
On an extremal configuration for capacity 

K. Haliste* 

1. Main theorem 

It is well known that the capacity of  a dosed set E on the (unit) circle is de- 
creased by circular symmetrization [1, pp. 31--36]. Thus, if the length mE of E is 
L, we have the estimate cap E-~sin (L]4) [1, p. 35]. How large can cap E be, if 
m E = L  and E consists of a given number of arcs, n arcs? The maximal configura- 
tion is given by a set E* of  n arcs of  equal length, L]n, "regularly" or "symmet- 
rically" distributed around the circle. 

E *  n--1 Theorem 1. Let =[Jk=o {exp (iO): -L /2n~O-2~k /n<=L/2n}  and let E be a 
union o f  n arcs on the unit circle of  total length L. Then 

(1) cap E ~- cap E* =- (sin (1./4)) a/n, 

with equality for  E = E * .  

A proof  of this theorem follows from work of  Dubinin's [2]. He proved a con- 
jecture by GonEar for harmonic measure by introducing a process called desym- 
metrization, which can also be used for transforming E* to E and for comparing the 
capacities of  these sets. 

In terms of  equivalent characteristics of  E and E*, the inequality in Theorem 1 
can be stated for Robin constants, (see [1, p. 30]), 7 of  E and 7* of  E*, as 

(1') 7" -~ ~, 

and for reduced extremal distances, (see [1, pp. 78--80]), as 

(1") 6(0, E*) ~ 6(0, ~e). 

* Research supported by the Swedish National Science Research Council. 



98 K. Haliste 

In fact, by the references just cited, 

= - l o g  capE = n3(O, E). 

The last equality is valid for sets on the unit circle. The inequality (1) was conjectured 
by the author after considering relations between harmonic measure and reduced 
extremal length, cf. [4, Cor. 1, p. 6]. 

2. Proof 

Desymmetrization. We shall apply a variation of Dubinin's desymmetrization 
procedure, so as to transform E* to E and C6E* to C6E, c~ denoting complements 
w.r.t, the unit circle. His procedure consists of dividing the complex plane C into 
a finite number of suitable angles and rotating these in an appropriate man- 
ner. Let L~={z: argz=2ztk/n} and Lk={Z: argz=c~k}, k=0,  1, ..., n--1. The set 
{z: 0x<arg z<0~} is called an angle. Dubinin's Lemma 1 [2, p. 273] contains the 
following statements a), b), c). 

There exist a finite number of pairwise disjoint angles Pk and rotations 2R(Z)= 
Z exp (iOk) (Ok real), k =0, 1, ..., N -  1, having the following properties: 

a) n-I n-i 
Uk=0 P~ = c ,  U,,=o s~, = c ,  & = &(P~); 

b) the ray L~ is the bisectrix of the angle Pk and 2k(L~) =L k, k=0,  1 . . . . .  n -  1 ; 
c) if SkC~Sk,#O, then the common boundary ray of the angles Sk and S~ is 

the image under the mappings s and 2k, of tWO boundary rays which can be obtained 
from one another by a finite number of reflections with respect to straight lines 
through the origin, forming angles which are integer multiples of rc/n with the 
real axis. 

Dubinin [2, p. 273] calls a domain D symmetric if it is symmetric with respect 
to the rays {z: argz=nk/n}, k=0,  1 . . . . .  2n-1 .  A function u(z) defined in a 
symmetric domain D is called symmetric if the sets {z: u(z)=a} are symmetric. The 

N - 1  - -  desymmetrization D of a symmetric domain D is defined by =Uk=o 2k(DnPk) 
and the desymmetrization ~ of u is defined by a(Z)=U(Zexp(--iOk)), zEDnSk, 
k=0,  1, . . . , N - l ,  using the notation of Lemma 1. The desymmetrization proce- 
dure is such that the boundary rays fit together so as to preserve (Lipschitz) continuity 
of the desymmetrization of a symmetric (Lipschitz) continuous function in a sym- 
metric domain [2, Lemma 2, p. 274]. 

The angles between the rays L~ are equivalent in Dubinin's procedure. We 
now consider two separate sets of angles, corresponding to E* and to CgE*. A de- 
symmetrization procedure is applied to each set of angles in such a way that the 
common boundary rays fit together. We indicate the beginning of the procedure. 

