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Abstract  

Let K be the class of trigonometric series of power type, i.e. Taylor series 
z~=o c,z" for z =e i~, whose partial sums for all x in E, where Eis  a nondenumerable 
subset of [0, 2n), lie on a finite number of circles (a priori depending on x) in the 
complex plane. The main result of this paper is that for every member of the class 
K, there exist a complex number ~o, [o~1 = 1, and two positive integers v, z, v< z, 
such that for the coefficients c, we have: 

eu+~(,_v)=eucox, # = v , v + l  . . . . .  n - l ,  2 = 1 , 2 , 3 , . . . .  

Thus, every member of the class K has (with minor modifications) a representation 
of the form: 

P (x) ~ 7 =  0 egk"x, 

where P(x) is a suitable trigonometric polynomial and k a positive integer, The 
proof is elementary but rather long. This result is closely related to a theorem of 
Marcinkiewicz and Zygmund on the circular structure of the set of limit points of 
the sequence of partial sums of (C, 1) summable Taylor series. 

1. Introduction 

Let 
(1 .1)  " ~  c e i"x ~-~n=o, , x in [0,27c), 

be a trigonometric series of power type, i.e. Taylor series. The partial sums and the 
Ceshro means of (1.1) will be denoted by sn(x) and a,(x) respectively, i.e. 

Sn(X ) : Z n = o  CveiVX ' r : 1 n n+----f Z,=oS,(x). 
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It will be convenient to introduce some more notation. By C(z; r) we shall 
mean the circle (circumterence) with centre z and radius r=>0. By L(x) we shall 
denote the set of limit points (including the point at infinity) of the sequence of 
partial sums of (1.1). L(x) is a closed set which reduces to a single point if (1.1) 
converges (or diverges to infinity). If  (1.1) is (C, 1) summable to a (finite) sum a(x), 
i.e. l i m , ~  o-,(x)=a(x), x fixed, then we write: m ( x ) = l i m i n f , ~  r,(x), M(x)=  
lim sup,,~= r,(x), where r,(x)=ls,(x)-a(x)l. The Lebesgue measure of a set E 
will be denoted by m(E) and the cardinality of E by card E. Finally, we say that 
a set S in the complex plane is of "circular structure", if there is a point zo (centre 
of S), such that whenever a point z belongs to S, so does the whole circle 
C(z0; [z-z0]). In other words, S is the union of a finite, denumerable or non- 
denumerable set of circles with common centre z0 and radii ~0.  

A celebrated theorem of Marcinkiewicz and Zygmund states that: "If  the series 
(1.1) is (C, 1) summable to a (finite) sum o-(x) for all x in a subset E of [0, 2re), 
then for almost all x in E the set L(x) is of circular structure with centre a(x) and 
extreme radii re(x) and M(x)". (See [2] and [3] V.II, p. 178, for the proof and com- 
ments on this theorem). In connection with this result A. Zygmund asked the ques- 
tion: "If  the series (1.1) is as in the above theorem and m(E)>0 ,  is the angular 
distribution, around o'(x), of the limit points of the sequence {s,(x)} uniform?". 
The question is not exactly stated, especially when a(x)EL(x), but a precise state- 
ment is one of the difficulties of the problem. 

A first step in this direction and, as far as the author knows, the only one in 
the literature, is a recent result of J.-P. Kahane (see [1]). Roughly speaking J.-P. Ka- 
bane introduces for each complex sequence {z,} and each compact subset K of 
an "upper density" d{(z,), K}, and following the general lines of the Marcinkiewicz 
and Zygmund proof, he arrives at the following theorem: "If  (1.1) is (C, 1) summable 
to a (finite) sum a(x) for all x in a subset E of [0, 2n), m(E)>0 ,  then for almost 
all xEE we have: d{(s.(x)), K1} =d{(s,(x)), K2} for all pairs of compact subsets 
/s K,, of /2  which are obtained from each other by rotation around a (x)". 

Marcinkiewicz and Zygmund illustrate their theorem by giving several examples 
for which it is easy to verify that for almost all x in [0, 2re) the corresponding se- 
quences {arg [s,(x)-a(x)]} are uniformly distributed (see w 5, Remark 4). Some 
of these examples lead to series of the form: P (x)z~,~=0 e i"sx, where P (x) is a suitable 
trigonometric polynomial and s a positive integer. In this case, except for a finite 
number of x's in [0, 2~), L(x) is a union of a.finite number of concentric circles. 
At this point one can ask: "Is the converse true?". The answer is no. For example 
if we add the series ~ ,  e ~"x to an everywhere convergent series, then for x~qrc, 
qEQ, the set L(x) is one circle, but the resulting series is no longer of the above 
form. However, series of the above form have a special property; Not only the 
limit points of {s,(x)} are situated on afinite number of concentric circles, but the 
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(1.2) 

where 

(1.3) 

and 

(1.4) 

same is true for the sequence {s,(x)} itself. The main result of this paper is that the 
answer to the above question is "yes" if we take into account this special property. 
More precisely we prove: 

Theorem 1. Assume that there is a nondenumerable subset E o f  [0, 2r,) such 

that for  each x E E  the partial sums o f  (1.1) lie on a finite number o f  circles in the 
complex plane (the number o f  circles, their centres and radii a priori may depend 
on x) .  Then: 

O) There are two positive integers v, ~, v<• and a real number ~, such that 
the series (I.1) has the form: 

Po(x)+ei~Xp(x) ~]~ ei~("-~)(x+~) , 

Po(x) = Co +CleiX +c~e~iX +. . .  +c~_le i(v-1)x 

P(x) = c~ + c~ + ~ ei~ + e~ + 2e~i~ + . . . + e~_ l e ~( . . . .  1)x. 

(ii) There is a positive integer m, such that, for  all but a finite number of  x' s in 
[0, 2~z), the partial sums s.(x)  o f  (1, 1), with n>:v, lie on exactly m concentric 
circles. 

We observe that (C, 1) snmmability is not needed but it follows from the 
theorem. We return to this point in the last paragraph of this paper where we offer 
a/so more remarks and consequences of Theorem 1. 

Acknowledgements. This paper is the main part of the author's thesis made at 
the University of Crete (Greece) under the guidance of S. K. Pichorides, who 
suggested the problem of representation of (C, 1) summable Taylor series by finite 
combinations of geometric progressions. For this reason as well as for several other 
useful suggestions I would like to express my gratitude to him. I am indebted to 
J.-P. Kahane and V. Nestoridis whose remarks on the cardinality of the set E are 
included in this paper (see addendum). I would also like to thank V. Nestoridis and 
S. Papadopoulou who read carefully the whole manuscript and made several useful 
remarks, which greatly improved the presentation. 

2. A basic lemma and the case of  one circle 

As a preparation for the proof of theorem 1, which is given in w 3, we wove 
a basic lemma and the special case of partial sums lying on one circle. Strictly speaking 
this special case is not needed, but we think that it will clarify the role of the basic 
lemma. 
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We start with a remark for the partial sums of the series (1.1), which is useful 
for the proof. 

