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1. Introduction

For differential operators P(D) with constant coefficients there is a rather
complete theory on existence and regularity of solutions of the equation P(D)u=f.
There exists a solution in every relatively compact open subset of R” for an arbitrary
right hand side f€2’(R") (semi-global existence theorem). In an open set QcR”
the equation can be solved with u€C=(Q) for every feC~(Q) if Q is P-convex
and with u€2’(2) for every f€2'(Q) if Q is strongly P-convex. These results are
exposed in Hérmander [4, Ch.III).

The class of differential operators of constant strength with variable coefficients
(Definition 2.2 below) is closely related to operators with constant coefficients. An
operator P(x, D) of constant strength defined in an open set QcR” can be con-
sidered as a bounded perturbation of the operator P, (D) with constant coefficients

obtained by freezing the coefficients of P at a fixed point x,€Q. Peetre [9] proved
that the equation

(1.0 P(x,Dyu =f

can be solved locally for any f (c.f. Hérmander [4, Ch. VII]). Also theorems on
differentiability of solutions can be extended to differential operators of constant
strength. The operator P(x, D) is hypoelliptic in € if it has constant strength and
for every x€Q the operator P (D) is hypoelliptic (Hérmander [4, Theorem 7.4.1]).
M. Taylor [11] has proved that conversely if P is hypoelliptic and of constant
strength then P,(D) is hypoelliptic for every x.

However a semiglobal existence theorem is not valid for all operators of constant
strength. In fact by Pli§ [10] there is an elliptic operator P, of order 4 in R® such
that there is a function ¢€C;° with

tPQ(D :0.
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A necessary condition for solvability of the equation Pyu=f in a neighborhood
of supp ¢ is then that (f, ¢)>=0. There are operators P of counstant strength
such fhaf no finite number of linear conditions on f are sufficient for solvability
of the equation (1.1) in a relatively compact open subset Q° of the set Q@ where
P is defined. One example of such an operator is the operator P, above considered
as an operator in R* independent of the last variable. The adjoint of this operator
has infinitely many linearly independent solutions with support in a fixed compact
set. On the other hand if P is hypoelliptic of constant strength then

N = {pcé’; 'Pp =0} Cy.

Standard compactness arguments give that N &’(K) is finite dimensional for
every compact set K in © and one can show that the equation (1.1) can be solved
in a neighborhood of K if

(f,9) =0, @eNn&(K).

In Section 3 below we shall give a condition which is sufficient for solvability
of the equation (1.1) in an open set Q' < 2 when P has constant strength and
the right hand side satisfies a finite number of linear conditions (Theorem 3.1).
The condition involves so called localizations of P at infinity. If P has constant
coefficients then a localization of P at infinity is a differential operator Q(D)=0
which is a limit of

a;P(D+E))

when &;—c in R" and q;€R*. Localizations at infinity can be defined even
for operators of constant strength (Definition 2.3). The condition of Theorem 3.1
is that for no localization Q of P at infinity there should exist weé'(€2), w0,
such that ‘Qw=0. This is also necessary for existence with finite codimension in
open relatively compact sets if the solution is required to have the same regularity
as in the constant coefficient case {Theorem 3.7). After Theorem 3.7 we give a result
which clarifies somewhat the meaning of the condition of Theorem 3.1 (Theorem 3.9).

From Theorem 3.1 it is easy to deduce that if @ is P-convex then there exists
a solution u€C=(Q) of the equation (1.1) for any f in a space of finite codimension
in C=(Q) (Theorem 3.6). Then it follows from Theorem 1.2.4 in H&rmander [7]
that the same is true with C=(Q) replaced by 2’(Q) if Q is strongly P-convex.
But to be able to decide if a domain is strongly P-convex one needs theorems on
singularities of solutions.

In Section 4 we prove some results on existence of singular solutions, which
imply certain necessary conditions for Q to be strongly P-convex. These ate gener-
alizations of the following theorem of Hérmander [6].
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Theorem 1.1. Let P(D) be a differential operator with constant coefficients and
let Q(D) be a localization of P at infinity such that A(Q), the orthogonal space of

A(Q) = (neR?; Q(E+1m) = Q(&), all EER”, tER),

is different from {0}. Then there exists a solution uc%’(R") of the equation P(D)u=0
such that sing supp u=A(Q).

The definition of the space A(Q) can be generalized to operators of constant
strength (Definition 2.5). When P{x, D) is of constant strength in an open set
QcR" it is natural to replace A(Q) by a component X; of XN Q where X is
an affine subspace parallel to A°(Q). With a method of proof similar to the one
used in the constant coefficient case one can obtain a result which shows that the
statement of Theorem 1.1 with A’(Q) replaced by X, is valid for an operator P
of constant strength if € is small (Theorem 4.2). This gives a new proof of the
result of Taylor [11] mentioned above. A global version of Theorem 1.1 is true for an
operator of constant strength if some additional conditions hold (Theorem 4.4). We
do not know if these are satisfied in general but if P has analytic coefficients
they are fulfilled.

I would take the opportunity to thank my teacher, Professor Lars Hormander,
who suggested these problems to me and has given much valuable advice during
the work.

2. Definitions and notations

First we recall the definition of an operator of constant strength. If P(D),
D = —id/dx, is a differential operator with constant coefficients the function P is
defined by
P©) = (Z, [P® (@)=

P belongs to the class o of positive functions & such that

2.1 k(€+m) =1+ CiEN k@), all & neR
for some positive constants C and N. The functions
(2.2) hy(§) = (1+ &[>

belong to- # and are much used.

Definition 2.1. Let P, and P, be differential operators with constant coeffi-
cients. Then P;<P,, i.e., P; is weaker than P,, if there is a constant C such
that P (&)/P,(&)=C for all £€R”, and P,~P,, ie, P, and P, are equally
strong, if P,<P; and P,<P;.

If P=P(x, D) is a differential operator with variable coefficients defined in
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an open set QCR” then for each fixed x€Q one can consider the operator P,
with constant coefficients obtained by freezing the coefficients at x.

Definition 2.2. A differential operator P defined in an open set QcR" is of
constant strength if P~ P,. for arbitrary x, x'€Q.

In this paper all differential operators will be assumed to have C* coefficients.
The letters P and Q will always denote differential operators of constant strength
assumed to be defined in an open set QR" although that is not stated each time.

A localization at infinity of an operator P of constant strength should as in
the constant coefficient case be defined as the limit of

ajP(x,D+nj)

when the sequence 1~ in R" and ¢;€R* are normalizing consiants. In view
of Definition 2.2 it is natural to take a fixed x,€Q, define P=P, , set a;=1/P(n))

and thus consider _
(2.3) P(x, D+, P(ny).

There is a subsequence of the sequence #; such that the limit of (2.3) actually exists.
For if R has constant coefficients and is weaker than P, then the order of R is
at most equal to the order of P, so {R; R<P, } is finite dimensional. Let Py, ..., Py
be a basis of this vector space. We can write

P(x,D) = 3., ¢,(x)P,(D)

v=1
where ¢,€C=. Since P,< P, the coefficient of D* in P,(D+n;)/P(n;) is a bounded
function of #; for v=1, ..., N and all multiindices «. Thus there is a subsequence
1;,» which we for simplicity assume is identical with the sequence #;, such that the
coefficient of D* in
P,(D+1,)/P(,)

has a limit for v=1, ..., N and all a. Then it is clear that there is a differential
operator Q(x, D) with C* coefficients such that for all o the coefficient of D~
in (2.3) tends to the cotresponding coefficient in Q(x, D) in the C*=(Q) topology.
If another point x; is chosen to define P then Q will just be replaced by a constant
times Q. Now we can state

Definition 2.3. If P is a differential operator of constant strength let L(P)=
={Q(x, D); Q(x, D)=lim P(x, D+n;)/P(n;) for some sequence #;ER", #;~>oco}.
The elements of L{P) are called localizations of P at infinity.

An operator Q€L(P) has constant strength for

0,(&) = lim P (&+n,)/P(n)).

