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O. Introduction 

Recently Pleijel developed a spectral theory generalizing the eigenvalue problem 
Su=2Tu  where S and T are ordinary, formally symmetric differential operators 
([3], [13], [14]). His method depends heavily on the fact that the operators are ordinary. 
To handle the case of partial differential operators the abstract theory of  symmetric 
relations on a Hilbert space may be used. The reason is that a natural setting for 
the eigenvalue problem seems to be a study of the relation between the functions 
u and v defined by Su= Tv. The abstract theory was first indicated by Arens [1] 
but he does not discuss the resolvent operators of a symmetric relation and apparently 
he does not have our application in mind. The theory given in section 1 was out- 
lined in [2]. 

Section 2 is devoted to the construction of appropriate Hilbert spaces in which 
to study the relation Su = Tv. This involves a certain positivity condition on some 
linear combination of the operators S and T. 

In looking for selfadjoint realizations of a formally symmetric differential 
operator S in L~(O), f2cR",  one usually constructs a maximal operator $1 and 
a minimal operator So- St is the (closure of the) operator u,---,-Su with domain 
such that Su is defined in some sense and u, Su both are in LZ(~2). So is the 
L2(f2)-closure of the operator Cg~ Clearly SocS1  and one proceeds 
to prove that S~ = $1. The von Neumann extension theory for symmetric operators 
may now be applied to characterize the possible selfadjoint restrictions of $1. 
These will be given by conditions on the domain of the operator which in some sense 
are boundary conditions, since it is essentially on the boundary of f2 that the domains 
of So and $1 are different. 

In this paper we will follow the same course, i.e. we will construct relations 
associated with S and T which are maximal and minimal in a natural sense and 
which are each others adjoints. The theory of section 1 may then be used to characterize 
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the selfadjoint realizations of Su = Tv in the particular Hilbert space.chosen (there 
may be several suitable). These discussions are carried out in Section 3. 

In Section 4 there is a brief discussion of some classical partial differential 
eigenvalue problems to which the theory may be applied. 

The rest of the paper is devoted to the case when S and T are ordinary dif- 
ferential operators. In Section 5 it is shown that the present theory gives new access 
to the theory of Pleijel mentioned above. The tool for this is Lemma 5.1, a regularity 
theorem for weak solutions of ( S - - 2 T ) u =  Tv generalizing the classical one when 
T. is the identity. The proof is based on the du Bois--Reymond lemma of the calculus 
of variations which gives a more straightforward proof than the one usually employed 
in the classical situation, see e.g. Lemma 9 of Chapter XIII. 2 of [8]. When S and 
T have C ~ coefficients the lemma is a well known fact from the theory of dis- 
tributions. 

The final section contains a brief discussion of the expansion theorems obtained 
from the spectral theorem and also a simple construction of Green's function for 
a selfadjoint realization of S u =  Tv. In certain cases, restricted so as to make con- 
sideration o f  relations as opposed to operators superfluous, similar results were 
given by Brauer [5]. The method of proof is essentially that of Ggtrding [9] in dealing 
with an elliptic operator in L z. It should be remarked that most of the results in 
Sections 5 and 6 have generalizations if S is assumed to be an elliptic partial dif- 
ferential operator and T a differential operator of lower order. The proofs would 
be similar apart from the crucial Lemma 5.1. 

In working on the present paper I have as usual benefited from the support 
of my teacher Ake Pleijel. A discussion with Lars Ghrding on one point was very 
enlightening. It is also a pleasure for me to acknowledge the support of the British 
S. R. C. while writing a first version of this paper. (Grant B/RG/4557.) 

1.1. Linear relations 

Let H be a Hilbert space with inner product ( . ,  -)n and norm I" In. Denote 
by H 2 the Hilbert space H |  and by ( . ,  ")n its inner product. A (closed) 
linear subset E c H  ~ is called a (closed) linear relation on H. Define the boundary 
operator q/: H2--,-H 2 by 

~ # ( u , v ) = ( - i v ,  iu) for i = ] / - 1 ,  ( u , v ) C H  2. 

Clearly og is definedeverywhere and is isometric, selfadjoint and involutary. Denoting 
orthogonal complement by ~ the adjoint E* of a linear relation E is defined by 

E* = HZOOllE = ~//(HZGE). 
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The adjoint is evidently a closed linear relation on H and is the conjugate se t  of 
E in H 2 with respect to the Hermitean boundary form 

B(U, V) = (U, qlV)n for U and V in H 2. 