If  n < m  and S,(X)=Sr,(X) then either c,+a=c,+2 . . . . .  c , ,=0,  or xCF, where 
F is a finite subset of [0, 2n). Since we deal only with infinite subsets of [0, 2n), 
we may suppose (excluding countably many x's if needed), that only the first case 
can arise here. Thus when s,(x)  and SIn(X), n<m,  differ (on an infinite set), then at 
least one of  the coefficients c.+1, c,+~, ..., c,, is not zero, and vice versa. 

Let A be a nondenumerable subset of [0, 270 and n, m, n<m,  two positive 
integers, such that: 

(i) c.c.,~O. 
(ii) For  each xEA there is a circle C(z(x);  r(x)) (or a straight line, when 

z ( x ) = ~ ) ,  which passes through si(x), s.(x), s,.(x), Sk(X), for some j = j ( x ) < n  and 
k = k ( x ) > m .  

(iii) sk (x) # s,, (x). 
Because of (i), (iii) and the preceding remark these four partial sums are distinct 

points of the complex plane. 

Lemma 1. Under the above assumptions we have: 
I f  c,+1 . . . . .  c,+q=0, c,+q+x~0, q->0 (q =0  means c,+1~0), then 
(a) cm+l . . . . .  Cm+q=O, Cm+~+l#O. 
(b) There is a nondenumerable subset B o f  A and nonnegative integers N<:n and 

M >  m + q, such that sN (x), s.(x), s,. (x), su(x)  lie on a circle for  every x in B. Moreover, 
for  any such N, M and for each s, where s = l ,  2 . . . .  , min ( n - N ,  m - n - - q ,  M - m - q ) ,  
we have: 

(2.1) s-1 - s-1 - ~ j = o  G-Je,+~+s-J = ~ j = o  Cm-jem+q+~-J" 

Proof. For every x ~ A  consider the n circles (or straight lines) Cj,  
j = 0 ,  1,2 . . . . .  n - l ,  where Cj passes through s,,(x), s,,(x) and si(x). Because 
of  (ii) there is at least one k = k ( x ) ,  k > m ,  such that sk(x)~C J for at least one 
j = 0 ,  1,2 . . . .  , n - l .  Let 

Ai, k = { x E A :  Sk(X)CCs}, j = 0 , 1  . . . . .  n - - l ,  k = m + l , m + 2 , . . . .  

Since the union of  all Aj, k'S is A and A is nondenumerable, the same is true for 
some AN, u ,  i.e. there are N < n  and M > m ,  independent of x, such that AN, M 
is nondenumerable. We write B for such an AN, M. We can obviously assume cN + t ~ 0 
and c u # 0 .  Thus, we have four distinct partial sums @(x), s.(x), s,.(x), s~(x),  
of  (1.1), which are situated on a circle (or a straight line) for every x in B. We con- 
elude that the cross-ratio: 

s N ( x ) - s . ( x )  . SN(X)--SM(X) 

s . ~ ( x ) - s . ( x )  " s A x ) - s ~ ( x )  
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. . - Y / v  

Figure 1 

is real for every point x in B. (In Figure 1 for simplicity we write 0 instead of 
aQei(n+e+l)x.) We write: 

= s . ( x ) - s , , ( x ) ,  ~ = s m ( x ) - s . ( x ) ,  ,~ = s ~ , ( x ) - s , . ( x )  

ao = CN+I, al = cN+2 . . . . .  a~_ 1 = c,,; ax : Cn+I, a,,+1 = c,+2 . . . . .  ag+;t-1 = %; 

a,+a = %+1, a,+x+l = %+2, . . . ,av-1 = c ~ ,  where v = ~ + 2 + p .  

Since CN+lCMr we have a0a ,_ l~0 .  Then, for every x in B, we have that 

fl'/~5 (fl + Y + c5) is real. This means that the expression: 

(aoe i(~ + l)x + al d(N +2)x + ... + a,,_ l e ~(N +'`)x) (g~e--~(N+~+l)x 

+~x+ l e--i(N +~c+2)x + ... q-~x+ ,~_a e- i(N +x+a) x) (ax+ ;~e i(N +x +a+ l)x 

+ a,+~+le~(N+~+~+2)x+... + a v _ l e  i(N+O~) (~oe-i(N+~) ~ 

+~le- i (N+2)x + ... +~v_le-- i(N +~) ~) 

equals its conjugate, for all x in B. This in turn leads easily to: 

( ao + al elX + . . . + ax-1 ei(~- l)x) ( ax + ;~- i + clx + ;~- ~eiX + ... +ax e/('~-l)x) (a~+~ 

+ as  + ~ + t e ~ + . . .  + av_  t e ~<~ - 1)x) ( ~  _ 1 + a ~ -  z eiX + . . .  + ao e ~ -  1)x) 

= (a~-1 + a ~ - 2 e ~ + . .  �9 +ao ei~-a)x)  (a~+ a~+1 ei~ + . . .  + a~+ ~_1 e~a-1)x) (av-t  

+a~-9,e~+ ... +a ,+~e ~<a-1)~) (ao+ a le~x+. . .  + a~_lei( ' -1)x),  

for all x in B. 
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Let  now c, ,+j=0, j = l ,  2, 3 . . . .  ,q ,  c .+q+a#0  
ag+ 1 . . . . .  ag+q_ l=0  , ax+q~-O. Then we have:  

or, in the new notat ion,  a~=  

(a o + a le  ix + . . .  + a,,_ ~ e i(" - ~)~) (~,, + z -  1 + a x  + ), - 2 e ix + . . .  + ?t,, + q e i(x-  ~ - 1 ) x )  

I [ n  • ,,!, o i x ~ _  ~ _  n ~i(q--1)x_L. a , g iqx  A_  _1_ ,,7 ,o i ( /z - -  1 )x '~  
] [ ~ , x  + A f ~ U +  ~ ,+  1 c U " ' "  ~ ~ U + , ~ + q - - 1  c ! X + A + q  ~ I''" { ~V--I ~ 1 

(2.2) ~(av-1+a~-2efX+... +ao ei(~-1)x) = 
-- -- i x  -- i ( u - - 1 ) x  i x  i ( ,L--  1 ) x  

l ( a ~ _ l + a , _ 2 e  + . . . + a o e  ) ( a , + q + a ~ + ~ + l e  + . . . + a ~ + x _ l e  ) 
~(dv_ l + ~ _  zeix + . . . + ~,+ z e i(u-1)x) ( ao + al ei~ + . . �9 + a~- l e i(v-1)~) e ~ ,  

for  all x in B. 
The second member  of  (2.2) is a t r igonometr ic  polynomial  whose term of  

lowest degree is ~ _ ~ a ~ + ~ _ ~ a o  e~qx. Since the coefficient of  this te rm is not  zero and 
aoa~+z_la~_~#O,  (2.2) gives a .+z=Cm+l=0 .  In the same way we obtain a~+x+l=  

Cm+~=0 , ..., ag+,z+a_l=Cm+a=O andf inal ly  aoa,+.~_la~.+~.+qa,~_l.=ax_lax+qav_lao, 

aoa~_~#O. Hence:  

(2.3) ~+~-la~+~.+q = a~-la~+q or ~nC,,+q+l = C,,Cm+q+l, 

which gives Cm+q+~#0 and completes the p roof  of  (a). 
In order  to prove (b), we set first in (2.2) a .+z=a~+x+~ . . . . .  a~+x+q_~=0. 

