On an extremal configuration for capacity

K. Haliste*

1. Main theorem

It is well known that the capacity of a closed set E on the (unit) circle is decreased by circular symmetrization [1, pp. 31—36]. Thus, if the length mE of E is E, we have the estimate cap $E \ge \sin(L/4)$ [1, p. 35]. How large can cap E be, if E and E consists of a given number of arcs, E arcs? The maximal configuration is given by a set E of E arcs of equal length, E, "regularly" or "symmetrically" distributed around the circle.

Theorem 1. Let $E^* = \bigcup_{k=0}^{n-1} \{ \exp(i\vartheta) : -L/2n \le \vartheta - 2\pi k/n \le L/2n \}$ and let E be a union of n arcs on the unit circle of total length L. Then

(1)
$$\operatorname{cap} E \leq \operatorname{cap} E^* = (\sin(L/4))^{1/n},$$

with equality for $E=E^*$.

A proof of this theorem follows from work of Dubinin's [2]. He proved a conjecture by Gončar for harmonic measure by introducing a process called desymmetrization, which can also be used for transforming E^* to E and for comparing the capacities of these sets.

In terms of equivalent characteristics of E and E^* , the inequality in Theorem 1 can be stated for *Robin constants*, (see [1, p. 30]), γ of E and γ^* of E^* , as

$$\gamma^* \leqq \gamma,$$

and for reduced extremal distances, (see [1, pp. 78-80]), as

$$\delta(0, E^*) \le \delta(0, E).$$

^{*} Research supported by the Swedish National Science Research Council.

98 K. Haliste

In fact, by the references just cited,

$$\gamma = -\log \operatorname{cap} E = \pi \delta(0, E).$$

The last equality is valid for sets on the unit circle. The inequality (1) was conjectured by the author after considering relations between harmonic measure and reduced extremal length, cf. [4, Cor. 1, p. 6].

2. Proof

Desymmetrization. We shall apply a variation of Dubinin's desymmetrization procedure, so as to transform E^* to E and E^* to E, E denoting complements w.r.t. the unit circle. His procedure consists of dividing the complex plane E into a finite number of suitable angles and rotating these in an appropriate manner. Let $E_k^* = \{z : \arg z = 2\pi k/n\}$ and $E_k = \{z : \arg z = \alpha_k\}$, $E_k = \{z : \arg z = \alpha_k\}$ is called an angle. Dubinin's Lemma 1 [2, p. 273] contains the following statements a), b), c).

There exist a finite number of pairwise disjoint angles P_k and rotations $\lambda_k(z) = z \exp(i\theta_k)$ (θ_k real), k=0, 1, ..., N-1, having the following properties:

- a) $\bigcup_{k=0}^{N-1} \bar{P}_k = \mathbb{C}$, $\bigcup_{k=0}^{N-1} \bar{S}_k = \mathbb{C}$, $S_k = \lambda_k(P_k)$;
- b) the ray L_k^* is the bisectrix of the angle P_k and $\lambda_k(L_k^*) = L_k$, k = 0, 1, ..., n-1;
- c) if $\bar{S}_k \cap \bar{S}_{k'} \neq \emptyset$, then the common boundary ray of the angles S_k and S_k' is the image under the mappings λ_k and $\lambda_{k'}$ of two boundary rays which can be obtained from one another by a finite number of reflections with respect to straight lines through the origin, forming angles which are integer multiples of π/n with the real axis.

Dubinin [2, p. 273] calls a domain D symmetric if it is symmetric with respect to the rays $\{z: \arg z = \pi k/n\}, \ k=0, 1, ..., 2n-1$. A function u(z) defined in a symmetric domain D is called symmetric if the sets $\{z: u(z) = a\}$ are symmetric. The desymmetrization \tilde{D} of a symmetric domain D is defined by $\tilde{D} = \bigcup_{k=0}^{N-1} \lambda_k (D \cap \bar{P}_k)$ and the desymmetrization \tilde{u} of u is defined by $\tilde{u}(z) = u(z \exp(-i\theta_k)), \ z \in \tilde{D} \cap \bar{S}_k, \ k=0, 1, ..., N-1$, using the notation of Lemma 1. The desymmetrization procedure is such that the boundary rays fit together so as to preserve (Lipschitz) continuity of the desymmetrization of a symmetric (Lipschitz) continuous function in a symmetric domain [2, Lemma 2, p. 274].

The angles between the rays L_k^* are equivalent in Dubinin's procedure. We now consider two separate sets of angles, corresponding to E^* and to $\mathscr{C}E^*$. A desymmetrization procedure is applied to each set of angles in such a way that the common boundary rays fit together. We indicate the beginning of the procedure.