A localization R of Q at < is a localization of P at oo forif 0; is the sequence
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defining R then it is easily seen that there are subsequences # ;, and 8; such that
§=n; +6; ~o> and N

R(x, &) =1lim P(x,E+&)/P(E).
The adjoint ‘P of P has constant strength if P has and (‘P),(D)~ P.(—D) for
every x (Hormander [4, Lemma 7.1.2]). Clearly we have

‘Q(x, D) = lim"P(x, D_'nj)/p("j)
so the adjoint of a localization of P at oo is after multiplication by a positive con-

stant a localization of ‘P at oo,

The following proposition shows that one need not consider all sequences #;
in order to obtain all localizations of P.

Proposition 2.4. Let Q€L(P). Then there is a polynomial in t
Q.4 n(t) = 31_,0;t), 0;€R", 5(t) >~ as t—oo,

J

a number a=0 and an integer ¢=0 such that

Q(x, &) = lim P(x, E+n(t))/ar.

Proof. Let Q be defined by a sequence 7;. After possibly passing to a sub-
sequence we may assume that P,(¢+1,)/P(n,) has a limit Q, for all P, in a basis
of {R; R<Pxo}. It is sufficient to prove that there exist #(¢), @, ¢ such that Q,(&)=
=lim P,(£+n(t))/at® for all v. But that is just Proposition 2.2 in Hérmander [6]
applied to the vector valued function &-(Py(¢), ..., Py(¢)). The proof of that
proposition is valid with obvious modifications for a vector valued function.

If P has constant coefficients we define A (P) as in the introduction. If P,<P,
then A(Py)c A(P;). Forlet nc A(P,). Then

[P (E+1tn)] = Pi(E+m) = CP(E+m) = CPy(9).

Hence P;(£+tn) must be independent of ¢. Thus the following definition is inde-
pendent of the point x, chosén.

Definition 2.5. If P has constant strength let A(P)=A(P, ). The orthogonal
space of A(P) is denoted by A'(P).

The ciass of operators of constant strength is invariant under linear changes
of coordinates. Therefore we can choose the coordinate system so that

APy={x; =0, k=j+1,...,n}
Then obviously
P(xa D) = Za aa(x/, x”)D?c’s

where x'=(x,, ..., x;), x"=(X;4+1, ..., X,) and D% is a partial derivative which
does not contain 9/dx; for k=j+1,...,n. Consider a. fixed x” and let
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Y={(x, x”); x’€R’}. The restriction of P to X defines an operator of constant
strength in the open set X nQ in R/. We write Py for that operator.

It is immediate from the definitions that A(Q)c A’(P) if Q€L(P). More-
over dim A’(Q)<dim A’(P) if the sequence #; defining QO tends to < modulo
A(P). For if 6; is the coefficient of the largest power of ¢ in (2.4) and #(f) >
mod A(P) then we may assume that 6,4 A(P). But ¢;€A(Q) since

n(t+str =71y = n()+s0;+0(1/t)
so that for every real s

0(x, &) = lim P(x, E+n()/ar” = Q(x, £-+30).

If the sequence #; is bounded mod A(P) then @ is clearly of the form
P(x, E+E)IP(E) for some &ER". For all Q¢L(P) we have dim A’(Q)<n for
either #;—~o> modulo A(P) and then dim A’(Q)<dim A’(P)=n or the sequence
n; is bounded modulo A(P) and then dim A’(Q)=dim A'(P)<n.

These remarks show thatif Q is a localization of P at infinity mod A(P) then
Q is somewhat simpler than P. If we take a localization R of @ at infinity
mod A(Q) we get a still simpler localization of P, and so on. When proving an
extension of Theorem 1.1 one should first look at the simplest localizations of
order>0. Therefore we state

Definition 2.6. A differential operator Q of constant strength is of local type
if A(Q)={0} and all localizations of Q which are defined by a sequence 1; which
tends to infinity modulo A(Q) are of order 0.

Let Q be of local type and choose the coordinate system so that A(Q)=
={(x’, x"); x”=0}. The definition implies that Q, is then a hypoelliptic polynomial
in the & wvariables for all x, thatis

O (', x", E)Q(, x", &) > 0
when & o if a0,

The following proposition will imply that in order to prove an extension of
Theorem 1.1 it is sufficient to consider localizations of local type.

Proposition 2.7. For every Q¢ L(P) there is an operator Q'€ L(P) of local type
such that A/(Q")Yc A(Q).

Proof, If Q is of local type there is nothing to prove. Otherwise one can find
0, of positive order which is a localization of @ at infinity modulo A’(Q). Then
A(Q)c A(Q) and dim A(Q))<dim A(Q). If Q; is of local type the proof is
finished, otherwise there is a non constant @, which is a localization of @, at
infinity modulo A’(Q;), and so on. We get a Qy of local type after a finite number
of steps, for the dimensions of the spaces A(Q), A(Q,), ... are strictly decreasing.
The operator Qy belongs to L(P) so the proof is complete.
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3. Existence theorems

As before let P be a differential operator of constant strength in an open set
QcR" In this section we prove some existence theorems for the equation Pu=f
on compact subsets of Q.

First we introduce suitable Banach spaces. Let k€4 and 1=p= . The space
A, is the set of temperate distributions u such that 4 is a function and #k¢cL?.
It is a Banach space with the norm

Nl = (@0 [ 1) (@) dE)”

and if p#oo its dual space is B, ;., where 1/p+1/p’=1 and k(&)=1/k(=¢).
If ps#eo then Cg° is dense in %, ,. If k, ky€ and k,(§)/k(E)—~0 when £—>oo
then a sequence which is bounded in 4,, and has supports in a fixed compact set
has a subsequence which converges in B,,x,- For the proofs of these facts see
Hormander [4, section 2.2]. Let Q° be open and relatively compact. In the study of
the equation Pu=f in ©" we use the quotient spaces

gap,k(gl) = gp,k/Np,k(Q/)
where
N, () = {uc#,,;; u=0 in Q7}.
If peco the dual space of %, ,(2") is V, ,(2’), the annihilator of N, (2')
in &, . Itis obvious that C;*(Q)CV, A2)cE(D).
A differential operator P of constant strength in Q> > Q’ induces a con-

tinuous linear map _ _
P: .%p’kp(g’) - '%p,k(g,)'

The space %,,5(Q') is clearly independent of the point x, chosen to define 2.
The following theorem gives a sufficient condition for the image of P to have finite
codimension,

Theorem 3.1. Let Q be an open set in R" andlet P be a differential operator
of constant strength in Q. Assume that

3.1 QEeL(P), wed'(Q), "OQw=0=>w=0.
Then
N = {weé'(Q); ‘Pw = 0} C;°(Q).

Let Q" be open, ' < C Q. Then N'=N & (') is finite dimensional. If f¢ %, (')
and (f, 9)=0 for all @EN’ there exists some ucR,,s(Q) such that Pu=f
in Q. ‘

Theorem 3.1 applies to hypoelliptic operators of constant strength, for if P, (D)
is hypoelliptic for all x then every Q¢L(P) is a nowhere vanishing function.
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In this case the result is of course very well known. Operators P with analytic
coefficients also satisfy the condition (3.1). In fact every localization Q@ of P has
analytic coefficients. Let we&’(Q) and ‘Ow=0. Denote the principal part of Q
by ¢. One can find véR” such that g(x,, v)>20 and then ¢q(x, v)20 for all x€Q
since Q has constant strength. Holmgren’s uniqueness theorem now implies that
w=0 in a neighborhood of an affine hyperplane parallel to {x; (x, v)=0} if this
is true on one side. Hence w is identically 0. This also shows that the space N is
{0} when P has analytic coefficients. More generally if each Q€L(P) has the
unique continuation property over all hyperplanes parallel to {x; {x, v)=0} for
some v then (3.1) holds. We have that situation for example if L(P) only contains
operators of order 1, for a first order operator of constant strength has constant
coefficients in the principal part after multiplication by a C* function and a suit-
able local change of coordinates. For a proof of this see for example Duistermaat—
Ho6rmander [3].

Proof of Theorem 3.1. First we show that NcC;”. So let we&(N\Cy
and ‘Pw=0. In order to make use of (3.1) we take a point ¢€R” and observe that

(3.2) 0=exp(—i{-,E)P(+,Dw/P(=&) =*P(+,D+E)(exp (—i{-, E)w)/P(=9).
Suppose that there exists a sequence &;€R" and constants #;€C such that &;—oo
and #;exp(—i(-, ¢;)) w converges in &’ to a distribution wy=0 when j-oe.
We may assume that

tP(.’D-i_f])/'P(—C]) _’tQ(')D)
for some Q¢L(P). Then by multiplying (3.2) with ¢; and letting j tend to infinity
it follows that ‘Qw,=0. But that contradicts (3.1) so the following lemma will
complete the proof that Nc C,”.