Then,  if  0 = m i n  (z, 2 - q , / ~ - - q ) ,  (2.2) takes the form : 

(2.4) (P~ +Qx)(P~ +Q~)(P~ +Qs)(P~ + Q , )  = (P* +Q'~)(P* +Q'~)(P~ +Q~)(P~ +Q~)  

where, 

P~ = P~ (x)  = ao + a~e~X + . . .  + a~- ~e~(~-~)x; 

Q~ = Ql  (X) = aeeie~ + ao+tei(~ ... + a~- l ei(X- ~)x ; 

P~ = P~(x) = ~+~_~+~7~+z_~eiX+ ... +~.+a-eei(~ 

Q~ = Q~(x)  = ~l~:+,z_e- x eiex + ~l~+ ~ , - e - ~ e i ( ~  + l )x  + . .. + a,~ +qei(~-q- ~)x; 

P~ = Pz(x )  = a~+ x+~+ a~+ ~+q+leix + .  .. + a,,+~+q+~-~e~(~ 

Qs = Qa(x)  = a~+ ~+~+oeiO~ + a,+ a+q+o+~ei(~ + . . .  + a~-le~("-~-a)x;  

P~ = P~(x) = 8 ~ _ ~ + g , - ~ d x + . . .  +8~-oei(~ 

Qa = Q4(x)  = ~tv -q- le i~  + .. .  +a0e~('-~)x; 

P* = P * ( x )  = ~ _ ~ + ~ _ ~ e ~ +  ... +~-oe~(~ 

�9 X - " Q[ = Q~ ( ) = a~_e_~ e'O~ + . . .+~0e  i(~-1)~. 

P ;  = P~*(x) = ag+a + ag+~+ leix + .. .  + ag+~+e-lei(O-~)x; 

Q~ = Q * ( x )  = ,, ,,iox~_ a o i ( o + l ) x _ t _  .. + az+ ~_ le i (X -~ - l ) x ;  

* X  Q ,  Q~(  ) = ~,_~_~e~OX+~_o_~e~tO+~)x + . a _ n  o~(,-~-l)~. . . .  1 ~ r  + ~ , + q  ~ , 

Q* = Q* (x)  = a~ e iox + a o + ~ e i(~ + ~)x + . . .  + a~ _ ~ e ~(~- ~)x. 
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Of  course, 

(i) i f  Q = u ,  then Q I = Q * = 0 ,  

(ii) i f  Q = 2 - q ,  then Q 2 = Q * = 0 ,  

(iii) if  ~ = / t - q ,  then Q3 = Q]' = 0. 

For  every x in B (2.4) gives: 

Pj P2P3P4+ PIP2P3Q4 + PIP2Q3(P~ +Q4)+ P1Q,,(P3 +Q3)(P~ +Q~) 

+QI (P2 +Q2)(P3 +Q3)(P~+Q4) = pi P4 p~'p~' + Pa P4P*Q~ 
p p , o * c p , . * • 1 7 7  , o * c ~ * •  * * p,.* * p,.* * p~ * 

1 , ~ . ~ t  3 ~ - ~ j T  ~_~, t  2 -,-e~.,,. 3 + Q : O + Q I (  ~ + Q . ) (  3 + Q ~ ) ( 4 + Q 4 ) ,  

where all the summands, except the first in both  sides, do not contain terms of 
degree less than ~. Since B is nondenumerable,  we conclude that the coefficients of  
the terms of degree less than Q of the trigonometric polynomial 

(2.5) el (x) e&)[P* (x) P; (x)- P~(x) e.(x)], 

are zero. We also have: 

P*(x) P~(x) = (g ,_ l+g ,_~e t~+  ... +g,_eei(O-1)~)(a~+a+... +a ,+q+~_le  i(~ 

= b~ + b~' e i~ + . . .  ~ ~'o- 1~ • I,* ~i(~ - 1)= :~'Q~• t,,~iq~ T• + b'~Q_ 2 e i ( 2 o  - 2)x, 
where 

(2.6) * 

Similarly, the corresponding coefficients b~_l of  P~ (x)Ps(x) are given by: 

(2.7) b~-i s - 1 ,2 ,3 ,  0. :,~j=lax+a_ja~e+a+q_i+s, s =  ..., 

So, (2.5) becomes: 

(a0 + . . .  + a a _ i e i (~ - l )~ )  ( ~  -1  +- . .  +a~ -Qe  i(Q-~)~) [(bg' - b0) + (b* - b~) e ~ 
(2.8) 

_~ _.t_ [ h *  h ~ o i ( q - - 1 ) x . •  " --  . . . .  WQ-l-"o-lJ . . . . .  +(b,~o_a_ b2~_.,)e,(2o 2)~]. 

Since, aoa,_~O and aoS~_~(b~-bo)=O , we have b*=bo. Substituting in (2.8) 
and dividing by e i~ we conclude as before that b* =b~ and in the same manner we 
obtain * b* b2 =be,  ..., q_l=bq_l .  Thus, we have: 

b*_~=b,_~ ,  s = 1 , 2 , 3  . . . . .  q, 

which (in the old notation) are the relations (2.1). This completes the proof  of  
lemma 1. [] 

We pass now to the proof  of the special case of  partial sums lying on exactly 
one circle. More precisely we prove the following theorem: 
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Theorem 2. Assume that there is a nonnegative integer no, such that f o r  n ~ n  o 
the partial sums o f  (1.1) are situated on some circle C(z(x); r(x))  f o r  all x in E, 
where E is a nondenumerable subset o f  [0, 2~). Then, there are, a positive integer 

k,  a real number O and two complex numbers a, b, with ab real, such that (1.1) has 
the f o r m :  

(2.9) P0 (x) + e ~("~ + 1)x (a + be r + a)) ~ ~= o eZ~k"(x + ~1 

where 
Po(x) = Co + el ei~ + . .. + C,o ei""x. 

Conversely, every series o f  the f o r m  (2.9) has its partial  sums s , ( x )  f o r  n>=no 
and f o r  all, except  a f inite number, x~[O, 2~), on one circle i f  and only i f  ~b is real. 

Proof. We may assume that e,o+l#O and e,o+2 . . . . .  C,o+k=O, C.o+k+l~O 
( k = l ,  means C,o+2~0 ). If  e,o+k+2 . . . . .  e,o+k+~=0, Cno_l_k+s+lT~O , lemma 1 gives 

(2.10) s = k  and ~,o+lC, o+k+l=~,,o+k+le, o+2k+l. 