A third way of  stating the same thing is that (u*, v*)rE* exactly if 

(u*, V)H = (V*, U)H for all (u, v)EE. 

An immediate consequence of the definition is 

Proposition 1.1. Let E and F be linear relations on H. Then E c F  implies 
F*cE*. The closure E of E is E = E * *  and (E)*=E*.  

A relation E will be called symmetric if EcE* and selfadjoint if E=E*. 
Note that E is symmetric precisely if B(E, E ) = 0 .  

1.2. Extension of symmetric relations 

If F is a symmetric extension of E Prop. 1.1 implies F c F * c E *  so that a 
symmetric extension of E is a restriction of  E*. It  also follows that if E is sym- 
metric, then so is its closure E and they have the same adjoint. Hence, in looking 
for symmetric extensions of  E one may as well assume that E is closed which will 
be done henceforth. Now define 

D _ i  = {U E*I U = 

For a closed symmetric relation E one then has the basic 

Theorem 1.2. E*=E@Di| D_~ (1.1) 

Proof. The facts that D~ and D_~ are eigenspaces of q/ for different eigen- 
values and B(E,E*)=O i rony that E, D i and D_~ are orthogonal. It  remains 
to show that D ~ D _ i  contains E*@E. However UCE*GE implies UEH~(3E 
and thus qAUEE*. Denoting the identity on H 2 by I and using q /2=I  one 
obtains 

U + = I  (I+~ and U _ = I  (I--~ll)UED_i. 

Clearly U=  U+ + U_ which proves the theorem. 
Define the deficiency indices n+ and n_ of  E by 

n+-----dimDi and n _ = d i m D _ i .  
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The formula (1.1) will now be generalized. Note that D i and D_ i consist of the 
elements of E* of the form (u, iu) and ( u , - i u )  respectively. Without ambiguity 
one may thus define 

= (( . ,  2u) E*} 

S~ = {uEHI(v, 2 v+u )E E  for some vEH} 

for any complex number 2. The space /3z, and by abuse of language also D z, 
is called the deficiency space and Sz the solvability space of E at 2. It is easily 
checked that B(D z, Dx)=0 so that for 2 real Dz is a nullspace for B whereas if 
Im 2 > 0  the form B is positive definite on D z and negative definite on Dx. From 
B(E, E ) = 0  and V=(v, 2v+u)EE follows 

0 = B(V, V) = 2.  Im 2.  (v, v)n--2" Im (v, u)n 

so that for Im 2 r 0 the Cauchy--Schwarz inequality implies 

Iv[x <= IIm2l-l lulu.  (1.2) 
In particular v is uniquely determined by u. 

Lemma 1.3. i. / ~x=HO S~ 
ii. I f  I m 2 r  then Sz is closed and H = S z |  

Proof  i. Every element of E may be written in the form (v, 2v+u) where 
uE S~. Since 

B((v, 2v + u), (w, 2w)) = - i(u, w)n (1.3) 

it follows that wE/3 x precisely if wEH(9 S z. 
ii. Because of (1.2) the equation (v, 2v+u)EE defines a bounded operator 

Rz: u ~ v  which is closed because E is. The domain of Rz is Sz so that this is 
closed. Thus i. implies H =  S~ O/?x. 

Now put 
E~ = {(v, s 

Note that since E* and /3 x are closed, so is Ez. By taking w = u  in (1.3) it fol- 
lows that E ~ n E = D  x n E c D  z. It is easily seen that for 2 non-real Ez=Dxq-D  x 
as a direct topological sum, whereas for 2 real only DacEa  holds. Thus E;=Ex 
and since Dx n D x =  {0} for 2 non-real, it follows that E;. n E =  {0} for 2 non-real. 
The generalization of (1.1) now reads 

Theorem 1.4. Let E be a closed, symmetric linear relation on H and 2 non- 
real. Then, as a topological direct sum, E * = E - b  E~. 

