On an extremal configuration for capacity

K. Haliste*

1. Main theorem

It is well known that the capacity of a closed set E on the (unit) circle is de-
creased by circular symmetrization [1, pp. 31—36]. Thus, if the length mE of E is
L, we have the estimate cap E=sin (L/4) [1, p. 35]. How large can cap E be, if
mE=L and E consists of a given number of arcs, » arcs? The maximal configura-
tion is given by a set E* of n arcs of equal length, L/n, “regularly” or “symmet-
rically” distributed around the circle.

Theorem 1. Let E*=|J;Z} {exp (i9): —L/2n=8—2rk/n=L[2n} and let E be a

=0
union of n arcs on the unit circle of total length L. Then

'6)) cap E = cap E* = (sin (L/4))*/",
with equality for E=E*.

A proof of this theorem follows from work of Dubinin’s [2]. He proved a con-
jecture by Gonéar for harmonic measure by introducing a process called desym-
metrization, which can also be used for transforming E* to E and for comparing the
capacities of these sets.

In terms of equivalent characteristics of E and E*, the inequality in Theorem 1
can be stated for Robin constants, (see [1, p. 30]), y of E and y* of E*, as

1) Y=,
and for reduced extremal distances, (see [1, pp. 78—80]), as

1" 8(0, E*) = §(0, E).
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In fact, by the references just cited,
y =—logcap E = n5(0, E).

The last equality is valid for sets on the unit circle. The inequality (1) was conjectured
by the author after considering relations between harmonic measure and reduced
extremal length, cf. [4, Cor. 1, p. 6].

2. Proof

Desymmetrization. We shall apply a variation of Dubinin’s desymmetrization
procedure, so as to transform E* to E and 4E* to ¥E, 4 denoting complements
w.r.t. the unit circle. His procedure consists of dividing the complex plane C into
a finite number of suitable angles and rotating these in an appropriate man-
ner. Let L} ={z: argz=2nk/n} and L,={z: argz=0,}, k=0, 1, ..., n—1. The set
{z: 9,<argz<39,} is called an angle. Dubinin’s Lemma 1 [2, p. 273] contains the
following statements a), b), ¢).

There exist a finite number of pairwise disjoint angles P, and rotations 4;(z)=
zexp (i9,) (8 real), k=0, 1, ..., N—1, having the following properties:

) Ursy =G U5 5 =C, S = 4(R);

b) the ray L is the bisectrix of the angle P, and A, (Ly)=L, k=0, 1, ...,n—1;

¢) if §,nS,#0, then the common boundary ray of the angles S; and Sy is
the image under the mappings 4, and A, of two boundary rays which can be obtained
from one another by a finite number of reflections with respect to straight lines
through the origin, forming angles which are integer multiples of n/m with the
real axis.

Dubinin [2, p. 273] calls a domain D symumetric if it is symmetric with respect
to the rays {z: argz=nk/n}, k=0, 1, ...,2n—1. A function u(z) defined in a
symmetric domain D is called symmetric if the sets {z: u(z)=a} are symmetric. The
desymmetrization D of a symmetric domain D is defined by D=U}Y_} 4,(DnPF))
and the desymmetrization @i of u is defined by #(z)=u(zexp (—id)), z€DnS,,
k=0,1, ..., N—1, using the notation of Lemma 1. The desymmetrization proce-
dure is such that the boundary rays fit together so as to preserve (Lipschitz) continuity
of the desymmetrization of a symmetric (Lipschitz) continuous function in a sym-
metric domain {2, Lemma 2, p. 274].

The angles between the rays L are equivalent in Dubinin’s procedure. We
now consider two separate sets of angles, corresponding to E* and to ¥E*. A de-
symmetrization procedure is applied to each set of angles in such a way that the
common boundary rays fit together. We indicate the beginning of the procedure.