Lemma 3.2, Let we&™\C;°. Then there is a sequence &;—~ in R, constants
t;€C and a distribution wo€6’ not equal to O such that t;exp (—i{-,&;)) w—w,
in &.

Proof. It is sufficient to show that there are constants C and N and a sequence
¢;— <o such that
(3.3) WE+ENPED = CA+[EDY, VEER™
In fact this means that the sequence exp (—i(-, £;)) w/W(¢;) is bounded in &, ,
where h_y is defined by (2.2). Then there is a subsequence &; of ¢; such that

exp (—i{+, & Nwiw(és)

has a limit w, in %, . Itisclear that w,=0 for Wwy(0)=1. To prove (3.3)
note that since weé&"\ C,;° there is a number M such that

(&) = CLa+[ghM+2
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for some C,;>0 and
f® = sup WO+ R)—™

is not a bounded function of R. Then f(R)=C,(1+R)"? so
S; :;12113 (f(R)—R/]) < oo

and is attained at a point R;. The numbers §; tend to infinity for if they were
bounded then f would be bounded. Then R; must also tend to infinity. For R= — R;
we have

B4 fR+R)f(R)) = (S;+R+RYIFR) = (F(RY+RIF(R) = 1+ (R
if j is large enough. Let £; be a point where
&1 =Ry, f(R) = [WEPIA+R)™.

For given {€R" put R=|{+&;|—R;. Then —R;=R and |R|=[{|. The defini-
tion of f gives that

W(EHEN = fUEFEDA+[E+EDY =F(R;+R)(1+R;+ RM.
Thus

W (E+ENP(EN =F(R;+RY(1+R;+ RM/(f(R)(L+R)M) = (1+ [R)(L+ [R)ML.
The last inequality follows from (3.4) and the fact that
(1+R;+RM/(1+R)M = (1+|R|yM.

Hence (3.3) is valid and the lemma is proved.

Now it is easy to obtain that the space N’ in Theorem 3.1 is finite dimensional.
For N’ is a closed subspace of L% The injection N’—~3#,, is everywhere defined
so by the closed graph theorem

”(0”(1) = C”(PH(O)9 QEN’.

A sequence in &(€2’) which is bounded in #1y has a subsequence which converges
in L? so this inequality implies that N’ is locally compact. A Banach space which
is locally compact is finite dimensional so it follows that N’ is finite dimensional.

We shall complete the proof of Theorem 3.1 by applying the Hahn—Banach
theorem. For that we need the estimate in the following lemma.

Lemma 3.3. Let the hypothesis of Theorem 3.1 be fulfilled. For all k€ A" and
PE[1, =] there is a constant B such that if h=kP" then

(3.5 ol p.x=BI"Poll,,n i v€V, () and (v, 9)=0, YpeN".
The same B can be used for all k satisfying (2.1) with fixed C and N.
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Proof. Assume that the statement of the lemma is not true. Then for all positive
integers j there exists v;€V,,(2’) orthogonal to N’ and k; satisfying (2.1)
such that
(3.6) L= lollp,, = J 1" PVl
where A j:kjf’. It is easiest to get a contradiction from (3.6) if p=-<> so we con-
sider that case first. One can then find £; such that

(3.7 ﬁj(&j)kj(‘fj) -1
Define w; by
WJ(@ = kj(&j)ﬁi(é'*’éj)-
By the equality in (3.6) and (2.1) we have
%O = A+ ClEYY
so there is a subsequence which we also denote by w; which has a limit w in &".
Obviously w0 for (3.7) means that #;(0)—~1. By the remarks before Definition 2.3
any sequence &; in R" has a subsequence which defines a localization of P. If ¢;
does not tend to < then the localization is just a constant times a translation of P.
Thus after possibly passing to a subsequence
Qj(" &)= tP(‘,é‘l‘ﬁj)/ﬁ(—éj) -'Q(-, %)

Note that

NN -

Qjw; = P”j(‘ + éj)kj(éj)/P(—Cj)'
From the inequality in (3.6) it follows that Q;w; tends to O in the space %.. ,
if s is the constant occurring instead of N in the estimate (2.1) for 2 and A_;
is defined by (2.2). Hence ‘QOw=0. Then the sequence &; cannot tend to infinity
because (3.1) is valid, so we may assume that &; has a limit {,€R" Then

‘0(+,8) =P+, {+E)/P(=E), w= dvgexp(—i(-, &)

where v, isalimitof v; in & and A isalimit of k;(&;). Clearly v, is orthogonal

to N’ and not equal to 0. But the fact that ‘Qw=0 implies now that *Pv,=0,

that is, v,€N’. This is a contradiction so Lemma 3.3 is proved in the case p=-ceo.
To be able to use the same idea of proof if p> < one needs a lemma.

Lemma 34. Let k€A and p<os. For n€R" define a function k,€4" by
(3.8) ky (&) = A+ [E—nl)~M2k(), ECR™

Let K be a compact set in R". If M is sufficiently large the function r]—»llullw,k"
belongs to L* and the norm |u|, , is equivalent to the norm

ltllpi = (f 1012 i, dn)
Jor ucEKYNRB, .
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Proof. It is clear that Huﬂw,kﬂéla?(rf)k(n)] $O

lul i = [ullZ i, dn.
To prove the opposite estimate choose y€C;” such that y=1 in a neighborhood
of K. Then d=Q2nr) "ixg if uc&(K). If M is large there is a positive constant
C; such that
k(&) = C,(1+|E—6D™ k() for all ¢, 0€R”
and for M=0 we have
A+ E—n)™ = (1+[0—n)"MA+[E-0D¥ for all & 7, 0€R™

From these estimates, the fact that #=Q2n) "4« § and Hoélder’s inequality it
follows that

k(@A +[E—n)Ma©)] = CollgA+]- DM, ([ @O k©B)(1+10—n)~* |7 d6)'".

If Mp=n we obtain by integrating with respect to # that there is a constant C
independent of u#€&’(K) N4, such that

S ull2 i, dn = Cllullz, .
The proof is complete.
End of the proof of Lemma 3.3. Recall that h=kP’. Define k, by (3.8) and A,
in the same way. By Lemma 3.4 one can choose M so large that [lull, , and [{|u[||, .
as well as [ull,, and [|[u]ll,, are equivalent for u€&’(2’). The functions k,
satisfy the estimate (2.1) with the same constants for all #. Thus it follows from the
first part of the proof that

[0 i, = BIPUl,s, if 0€V, (&) and v 1 N

Now (3.5) follows by integrating with respect to 5. This completes the proof of
Lemma 3.3.

End of the proof of Theorem 3.1. Let f€%, (@) and v€Cy (2). The estimate
(3.5) gives
(K 0 = BlIf & " Pl y, oy

if vLN’. If f1L N’ this inequality is in fact valid for all v€Cy°(Q’) for v can
be written v=v,+v, with v, L N°, v,6 N° and when v,€N’ both sides are O.
The linear form

tPv —~{f,v)
is thus continuous on a subspace of V. p(2"). By the Hahn—Banach theorem
it can be extended to a continuous linear form u on ¥V, 45(2’) such that (u, ‘Pv)=
=(f,v) forall v€Cy(2"). That means Pu=f in Q and u€®, ,s(Q') if p’#oo.
This completes the proof of Theorem 3.1 in case p=1.
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From the estimate (3.5) one can obtain the following result which contains an
existence theorem for the C*= case and the statement of Theorem 3.1 for p=1.
The method of proof is well known.

Theorem 3.5. Let Q be an open subset of R" and let P be an operator of
constant strength in Q. Assume that (3.1) is fulfilled. Let

F= /m '%Pj.kj’ Fl = .mlgpj,kji’,
i=

j=1

where 1=p;,<oo and k;€ 4. If & CCQ, f€F and (f, 9)=0 for all pcCy (')
such that "Pp=0 then there exists ucF, such that Pu=f in Q.

