in V0mB,, where B,=B(O,r), then 1-~,_~N,/rd>O, and for 
every _nE~, 

I] 1 ]1 =<el_hi N, where B=B(O,  5). 
A(.  +_n+O, �9 +_n) u(B• 

For any O~OESd_~, by ND3, there exists 0~/oER d such that 

DNom(rlo) = ~l~l=N n~m(rlo)O ~ ~ O. 

We can assume that I1/o[=1, k=lD~m(rlo)]>O. By the continuity, there exists 5 
such that if 14-0]<5, Ir/-~/ol<5, then 

IZ I (r/)~ I > k/2 =I=ND=m �9 = . 

Let ~ ={t/ERa: 1~1-  ~/01< a, Ir/, >23/5}, then V0 satisfies the condition of A10(N). 
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Let nEVo, if uEB, vEB, B=B(0, 6), then 

= + 1 
Note that RNm(v+n_, (u+n+O)--(v+n_))EC=(2B• so 

1/RNm(v+n_, (u+n+O)--(o+n)) 

can be expressed as the absolutely convergent Fourier series: 

1 
RNm(v+n_, (u+n+O)--(v+n)) ZJ'kCz"aJ'k-~J-'k-(U)?!'k-(V)' 

where 

~a [aj..,k[ ~ c ~1~[~ M D ~ RNm(" -k_t3, ( .  + _ n + 0 ) - - ( -  +_n)) L~(2~• - 

Therefore 

1] 1 11 <- c Inl N, 
A2(.  +_n+0,  �9 +_n) M(B• 

i.e. A10(N) holds. [] 

Lemma 3.1, Theorem 10.1 of [5] and Theorem 2 of [6] and its extension give 
the following converse results. 

Theorem 3.1. Suppose that mEHl(Rd), l-->0, N=[ I ]+ I ,  and m satisfies ND1 
(when I is an integer) or ND2 (when l is a non-integer). Then Tb(RNm) is bounded on 
L2(R d) implies that !-tbEBMO, and Tb(RNm) is compact implies that I-lbECMO. 

Lemma 3.1, Theorem 9.1 of [5] and Theorem 2 of [7] give the following con-, 
verse results. 

Theorem3.2. Suppose that mEHI(Ra), l_->0, N=[ I ]+ I ,  and m satisfies ND1 
(when 1 is an integer) or ND2 (when l is a non-integer). Then for l<=p<:~, any 
s, t, Tb~'t(R~m)ESv implies that bEB~ +t+l+d/l'. For 0 < p <  1, s, t> -d/2,  and 
Tb~'t( RU m)E S p implies that the following a priori inequality holds 

][b[lB~+t+,+d/p ~ c[IZg,'(RN')lls . 

Lemma 3.2 and Theorem 4 of [7] give the following results about the Janson-- 
Wolff phenomena. 

Theorem 3.3. Suppose that mqHt(Rd), I_->0, N=[1]+I ,  and m satisfies ND3. 
Then for l<=p<=d/N-l-s-t ,  Tb~'t(RNm)CS, implies that b is a polynomial. For 
0<p<-min ( d / N - - l - s - t ,  1), b6S'(R d) with b with compact support such that 
Tb~'t(R~C m)6Se implies that b is a polynomial. 
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Applications. 
1. Combining Theorem 2.1, 3.1, 3.2 and 3.3, we get the following 

Theorem Z. Suppose that mEHI(Rd), l>--O, N = [ I ] + I ,  and m satisfies ND1 
(when l is an integer) or ND2 (when l is a non-integer) and ND3. Then 

(i) Tb(RNm) is bounded on L2(R a) i f  and only i f  I - t b ~ B M O ,  
(ii) Tb(RNm) is compact i f  and only i f  I - t b ~ C M O ,  

(iii) for d / N - l < p < ~  and p>=l, T~(RNm)ESp i f  and only i f  b~B~+dlP; for 
0 < p <  1, directly, bE B~ +dIp implies Tb(RN m)C Sp and, conversely, an a priori 
inequality holds. 

(iv) for l<=p<-d/N-l, Tb(RNm)CSp i f  and only i f  b is a polynomial; for O<-p<= 
rain (d iN- l ,  1), b~S'(R a) with b with compact support implies that b is a poly- 
nomial. 

2. Higher commutators of fractional integration. 
In particular, if m(~)=]~[ ~, l>0 ,  then m~H1(Rd), and m satisfies ND1 (or 

ND2) and ND3. So Theorem 2; gives a generalization of Example 8 in [5] from the 
commutators of fractional integration to the higher commutators. 

3. Multilinear singular integrals. 

Lemma (Qian [10]). Suppose that f2EH~ and f sd-~ f2(X)X ~ da(x)=0, 
for [fl[~l and l > 0 .  Denote, for Nl+.. .+N,<=l+n, 

N1 ..... ..... b.N" f2(X--y) f (y )  dy. T~I (f2)f(x) = p.v. f ]-I~=xpNJbj(x, y - x )  
I x -y l  a+' 

Then 

TtN1 . . . . .  Nn(~-~'~r--  N1 . . . . .  Nn for every fEC~(Rd), bl .. . . .  b. ~ , j - - T b ~  ..... b,(R m ) f  

where 

m(r = el~l~fs~_lO(y)L(Cy)da(y), ~' = UI~I, L = t l + t 2 ,  

e it" ( i t )  z+l  1 1 
Ldt)= fo r-Tr~dr, L 2 ( t ) -  l! fofo de~''~-~'dudr" 

(See Qian [10], Theorem 1.) [] 

Many authors have studied the boundedness (direct results) of Tb~,~.'.~'~-(f2). 
Cohen [2] obtained the result for the case n = 1, N1 = 1, Hu [4] obtained the result 
for the case N1 . . . . .  N , = I .  Qian [9] obtained the result for the general case. 

Qian and Li [11] obtained the boundedness (direct results) of T b ...... b, ( Rsl ..... N,m). 
Theorem 2.2 of this paper gives the characterization of  the boundedness and 

the Schatten--von Neumann properties for T b ...... b(R  NI ..... N.m). It includes the 
result of Qian and Li [11]. 
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Theorem 2.2 and Lemma 4.1 give the characterization of the boundedness arid 
the Schat ten--von Neumann properties for Tb~S.';'~-(O ). I t  includes the results 
of  Cohen [2], Hu [4] and Qian [9]. 

For  the case n = 1, Theorem ~ and Lemma 4.1 give a perfect characterization 
of  the boundedness, the compactness, the Schat ten--von Neumann properties and 
the Janson- -Wolf f  phenomena for both  Tb~(12) and Tb(R~m).  

Remark .  Finally, we say a few words why we deal only with the case N = [ I ] +  1. 
In this case, the operator Tb(RNm) behaves as a Hankel  operator, so we can study its 
compactness and Schat ten--von Neumann properties. For  the case N = [ I ]  some 
results on boundedness are obtained in [4], [10], [11]. But then Tb(RNm) behaves as a 
Toeplitz operator and, therefore, cannot be compact  in general. We will study this 
case elsewhere. 

Notice also t h a t  in the proof  of  Lemma 3.1, the choice 1,101=61/z guarantees 
that the fourth term is small; the choice It/0 [ =26  can not  do this job. 
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