Hence, C,o+2k+~r In the same manner we conclude that the only non zero coeffi- 
cients of (1.1) with indices greater than no are the C,o+l+j k, j = 0 ,  1, 2, 3 . . . . .  It 
will be convenient to use the notation: 

a j = e , o + l + j k ,  j = 0 , 1 , 2 , 3  . . . . .  

In the new notation (2.10) becomes a0a~ =a~a2 and similarly: 

(2.11) a~aj+ 1 = aj+laj+2,  j = O, 1,2,  3 . . . . .  
1 

For everyj(2.11)gives [as.l=laj+~[ and i fwese t  a~=aoco, then [o~[=1 i.e. ~ = ~ .  
O9 

Since aor  a0ai=32a3 implies a3=a~o~ and using induction we obtain: 

(2.12) a2j = aor j, a2j+1 = alo~ j, j = O, 1, 2, 3 . . . . .  

Thus, (1.1) has the form: 

Co + cl e ix + . . .  + e. o e i"~ + ei(.o + ~ )x ( ao + al eik~ + ao toe 21k~ + al o~e 33~ + . . . )  
(2.13) 

= Po(x)+ei("~ + al elkx) ~aT=O e2ikn(x+a) 

where ~ is a real number such that e2~ka=co. Setting ao=a,  a l e - i k ~  we obtain 
(2.9) from (2.13). From ~oa~=Yqa2 and a2=ao e2ika we have: ~ b = ~ o a l e - i k a =  
a~aoe2ikae-ika=a~, i.e. ~b is real. 

Conversely, it is obvious that it suffices to consider the series: 

( a + be *~) ~,7=0 e~;*"x" 
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For  this series we have: 
a + be lkx b + ae ~k': 

S~n(X ) = l_e2ik x l_e~ikx e ik(~"+l)~, 

a + be ikx 
S(~+I)k(X) = l_e~ik x 

a + be tkx eik(zn+ 2)x ' 
1 - -  e 2ikx 

for every but a finite number xC[0,2rr). Thus, for these x's, the S2kn(X)'S 
are situated on the circle with centre ~ (x )=(a  +beik~)/(1- e 2ik~) and radius r a (x )=  
I(b+aeik~)/(1--e2ik~)l. Similarly, the S(z,+I)k(X)'S lie on the circle with the same 
centre and radius r2(x)-----I(a+beikX)/(1 --e~ikx)l. These two concentric circles coincide 
if and only if ~b is real, as one can easily verify. This completes the proof  of theo- 
rem 2. [] 

3. The general case 

We divide the proof  of  theorem 1 into five steps. 

Step 1. There exist, a nondenumerable subset E* of E and two positive integers 
m, no, with the following property: 

For  each x in E*, there are m complex numbers zj(x) and m positive real num- 
bers rj (x), j =  1, 2, ..., m, such that:  

(i) n>=no implies that s,(x)~U~=l C(zj(x); rj(x)) and for each x in E* and 
e a c h j  in {1, 2, ..., m}, card {n: s,(x)~C(zj(x);  r j (x) )}= oo. 

(ii) If  x~E* and jE{1, 2 . . . .  , m}, then there is n = n ( x , j ) < n o ,  such that 
s,(x) lies on C(zj(x);  rj(x)) (this will permit us to apply lemma 1 with n>=no). 

Proofi We know that for each x in E there are M(x) complex numbers and 
M(x)  positive real numbers, which we enumerate in an arbitrary manner as zj(x), 
rj(x), j = l ,  2 . . . . .  M(x),  such that, for all n =0 ,  1,2, . . . ,  the partial sums s,(x) 
of (1.1) lie on the union of the circles C(zj(x); rj(x)). We fix x in E and consider 
the set: 

A(x) = {jC{1, 2, ..., M(x)}: card{n:  s,(x)~C(zj(x);  rj(x))} = ~ } .  

If  m(x)=cardA(x) ,  then A(x)  can be writen as: A(x)={ i j ,  i2 . . . .  , ira(x) }, We set: 
C1 (x)=C(z, ,  (x); rq (x)),. . . ,  Cm(x)(x)=C (z,.~,x, (x); r,m,x ' (x)). As one can easily verify 
there is a (minimum) positive integer k(x), such that: 
(a) n>=k(x) implies s,(x)(Cl(x)u. . .wC,,(x)(x) .  
(b) For  each j -~ l ,  2 . . . .  , re(x), card {n: s~(x)(Cj(x)}=o~. 
(c) For  each j = l ,  2 . . . .  , re(x), there is n = n ( x , j ) < k ( x ) :  s,(x)6Cj(x).  

As in the proof  of lemma 1 we see that there is a nondenumerable subset E* 
of E and two positive integers m, no, such that, for all x in E*, m ( x ) = m  and k ( x ) =  
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no. It is evident from (a), (b), (c) that m, no and E* satisfy the properties (i) and (ii). 
This completes the proot of  step 1. [] 

From now on we shall assume, as we may, that E itself satisfies (i) and (ii) 
of  step 1. 

Step 2. The following assertion is an essential part of  the proof. 

Assertion. There are, a nondenumerable subset Ea of  E and positive integers 
v, kl ,  k2 . . . . .  k 2 m  , with no<=v<kl<... <k2m, such that: 

O) c,#O. 
(ii) For all x in E t the partial sums s~(x), Sk~ (X), ..., Sk~,~ (X) lie on one o f  the m circlea 

mentioned in step 1. We denote this circle by C(z(x); r(x)). 
(iii) There are 2m real numbers 3Q, 0 = 1, 2, ..., 2m, such that for all x in El, 

(3.1) 
) = . ,  

q = k e ,  Q = l , 2  . . . . .  2m, 

The proof, which depends heavily on lemma 

(D e : e i ( q - v ) ( x + ~ ) ,  

j = o ,  1. 

l, will be given in paragraph 4. 

Step 3. Let r, p, s positive integers, r>=no, and ~p a real number. If  for all 
x in /71  
(a) s,(x), s,+p(x) lie on one of the m circles, and this circle is concentric to 

C(z(x);  r(x)) mentioned in step 2; 
(b) s ,+p_ i (x ) - - z ( x )=(s ,_ i ( x ) - - z ( x ) ) e  ip(x+~), j = 0 ,  1; 
(c) c, 0; 
(d) c,+x=c,+~ . . . . .  c ,+s - l=0 ,  c,+s#0,  
then, for all x in El; 
(e) s ,+p+s (x ) - v ( x )=( s ,+s ( x ) - z ( x ) ) e  ip(x+~), and 
(f) c,+p+l=c,+p+2 . . . . .  cr+~+~_l=0, c ,+~+~0 .  

Proof. (a) allows us to apply lemma l, which gives (f) and 

(3.2) ~,c,+~ = ~,+pe~+p+~. 

Subtracting the two relations ( j = 0 ,  1) of (b) we obtain: 

(3.3) c,+pe ~('+p)~ = c,e~'~e~P(~+~'), i.e. c,+p = c,e ~pq'. 