The set E* on the unit circle is defined by the union U* of n angles in the plane 
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{z=rexp  (i~): 10-2rck/nl<L/2n, rER+}, k=0 ,  l, ..., n - 1 .  The set E is defined 
by the union U of n angles {z=r exp (i~): [0--~bkl<~0k/2 }, k=0 ,  1 . . . .  , n-- 1. (E and 
E* are closed sets, the angles are open.) Let q~=min ~0k, k = 0 ,  1, ..., n--1. We make 
the following definitions: 

Pk = {r exp (i0): (L/2n)-  q)/2 < [~-  2rck/nl ~ L/2n}, k = O, 1 . . . .  , n -  1, 

Sk = {rexp(i~): (q~k--~p)/2 < 10--r < q)k/2}, k = O, 1 . . . . .  n--1. 

Thus Pk and Sk, k=0 ,  1, ..., n -  1, consist of two angles adjoining to rays whose 
intersections with the unit circle are endpoints of arcs in E* and E, whereas in Du- 
binin's initial step Pk and Sk consist of one angle each. Let 

Pk=Pk'wPt[', Sk=S'kuS~', 
where 

Pk'nP;'=S~nS~'=O, k = 0 , 1  . . . . .  n - 1 .  

We now define two rotations 2~, and 2~' for each k, k =0, 1, ..., n -  1, such that 

2~(Pk') = S/, and 2~(Pk") = S~,'. 
Let 

n - - I  - -  n - - i  - -  ,4. = Uk=0Pk, B. = Uk=0Sk. 

The number of angles in U \ B .  is nl<n, and the number of angles in U*"xA. is 
n (unless nl =0). We next choose P. as one of the remaining angles in U * \ A  n 
and define a rotation 2. such that 2n(P~)=S., where S. adjoins B. and is contained 
in a largest remaining angle in U ~ B  n . l i t  is possible to find a suitable S. since 
nl<n and L-nq )=m(U*\An)=m(U\Bn) ,  m denoting angular measure. Thus 
there is at least one angle greater than L/n-cp=m(P.)  in U \ B . . )  The number 
of angles in U * ~ A n +  1 is now n - - l ;  the number of angles in U\B.+I  is nl. 
If  h i < n - 1 ,  P.+I is defined in an analogous manner to the definition of P. .  (Now 
we have (n -1) (L /n- (p )=(n-1)m(Pn+O=m(U\B.+O and thus there is at least 
one angle greater than P.+I in U\B~+ a.) 

One can thus choose n - n  1 angles P . ,  ..., P2.-.1-1 and corresponding angles 

an, ..., S2n_nl_l, such that t~l(U*~A2n_n~)=rn(U~B2n_nl) and U*\A2,_,~ and 
U~B~n_na each consist of n 1 intervals. Moreover, one can define rotations 2 k such 
that 2k(Pk)=Sk, k=n,  ,,., 2n--n~-- 1. 

Now we can return to the initial step, determine the least value cp (x) in U\B2,_,I  
and proceed as above, etc. We finally obtain a desymmetrization of the angles cor- 
responding to E* and then deal with the angles corresponding to CgE* in the same 
way. The common boundary rays fit together. Let A denote the unit disk. We have 
described a total desymmetrization procedure for the whole configuration AwE*u  
CgE* and hence also for a symmetric function defined in AuE*wCgE *, cf. p. 98, 
so that E* corresponds to E and CgE* to CgE. 
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Proof of Theorem 1. Let F denote a closed set on the unit circle and u(z) a 
function harmonic in the unit disk A, with u(0)=l  and lim sup u (z) <- 0, as z 
approaches F. Let g(z) denote the restriction to A of the Green function of the com- 
plement (w.r.t. C) of F and let 7--= - l o g  cap F, [1, p. 30]. The Dirichlet integral 
over A, D(u), satisfies 

(2) D(u) >= rc/V = D(g/?), 

with equality for u=g/l', [1, p. 30]. 
We start from this result for F=E* and the corresponding g* (Green func- 

tion) and ?* (Robin constant). Let u* =g*/v. Then 

(3) D(u*) = n/r*. 

To our function u* in A with boundary values 0 on E* we define, by the total 
desymmetrization procedure of A uE*uCgE * as described above, a total desymmet- 
rization ~ in A with boundary values 0 on E. By considering the Dirichlet integral 
of u* as a finite sum of integrals over sectors defined by the procedure, it is seen 
that (cf. [2, p. 275]) 

(4) D (u*) = D (a). 

Now let u denote the Poisson integral of the values of ~ on the unit circle. 
By Dirichlet's principle, cf. [2, p. 275]: 

(5) D(a) >- D(u). 

Since u* (0)= 1 and u* and ~ are equimeasurable on the unit circle it follows that 
u(0) = 1. Since u as a Poisson integral is harmonic in the unit disk and lim sup u(z)<-O 
as z approaches E, we have by (2), y denoting - l o g  cap E, 

(6) D (u) --> re/?. 