The set E* on the unit circle is defined by the union U* of » angles in the plane



On an extremal configuration for capacity 99

{z=rexp (i9): |9—2nk/n|<L/2n, reR*}, k=0,1,...,n—1. The set E is defined
by the union U of n angles {z=rexp (i9): 8-y |<¢/2}, k=0, 1, ..., n—1. (E and
E* are closed sets, the angles are open.) Let ¢ =min ¢, k=0, 1, ..., n—1. We make
the following definitions:

B = {rexp(i9): (L/2n)—¢[2 < |9~—2nk/n| < L2n}, k=0,1,..,n-1,
Sy ={rexp(i%9): (= )2 < 9=l < @/2}, k=0,1,...,n—1.

Thus P, and S,, k=0, 1,...,n—1, consist of two angles adjoining to rays whose
intersections with the unit circle are endpoints of arcs in E* and E, whereas in Du-
binin’s initial step P, and S, consist of one angle each. Let

Bc=Bc’UBc”s Sk:‘SI,cUSI,c,a
where
BAPR =8inS; =0, k=0,1,...,n—1.

We now define two rotations A; and 4, for each k, k=0, 1, ..., n—1, such that

MB) =8 and X(F)=S;.
Let
A,= Ui B, B, = U 5.

k=0

The number of angles in U\B, is n;<n, and the number of angles in U™\ 4, is
n (unless n;=0). We next choose P, as one of the remaining angles in U*\ 4,
and define a rotation 4, such that 1,(P,)=S,, where S, adjoins B, and is contained
in a largest remaining anglein UN\GB,. {It is possible to find a suitable S, since
m<n and L—no=m(U4,)=m(U\B,), m denoting angular measure. Thus
there is at least one angle greater than L/n—¢@=m(P,) in U\B,.) The number
of angles in U™\ 4,;; is now n-1; the number of angles in U\JB, 1 is #ny.
If my<n—1, P, is defined in an analogous manner to the definition of P,. (Now
we have (n—D(L/n—)=@m—D)m(P,,,)=m(U\B,,1) and thus there is at least
one angle greater than P, in UN\B,4;.)

One can thus choose n—n, angles P,, ..., Py, , _, and corresponding angles
Sy s Sgpn—15 Such that m(U™\A4,,_,)=m(U\B,,_,) and U*\4,,_, and
UNB,,_n, each consist of n, intervals. Moreover, one can define rotations 4, such
that A, (P) =S, k=n, ..., 2n—n;— 1.

Now we can return to the initial step, determine the least value ¢® in UN\B,,_,,
and proceed as above, etc. We finally obtain a desymmetrization of the angles cor-
responding to E* and then deal with the angles corresponding to ¥E™* in the same
way. The common boundary rays fit together. Let 4 denote the unit disk. We have
described a total desymmetrization procedure for the whole configuration AUE*U
%E* and hence also for a symmetric function defined in AUE*U%BE*, cf. p. 98,
so that E* corresponds to E and ¥E* to GE.
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Proof of Theorem 1. Let F denote a closed set on the unit circle and u(z) a
function harmonic in the unit disk 4, with u(0)=1 and limsup u(z)=0, as z
approaches F. Let g(z) denote the restriction to A of the Green function of the com-
plement (w.r.t. C) of F and let y=—logcap F, [1, p. 30]. The Dirichlet integral
over 4, D(u), satisfies

@) D(u) = nfy = D(g/y),

with equality for u=g/y, [1, p. 30].
We start from this result for F=E* and the corresponding g* (Green func-
tion) and y* (Robin constant). Let u*=g*/y. Then

&) D(u*) = nfy*.

To our function »* in 4 with boundary values 0 on E* we define, by the total
desymmetrization procedure of AVE*U¥E™ as described above, a total desymmet-
rization # in A with boundary values 0 on E. By considering the Dirichlet integral
of u* as a finite sum of integrals over sectors defined by the procedure, it is seen
that (cf. [2, p. 275))

C)) D(w*) = D(®@).

Now let u denote the Poisson integral of the values of # on the unit circle.
By Dirichlet’s principle, cf. [2, p. 275]:
Q) D(#@) = D(u).

Since u*(0)=1 and u* and # are equimeasurable on the unit circle it follows that
u(0)=1. Since u as a Poisson integral is harmonic in the unit disk and lim sup u(z)=0
as z approaches E, we have by (2), y denoting —logcap E,

©) D(u) = nfy.
From (3,) (4), (5) and (6) we obtain that
oyt = nfy

and thus (1), (1”) and the inequality in (1) follow.