(3.2), 0 .3)  and (c) imply: 

(3.4) c,+p+s = c,+,e ~p~. 

Now (e) is an immediate consequence of  (b), (3.3) and (3.4). [] 

Step 4. In this step we prove that the series (1.1) has the desired form (1.2). 
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Proof. It suffices to show that 

(3.5) G+,-~ = c,  d(~-v)a, /~ = v, v +  1, v + 2  . . . .  

with •  9=Sx  (kl, ~1, as in step 2). Indeed, if (3.5) holds, then, 

(3.6) c,+~(~_~) = cl,03z . . . . .  G+a(~-,) = c, 03~ . . . .  , 

where 03=e i(~-*)a and /~=v, v + l ,  v + 2  . . . .  , : e -1 .  
Thus (1.1) takes the form: 

co + c l  eix + . . .  + cv - 1 ei(V - 1) x + Cv ei~X + . . .  + c~_ 1 e ~r - 1)x 

+ c v roe ixx-}- . . ,  q- c~_ 1 03ei (2~-v-1)x  + cv 032e ffax_v)x q_... 

= Po(x)+ei 'Xp(x)  S '*~ (03e~(~-,)x)~, 
/.,.13.= 0 

(3.7) 

and 

(3.8) 

s q + ~ ( x ) - z ( x )  = (s~+s(x) -z (x) )e ' (~-o(~+~) ,  q = kQ, 0 = 1, 2 . . . .  , 2 m ,  

cq+l=cg+2 . . . . .  ca+~-i =0,  c q + ~ 0 .  Obviously (3.1) and (3.7) imply: 

s a + s ( x ) - z ( x )  =(S~+s(X)--z(x))03o, q = k s ,  0 = 1,2 . . . . .  2m; j = - l , 0  . . . . .  s. 

(3.7) means that for all x in E1 the partial sums sq+s(x), q = v ,  kj  . . . .  , k2m lie on a 
circle Cs centered at z(x), which a priori may not  be one of the m circles mentioned 
in step 1. But evidently at least three among the above (2m+ 1) partial sums lie 
on one of these m circles, which implies that C~ is indeed one of them. So, we can 
apply the result of step 3 again, with r = v + s ,  p = q - v  and ~0=~,  q = k e ,  
~ = 1 , 2  . . . .  ,2m. It follows that if c~+s+l . . . . .  c~+,+,_1=0, c~+~+,~0, then, 

c~+,+1 . . . . .  %+~+,_1=0, c~+,+t~0, q = k ~ ,  Q=l ,  2, . . . ,2m and for all x in El 

0 . 9 )  = q = Q = 1, 2 . . . . .  2 m ;  

j = - 1, 0 . . . . .  s + t .  

Thus, for all x in El,  the partial sums sq+~+t(x), q = v ,  k~, ..., k2m, lie on one circle 
centered at z (x), which by the same argument as before must be one of  the m circles. 
Continuing in the same way we see that (3.9) holds for all j =  - 1, 0, 1, 2 . . . . .  

To prove (3.5), we consider (3.9) for q = k l = g ,  and ~1=~ (i.e. 03a =d('-v)(~+~)). 
Subtracting now the corresponding equalities for j = / z - v - 1  and j = p - v ,  we 

which is (1.2). 

In order to show (3.5) we recall first that Z - k l > V .  If  now cv+ 1 . . . . .  cv+s_ 1 =0,  
cv+sr then, by step 2, the hypotheses of  step 3 are fulfilled with r = v ,  p = q - v  
and ~0=~Q, where q = k ~ ,  Q = l , 2  . . . .  ,2m. 

Hence, for all x in E 1 
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obtain .  
cu+~_vet(~+x-v) x = cae~Xe~(X-v)(x+a), 

which is equivalent to (3.5). [] 

Step  5. Here we complete  the p roo f  o f  theorem 1, by showing that  there is a 
positive integer m, such that,  for  all but  a finite number  of  x's in [0, 2~t), the partial  
sums s , (x )  of  (1.1), with n=>v, lie on exactly m concentr ic  circles. 

Proof. So far we saw that  the series (1.1) has the form (1.2) f rom which we 
shall conclude the desired results. It  is obvious that  it suffices to  consider a series 
o f  the form:  

(3.10) Pl(x) ~ = o  e'k"~ , 

where P l ( x ) = a o + a l d ~ + . . .  +ak_~d  (k-~)~, for  some positive integer k. 
I f  we set: 

e~(x) = Px(x), 

(3.11) P~(x) = ak_x + aod x + . . . + a k _ ~ d  ok-l)', 

P3(x) = ak -2+  ak-adx + . . .  + ak -3d  (k-1)x, 

Pk(x) = al + a,ze ~x + . . . +  aoe i(k-1)~, 

n=O,  1, 2, 3 . . . . .  the partial  sums of  then,  for  x r  2 r c / k , . . . , 2 ( k - 1 ) r r / k  and 
(3.10) are given by the formulae:  

P~(x) Pdx) ei(k.+~)x, 
&, + k- 1 (x) -- 1 - e ~kx 1 -- e ~kx 

Pa(x) Pz(x) ei(k,+k_l)x, 
&,+k_~(X) = l_e~k~ l_e tk~  

P I ( X )  P k ( X )  ei(kn+l)  x 
&,(x )  = 1 -- e ~ 1 -- e ~k~ " 

(3.12) 

(3.12) means that  for  these x's the partial  sums of  (3.10) lie on a finite number  of  
concentric circles with common  centre 

(3.13) 

and radii :  

(3.14) 

z ( x )  = 
Pdx) 

1 - -  e ikx 

r j (x)  -- IPi(x)/(1--dk~)l,  j = 1, 2 . . . . .  k.  
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It remains to show that for all but a finite number of x's in [0, 2re), the cor- 
responding number of circles is constant. 

If  i r  i, jC {1, 2, ..., k}, then, ri (x)=rj(x)  if and only if the trigonometric 
polynomial P i ( x ) ~ ( x ) - P j ( x ) P j ( x )  equals 0. It follows that, either the above equa- 
tion has a finite number of solutions in [0, 2n), or it holds for all x. Let 
r jl (x) . . . .  , rj~, (x), be representatives of the equivalence classes of the relation: 

"ri(x) = rj(x) for all x".  

Then, to all x in [0, 2re)-{0, 2n/k . . . .  , 2 (k -1 )n /k} ,  except the finitely many solu- 
tions of the equations r i , ( x )=r j (x ) ,  t ~ s ,  t, sE{1, 2 . . . . .  m}, correspond exactly m 
circles. This completes the proof of theorem 1. [] 

4. Proof of the assertion of w 3 

In step 1 of paragraph 3, we saw that there exist a nondenumerable subset E 
of [0, 2n) and two positive integers m, no, such that for each x ~ E  there are m 
circles with the property: On each of  them lie infinitely many partial sums s,(x) 
of the series (1.1), with n>=no, and at least one with n---n(x)<no. So, we can apply 
lemma 1 with n =>no. 