From 0,)  (4), (5) and (6) we obtain that 

~/~* ~ ~/~ 

and thus (1'), (1") and the inequality in (1) follow. 
The explicit value of cap E* follows from a theorem by Fekete, for which 

we refer to [3, Thm. 2, p. 299]. According to Fekete's theorem cap E* =(cap F) 11", 
where F =  {z n: z~ E*}, that is F =  {exp (/8): 181 <--L/2}. However, cap F=sin  (L/4) 
[1, p. 35]. Hence cap E* =(sin (L/4)) 11". 

Corollary 1. Let D be a Jordan domain with 8c~D.  Let co(z, 8, D) denote 
the harmonic measure at z of 8 w.r.t. D and let ~ (z, 8, D) denote the reduced extremal 
distance between z and 8 w.r.t. D. Let 8 consist of n boundary arcs. Then 

(7) arcsinexp ( -  nzcS(z, 8,D)) ~_ rtco(z, 8, D)/2 ~_ arcsin exp ( -  rc~5(z, 8, D)). 



On an extremal configuration for capacity 101 

Proof. The right-hand inequality was stated in [4, p. 3]. Map D conformally 
onto the unit disk A, so that z goes to the origin and 0 onto E of length L on the 
unit circle. By conformal invariance of co we have 

(8) zco2(z, O, D)/2 = ~o2(0, E, A)/2 = L. 

By Theorem 1 and the well-known estimate of cap E from below ([1, p. 35]) 

(9) sin (L/4) ~ cap E ~ (sin (L/4)) 1/n. 

However, for a set E on the unit circle, by [1, p. 80], 

(10) cap E = exp (--n6(0, E, A)). 

By conformal invariance of co and 6 we obtain (7) from (8), (9) and (10). 

3. Concluding comments 

Remark 1. An inequality for reduced extremal distance in Dubinin's configuration. 

Let, for a fixed r, O<r<  1, 

D~ = {Izl < 1 } \ ~  = {Izl < 1 } \ U ~ - 1 0  r 
where 

and 

where 

I k = { z : a r g z = ~ k ,  r ~ l z l < l } ,  k = 0 , 1  . . . . .  n-- l ,  

O=. {Izl 1 } \ , *  {Izl . - 1 ,  = < = < 1 } \ U ~ = o  t l .  

/~.={z: argz=2rck/n,  r_-< [z] < l}, k = 0 , 1  . . . . .  n - 1 .  

Then the following inequality holds for reduced extremal distances with respect to 
D, and D~.: 

(11) 6(0, a) ~ 6(0, a*), 

that is, desymmetrization increases 6. 
In fact, Dubinin proves, for harmonic measure (in standard notation) that 

(12) o2(0, a,D,) <_- o2(0, ~*, D,,), 

[2, Theorem A, p. 272]. For that purpose he maps D~ and D~, conformally onto 
the unit disk so that the origin goes onto the origin. We denote the images of 
and c~* on the unit circle by E" and E*. By conformal invariance, 6(0, a)=6(0, E') 
where the last reduced extremal distance is taken with respect to the unit disk. By 
[1, p. 80] we have that ~6(0, E ' ) =  - l o g  cap E'. Now let E be a desymmetrization 
of E* that contains E'. E can be found since, by Dubinin's theorem, mE'~mE*,  
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unless ~* = e. Since capacity increases when the set increases it follows that cap E '  <= 
cap E, which however by Theorem 1 is <_-cap E*. Thus 

exp ( -  rc6 (0, 00) = cap E" ~ cap E* = exp ( -  7r6 (0, ~*)), 

and (11) is proved. 
The inequality (11) can be written in terms of Robin's constants (relative to 

the origin) for ~ and OD,, w.r.t. D~. By [1, p. 79] the inequality (11) is equivalent to 

r (a*) - 7 (0D~,) --<_ 7 (a) -- 7 (OD~). 

However, by [2, Corollary, p. 275] it follows that y(OD~,)<=7(OD~). Thus, we note 
that the quantity y (~*) is actually increased more by desymmetrization than y (BD~,). 

Remark 2. Conjectures. Let g ( . ,  0) denote the Green function of  D~ with 
pole at the origin and define g* in an analogous manner w.r.t. D~,, in the notation 
of Remark 1. Let Y=(Yl, Y~). We conjecture that 

(13) ffD,,g*(y,O)dy= f o,g(y,O) dy. 

An intuitive reason for this conjecture is given by a probabilistic interpretation as 

Eoz* <---- Eoz, 

where x (alt. z*) denotes the exit time from D~ (alt. D , )  for a Brownian motion 
starting at the origin and Eo stands for expectation (w.r.t. start at the origin) [5, 
p. 309]. 