Proof  It has been shown that E n E a =  {0} and Ez is closed. By Banach's 
theorem it thus suffices to show that E* =E4-  Ea algebraically. Now, since H =  S~ �9 



Spectral theory for pairs of differential operators 37 

Ob~ there is for any (u, v)EE* a wESt. so that v ' = v - 2 u - w E b ~ .  According 
to the definition of Sx there is a w'EH such that (w', 2w'+w)EE. Thus 

(u, v)-(w', +w) = (u-w', 2(u-w')+v')  

belongs to E* and hence to E z which proves the theorem. 
In the vocabulary of [13], [14] we have proved that E z is a maximal regular 

subspace of E* with respect to B whenever 2 is non-real. 

Corollary 1.5. Dz is a maximal positive (negative) definite subspace of  E* for 
Im 4>0  (Ira 4<0) with respect to B. Thus 

d i m D z = n +  for I m 2 > 0  

dimD z = n _  for I r a 2 < 0 .  

One may now characterize the symmetric extensions of E. 

Theorem 1.6. I f  F is a closed symmetric extension of  the closed symmetric 
relation E and I m 2 r  then F=E~-D as a direct topological sum, where D is 

a subspace of Ez such that 

for some linear isometry J of a closed subspace ~s of D z onto part of Dz. Con- 
versely, every such space D gives rise to a dosed symmetric extension F = E  3rD 

of E. 

The proof is obvious after noting that if U+, V+ ED z and U_, V_ ED x, then 
(U+, V+)n=(U_, V-)n precisely if B(U+ + U_, V+ + V_) =0. Some immediate 
consequences of Theorem 1.6 are given below. 

Corollary 1.7. The closed symmetric relation E is maximal symmetric precisely 

i f  one of n+ and n_ equals zero and selfadjoint precisely if  n+ =-n_ =0. 

Corollary 1.8. I f  Im 2 r 0 and F is the symmetric extension of  the symmetric 
relation E given by the isometry J with domain ~ j c D  z and range ~ j ~ D  x, 
then the deficiency spaces of F at 2 and Y are gh~en by D). 63 ~j  and Dx E3 As 
respectively. 

Corollary 1.9. Every symmetric relation has a maximal symmetric extension. 
I f  one of n+ and n_ is finite, then all or none of  the maximal symmetric extensions 
are selfadjoint depending on whether n+ =n_ or not. I f  n+ =n_ =oo (and H is 
separable) however, some maximal symmetric extensions are selfadjoint and some 
are not. 
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1.3. Resolvents and spectral theory 

In Section 1.2 it was seen that if E is a closed symmetric relation, Im ) `~0 
and uEH given, then the equation (v,),v+u)EE has a solution v=R~uEH pre- 
cisely if u belongs to a certain subspace Sx of H. This solution is unique and 
[vlu<=llm)`l-llul,~, i.e. I[Rzll<=[Im ),1-1. Since H=Sz GDx the equation is uniquely 
solvable for any u precisely if Dx = {0}. If  this is not  the case one may look for v 
such that at least (v, ),v+u)E E*. 

Lemma 1.10. I f  I m ) , r  then for any uE H there is a unique vE Sx such that 
(v, 2v+u)EE*. For this v holds [v[u<_-llm2[-llu[~, 

Proof. Any element of E may be written (Rxw, ~R~w+w) for some wESx. 
Thus (v,)'v+u)EE* precisely if  

0 = B ( ( v ,  + u) ,  w, w + w))  = - i {(u,  

for all wESx. Considering R x as an operator from the Hilbert space Sx to H 
we thus have v=R~u as the unique solution in S x of the equation (v, 2v+u)EE*. 
Since IIR~[! = [IRx][ the lemma follows. 

Writing v=R'~u for the solution of Lemma 1.10 one obtains [IR~[I~ lira ),[-L 
The operators R~: S~--H and R~: H~Sx  are called the resolvent operators at 
), of  E and E* respectively. It  is clear that requesting (v,),v+u)EE* for a given 
u only determines v modulo /3z. On the other hand, if I m ) , r  and Dx---{0 } it 
follows that the equations (v,),v+u)EE and (v, ~v+u)EE* are uniquely solvable 
by v=Rzu and v=R'xu respectively for any uEH(. Thus maximal symmetric, 
and ~t fortiori selfadjoint, relations are particulary wellbehaved. 