Proof. F and F, are Fréchet spaces and so is
Fy={feF; f=0 in @)
and the quotient space F,=F/F,. The dual space of F, is
F; = {w; we By, for some j,{(w,f) =0 if feF,}.

This is of course a subspace of () containing C;°(£’). We have to show that
the image of P: F;—F, is the annihilator of

N = {p€F[; "Pp = 0}.

That follows if the range of P is weakly closedin F; (see ¢.g. Diendonné—Schwartz
[2, Th. 7]). By a theorem of Banach (see Bourbaki [1, Ch. III, Th. 5]) this means
that the intersection of the range of ‘P and the unit ball in %, ¢, 5 shall be
weakly closed for every j. The weak topology is metrizable on the unit ball since
it is equivalent to the weak topology on the unit ball of a dual of a separable Banach
space. Let us therefore consider a sequence

vaFq,7 thv =Wy, va”p’j, (Pk;) =1

and suppose that w, tends to a limit w weakly in F;. We may assume that v, | N

0 the estimate (3.5) gives that
oyl 1, = B.

Then there is a subsequence of v, which has a weak limit v in F’. Clearly vqu’
and *Pv=w so the proof is complete.

The following global existence theorem in a P-convex open set is proved in
the same way as Theorem 3.5. As usual ga;;’;(g) is the space of uc€P’(Q) such
that gue,, for all p€Cy”(Q).
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Theorem 3.6, Let Q be an open set and let P be a differential operator of
constant strength in Q. Assume that (3.1) is fulfilled and that Q is P-convex, that
is, for each compact subset K of Q there exists a compact subset K’ of Q such that

supp'PwcC K, weé'(Q)= suppwc K.
Let

F = 0@, Fi= (0 Bun(@),
i= Jj=

where k;€ A" and 1=p;<eco for all j. For every f€F which is orthogonal to the

finite dimensional space
N = {p€eCs(Q); "Po = 0}

one can then find u such that uc%#, and Pu=f.

Proof. That N is finite dimensional follows from the P-convexity and Theo-
rem 3.1. &# and % are Fréchet spaces. The dual space of & is

F' = {wes(Q); weBy, i, some j}

and the dual space &’ of % is defined in the same way except with (k; Py instead
of k;. We have to prove that the range of P in & is the annihilator of N. As
in the proof of Theorem 3.5 it follows that this means that the intersection of the
range of ‘P in %  and the unit ball in &(K) N By, «,py is weakly closed in
& for every j and every KC C Q. Let # be a filter in this intersection. Thus

wes(K), w="Pv forsome ve€F’, [Wl, q,p =1

for every element w of a set in #. We may assume that v is orthogonal to N.
The P-convexity condition and Lemma 3.3 give then that v¢&(K’) for some
compact set K in Q and

10l p;,6, = B.

The ball of radius B in %, ;. is weakly compact in #’. The inverse image by ‘P
of # therefore has a cluster point v, weakly in &’. Then ‘P, is a cluster point
of #" so the proof is complete.

We shall now prove a converse of Theorem 3.1 by first showing that estimates
of the type (3.5) must be valid and then deducing such estimates for *Q when
QcL(P).

Theorem 3.7. Let Q and " be open sets such that Q@ — < QCR" and let P
be a differential operator of constant strength in Q. Let p>*- and assume that
P(®B,,s(R2")) has finite codimension in B, (') for all keA . Then for all k€A
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and all Q€ L(P) there is a constant C such that
(3.9) o]yt = CIQlly e, v€CE ().
If wed (), QeL(P) and '*Qw=0 then w=0.

One example of an operator such that the condition (3.1) is not fulfilled was
given in the introduction. Another can be constructed in the following way. Let
P,(x, D) be the operator of Theorem 2 in Pli§ [10] considered as an operator in R*.
Denote the last variable in R* by y. If

P(x9 ya D) = Dﬁpo(% Dx)+DyQ1(x’ Dx)+Q2(-x: Dx)
where Q; and @, are of order =3 then P has constant strength. Since

Py(x, D,YEL(P) the condition (3.1) is not satisfied. Thus Theorem 3.7 shows that
the conclusion of Theorem 3.1 cannot hold for this P.

Proof of Theorem 3.7. Let k, be any function in #° and set hy=ky/P. Let
@y, ..., @y be representatives for a basis in ﬂp,ho(ﬁ’)/P(ﬂp,ko(Q’)). The space
C=(2) is dense in &, (') since ps oo, and P(%,; (&) is closed as it has
finite codimension and P is continuous. Therefore @y -0 Py C2N be chosen in
C= (). Define a continuous linear operator 7 from .@I,,ko(ﬁ’)@CN to
ggp,ho(Q,) by
T(v,ay,...,ay) = Pv+>N_ a,0,

The adjoint ‘T of T isa continuous linear operator from ¥, ;. (@) to Vyp 1y ()@
®CY and
T(V) = (P, (P10, -, (PN, V).

Since T is sutjective ‘T is injective and its image is closed. Then by the closed
graph theorem it has a continuous inverse so

(3.10) 10l s = CUEPY] g+ Sy Ko, @), D€V 1 ().

From this inequality we are going to obtain (3.9) for given Q€L(P) and k<.
For some sequence ¢;—~< we have

‘0(-, 8 =lim"P(+, E+E)/P(=E).

To get ‘Q instead of ‘P in (3.10) it is natural to replace v by exp (i{x, &;))v and
divide both sides by f’(—fj). Indeed, |*Pv], y, is then replaced by

(3.1 [FP(+, D4ENV/P(—ED i,
where

k;(©) = 1/ko(—&—=E)).
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The term |fv]| 5, is replaced by
(3.12) ol 5,5,
with the notation _
Pj(é) = P(_é_éj)/P(—ﬁj)'
The sum is replaced by
S oo (= E)IB(=¢))
Now let j tend to infinity. Then the sum obviously tends to O since vo,€Cy if

veCy (). The functions N
‘P(-, D+E)v/P(—E)

tend to ‘Qv in & Clearly P;~'0 uniformly on every compact set and B, is
uniformly bounded by a power of (1+[&]). Assume that k;(£) tends to k(&)
uniformly on every compact set and is uniformly bounded by a power of (1+&)).
Then if p’#e it follows by dominated convergence that the limits of (3.11) and
(3.12) as j—eo are [|'Qull, , and |v], .5 respectively. If p’=eco it is also clear
that we obtain (3.9) when j-—+oo. Thus the following lemma applied to &k’ will
complete the proof of (3.9).

Lemma 3.8. Let &;€R", &~ and k€A'. Then there is a subsequence fjk
of &; and a function ko€A" such that ky(E+& i)k (@) uniformly on every com-
pact set.

Proof. Take a sequence r €R, r,—, and a subsequence ¢ i of &; such that
the sets M,={¢; |~¢; [=2n} are all disjoint. To shorten notations we assume
that fik:fk. Let 4,={&; n=1¢—-&|=2n} and m={¢; [E—&|=r). For &c4,
define & by

S E—EtE—E) = rE—EIE-4

The point ¢ is the reflection of ¢ in the tangent plane of 9m, where the line through
& and ¢ cuts gmy. Geometrically, or by writing down the lengths of é—# and
&—17j by the cosine theorem one easily sees that |&—#j|=|é—y| if & ncd,. Define
a positive function k, by

ko(§) = K(E—¢&) when &emy

ko(§) = k(E—&) when (€A,

ko (&) = k(0) when E€R™\ U M,.
If C and N are the constants occurring in the estimate (2.1) for & it is clear that
(3.13) ko(&) = (1+ CIE—nD ko ()
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if both & and #x belong to the same m, or the same A4,. If {€m; and n€4,
take a point &,€0m, such that [é—&j|=[E—n| and [n—&y|=|é—n|. Then by
applying (3.13) first to ¢ and &, then to &, and 5 we get

ko(8) = (1+C[E—n)* ko ().

If £eM, and neM,, we obtain in the same way by taking a point £, on oM,
and applying this estimate twice that

ko(€) = (14 ClE—n)* ko(m).

Thus this last inequality is valid for all &, n€R" and the proof of the lemma is
complete.