The explicit value of cap E* follows from a theorem by Fekete, for which
we refer to [3, Thm. 2, p. 299]. According to Fekete’s theorem cap E*=(cap F)'",
where F={z": z€ E*}, thatis F={exp (i9): |9|=L/2}. However, cap F=sin (L/4)
[1, p. 35]. Hence cap E*=(sin (L/4)}"".

Corollary 1. Let D be a Jordan domain with 3coD. Let ©(z, 8, D) denote
the harmonic measure at z of 8 w.r.t. D and let 6(z, S, D) denote the reduced extremal
distance between z and $ w.r.t. D. Let § consist of n boundary arcs. Then

(7) arcsinexp(—nnd(z, 9, D)) = nw(z, 3, D)/2 = arcsinexp (—nd(z, 9, D)).
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Proof. The right-hand inequality was stated in [4, p. 3]. Map D conformally
onto the unit disk 4, so that z goes to the origin and 9 onto E of length L on the
unit circle. By conformal invariance of @ we have

®) nw(z, 3, D)2 = nw(0, E, A)/2 = L.

By Theorem 1 and the well-known estimate of cap E from below ([1, p. 35])
) sin (L/4) = cap E = (sin (L/4))"/".

However, for a set E on the unit circle, by [1, p. 80],

(10) cap E = exp (—nd(0, E, 4)).

By conformal invariance of @ and § we obtain (7) from (8), (9) and (10).

3. Concluding comments

Remark 1. An inequality for reduced extremal distance in Dubinin’s configuration.

Let, for a fixed r, O0<r<1,

D, = {lzl = \a = {lz2l < INUIZ s,

where
h={z:argz=a, r=lzl<1}, k=0,1,...,n~1,
and
Dy = {lz] < INe* = {lz| < INUIZI &,
where

i ={z: argz=2nk/n, r=lzl <1}, k=0,1,..,n—1.

Then the following inequality holds for reduced extremal distances with respect to
D, and D,,:

(11) (0, @) = 8(0, «*),

that is, desymmetrization increases §.
In fact, Dubinin proves, for harmonic measure (in standard notation) that

(12) (0, a, D,) = w(0, «*, D),

[2, Theorem A, p. 272]. For that purpose he maps D, and D,. conformally onto
the unit disk so that the origin goes onto the origin. We denote the images of «
and «* on the unit circle by E’ and E*. By conformal invariance, §(0, a)=46(0, E")
where the last reduced extremal distance is taken with respect to the unit disk. By
[1, p. 80] we have that =d(0, E')=—log cap E’. Now let E be a desymmetrization
of E* that contains E’. E can be found since, by Dubinin’s theorem, mE’<mE¥*,
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unless o*=a. Since capacity increases when the set increases it follows that cap E'=
cap E, which however by Theorem 1 is =cap E*. Thus

exp (—n8(0, »)) = cap E” = cap E* = exp (—nd (0, a¥)),

and (11) is proved.
The inequality (11) can be written in terms of Robin’s constants (relative to
the origin) for « and 0D, w.r.t. D,. By [1, p. 79] the inequality (11) is equivalent to

7(@)—7(0D;s) = 7(0) —y(OD.)-

However, by [2, Corollary, p. 275] it follows that y(0D,)=7y(@D,). Thus, we note
that the quantity y(«*) is actually increased more by desymmetrization than y(dD,.).

Remark 2. Conjectures. Let g(-,0) denote the Green function of D, with
pole at the origin and define g* in an analogous manner w.r.t. D,,, in the notation
of Remark 1. Let y=(»y, y,). We conjecture that

(13) Sfo, g0y = [[ 2,0 dy.

An intuitive reason for this conjecture is given by a probabilistic interpretation as
E,7* = E;7,

where 7 (alt. 7*) denotes the exit time from D, (alt. D,,) for a Brownian motion
starting at the origin and E, stands for expectation (w.r.t. start at the origin) [5,
p. 309].