Theorem 1.11. (Resolvent relation). For ), and p non-real one has 

R z - R u  = O'--P)Ra R u. 
I f  D~= {0} one also has 

�9 r �9 P R~ --R u = O ' - P )  R~ R,.  

Proof. Let V=(v,),v+u) and W=(w, #w+u). I f  WEE, then V - W E E  pre- 
cisely if VEE and since V - W = ( v - w , ) . ( v - w ) + O ' - # ) w )  the first formula fol- 
lows. Similarly, in view of  the comments above, the second formula follows. 

Theorem 1.12. Assume D u = {0}. Then for Im ),. Im # < 0  the domain of  the 
operator Rz is H and Rz is an analytic function (in the uniform operator topology) 
of  ),. For I m ) , . I m / ~ > 0  the same statement is true for R'~. I f  also D~={0}, then 
Rz-~ R'~ is a normal operator for Im ), ~ 0. 

Proof. The statement about domains follows from Lemmas 1.3 and 1.10. The 
rest is a standard consequence of  the resolvent relation. 
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Theorem 1.13. The deficiency space D z of the symmetric relation E is an 
analytic function of  2, regular at least in C \ R .  

Proof Let F be an arbitrary but fixed maximal symmetric extension of E 
and Rz and R~ be the resolvent operators at 2 of F and F* respectively. Put 
A~=R'~ or A~=Rz depending on whether the deficiency space of  F at 2 is trivial 
or not. Thus, for ImAm0 the domain of  A~ is H, A~--Ar=(2--p)A~A r for 
I m 2 - I m # > 0  and Az is analytic in C \ R .  Note that F * c E *  and define for 
non-real 2, # an operator Pz~ : H 2-~H 2 by 

P~,,(u, v) = (u, v)+(2-~)(A~u, 24~u+u) = (w, 2w+v-~u )  

where w=u+(2--1t)Azu. Clearly Par maps E* into E* and PauD, cD~. For 
I m 2 . I m # > 0  the resolvent relation implies PvxPxr=Pv, and since Put  is the 
identity on H 2 so is P, zPa,. Hence Pa~ is bijective and PzrD,=Dz since Dx=  
=P~P,~D~cP~uDrcD ~. The analyticity of Pa, as a function of  # is obvious 
and that as a function of 2 follows e.g. from the analyticity of  Az. Thus there 
is a bijection on H 2 which is holomorphic in 4, # for I m 2 - I m # > 0  the re- 
striction of  which to D r is a bijection Dr-~-D ~ which proves the theorem. 

The resolvent operator of a selfadjoint relation has been shown to have all the 
properties of  the resolvent of a selfadjoint operator apart from not being injective. 
One could now prove a spectral theorem for selfadjoint relations by a modification 
of  the proof  for operators. More convenient is to reduce the theorem for relations 
to that for operators by orthogonalizing away the kernel of the resolvent which will 
now be done. Assume that E is maximal symmetric and put 

Hoo = {uEH[(0, u)EE}. 

Thus H~ is the common kernel of  all Rz. Put  

= {uEH]BvEH with (u, v)EE} = domain of E, 

H 0 = closure o f / ~  in H, 

E* = {uEHI~vEH with (u, v)EE*} = domain of  E*. 

Lemma 1.14. H=Ho @H=. The common kernel of  all R" a is H= and the 
closure of  if,* in H is H o. 

Proof Let (u, v)EE. Then B((u, v), (0, w))=i(u, w)u so that (0, w) is in E* 
precisely when wEHOff~ which is thus the kernel of R~. Since E is maximal 
there is a non-real 2 with S~=H (Corollary 1.7 and Theorem 1.12). If  (0, w)EE* 
there therefore exists w'EH with W=(w', 2w'+w)EE. Thus, since (w, w')H=0, 

0 = B(W,W) = 2Im2(w ' ,  w')H. 
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Hence w ' = 0  so that wEH~ and H=Ho| Repeating the first calculation 
but assuming that (u, v)EE* shows that H= = H G / ~ *  so that the lemma is proved. 

Now put 

E ~ =  {0}XHo~ and E 0 = E n H ~ .  

Then one has 

Theorem 1.15. (Spectral theorem for relations). Eo is the graph of a densely 
defined and maximal symmetric operator on Ho which is selfadjoint if and only if E 
is. The restrictions of Ra and R'~ to Ho are the resolvent operators of Eo and its 
adjoint in [to respectively. 