End of the proof of Theorem 3.7. To obtain the last statement of the theorem
we just have to note that C;°(Q’) is dense in &(Q)NB, 4.5 if p#1. Hence
(3.9) can be extended by continuity to v€E(2)NB, y. Since any v<E ()
belongs to some %, , space with p>1, e it follows that the equation ‘Qw=0
cannot have any nontrivial solution in &’(Q’). This completes the proof of Theo-
rem 3.7.

The following theorem shows that in order to verify that the condition (3.1)
is fulfilled it is sufficient to consider C,° densities in certain subspaces.

Theorem 3.9. Let Q be an open set in R" and let P be a differential operator
of constant strength in Q. Assume that for all Q¢ L(P) and all affine subspaces %
parallel to A’(Q)

(3.14) eeCy(Zn), 'Cyop=0=¢ =0.
Then for all QcL(P) we have
(3.15) Ow =0, wc&'(Q=>w=0.

Recall that Q; is the operator Q considered as a differential operator in the
open set 2 nQ of X.

Proof of Theorem 3.9. The theorem is proved by induction over the dimen-
sion n.

1. When n=1 all localizations of P at infinity are nowhere vanishing func-
tions so (3.15) is trivially valid.

2. Assume that the theorem is true for all differential operators in open sets
of R/ when j<n and let P be an operator in QCR" satisfying the hypothesis
of the theorem. Let Q¢L(P). Then dim A’(Q)<n. Let X be parallel to A'(Q)
and consider the operator Qy in the openset X NnQcR’. If REL(Q) then REL(P).
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Hence all R€L(Qj) satisfy (3.14) and then the induction hypothesis gives that the
conclusion of the theorem is valid for Qy, that is

REL(Q;), wed'(QnX), 'Rw=0=w=0.

Here 6(QnZ) denotes distributions of compact support in the open set 2 NE<R/
and not a space of distributions in R”. Thus Q; satisfies the condition (3.1) and
therefore Theorem 3.1 and (3.14) imply that ‘Q; has no non trivial solution in
&’. Then Lemma 3.3 gives thatif Q' << Q and k¢ thereis a constant C such that

(3.16) lolls,kig = Cl'Qr@ls, for all @eCe(2'n2).

We will prove such an estimate for functions @®€C,;°(Q) with ‘Q instead of ‘Qy.
Then (3.15) will follow easily. Choose coordinates (x’, x”) so that

A/(Q) — {(x/’ x//); xl/ — 0}, Z — {(x/, x//); x// — x(/)/}.
Now ‘Q depends only on the ¢ variables. Let @  be relatively compact in Q
and choose ®€C;°(2) so that (x',x7) € ZnQ if (¥, x") € supp #. Then the
function &7(.,£”) given by
@Il(‘x" é”) —_ ./- exp (_ i<x//’ é//>)¢(xl’ xl/) dx//

belongs to C;°(Q"nZX). Take k; and k,€ such that k; only depends on the &
variables and k, only depends on the &” variables. If we apply (3.16) to &"(x’, &),
multiply by k,(¢”) and integrate it follows that

3.17) 19]l2,x:6 = CI'Q', X5, D) Pl

if k=kyk,. To obtain ‘Q(x’, x”, D) in the right hand side note that since Q has
constant strength we have

tQ (x’a x”a Dx') _tQ (x,a x(,)/a Dx’) = Zj Cj(X,, x”) Qj(Dx')

with some Qj<’on, ¢;€C* such that c;(x’, x5)=0. If the support of @ is suffi-
ciently near X this shows that

(3.18) QG x5, D) Plls, k = 1°QPlo, x +1/QC) [ Plls, k05 -
The estimates (3.17) and (3.18) imply that

(3.19) [Plls, k25 = 2C|*QPll,x

if the support of ¢ belongs to

(3.20) {(x', x)€EQ; [x"—x5] <& and (¥, x5)€XNQ}

and ¢ is sufficiently small. The estimate (3.19) can be extended by continuity to
WER, g With support in the set (3.20). Now let we&’(Q) and ‘Qw=0. There is
a partition of unity in Q consisting of functions ¥, depending only on the x”
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variables such that an estimate of the form (3.19) is valid for each yx,w. Since Q
contains only derivatives in the x’ variables we have ‘Q(y,w)=0. It follows that
w=0 so the proof is complete.

We shall end this section by considering operators P of constant strength
defined in an open set QcR" such that A’(P)=R". Then P is a localization of
itself at infinity. Thus (3.1) cannot hold if the adjoint of some P; with 2 parallel
to A’(P) hasanon trivial solutionin &”’. Clearly a necessary condition for solvability
of the equation Pu=/f is in general that the restriction of f to each X parallel
to A’(P) satisfies a number of linear conditions. Examples of operators with A4"=R"
are the non-hypoelliptic operators of local type. For these operators we shall prove
an existence theorem which will be used in the next section.

First we introduce some convenient notations. For an operator @ of local
type there are coordinates

(X3 X7) = (K05 eevs Xy Xy ovvs Xgr)
such that
A(Q) = {(x', x"); x” =0}
It is natural to assume that Q is defined in a product domain
Q, = QX" |x"| < ¢}

for some Q openin R and ¢=>0. For |x”|<c we denote the operator Q(x’, x”, D)
in Q by Q..

Theorem 3.10. Let Q be of local type defined in a product domain Q. as above
and let o be relatively compact in Q. If ¢ is small enough there is for each x”
with |x"|<g¢ defined a linear operator E,. from 2(Q) to 2'(Q) such that if
feC=(Q,) and
(3.21) u(-, x”) = E.(f(+, x"))

then u€C=(Q,). In addition Qu=f near @X{x"; |x”"|<e} if for certain finitely
many functions @, ..., a,€C=(Q,) such that a;,(-,x")EC(Q) for all x”, j
we have

a;(+, x") f(-,x) =0, j=1,..., M, [x'|<e.
If there is a neighborhood of @ where the equation Qy,U=F can be solved for all F
then E,. can be chosen so that all a; vanish.

Proof. By Theorem 4.2 in Hérmander [5] there is for all x” a properly supported
pseudo-differential operator 4,. in Q which is a parametrix of Q... The con-
struction of A,. shows thatits symbolisa C* function of (x", x”, £’). Thus

(3.22) Qx// Axn G = G+Txﬂ G, GE@’(Q)
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where T,. is a properly supported integral operator in @ with a kernel which is
a C= function of x” with values in C=(QXQ). If T,. is replaced by K,.=
=xT,, where y€C,”(2), x=1 near @, then (3.22) is still valid near @. Since
T, is properly supported the kernel of K. has support in a fixed compact set in
QX Q for all x” near 0. The equation G+XK,.G=F can be solved by classical

Fredholm theory. For the sake of completeness we give a proof.

Lemma 3.11. If ¢ is sufficiently small then there exists for all x” with [x"|<e
a properly supported integral operator R.. with a kernel which is a C~ function of
x” with values in Cy°{QXQ), such that

(I+ Kx") (I+ Rx”) = I'—Hx"

where
H.F= 2?4:1 {a;(+, x"), F)o;,

©;€C(Q) and a; are as in the statement of Theorem 3.10.

Proof. K, is a compact operator from i, to #, for all s so it follows
that I+K, is a Fredholm operator in all the spaces . Note that Fci#, if
and only if F+K,Fe#. Since ¥ +'Kyy=0 implies that y<€C;°(2) there are
finitely many linearly independent functions Y, ..., ¥, €C;°(2) such that

Felm(I+ Ky (Fy;) =0, j=1,.., M.

The operator I+K, is bijective from the orthogonal complement of its null
space in L? to its range in L2 By the closed graph theorem it has a continuous
inverse Y between these spaces. Denote the orthogonal projection in L2 on the
null space of I4+'K, by H, and the orthogonal projection in L? on the null space
of I+K, by P,. Note that

H,F = 2?4:1 (F, ‘pj>$j

if Y, ..., ¥, are chosen orthonormal in L2 If I+R,=Y(I—H,) then
(I+R)(I+ K)F = F—P,F, (I+K)(I+R))F=F—H,F

for all FeL? After multiplication of the first identity by K, from the left we

obtain
Ky Ry+ K3+ Ky RyKy+ Ko Py = Ry+ Ky+ Ky Ry+ H,.

It follows then that

Ry = —Hy— Ko+ Ky Py+ K&+ K, Ry K, -
This shows that R, is an operator with C* kernel of compact support in QX Q
for K,, H, and P; have this property.