The set E^* on the unit circle is defined by the union U^* of n angles in the plane

 $\{z=r\exp{(i\vartheta)}: |\vartheta-2\pi k/n| < L/2n, \ r\in R^+\}, \ k=0, 1, ..., n-1.$ The set E is defined by the union U of n angles $\{z=r\exp{(i\vartheta)}: |\vartheta-\psi_k| < \varphi_k/2\}, \ k=0, 1, ..., n-1.$ (E and E^* are closed sets, the angles are open.) Let $\varphi=\min{\varphi_k, k=0, 1, ..., n-1}$. We make the following definitions:

$$P_k = \{r \exp(i\vartheta): (L/2n) - \varphi/2 < |\vartheta - 2\pi k/n| < L/2n\}, \quad k = 0, 1, ..., n-1,$$

$$S_k = \{r \exp(i\vartheta): (\varphi_k - \varphi)/2 < |\vartheta - \psi_k| < \varphi_k/2\}, \quad k = 0, 1, ..., n-1.$$

Thus P_k and S_k , k=0, 1, ..., n-1, consist of two angles adjoining to rays whose intersections with the unit circle are endpoints of arcs in E^* and E, whereas in Dubinin's initial step P_k and S_k consist of one angle each. Let

$$P_k = P'_k \cup P''_k, \ S_k = S'_k \cup S''_k,$$

where

$$P'_k \cap P''_k = S'_k \cap S''_k = \emptyset, \quad k = 0, 1, ..., n-1.$$

We now define two rotations λ'_k and λ''_k for each k, k=0, 1, ..., n-1, such that

$$\lambda'_k(P'_k) = S'_k$$
 and $\lambda''_k(P''_k) = S''_k$.

Let

$$A_n = \bigcup_{k=0}^{n-1} \overline{P}_k, \ B_n = \bigcup_{k=0}^{n-1} \overline{S}_k.$$

The number of angles in $U \setminus B_n$ is $n_1 < n$, and the number of angles in $U^* \setminus A_n$ is n (unless $n_1 = 0$). We next choose P_n as one of the remaining angles in $U^* \setminus A_n$ and define a rotation λ_n such that $\lambda_n(P_n) = S_n$, where S_n adjoins B_n and is contained in a largest remaining angle in $U \setminus B_n$. (It is possible to find a suitable S_n since $n_1 < n$ and $L - n\varphi = m(U^* \setminus A_n) = m(U \setminus B_n)$, m denoting angular measure. Thus there is at least one angle greater than $L/n - \varphi = m(P_n)$ in $U \setminus B_n$.) The number of angles in $U^* \setminus A_{n+1}$ is now n-1; the number of angles in $U \setminus B_{n+1}$ is n_1 . If $n_1 < n-1$, n_{n+1} is defined in an analogous manner to the definition of n_n . (Now we have $n_n < n_n$ in $n_n < n_n$) and thus there is at least one angle greater than $n_n < n_n$ in $n_n < n_n$.

One can thus choose $n-n_1$ angles $P_n, ..., P_{2n-n_1-1}$ and corresponding angles $S_n, ..., S_{2n-n_1-1}$, such that $m(U^* \backslash A_{2n-n_1}) = m(U \backslash B_{2n-n_1})$ and $U^* \backslash A_{2n-n_1}$ and $U \backslash B_{2n-n_1}$ each consist of n_1 intervals. Moreover, one can define rotations λ_k such that $\lambda_k(P_k) = S_k$, $k = n, ..., 2n-n_1-1$.

Now we can return to the initial step, determine the least value $\varphi^{(1)}$ in $U \setminus B_{2n-n_1}$ and proceed as above, etc. We finally obtain a desymmetrization of the angles corresponding to E^* and then deal with the angles corresponding to $\mathscr{C}E^*$ in the same way. The common boundary rays fit together. Let Δ denote the unit disk. We have described a total *desymmetrization* procedure for the whole configuration $\Delta \cup E^* \cup \mathscr{C}E^*$ and hence also for a symmetric function defined in $\Delta \cup E^* \cup \mathscr{C}E^*$, cf. p. 98, so that E^* corresponds to E and $\mathscr{C}E^*$ to $\mathscr{C}E$.