We remark that the above m circles are not supposed to be concentric (this is 
true, but the proof given in paragraph 3 used the assertion we are going to prove). 
We also recall that for each x ~ E  the partial sums s.(x) are "essentially" distinct 
complex numbers. More precisely: 

s.(x) --- s,+k(x ) if  and only if c,+1 = c.+~ . . . . .  e,+k = 0. 

For each x in E we enumerate, in an arbitrary manner, the m circles correspond- 
ing to it: C1 (x), C2 (x) . . . . .  Cm (X). 

We may obviously assume that c,0~0. The existence of zero coefficients in 
the series (1.1) causes some technical difficulties. To avoid them we shall work 
with partial sums s.(x) with e . r  So, we let nl be the smallest integer greater 
than no such that c.1#0, n2 the smallest integer greater than nt such that e . ~ 0  
and so on. 

It will simplify the exposition of the proof if we introduce a function F defined 
on the set E, as follows: 

V(x)  = (to, t~ . . . . .  tN), 

where tj, j = 0 ,  1, ..., N, is the smallest integer in {1, 2 . . . . .  m}, such that s.j(x) 
belongs to the circle Cts(x), and N = 4 ( 2 m + l ) 2 m  2m+~, The r.eason behind thi~ 
choice .of N will be clarified Jn a ~gm_ela~, 
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Since F takes at most m N+I values and E is nondenumerable, there is a non- 

denumerable subset E0 of E such that: 
For  all x in E0, F has a constant value, say 

F(x)  = (Vo, vl . . . . .  % - 0 ,  

where Vq----(tq(2m+l), tq(2,n+X)+l . . . .  , tq(2m+l)+2m), q =0 ,  1 . . . . .  p - 1  and 

p = 4 (2m+ 1)m 2m+1. 

We observe now that the set of  possible Vq'S is independent of  q and has m ~m+~ 
elements. This implies that at least p/m 2m+ ~ = 4 (2m + 1) va's are identical. This means 
that there is an increasing sequence of non negative integers q0, ql, ..., q4(2m+~)-1, 
such that: 

�9 , t2m), # = 0, 1 . . . . .  4 (2m+1) - -1 ,  % = (t~,  t ~ , . .  * 
where 

(4.1) t* =-- tqo(Zm+l)+j , j = O, 1 . . . . .  2m. 

(4.2). Since t* takes m values, 1, 2 . . . .  , m, and j 2m + 1 values, 0, l, ..., 2m, there 
are i, j i n  {0, 1 . . . . .  2m}, with s=j - i>=2,  such that t*=t~. 

We pause for a moment to say a few words about the significance of  our results 

for the partial sums of  (1.1). If we write 

q , ( 2 m + l ) + i : v , ,  # = 0 , 1 , . . . , 4 ( 2 m + 1 ) - - 1 ,  

then the partial sums of (1.1) with indices nk, v, -< k -< v~ +s,  follow a succession of  cir- 
cles, which is independent of it. More precisely, using also (4.1) and (4.2), for all x in 
E 0 and 2 in {0, 1 . . . . .  s}, the partial sums with indices nv~+x, # =-0, 1, ..., 4 (2m + 1 ) -  1, 
lie on the circle C%+z (x) and for each x in E0 if 2 = 0  or s these circles coincide 

(see remark 5 for the geometric interpretation). 
To conclude the proof  we shall choose (2m+ 1) numbers, among the 4 (2m+ 1) 

n~,+~'s with 0=<#<4(2m+1),  say v, k l ,  k2, ...,k2m, so that ( i i i )o f  the assertion 
holds. We note that the way we defined n,~+l guarantees automatically the validity 
of (i) and (ii) of the assertion. 

The crucial step to achieve this choice is the following lemma: 

Lemma 2. I f  
(i) % % f 0 ,  j = 0 ,  1 . . . . .  s + l ,  

(ii) %+1 . . . . .  c,j+tj=O, l j=r j+l - - r j - -1 ,  
%+1 . . . . .  cpj+l; =0, l j = p j + ~ - p j -  1, j=O,  1, ..., s, 

(iii) for  all x in Eo, s,s (x), sp~ (x), j = O, 1, ..., s, lie on one o f  the m circles, 
(iv) for  all x in Eo, s,o(x), s, (x), Spo(X), Sp (X), lie on the same circle whose centre 

we denote by ~(x), 
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where ro<rl<. . .  <rs,  p o < p l < . . .  <ps,  s=>2, and no<=ro<=Po, then, 
(v) lj =l~, y = o ,  1 . . . .  , s, 

(vi) i f  Cpo=C,oCO, then l~l can take only the values 1, c,xc,3 1l~, 
I ero Cr~ I 

(vii) i f  Io~l = 1 and we write ~o=e/tpo-ro)a, 
spo(x)--z(x)=(Sro(X)--z(x))e~',  8, ~p real numbers, then, either 
(p=(po-ro)(X +O)(mod 2~), or 

q~ = {(Po-- ro) (x + 8) - 2 Arg [(Sro (X) -- �9 (X)) (S,, (X) -- Sro (X))] } (mod 2=). 

Pro@ To simplify the notat ion we write: 

crs = a j ,  cvj = by, j = O, 1 . . . . .  s + 1 ; a = a(x) = Sr,(X)--Sro(X), 

b = b (x) = s, .  ( x ) -  S,o (x), ,4 = A (x) = Sro (X)-- Z (X), a = B (x) = spo (x)-- �9 (x), 

~' = (po--ro)(X+,9) and 6 = Arg [(Sro(X)--Z(X))(S,.(X)--Sro(X))] = Arg (A~). 

The hypotheses (i), (ii), (iii) and lemma 1 give (v) and 

(4.3) b jb j+l  = djaj+l ,  j = 0, 1 . . . . .  s. 
al 

Since, in the new notation,  bo=aoO~, (4.3), with j = 0 ,  implies: b~=-:-_. Sub- 
w 

stituting b~ in (4.3), with j = l ,  we obtain: bs=a2o~. Continuing in the same way 
we have: 

(4.4) bsj = a~j~o, b~i+l = as~+x , max(2j ,  2 i + l ) < = s + l .  

Case 1. "10r Let  lo<12 (in the opposite ease the proof  is essentially the 
same). Applying (2.1) of  lemma 1 we obtain: 

or, 
l o terms l o terms 

which, by (4.4), gives ~oas=~oa2O~, i.e. ]~o[=1. 

Case 2. "l  o = l~". 

Hence, 

Applying again (2.1) of lemma 1 we obtain as before: 

ao as +a l  a3 ----/~o bs +/~1 b3. 

ao as + al a3 = ao as I~ol s + (al aa)/Icol s, 
o r  

- a l ~  
(1 - , ~ o l s ) / a 0 a 2 - - ~ )  = O, 

from which (vi) follows immediately. 
If  now Io~l=l, i.e. U=l /co ,  then (4.4)implies bj=ajog, or 

(4.5) cps = c, sto, j = O, 1 . . . . .  s + l  
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(4.5) with (v) and og=e i(p~176 give 

b = azogeivox+ ... + ascoeip, x = acoei(po-"o )x : ae iv. 