Put (K, —Ky))({+Ry)=V,.. Since V,=0 there exists ¢>0 such that the
operator I+V,. has an inverse I+ S,. in L? say, when |x”|<e. This inverse is
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a C* function of x” with values in L(L2? L?. A computation similar to the one
carried out for R, above gives that

Sx" = —Vx” + V)%” + I/x” Sx" Vx" s

so it follows that S,. is in fact an operator with a kernel which is a C* function
of x” with values in C;°(2X Q). Thus the statement of the lemma holds for
I+R.=({I+R)(I+S,) and H_.F=X{(I+S,)F, Y ¥;, so the proof is com-
plete.

End of the proof of Theorem 3.10. If we do not require that all the functions «;
vanish then Lemma 3.11 shows that E..=A. (I+R,) has the desired properties.
The proof of Lemma 3.11 shows that if K, is O then H will be 0 so all the func-
tions @; vanish in that case. If the equation Q,U=F can be solved for all F in
an open set " D Dw then A, can be modified so that K, becomes 0. In fact by
the closed graph theorem there is a continuous linear operator B from L?*(@")
to B, 5(@’) such that QyBF=F. Let y¢Cy (w’), y=1 near &. The operator
VBT, is properly supported and it has C= kernel since Q, is hypoelliptic. If
A=A, —VYBT,. then

0.(4,,6) = 6+T»G—Q (BT G) = G+ T, G,

where the latter equality is a definition. We have T, G=0 in the open set where =1.
Thus if y has support in this set and K, =yT.. then K,=0. This completes the
proof of the theorem.

4. Solutions with singularities in affine subspaces

In this section we prove extensions of Theorem 1.1. Let P be of constant
strength, defined in an open set Q, Q€ L(P), X an affine subspace parallel to A’(Q)
and X, a component of X Q. The first step is to rephrase the negation of the
statement of Theorem 1.1 as an inequality. For a positive integer m let

F = {ucCm™(Q); ucC=(\2,), PucC=(Q)}.

% is a Fréchet space with the weakest topology making the maps
Fou—~C"(Q), Fou-C=(Q\Zy), Fdu—-PucC=(Q)
continuous. From the closed graph theorem one easily obtains the following lemma.

Lemma 4.1. Let V be open, relatively compact in Q. If

{u; ueF, ucCm*1(V)}
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is of the second category in F then there exist veZt, Ky,CC Q and K, Q\Z,
such that

Zl=m1 SUP [D*u| = C{ 3,12 sUp D*ul+ 3\, =, sup [D*(Pw)|+ 3, <, sup |D*ul}
@ % K K K

Sfor all ucC™"*\V)n#.
If we prove that (4.1) is always false when ¥ is a neighborhood of a point in
Z, then there exists a function #€4% such that u isnotin C™*! in a neighborhood
of any point in Z,. For if u€%# and u€C™* in a neighborhood of some point
in X, then
ue (U C" 1 ({x; [x—xo| = rP)nF
Xg, ¥

where the union is taken over a countable dense set of points x, in ¥, and countably
many r=0. Since a countable union of sets of the first category in & is of the
first category the assertion follows. This also shows that it is sufficient to consider
Q of local type. For by Proposition 2.7 there exists some Q" of local type such
that A'(Q")c A(Q). If x,€%, is a given point one can therefore find a component
Z, of Z’nQ for some X’ parallel to A’(Q’) such that x,€Z;CX,. If we prove
that (4.1) cannot be valid for any K,cc Q\2; then it cannot be valid for any
K,cc @\ Z,. Hence it is no restriction to assume that Q is of local type.
By Proposition 2.4 we may assume that

Q(x, D) = lim P(x, D+4(t))/ar®
where #(#) is a polynomial in #, =0 and o is a positive integer. Note that
R.(x, D) = Q(x,D)—P(x, D+y(1))/at’

has coefficients which are O(¢™*). To prove that (4.1) is false one should construct
functions #* such that the derivatives of u’ of order m+1 are large compared
with those of order =m, Pu’ is small and «' is 0in K,. If u,€C> the function

ut = exp (i{ -, n(t)))uo/at’,

or just u for short, satisfies the first requirement if # is large. We have

Pu = exp (i(-,n(t)) P(+, D+n(1))u,fat®

so if Quo=0 then Pu will be equal to —exp (i{+, n(?)))R,u4, and thus the supre-
mum of [Pu| over K; is O(t™%). To get a still better approximation we try to
solve

exp (—i -, () Py xp (i, () ar") = Ret.
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Since the left hand side is approximately Qu; and we only have an existence theorem
for Q we replace this equation by
Qu, = Ru,.

The coefficients of R, are O(t ") so u; should be O( ). We have

P((ug+uy) exp (i(+, n(0)))/at®) = —exp (i{ +, n(t))) Ryu;.

If we could solve Qu,=R,u,; so that u,=0(t™%), Quy=R,u, so that u,;=O0(?),
and so on we could define

u = Z;.V:O ujexp (i{-, n())/ar’.

Now the supremum of |Pu|' over K, decreases as ¢~ as 7—co. By multiplying
u, with a cutoff function which depends only on the variables of A(Q) and is 0 in
K, we could achieve that v'=0 in K,.

This idea of proof is easiest to carry through if the equation Qu=f can be
solved near. X, nK, for an arbitrary right hand side, so we consider that case first.
Then the equations Qu;=R,u,, Qus=R,u;, and so on, can be solved successively
if there is just one function u, such that Qu,=0 to start with.

Theorem 4.2. Let Q be openin R* and let P be a differential operator of con-
stant strengthin Q. Let Q€ L(P) be of local type, let ¥ be an affine subspace parallel
to A(Q) and X, a component of X Q. Assume that

4.2) vEE(Zy), Qsv=0= =0,

Denote by S the set of all x€ZX, such that for all wcC Xy and all neighborhoods
V of x there exists Uy€C=(Z,) such that QyUy=0 in @ and UyZ0 in VN Z,.
Then for all positive integers m there exists u€ C™(Q) such that PucC=(Q) and
Scsing supp uc 2.

Proof. We have to prove that the inequality (4.1) is false for any neighborhood
V of a point x,€S and given K, K,, v. We shall construct functions «‘ as indi-
cated above. Choose an open set Q° such that K, UK, Q' CC Q and an open set
wcc I, such that Z,NQ cCw. The coordinates x=(x, x”), x’€R”, x”€R" can
be chosen so that Z={x; x”"=0}. Put

w, = {x; X' €w, |x"| <&}

and define Q,. as before Theorem 3.10. If ¢ is small then w,cC Q, K; nw,=0 and
the intersection of €’ with the boundary of , is contained in {x; [x”|=¢}. The
condition (4.2) implies that the equation Q;U=F can be solved for any F in an
open relatively compact subset of X,. Then Theorem 3.10 gives that if & is suffi-
ciently small one can for any f€C=(Q) find ucC>(Q) such that Qu=f in w,.
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We need a function u,#0 such that Qu,=0 in £’. Since x,€S there is
some U,€C*=(Z,) such that Q;Uy;=0 near @ and U,#0 in ¥'nZXZ,. Choose a
function x€C;°(R™) such that y=1 near {x; x"=0}, x=0 when |x"|>¢/2,
and a function Y €C;°(Z,) such that Yy=1 near @ and Q;U,=0 near supp .
Let ucC= () be a solution of

Qu = ¢Q,. U,

in w,. Since u(-,x”) is a linear function of Y Q,.U, we have u(.,x”)=0 when
x”=0. Thus if 4,=0 when [x"|>¢ and uy(x’, x”)=(Y(x") Up(x")—u(x’, x” ) 2(x")
when |x”|<e, then #,€C=(Q), Quy=0 in @', u,=0 when |x”|>¢/2 and u,=U,
in X;no.
Now one can find u,, u,, ... such that Qu,=R,u,, Qu,=R,u;, and so on.
Since
R,(x, D) = 25:1 t~*Ry(x, D),

where R, are operators with C* coefficients, we just solve Qu, ,=Ryu, for each
k and set

t . vk —k
Uy = 2yt Uy

The next right hand side, R,u;, will also be a sum of powers of ¢ with some func-
tions as coefficients. For each coefficient function ¢, we take a solution u,; of
the equation Qu, ,=c; and then define #; as a sum of powers of ¢ with the coeffi-
cients u,, such that Qui=R,u;. In this way we continue with the following equa-
tions. Thus we take u;,€C~ () such that

Quy,i = Ryt k=1,...,.K

Qus i = 2y pmp Rithr,y k=2,..,2K
43) e

QuN’k:2i+u=kRiuN_1’“ k:N,,NK
in w,. Since u,=0 when |x”|>¢/2 we can choose u;, such that u;,=0 when

|x”|=>¢/2 for all j, k. Thus the equations (4.3) are valid in Q" if we set u; ;=0
outside w,. For j=1,2,... let

K -
uf = st uy,
and write u,=u,. Then we have
Quy = Rouj_,
for all j. Now put

ut = j."=0 exp (i{ +, n(e))) ul/ar°.