100 K. Haliste

Proof of Theorem 1. Let F denote a closed set on the unit circle and u(z) a function harmonic in the unit disk Δ , with u(0)=1 and $\limsup u(z) \le 0$, as z approaches F. Let g(z) denote the restriction to Δ of the Green function of the complement (w.r.t. C) of F and let $\gamma = -\log \operatorname{cap} F$, [1, p. 30]. The Dirichlet integral over Δ , D(u), satisfies

(2)
$$D(u) \ge \pi/\gamma = D(g/\gamma),$$

with equality for $u=g/\gamma$, [1, p. 30].

We start from this result for $F=E^*$ and the corresponding g^* (Green function) and γ^* (Robin constant). Let $u^*=g^*/\gamma$. Then

$$D(u^*) = \pi/\gamma^*.$$

To our function u^* in Δ with boundary values 0 on E^* we define, by the total desymmetrization procedure of $\Delta \cup E^* \cup \mathscr{C}E^*$ as described above, a total desymmetrization \bar{u} in Δ with boundary values 0 on E. By considering the Dirichlet integral of u^* as a finite sum of integrals over sectors defined by the procedure, it is seen that (cf. [2, p. 275])

$$(4) D(u^*) = D(\tilde{u}).$$

Now let u denote the Poisson integral of the values of \tilde{u} on the unit circle. By Dirichlet's principle, cf. [2, p. 275]:

$$(5) D(\tilde{u}) \ge D(u).$$

Since $u^*(0)=1$ and u^* and \tilde{u} are equimeasurable on the unit circle it follows that u(0)=1. Since u as a Poisson integral is harmonic in the unit disk and $\limsup u(z) \le 0$ as z approaches E, we have by (2), γ denoting $-\log \operatorname{cap} E$,

(6)
$$D(u) \ge \pi/\gamma.$$

From (3,) (4), (5) and (6) we obtain that

$$\pi/\gamma^* \ge \pi/\gamma$$

and thus (1'), (1") and the inequality in (1) follow.

The explicit value of cap E^* follows from a theorem by Fekete, for which we refer to [3, Thm. 2, p. 299]. According to Fekete's theorem cap $E^* = (\operatorname{cap} F)^{1/n}$, where $F = \{z^n : z \in E^*\}$, that is $F = \{\exp(i\vartheta) : |\vartheta| \le L/2\}$. However, cap $F = \sin(L/4)$ [1, p. 35]. Hence cap $E^* = (\sin(L/4))^{1/n}$.

Corollary 1. Let D be a Jordan domain with $\vartheta \subset \partial D$. Let $\omega(z, \vartheta, D)$ denote the harmonic measure at z of ϑ w.r.t. D and let $\delta(z, \vartheta, D)$ denote the reduced extremal distance between z and ϑ w.r.t. D. Let ϑ consist of n boundary arcs. Then

(7)
$$\arcsin \exp(-n\pi\delta(z,\vartheta,D)) \le \pi\omega(z,\vartheta,D)/2 \le \arcsin \exp(-\pi\delta(z,\vartheta,D)).$$

Proof. The right-hand inequality was stated in [4, p. 3]. Map D conformally onto the unit disk Δ , so that z goes to the origin and ϑ onto E of length L on the unit circle. By conformal invariance of ω we have

(8)
$$\pi\omega(z,\vartheta,D)/2 = \pi\omega(0,E,\Delta)/2 = L.$$

By Theorem 1 and the well-known estimate of cap E from below ([1, p. 35])

(9)
$$\sin(L/4) \le \operatorname{cap} E \le (\sin(L/4))^{1/n}$$
.

However, for a set E on the unit circle, by [1, p. 80],

(10)
$$\operatorname{cap} E = \exp\left(-\pi\delta(0, E, \Delta)\right).$$

By conformal invariance of ω and δ we obtain (7) from (8), (9) and (10).

3. Concluding comments

Remark 1. An inequality for reduced extremal distance in Dubinin's configuration.

Let, for a fixed r, 0 < r < 1,

$$D_{\alpha} = \{|z| < 1\} \setminus \alpha = \{|z| < 1\} \setminus \bigcup_{k=0}^{n-1} l_k,$$

where

$$l_k = \{z: \arg z = \alpha_k, \ r \le |z| < 1\}, \ k = 0, 1, ..., n-1,$$

and

$$D_{\alpha^*} = \{|z| < 1\} \setminus \alpha^* = \{|z| < 1\} \setminus \bigcup_{k=0}^{n-1} l_k^*,$$

where

$$l_k^* = \{z : \arg z = 2\pi k/n, \ r \le |z| < 1\}, \quad k = 0, 1, ..., n-1.$$

Then the following inequality holds for reduced extremal distances with respect to D_{α} and $D_{\alpha *}$:

(11)
$$\delta(0,\alpha) \ge \delta(0,\alpha^*),$$

that is, desymmetrization increases δ .