Proof It has been proved that H=Ho| and clearly this implies E=Eo@E=. 
It is also clear that E0 is the graph of a densely defined symmetric operator on H0. 
The graph of its adjoint is E*nHg. But Eo=EOEoo so that E~=E*GSllE~ 
which implies that E~ nHg=E*nHg and since / S a c H  0 clearly E and E0 have 
the same deficiency spaces. Since the ranges of  Rz and R[ are /~ and /~* respec- 
tively, their restrictions operate in H0 which finishes the proof. 

One may consider H~ as an eigenspace belonging to the eigenvalue oo. Hence, 
in case E is selfadjoint, Hoo together with the resolution of the identity for E 0 
gives a resolution of  the identity for E. 

1.4. Semi-bounded relations 

One may define the essential spectrum of  a closed symmetric relation E as 

ea(E) = {2ECIS ~ is not dosed}. 

The stability under finite-dimensional extensions of E follows immediately. How- 
ever, in general ea (E) is not closed. By inspection of  the proof  of  Theorem 1.4 it 
is seen that if ~ER\ea(E), then E* is the linear hull of  E and E 0. in fact, if  
E~ =-E o e (D onE) then as a direct topological sum E* = E 4 -  E~. That  D o n e e  {0} 
means of  course that ff is in the pointspectrum pa(E). Thus the conclusion of 
Theorem l.4 holds for o~ea(E)upa(E)=a(E). For Q real D o is always a null- 
space for B so that E4-D~, where D~=DoO(DonE ), is a symmetric extension 
of  E. This extension is in fact selfadjoint if ~ ~ ea(E) which is easily seen using 
the fact that E*=E4-Es Thus unless ea(E)=R the symmetric relation E always 
has a selfadjoint extension, and n+ =n_  =d im  D~. Obviously Q is an eigenvalue 
of E 4- D~ of  multiplicity dim D o. A slight elaboration shows that when ~ ([ ea (E), 
then one can find a selfadjoint extension of E for which the eigenspace at q is any 
space D with D; ~ D c D 0. 
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In practise a case of  interest is when E is bounded from below, i.e. 

d = inf(u,v)n,  inf taken over (u,v)EE with lu[n = 1, 

is finite. Assume Re 2 < d  and (v, 2v+u)EE. Then it follows easily from d(v, v)n-  <_ 
<= (v, 2v + U)n that 

Iv[,~ <-- Id-~. l -~lul , , .  

Thus Sz is closed and Ra defined and analytic for any 2EC with Re 2<d .  I f  
0 < d  then E*=E-4-Ee and E~De is a selfadjoint relation which is easily seen to 
have the lower bound ~. By a /easoning  entirely similar to the one employed by 
Friedrichs for operators one can show that there is a selfadjoint relation extending E 
and with no decrease in the lower bound d. 

2. A Hilbert space 

Let I2 be an open, connected part of  R" and a``a a finite number of  locally 
integrable functions defined in f2. Here e, /3 are multi-indices in R", i.e. 
e= (~ l  . . . . .  e,) with non-negative integers ej and the length of e is [c~l=~ ej ,  
Consider the form 

If  m is an upper bound for [c~t, ]fl] this is defined at least for u and v in Co"(12 ). 
0 

As usual _r~'-~--o~iaì l̀-~`̀ lvl ...~.'~`̀ " where O j -  We will also consider the integral 
Oxj" 

forms 

(~, v)~,~ = f ~  ' `̀  zg~l,,l=k D u.D v, (u, v)k = (u, v)k, 

and the corresponding semi-norms lulk, m=I/(u, U)k~. Here M is any (meas- 
urable) subset of  t2. I f  the partial differential operator P may be written 
P=~Dt~a``aD ~' we say that ( . ,  ")e is a Dirichlet integral belonging to P on fL 
This is motivated by the fact that (u, V)p = (Pu, V)o if u and v are in C o (f2) which 
follows on integration by parts. Note that a given operator P has many different 
Dirichlet integrals. We assume that the matrix (a~p) is hermitean. Thus P is formally 
symmetric. Let C ,  be a linear subset of cm(f2) containing Co(O ) such that  