The functions ' belong to C*(Q). They are constructed so that
Put = —exp (i, n(t))) R,uly
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in © and R,u is a sum of powers of ¢ where the highest power occurring is
t~N-1, Recall that the highest power of ¢ in the expansion of #(¢) is #/. Now
look at the terms in (4.1) with u=u'. The last term in the right hand side is zero and
for some C;, C, and C=0 we have

Zlalsm Sup ID«zuti = CltJm—a
=m ]
=y SUP [D*Put| = Cpt??— N+
Kl
2]0€|=m+1 sup {D“u’| = Csup I”o]tj('"ﬂ)_"+0(t’('"+1)—0~1)‘
v 14

If N is so large that Jv—(N+1)<J{(m+1)—c we get a contradiction when e
for supy |ue|=0 since uy,="U, in X,. This proves the theorem.

In general (4.2) is not fulfilled for an operator of local type. However if the
domain Q is small enough (4.2) holds and the set S in Theorem 4.2 is not empty.
That gives a new proof of the following corollary which was proved with other
methods by Taylor [11]. It is a converse of Theorem 7.4.1 in Hérmander [4].

Corollary 4.3. Let P be a differential operator of constant strength in an open
set QCR". Assume that sing supp u=sing supp Pu for all uc2'(Q). Then P, is
a hypoelliptic polynomial for all x€Q, thatis PP(E)/P.(£)—~0 when &—oo if a0,

Proof. If P, is not a hypoelliptic polynomial for some x€Q there exists some
QcL(P) of positive order. The proof of Proposition 2.7 shows that Q can be
chosen of local type. We have to verify that (4.2) is fulfilled for ;=X nw when
Y is parallel to A’(Q) and o is small enough and that the set S in Theorem 4.2
is non-empty. Theorem 7.3.1 in Hormander [4] shows that if ® is small there is a
linear mapping E: & (R")~>&(R") such that E'Qyu=v in X, if v€E(Z,).
This implies (4.2). That S is non-empty follows from Lemma 4.7 below which states
that there are infinitely many linearly independent U€%’(X;) such that Q,U=0
if o is small. Since @y is hypoelliptic it follows that U€C®. Now Theorem 4.2
shows that there exists w€P’(w) such that singsuppu=0 and PucC*=. This
completes the proof.

Let Q be any operator of local type and as before X, a component of 2nQ
for some X parallel to A’(Q). We know that (4.2) is in general not valid and we
wish to prove that (4.1) cannot be true for any K;ccQ, K,cc O\2,, v€Zt
if V is a neighborhood of x,€X,, even if the hypothesis (4.2) is omitted. In order
to deduce a contradiction from (4.1) as in the proof of Theorem 4.2 one must first
have a function #, such that Qu,=0 and supy |#]=0 and then be able to solve
the system of equations (4.3). In the following theorem we will show that if we omit
(4.2) but assume that the equation QyU=0 has infinitely many solutions which are
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linearly independent in X, ¥, instead of just one, then it is possible to find such a
function u,.

Theorem 4.4. Let P be a differential operator of constant strength in an open
set QCR". Let QcL(P) be of local type and let X, be a component of % Q
where X is an affine subspace parallel to A’(Q). Let' S be the set of all x€Z, such
that for all neighborhoods V, of x in X, and all wccCZ, the space
{uly,; u€C=(2y), Qxu=0in w} has infinite dimension. Here uly, denotes the restric-
tion of u to V,. Then for all positive integers m there exists uc C™(Q) such that
PucC=(Q) and ScCsing supp ucX,.

Proof. Tt is sufficient to show that for all V={x; |x—x,|=r}, x%,€S the in-
equality (4.1) is not valid for any K, K,, v. Assume that (4.1) is true for some
neighborhood V of x,£S and some Kj, K,, v. A contradiction will follow as in
the proof of Theorem 4.2 if we show:

(4.4) For all wccZ,, N€Z* and &=0 there exists u#,6C~{w, such that
supy [up] #0, Quy=0 in w,, uy=0 near {(x’,x”); [x”|=¢} and there are
u; €C~”(w,) vanishing near {(x’, x”); |x”|=¢} which are solutions of (4.3)
in w,.

Here the coordinates and w, are as in the proof of Theorem 4.2. Thus let w, N
and & be given. Take an open set ©” such that wccw ccZX,. Recall that
Theorem 3.10 gives a number & >0, which we may assume is equal to ¢ and
functions ay, ..., ay€C=(w]) such that g;{-,x")cCy(w’) for all i and x”".
If f€C*(w]) and satisfies

a;(+,x"), f(+,x)) =0 when |x|=<e i=1,.., M

then there is a solution u€C=(Q") given by (3.21) of the equation Qu=f in w,.

We have to find a function wu, which satisfies the conditions (4.4). Let
Uy, Uy, ... €C™(Z,) be solutions of the equation Q,U;=0 in o’ which are linearly
independent in 2y nV. Any linear combination

u(x’, x) = 31_, ¢;(xVU;(x))

with ¢;€C*(R") is a solution of Qu=0 in &’ NZ,. If we could find a solution
of Qu'=Qu in , which vanishes when x”=0 we could define uy=u—u" and
thus obtain a non trivial solution of Quy=0 in w,. This is possible if

4.5 (@ (e, X7, Qu(-, x7) = 3 ¢;(x"ay(+, %), QU =0

when [x"|<eg, i=1,..., M. If ¢, ..., ¢; satisfy this condition we can in view of
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(3.21) let
(4.6) up(+, X") = 31 ;") U;—Ew Q0 Uy
This function u, belongs to C={(w)), Qu,=0 i o, and wy=u In wNZ,.
Now we will find what conditions the functions c¢; have to satisfy in order that

(4.3) can be solved. Consider the first row. Define R, for k=1,..., K as in the
proof of Theorem 4.2, We can write

R.= 3, RiD%

where Rj are differential operators not containing D,.. In view of (4.6) we have

4.7 Roug = 2 5, fioa, j(&'s ) (Dirc))
for some functions fkl,a’ J.EC‘”(a);). Thus the first row of {4.3) can be solved if
38) (Rytto(+, X7, @y, x7)) = Sy Abyi,y¢; =0,

X|<e i=1,..,M, k=1..,K,

1

where A, ; are differential operators with C* coefficients. The order of 4 ; ;

is less than or equal to the order of P. If (4.8) is fulfilled let
4.9) Uy (-, x") = Ep(Reuo(+,x7), k=1,..., K

We have u, ,€C>(w]) and the u; , are by (3.21) solutions of the first row of (4.3)
in w,. To solve the second row we note that the expression (4.7) for R u, combined
with (4.9) shows that

(4.10) Disumr Ritty = 2 2y fia, i (55 XY (D%c))

for some f2, ;¢C~(w,). In the same way as above we see that the functions (4.10)
satisfy the conditions for the existence of solutions u, ;€ C™(w,) of the second row
of (4.3)in w, if

@1 3 43, 5¢,=0 when [¥|<e i=1,..,M, k=2,..,2K

for certain differential operators 4% ; ; with C= coefficients. In this way we con-
tinue with the following rows in (4.3). Thus if the functions c; satisfy (4.5), (4.8),
(4.11) and the corresponding conditions arising from the later rows, then for u,
defined by (4.6) there exist u;,€C~(w,) which are solutions of {4.3) in w, We
rewrite the conditions on ¢; as

4.12) s Ajjc; =0 for i=1,...,1 when [x"|<=e¢.

j=1
All 4;; are differential operators of order less than a fixed number G which only

depends on N and the order of P. The number I depends only on N and K.
The following lemma shows that it is possible to solve (4.12) if J is large enough.