A stronger conjecture is, in fact, that, for every 4=0,

Py(z* = 1) = Po(t = 1)

for the actual probabilities for t* and z. In connection with (13) one can also ask
whether, for y=re'®, the inequality

* - 0
[, 80 0a8 = [ 20,049,

holds for O<r<1.

We note that Dubinin’s proof of Gondar’s conjecture (12) uses conformal
mapping onto the unit disk of D, and D,.. Let us change the definition of « and /,
in Remark 1 by taking [, ={z: argz=a,, r=|z|=r<1}, k=0,1, ...,n—1, so that
D, now denotes a multiply connected domain with # slits. One conjectures that (12)
remains true.

Remark 3. An aliernative proof of Theorem 1. Consider Gr={z: |z|<RN\E*
and the Dirichlet integral of uy, harmonic in Gy, with boundary values 1 on
{z: |z]=R} and 0 on E* (for large R). We can now use the following characteriza-
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tion of capacity:
(14) logcap E* = lim (log R—2x/ D(uy)).

This can be stated in terms of outer conformal radius for a continuum E* (cf. [3,
p. 314]), in terms of extremal length etc. (We have referred to reduced extremal
length earlier in this paper; therefore the similar argument in [1, p. 79] can be referred
to here.) (An analogue of (14) for inner radius can be used for a short proof of
Dubinin’s Corollary [p. 275, 2].)

Using (14) rather than (3) one can apply the desymmetrization procedure in an
analogous manner to the proof of Theorem 1.

Remark 4. Further examples. 1. The approach in Remark 3 is also applicable
to a proof for the inequality

cap F = cap F*,
where
F=U{ziargz=o, r=lzl =}
and
F*=i_;{z: argz = 2nk/n, r = |2] = ry}.

In fact Dubinin’s original desymmetrization applies to this configuration.
II. An inverted Gon¢ar configuration is

F=U; j{z:argz=0, r=|z = nju{z: |z = r}.

This “sun” — for r=0 a “star” — has maximal outer radius/capacity when the
rays are equidistributed.

ITI. Let « and «* denote the images of the sets E and E* in Theorem 1 under
the mapping z—->rz, r fixed, O<r<1. Let D,=A\a and D, =A\a* (as earlier,
A denotes the unit disk). Then an analogue of (12) is true:

(0, a, D,) = (0, a*, D,+).

Let g(x, y) denote the Green function of the unit disk 4. The Green capacity for

a* equals the conformal capacity or D(u})/2rn, in the notation of Remark 3,
[6, p. 309]. The conformal capacity is decreased by a desymmetrization, as previously.
In terms of Green capacities or equilibrium measures p* and u (cf. [6, p. 309]) this
decrease implies that

%

I

i)

U

By comparing boundary values one sees that w(0, «*, D,,) equals the equilibrium
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Green potential of o* (cf. [6, p. 309—310])
(0, &%, D,2) = [, 2(0, ) du* (7).
Since y* lies on a* and g(0, y)=—logr on a* and a, we obtain
(0, o*, D) = (—log r)u* = (~log u = w(0, ¢, D,)
and thus the desired analogue of (12).

Remark 5. Extremality of symmetric configurations. Consider a set F containing
at most a given number, n, of circular arcs, rays etc. of given measure, such that
F can be viewed as the result of a suitable desymmetrization of a symmetric set F*
(in Dubinin’s sense). There are various quantities Q=Q(F), connected with suitable
Dirichlet integrals, that can be shown (or conjectured) to vary with F in the fol-
lowing manner: Q(F) varies between a) one extremal value for one arc, ray etc.
and b) the opposite extremal value for F*. For the case a) various standard sym-
metrization techniques have long been available; now Dubinin’s method can be
applied to the case b).
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Added in proof. The conjecture at the end of Remark 2, p. 102, for the multiply
connected case with slits on » rays, has been proved for n=3 by A. BAERNSTEIN,
On the harmonic measure of slit domains, Complex Variables 9 (1987), 131—142.
See also A. BAERNSTEIN, Dubinin’s symmetrization theorem, Complex Analysis I,
Springer Lect. Notes Math. 1275 (1987), 23—30.
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