In fact, Dubinin proves, for harmonic measure (in standard notation) that

(12)
$$\omega(0, \alpha, D_{\alpha}) \leq \omega(0, \alpha^*, D_{\alpha^*}),$$

[2, Theorem A, p. 272]. For that purpose he maps D_{α} and D_{α^*} conformally onto the unit disk so that the origin goes onto the origin. We denote the images of α and α^* on the unit circle by E' and E^* . By conformal invariance, $\delta(0, \alpha) = \delta(0, E')$ where the last reduced extremal distance is taken with respect to the unit disk. By [1, p. 80] we have that $\pi\delta(0, E') = -\log \operatorname{cap} E'$. Now let E be a desymmetrization of E^* that contains E'. E can be found since, by Dubinin's theorem, $mE' < mE^*$,

102 K. Haliste

unless $\alpha^* = \alpha$. Since capacity increases when the set increases it follows that cap $E' \le \text{cap } E$, which however by Theorem 1 is $\le \text{cap } E^*$. Thus

$$\exp(-\pi\delta(0,\alpha)) = \operatorname{cap} E' \leq \operatorname{cap} E^* = \exp(-\pi\delta(0,\alpha^*)),$$

and (11) is proved.

The inequality (11) can be written in terms of Robin's constants (relative to the origin) for α and ∂D_{α} w.r.t. D_{α} . By [1, p. 79] the inequality (11) is equivalent to

$$\gamma(\alpha^*) - \gamma(\partial D_{\alpha^*}) \leq \gamma(\alpha) - \gamma(\partial D_{\alpha}).$$

However, by [2, Corollary, p. 275] it follows that $\gamma(\partial D_{\alpha^*}) \leq \gamma(\partial D_{\alpha})$. Thus, we note that the quantity $\gamma(\alpha^*)$ is actually increased more by desymmetrization than $\gamma(\partial D_{\alpha^*})$.

Remark 2. Conjectures. Let $g(\cdot, 0)$ denote the Green function of D_{α} with pole at the origin and define g^* in an analogous manner w.r.t. D_{α^*} , in the notation of Remark 1. Let $y=(y_1, y_2)$. We conjecture that

(13)
$$\iint_{D_{\alpha^*}} g^*(y,0) \, dy \le \iint_{D_{\alpha}} g(y,0) \, dy.$$

An intuitive reason for this conjecture is given by a probabilistic interpretation as

$$E_0\tau^* \leq E_0\tau$$

where τ (alt. τ^*) denotes the exit time from D_{α} (alt. D_{α^*}) for a Brownian motion starting at the origin and E_0 stands for expectation (w.r.t. start at the origin) [5, p. 309].

A stronger conjecture is, in fact, that, for every $\lambda > 0$,

$$P_0(\tau^* > \lambda) \leq P_0(\tau > \lambda)$$

for the actual probabilities for τ^* and τ . In connection with (13) one can also ask whether, for $y=re^{i\vartheta}$, the inequality

$$\int_{|y|=r} g^*(y,0) \, d\vartheta \le \int_{|y|=r} g(y,0) \, d\vartheta,$$

holds for 0 < r < 1.

We note that Dubinin's proof of Gončar's conjecture (12) uses conformal mapping onto the unit disk of D_{α} and D_{α^*} . Let us change the definition of α and l_k in Remark 1 by taking $l_k = \{z : \arg z = \alpha_k, \ r \le |z| \le r_1 < 1\}, \ k = 0, 1, ..., n-1$, so that D_{α} now denotes a multiply connected domain with n slits. One conjectures that (12) remains true.

Remark 3. An alternative proof of Theorem 1. Consider $G_R = \{z : |z| < R\} \setminus E^*$ and the Dirichlet integral of u_R^* , harmonic in G_R , with boundary values 1 on $\{z : |z| = R\}$ and 0 on E^* (for large R). We can now use the following characteriza-

tion of capacity:

(14)
$$\log \operatorname{cap} E^* = \lim_{R \to \infty} (\log R - 2\pi/D(u_R^*)).$$

This can be stated in terms of outer conformal radius for a continuum E^* (cf. [3, p. 314]), in terms of extremal length etc. (We have referred to reduced extremal length earlier in this paper; therefore the similar argument in [1, p. 79] can be referred to here.) (An analogue of (14) for inner radius can be used for a short proof of Dubinin's Corollary [p. 275, 2].)