A stronger conjecture is, in fact, that, for every ,~ >0 ,  

e0( * > 4) <_- P0(  > 

for the actual probabilities for z* and z. In connection with (13) one can also ask 
whether, for y =rd ~, the inequality 

ft,j= g*(y, 0)d0 <= flrl= g(y, 0),t0, 
holds for 0 < r < l .  

We note that Dubinin's proof of Gon6ar's conjecture (12) uses conforrnal 
mapping onto the unit disk of D~ and D,, .  Let us change the definition of a and l k 
in Remark 1 by taking lk={z: a r g z = a , ,  r<=lzl<=rl<l}, k = 0 ,  1, . . . , n - l ,  so that 
D~ now denotes a multiply connected domain with n slits. One conjectures that (12) 
remains true. 

Remark 3. An alternative proof of Theorem 1. Consider GR= {z: ]z[<R}\E* 
and the Dirichlet integral of u~, harmonic in GR, with boundary values 1 on 
{z: Izl = R }  and 0 on E* (for large R). We can now use the following characteriza- 
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tion of capacity: 

(14) log cap E* = lim (log R - 2 h i D  (u~)). 

This can be stated in terms of outer conformal radius for a continuum E* (cf. [3, 
p. 314]), in terms of extremal length etc. (We have referred to reduced extremal 
length earlier in this paper; therefore the similar argument in [1, p. 79] can be referred 
to here.) (An analogue of (14) for inner radius can be used for a short proof  of  
Dubinin's Corollary [p. 275, 2].) 

Using (14) rather than (3) one can apply the desymmetrization procedure in an 
analogous manner to the proof  of Theorem 1. 

Remark 4. Further examples. I. The approach in Remark 3 is also applicable 
to a proof  for the inequality 

where 

and 

cap F --< cap F*, 

F = U ~ - ~  { z :  arg z = ~k, r <- [zl <- r l }  

F *  = U ~ - ~  { z :  a r g z  = 2nk/n,  r <= Izl <-- r l } .  

In fact Dubinin's original desymmetrization applies to this configuration. 
II. An inverted Gon6ar configuration is 

~ - 1 {  } { } 
F =  Uk=0 z: a r g z  = ~k, r -  ~ Izl -<- rl w z: Izl --< r .  

This "sun" - -  for r = 0  a "star" - -  has maximal outer radius/capacity when the 
rays are equidistributed. 

III. Let ~ and a* denote the images of the sets E and E* in Theorem 1 under 
the mapping z~rz,  r fixed, 0 < r -< l .  Let D~=A\a  and D ~ , = A \ a *  (as earlier, 
A denotes the unit disk). Then an analogue of (12) is true: 

~o(o, ~, DD -<_ o~(0, ~*, D : ) .  

Let g(x, y) denote the Green function of the unit disk A. The Green capacity for 
a* equals the conformal capacity or D(u*)/2zc, in the notation of  Remark 3, 
[6, p. 309]. The conformal capacity is decreased by a desymmetrization, as previously. 
In terms of Green capacities or equilibrium measures #* and p (cf. [6, p. 309]) this 
decrease implies that 

#* _-->/t. 

By comparing boundary values one sees that co (0, a*, D~,) equals the equilibrium 
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Green potential of e* (cf. [6, p. 309--310]) 

 o(0, = g (0 ,  y) d#*(y). 

Since p* lies on ~* and g(0, y ) = - l o g  r on ~* and ~, we obtain 

r ~t*, D~.) = ( - l o g  r)#* _~ ( - l o g  r)p = 09(0, ~,D~) 

and thus the desired analogue of (12). 

Remark 5. Extremality o f  symmetric configurations. Consider a set F containing 
at most a given number, n, of circular arcs, rays etc. of  given measure, such that 
F can be viewed as the result of a suitable desymmetrization of  a symmetric set F* 
(in Dubinin's sense), There are various quantities Q = Q (F), connected with suitable 
Dirichlet integrals, that can be shown (or conjectured) to vary with F in the fop 
lowing manner: Q(F)  varies between a) one extremal value for one arc, ray etc. 
and b) the opposite extremal value for F*. For  the case a) various standard sym- 
rnetrization techniques have long been available; now Dubinin's method can be 
applied to the case b). 
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Added in proof. The conjecture at the end of  Remark 2, p. 102, for the multiply 
connected case with slits on n rays, has been proved for n<_-3 by A. BAERNSTEIN, 
On the harmonic measure of slit domains, Complex Variables 9 (1987), 131--142. 
See also A. BAERNSTEIN, Dubinin's symmetrization theorem, Complex Analysis I, 
Springer Lect. Notes Math. 1275 (1987), 23--30. 
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