Global properties of differential operators of constant strength 195

Lemma 4.5. Let 4;; i=1,...,1, j=1,2,3,...,J be differential operators
with C* coefficients in an open set .QCR" such that order A;=G forall i and j.
If J is larger than a certain number which only depends on I and G, then in every
neighborhood of a point xy€Q one can find a point x; and C* functions by, ..., b,
in a neighborhood of x, such that by{(x,), ..., b;(x;) are not all 0 and

(4.13) Sy =0, i=1,..,1
if supp y belongs to a sufficiently small neighborhood of x;.
Proof. If

2, 104,;,=0 inQ, i=1,..,1
then (4.13) is valid for all x€2’(Q). For some C* functions d,; ; we have

ZJJ 1 J ZIaI<G (Z J a,t,J)Da

Label («,i) for i=1, ..., 1, |<x|§G as a sequence with indices o=1, ..., S. It is
thus sufficient to find b; such that
(4.14) Z’ 195,;0; =0 for o=1,...,8

where S is a number which depends only on 7 and G. The rank of the matrix
(d, @) is =S in Q. In a given neighborhood @, of x, there is a point x;
such that

rank (d,, ;(xy) = max rank (d,, ;(x)) = r.
Then we can assume that '

D(x) = det(d,, ;(x));, j=1 0

in a neighborhood of x;. Assume that J>S. Let b,,,=1,b,,5=...=b;=0 and
define b,,...,b, so that the equations (4.14) are satisfied for o=1,...,r. Then
all b; are C* in a neighborhood of x;. For all x near x; the later equations
are linear combinations of the first r equations since the rank was maximal at
x,. Hence (4.14) is valid also for o=r-+1, ..., S in a neighborhood of x,. The
proof is complete.

End of the proof of Theorem 4.4. We have to find solutions of (4.12). If J is
larger than a certain number we can by Lemma 4.5 choose a sequence x)~0 and
functions b3, ..., 8}, ..., b}, ..., b}, ...€C™ such that

2] 1Au(b X)_‘O izl,...,],

if supp x is contained in a sufficiently small neighborhood of xJ. For all v some
b}(x}) is equal to 1. Let ¢}=b}y, where y,€Cy(R™), x,(x})=1 and supp y, is
contained in the permissible neighborhood of x7. Then for all v the equations
(4.12) are satisfied for ¢;=cj.
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We claim that the function
uy(+, X" = Zi_; &)U~ Ew Q0 Uy)

satisfies {4.4) if v is chosen large.  Since the functions ¢} satisfy the conditions
(4.12) we have Quy=0 and there exist u;,€C~(w,) which are solutions of (4.3)
in ®,. We may choose y, such that ¢;=0 when |x|”>¢/2 and then clearly u,
and u;, vanish near {(x’,x”); |x”|=s}. To prove that supy |uy|0 if v is chosen

large note that
E.Q.U; ~0 in L*w) when v - oo

In fact Qo U;=0 and the norm of the operator E,, is bounded independently of
x7. We may assume that [b/(x])|=1 for j=1,...,J and all v and therefore take a
subsequence which we also denote by x, such that b}(x})—~B; when v—<. One
B; must be different from 0. Hence

S (U —EQuU) —~ 3i_, BU;

in L2(w) when v-—-c, The limit is not identically 0 in ¥’ X, since the functions
U; were linearly independent in ¥ nZ,. It follows that u, is not identically 0
in V if we choose v large. The proof of Theorem 4.4 is thus complete.

‘What remains in order to extend Theorem 1.1 to all operators of constant strength
is to show that the set S in Theorem 4.4 is equal to Z,. This is easy to prove if
Q has analytic coefficients. However in that case we always have (4.2) so we would
only need to verify that for each x€2y and w such that xéwcc X, there exists
g€ C=(Zy) so that Qyuy=0 in ® and x¢suppu,. But since it follows by prac-
tically the same proof that S is equal to X, we will prove that.

Theorem 4.6. Let Q be a differential operator of constant strength with analytic
coefficients. If Q and Q, are open sets such that Q is defined in a neighborhood
of @ and QCC QCCR’, n>1, then the space {ulg ; u€ B, 5(Q2), Qu=0in Q} has
infinite dimension.

If O had constant coefficients the theorem would be trivial for then Q has
infinitely many different exponential solutions and these are linearly independent
in any open set. In the following lemma we prove by means of a perturbation argu-
ment used in Hérmander [4, Ch. VII] that there are infinitely many linearly inde-
pendent solutions in €, if £; is small. Lemma 4.7 also completes the proof of
Corollary 4.3.

Lemma 4.7. Let Q be a differential operator of constant strength defined in a
neighborhood of a point x,. If €, is a sufficiently small neighborhood of x, then the
space {u€R, 5(2,); Qu=0} has infinite dimension.
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Proof. We can write
Q(x9 D) = on(D) + Zj Cj(x)Qj(D)
with some 0;<0Qy,, ¢;€CT and ¢;(x0)=0. Let EE@‘;)”Q be a fundamental solu-
tion of Q, . If u€L*(Qy) let u, be the function which is equal to u in €, and
vanishes elsewhere. Denote by E, the linear operator
Ly () Su — restriction of (Exu,) to Q4 €%, 5(2)).

As in the proof of Theorem 7.2.1 in Hérmander [4] we find that if Q, is sufficiently
small there is for all f€L*(Q;) a unique g€L2(Q;) such that

(4.15) g+2j Cj(x)QjEOg:f'

The operator Q, has infinitely many different exponential solutions vy, vs, ... .
Let g, be the solution of (4.15) for

f=—0v, = —Zj ¢j(x)Q;(D)vy.
The functions
Uy = ”k‘i‘Eongga,Q(Qﬂ
satisfy Qu,=0 in €,. They are linearly independent since

v = thy— Eg Q1

and the functions v, are linearly independent. This completes the proof of the
lemma.

Proof of Theorem 4.6. We will prove that there are infinitely many linearly
independent solutions in Q; which can be extended to solutions in Q. The method
of proof is well known (see Malgrange [8, Ch. 3, Théoréme 1]). Note that 2, may
be replaced by a smaller subset. Let

N = {”Egz,g(ﬁ); Qu = 0}, N, = {uEQZ,Q(gl); Qu = 0}

and let R be the restriction operator %, (@)%, 5(2,). If we prove that the
annihilator of R(N) is equal to the annihilator of N, then the Hahn—Banach
theorem implies that R(N)=N,. The space N, is infinite dimensional by Lemma 4.7
so then it will follow that R(XN) is infinite dimensional. The image of the map

o 3%‘2,@(9_1) g gz,l(gl) = L[3(Qy)
is equal to %, 1(8,) by Theorem 7.3.1 in Hérmander [4]. Hence the annihilator of
N; is the image of ‘Q, that is

Ny = {tQUEVz,Q'(gl)J vEV,,1(2))-
Here V, () is the space of functions in L2(R") vanishing almost everywhere

outside Q,. The annihilator of N is givenin the same way with Q; replaced by Q.
The annihilator of R(N) consists of those elements in V, 5(@;) which annihi-
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late N when they are considered as elements of ¥, 5 ($2;) so we have
R(N)’ = {{QuveVy, 5 (Q); vV, 1 (D)}

Let weR(N)*. Then w='Qv for some veV, (2)cé’(2) and supp wCQ,.
Holmgren’s uniqueness theorem now implies, if Q, is chosen convex, that supp v— Q;,
for a hyperplane which is non-characteristic at one point in Q is non-characteristic
everywhere since Q has constant strength. Now it follows that weE N7, for v€V; 4(Q)
and suppvCQ; means that v€V, ().

From Theorem 4.6 and Theorem 4.4 (or Theorem 4.2) we now obtain an ex-
tension of Theorem 1.1 to operators of constant strength with analytic coefficients.

Theorem 4.8. Let P be a differential operator of constant strength with analytic
coefficients in an open set QCR". Let Q€L(P) be of positive order, X parallel
to A(Q) and X, a component of XnQ. Then there exists u€@’(Q) such that
PucC=(Q) and singsupp u=2x,.
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