Using (14) rather than (3) one can apply the desymmetrization procedure in an analogous manner to the proof of Theorem 1.

Remark 4. Further examples. I. The approach in Remark 3 is also applicable to a proof for the inequality

$$\operatorname{cap} F \leq \operatorname{cap} F^*$$

where

$$F = \bigcup_{k=0}^{n-1} \{z : \arg z = \alpha_k, r \leq |z| \leq r_1\}$$

and

$$F^* = \bigcup_{k=0}^{n-1} \{z : \arg z = 2\pi k/n, \ r \le |z| \le r_1 \}.$$

In fact Dubinin's original desymmetrization applies to this configuration.

II. An inverted Gončar configuration is

$$F = \bigcup_{k=0}^{n-1} \{z : \arg z = \alpha_k, \ r \le |z| \le r_1\} \cup \{z : |z| \le r\}.$$

This "sun" — for r=0 a "star" — has maximal outer radius/capacity when the rays are equidistributed.

III. Let α and α^* denote the images of the sets E and E^* in Theorem 1 under the mapping $z \rightarrow rz$, r fixed, 0 < r < 1. Let $D_{\alpha} = \Delta \setminus \alpha$ and $D_{\alpha^*} = \Delta \setminus \alpha^*$ (as earlier, Δ denotes the unit disk). Then an analogue of (12) is true:

$$\omega(0, \alpha, D_{\alpha}) \leq \omega(0, \alpha^*, D_{\alpha^*}).$$

Let g(x, y) denote the Green function of the unit disk Δ . The Green capacity for α^* equals the conformal capacity or $D(u_1^*)/2\pi$, in the notation of Remark 3, [6, p. 309]. The conformal capacity is decreased by a desymmetrization, as previously. In terms of Green capacities or equilibrium measures μ^* and μ (cf. [6, p. 309]) this decrease implies that

$$\mu^* \geq \mu$$
.

By comparing boundary values one sees that $\omega(0, \alpha^*, D_{\alpha^*})$ equals the equilibrium

Green potential of α^* (cf. [6, p. 309—310])

$$\omega(0, \alpha^*, D_{\alpha^*}) = \int_A g(0, y) d\mu^*(y).$$

Since μ^* lies on α^* and $g(0, \gamma) = -\log r$ on α^* and α , we obtain

$$\omega(0, \alpha^*, D_{\alpha^*}) = (-\log r)\mu^* \ge (-\log r)\mu = \omega(0, \alpha, D_{\alpha})$$

and thus the desired analogue of (12).

Remark 5. Extremality of symmetric configurations. Consider a set F containing at most a given number, n, of circular arcs, rays etc. of given measure, such that F can be viewed as the result of a suitable desymmetrization of a symmetric set F^* (in Dubinin's sense). There are various quantities Q=Q(F), connected with suitable Dirichlet integrals, that can be shown (or conjectured) to vary with F in the following manner: Q(F) varies between a) one extremal value for one arc, ray etc. and b) the opposite extremal value for F^* . For the case a) various standard symmetrization techniques have long been available; now Dubinin's method can be applied to the case b).

Acknowledgement. The author wishes to thank Doc. M. Essén, Uppsala, for information about [2] and Prof. W. K. Hayman, York, for recalling Fekete's theorem, used for the evaluation of cap E^* .

Added in proof. The conjecture at the end of Remark 2, p. 102, for the multiply connected case with slits on n rays, has been proved for $n \le 3$ by A. BAERNSTEIN, On the harmonic measure of slit domains, Complex Variables 9 (1987), 131—142. See also A. BAERNSTEIN, Dubinin's symmetrization theorem, Complex Analysis I, Springer Lect. Notes Math. 1275 (1987), 23—30.

References

- 1. Ahlfors, L. V., Conformal invariants, McGraw-Hill, 1973.
- Dubinin, V. N., On the change of harmonic measure under symmetrization (Russian), Mat. Sb. 166 (1984), 272—279. (English translation, Math. USSR-Sb. 52 (1985), 267—273.)
- 3. GOLUZIN, G. M., Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 (translation).
- 4. Haliste, K., Some estimates of harmonic measure, Report 1981:6, Dept. of Math., Univ. of Umeå, 1—15.
- 5. Hunt, G. A., Some theorems concerning Brownian motion, *Trans. Amer. Math. Soc.* 81 (1956), 294—319.
- WALLIN, H., Metrical characterization of conformal capacity zero, J. Math. Anal. and Appl., 58 (1977), 298—311.