From (iv) we have I A + a l = l B + b ] ,  which together with the obvious relations 
IAI = ln l ,  lal =lb[, implies Re (A~)=Re (B/~), or, Re (ela)=Re (d[a+(~'-v)]). Hence, 
~P = 7 (mod 2z0, or ~o = ( ? -  26) (rood 2zr), which are the desired relations of (vii). [] 

We return to the proof of the assertion. 
Let 

I = {0, 1, 2 . . . . .  4(2m+ 1 ) -  1}, 

: = { 0 , 1 , 2  . . . . .  s}. 

We saw that if 2C J, then for all x in E0 and for all # in I the partial sums of (1.1), 
with indices n~+z, lie on one of the m circles and the circles corresponding to 2 =0  
and 2 =s  coincide. We denote the centre of this circle by -c (x). We have also e,~,,+z ~ 0. 

Thus, lemma 2 applies and gives a partition of I in two se t s /1 , /2 ,  defined as fol- 
lows: I f  c % = c % o 9 ~ ,  then, Ii={ktCI: 1c9~[=1}, and I 2 = I - I 1 .  By(v i )o f lemma2,  

I 2 = { u ~ I :  I % 1 = ~ } ,  ~ = % ~ 2 4 7 2 4 7  . Since c a r d I = 4 ( 2 m + l ) ,  oneof these  two 
Cnv o Cnvo+ 2 

sets has cardinality at least 2(2m+1). Let po</~<...</t2(2,,+1)_~ be the first 
2(2m+ 1) elements of this set and denote by I* the set {Po, P~ . . . .  , P2(2m+a)-~}. It is 
trivial, if I * c I ~ ,  and very easy, if I*=I2,  to see that 

(4.6) Ico~l = I%/Caol = 1, /b  = n % ,  j = 0, 1 . . . . .  2 (2m+ 1)-1 .  

Hence: (a) There are 2(2m+1) real numbers 8j, such that 

(4.7) o9~ = e~(t~J-Po)as, j = 0, 1 . . . .  , 2 ( 2 m + 1 ) - 1 .  

(b) If  we write 

(4.8) sp , ( x ) - - ' c ( x )  = (Spo(X)-- 'c(x))d~'s,  j = 0, 1 . . . . .  2(2m+ 1)-- 1, 

~oj real numbers, then, (vii) of lemma 2 gives that for fixed x in E0, the set I* is 
partitioned in two sets I~ (x), I ;  (x), as follows: 

I * ( x )  = {#jC I*: q~j = ( f l j - f l o ) ( X + O j ) ( m o d  2n)}, 

I*(x) = I* -1~(x ) .  

Obviously, one of these two sets has cardinality at least 2 m + l .  Let i0 < 
i , < . . . < i 2 =  be the first 2 m + l  elements of this set (which depends on x) and 
kQ(x) =n~ +1, 0 =0, I, ..., 2m. Since the number of possibilities for 

(ko (x), kl (x),..., k2m (x)) 
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is finite and Eo is nondenumerable, there are, a nondenumerable subset E~' of Eo 
and 2 m + l  positive integers k o < k l <  . . .<kz,,, ,  suchthat ,  for all x in E~', 

k0 (x)  = k0, kl (x)  = kl . . . . .  k2m (x)  = k~m. 

Since, for each x in E~, keCI*(x)  or k~CI~(x), for all Q =0,  l,  ..., 2m, and E0* 
is nondenumerable, it follows that one of the sets: 

E ;  = {xEE~: keEI~(x) ,  Q = O, 1, 2 . . . . .  2m}, 

El*  = E ; ~ - E ?  = {x~Z~:  ~oEX~(x), 0 = o, 1 . . . .  ,2m} 

is nondenumerable. We call this set E1 and we have: 

Case 1. Let E~=E*.  We observe that, for all x in Eo, poCl~(x). Thus, since 
ko~.I*(x), Sko_I(X)=Spo(X). Using the same notation as in the definition of I~(x)  
and the above observation, we have: 

(4.9) Sk,-I(X)--~(X)  = (Sko-l(X)--Z(x))ei%, % = (ko--ko)(X+O'o), 

= 1, 2 . . . .  ,2m, where 8~ is defined as follows : "For each Q the definition of kQ 
implies the existence of an index j,  J=J(o),  with ie=/~j; we put 8~ =8j ,  where Oj 
is given by (4.6), (4.7)". 

The definition of O~ and (4.5) imply 

(4.10) Ckr t = Cko ei(k~-k~ Q = 1, 2 . . . . .  2m. 

Case'2. Let E~=E~*,  then we have: 

(4.11) Sk _~(X)-- Z(X) = (Spo(X)--z(x))e ~r ~o" o = (ko-- f lo--1)(x  +O'o)-- 26, 

Q = I, 2 . . . . .  2m, 3~ is defined as before and ~ is a real number (independent of 0; 
see (vii) of lemma 2). 

(4.11) implies 

(Sko_I (X)-- Z(X) )/(Sko_I (X)-- Z(X)) = ei(*'-~'o), 
or~ 

Sk _ l (X) - - ' f  ( x  ) = (8k._ l (X ) - -  ~ ( x ) ) e i % ,  
where 

% = q,o - ~Oo = (k ,  - ko) x + k~ 0 ~ -  ko 0 o -  (/~o + 1) (0 ,  - 0o) = ( k , -  ko) (x  + 05) ,  

�9 ' ' ,  t !  t �9 t �9 - - 1  e = 1, 2, 2m and 0~ = [k~e-ko~o- ( f lo+ l ) (0e -0o) ] (ke -ko)  . 

Also, (4.5), (4.6), (4.7) imply 

ck, = Cao+ le  ~(k'~-a~ Q = O, 1 . . . . .  2m, 
which gives 

CkJeko = e i[koa'e-koo'~ l)(a~-a~ = e ick~-ko)a~, Q = 1, 2, ..., 2m. 
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Thus, we have again (4.9), (4.10), with 3~ instead of 0~. It follows that in either 
case, if we write 3~ for B e, 0Q, we have: 

(4.12) S k - I ( X ) - - Z ( X )  = (Sko_~(X)--Z(X))d(k,--kO)(X+a,), e -= 1, 2 . . . . .  2 m .  

(4.12) and (4.10) give 

sk , ( x ) -  z(x) = % _ d x ) -  T(x) + % ei~o x 

= (8k, - 1 (X) --  Z (X)) e i(k, - ko)(x + 0 o) -/- Cko ei(ko -- ko) as e ik~ 

= (Sko(X)--'C(x))ei(ko--k*• 

This relation combined with (4.12) gives that for all x in/71, 

s q _ j ( x ) - - z ( x )  = ( s ~ _ j ( x ) - -  z ( x ) )co  o, o) e = e i(q- ')(~+%), 

where q = k  o, 0=1,  2 . . . . .  2m, v = k o ,  j = 0 ,  1, i.e. (3.1). This completes (iii) of the 
assertion and the proof is finished. [] 

5. Remarks 

1. The theorem of Marcinkiewicz and Zygmund, given in w 1, suggests that it 
would be natural to assume in theorem 1 that the circles are concentric. This hypoth- 
esis would have made the proof somewhat simpler, but as we have already seen it 
is not needed. 

2. From (1.2) we see that if lzl< 1, then the function 

e(~) = 2 L o ~ . ~ "  

is a rational function of a special form. More precisely we have: 

a(z) 
F ( z ) =  l_(~z)X_ ~, 

where Q ( z )  is a polynomial of degree less than z and ~__ga. Thus, (1.1) becomes: 

Q ( e  ix) ,~  ]~ 0 e iz("-~)(~+~ 

Conversely, it is easy to see that every rational function of the form: 

F(z) = e(~) 27=0  z~", 

where _P(z) is a polynomial, not necessarily of degree less than/~, can be written, for 
z = e  e', in the form (1.2). 
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k is also easy to see (using arguments analogous to those in step 5 of w 3) that 
if we multiply in the obvious way P(e i') with ~ e i~x, then the resulting series is 
(C, 1) summable to F(eiX), which in turn coincides with the common centre ~(x) 
of the circles referred to in theorem 1. 

The general case of a rational function F presents interesting problems, which 
will not be considered here. We note only that, as expected from theorem 1, it is 
easy to find examples of  rational functions whose partial sums do not lie on a finite 
number of circles (see [3] V.II, p. 180, example (iii)). 

3. There are interesting problems concerning degeneracy related to the number 
of circles in theorem 1. More precisely, considering the simpler form (3.10), under 
what conditions on Pl(x) this series leads to 1, 2, ..., k circles, i.e., taking into 
account (3.14), under what conditions some relations of the form IP~(x)l=lPAx)l, 
i#j, i ,j= 1, 2 ..... k ,  hold. We shall not examine here the general case, but we give 
some partial results in this direction: 

(i) If  I~(x)l-II'j+l(X)l-lPj+~(x)l, for some j = l ,  2 . . . .  , k (if j = k - 1 ,  then 
Pj+~(x)=Pt(x) and if j=k,  then Pj+l(x)=P~(x) and Pj+2(x)=P2(x)), then all 
the circles coincide (a ,~0,  see (3.11)). 

(ii) Theorem 2 gives the necessary and sufficient conditions in order that the 
number of circles reduces to 1. We can also give the corresponding theorem in order 
to have exactly two circles. 

" I f  the series (1.1) has one of the following forms (with the usual notation): 

(or) (a + be fk(~+~)) ~'~'=o ei"(k+m)(~+a), 

(fl) ( a + be ~k('+a) + ce '(t+"O(=+~)) Z~=0 eln(k+m+q)(x+a)' 

(~) (a + beik('~+~) +ce*aO'+O) + delkCm+~)(x+o)) ~ = o  e2ik"(m+x)(*+a), 

(6) (a + beik(x +:~)-l-ce~k(m + l)(x+a) + dee~(m+ 2)(x+~ 

+ f  e2ik(m+a)(~+~ Z~=0 e'k"(3m+2)(~+a), 

then, the partial sums of (1.1) lie on exactly two circles, if and only if: 
m # k or Kb is not real, in case (cO, 

(q=m and ~e=b~) or (q=k and ~e=ab) if  k#m,  
(q=k and ~b=~c#~a or 6c=6a#~b or ~c=a~#b~) or (q~O,k and 

~b=[~c) if k=m, or (q=O and (a+c)~ is not real), in case (/~), 
(~b=~c and bd=-b~) if m > l ,  
(~b=~c#~d and ~d=b~) if m = l ,  in case (~), 
( b = a ~  2, e=ao9, cl=a~,f=ao9 ~, where o9r 1 satisfies the equation o9~+~= 

2o9~ 2) if m = 1, 
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(b=acn3/2, c=ao~, d=aco4/4, f=ao9 2, where ~o satisfies the equation oJ8=16) 
if m >  1, in case (6). 

Conversely, if the partial sums of (1.1) lie on exactly two circles, then (1.1) has 
(possibly with trivial modifications) one of the above forms". 

4. It is easy to see that when the series (1.1) has the form (1.2), or when it is 
the sum of two or more series of the this form, or it differs from such a series by a 
convergent series, then its partial sums have uniform "angular distribution". By this 
we mean that given an angle with vertex z(x) and opening ~, 0 < ~ < 2 n ,  then for 
all but a denumerable number of x's, 

l im @- ~o(N, x) = 2@e,  

where ~o (N, x) is the number of partial sums s, (x) with n <= N, which lie on this 
angle. This is obviously equivalent to the uniform distribution of the sequence 
{arg [s, ( x ) -  ~ (x)]}. 

5. It will be helpful to interpret geometrically the proof of the "assertion" 
given in paragraph 4. We take for definiteness m = 6  and represent each of the 6 
circles by a straight line (Figure 2). 

The main idea of the proof consisted in finding a nondenumerable subset Eo 
of E, such that for all x in E 0 the polygonal line with vertices s,o(x), s,1 (x), . . . ,  
follows the same succession of circles and contains "sufficiently many loops". By 
loop we mean a connected part of this polygonal line whose endpoints lie in the 
same "straight line". This succession corresponds to the constant value 

(v o, vl . . . . .  vp_l), p = 4 . 1 3 . 6  la = 679 156 088 832, 

of the function F on E0. 
In figure 2 Vqo is Vl, vql is v3, . . . ,  where vq,  /1=0, 1, ..., 4 .13--1,  are as in 

w 4 and the boldface parts of the graph represent the 52 =4  (2m + 1) "loops" found 
in (4.2). 

In the rest of the proof we chose first 2(2m + 1)=26 loops whose correspond- 
ing sides have the same length and finally, reducing E0 to El,  we chose 2m+ 1 = 13 
loops which are completely identical, i.e. one follows from the other by rotation 
about z(x). In figure 2 these are the shadowed loops. The numbers v, kl, k2, ..., k2,,, 
of w 4, are the indices of the partial sums corresponding to the endpoints of the 
first sides of the above loops (we could as well have chosen any other vertex of 
these loops). 

We finally remark that, by geometric arguments, we could simplify the proof 
1~ little by avoiding the reduction from Eo to E~. 
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Figure 2 

Added to theproof After this paper had been written some questions and remarks 
of J.-P. Kahane and V. Nestoridis clarified further the role of  the cardinality of  the 
set E in theorem 1. More precisely, it can be shown that in theorem 1 the hypoth- 
esis " E  nondenumerable" can be replaced by "E  infinite", if we assume that the 
number of  circles has an upper bound independent of x (it is easy to see that the 
hypothesis "E  finite" is not sufficient). The example (communicated to the author 
by V. Nestoridis) ~ ' ~ 0  ei"(~ x in [0, 2~), for a convenient choice of  the real 
number q,, shows that "E  nondenumerable" is essential in theorem 1. 
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