~a``pD"u.Dt~uELX(f2) for uEC,. More generally, LI(f2) may be replaced by 
the functions wEL~oc(f2 ) such that limj f,~j w exists, where {Kj}~ is a fixed in- 
creasing sequence of  compacts with u K~--- f2. In view of  the applications sketched 
in Section 4 we make the following 
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Definition 2.1. ( - ,  ")e is called r-positive over C ,  if for every compact 
M c  c O  there exists CM>0 such that 

(U,U)r,M <= CM(U,U)p for every uECy. (2.1) 

Thus Hun-=]/~,u)p is a semi-norm on C , .  Later we shall prove 

Theorem 2.2. Suppose for each xEf2 there exists Cx>0, a natural number nx 
and a neighbourhood (9~cf2 of  x such that 

(u, u),x, ex ~ C~(u, u)e for every u C C2'. 

Then ( . ,  ")e is r-positive over C ,  with r=minxcon  ~. 

I f  for each complex vector {(~}1~1~-,, one has 

2;l~=.x I~l 2<-- CxZa~a(y)( , (p for every yEOx (2.2) 

it follows that ( . ,  ")e is r-positive over 

z: = {u cc~(~)lZ a~pD~..V~v~ V(~)}. 
The linearity of  5r follows from the positivity of the matrix A=(a~#). More 
generally, let B be the positive root of A 2, which is easily seen to have elements in 

L~or ). Let A(u,v)=z~a~#D'u.D#v and B(u,v) be similarly defined. If  

]/ f~B(u,  u) is equivalent to Ilull over ~ then ~ is linear because 

f .  IA(,, v)l <= f a(ghTg~, u~ V~(~, v) -<_ l/f~ ~(u, uS l/f~ B(v, v~. 

To see that equivalence between the metrics given by A and B does not require A 
to be pointwise positive, consider 

(u, v)p = f ,(pu" ~ + qua) 

where 1 is a real interval and p >0, q are in L~o :(I). For uE C ~ u(x)=u(y)+ f~  u' 
so that by Schwarz' inequality 

Put q+=l/2([ql+q) and q _ = q + - q  and assume that q+ does not vanish iden- 
tically on L Squaring, multiplying by q+(y)q_(x) and integrating over I X I  one 
obtains by easy estimates that 

Lq_l.l~= f,q_{(f,q+)-~/%(f, l w : ~ f  p)  J jt{PlU'12+q+lu[~} �9 
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It follows that f,{plu'[~+[ql.lu[ 2} is equivalent to ( - ,  ")e if 

f , q_{ ( f , q§  l (2.3) 

in which case ( . ,  .)e is also 0-positive over those u E C 1 (I) for which (u, u)e < + co. 
To see this, replace q in (2 .3)by q--eZM where 8>0  is small and ZM the char- 
acteristic function of  M. Clearly p and q can be chosen e.g.  so that (2.3) holds 
but q is strictly negative outside a compact subinterval of  L 

If  ( . ,  ")e is r-positive over C ,  Theorem2.2 implies that for any compact 
part M of  O with non-empty interior ( . , - ) + = ( . ,  " ) e + ( ' ,  ")0,M is 0-positive 
over C. ~ (in fact, by Theorem 2.5 M c  = f2 needs only have positive measure). 
Hence ( . ,  .)+ is a scalar product on C ,  which may thus be completed to a Hil- 
bert space H+ with norm [I. l[ +. Theorem 2.2 implies that all such norms with 
different M are equivalent. Thus, in the sequel, let M be a fixed, non-degenerate 
and compact interval in O. That  H+ does not  depend on the value of m in C ,  
is shown by 

Lemma 2.3. Put C,=H+ c~C~(I). Then C ,  is dense in H+. 

Proof. We must show that for uEC, ~ and 8 >0  there exists u~EC, With 
l lu -  u~[] + < e. Let {Kj} be an increasing sequence of  compacts with u K i = O and 
let {gj} be a partition of  unity subordinate to {Kj+I~Kj_I} where K0=0. I f  
uEC, then r Put uj=~j.~oju where O ~ j E C o ( O  ) so that 
u i E Co (O). If  f ~k i = 1 and supp ~k i is sufficiently close to 0, then ~,l~t-~ sup ]D~(ui-- 
--gju)] is arbitrarily small so we may choose ~k~ so that suppuj=Kj+l\Ki_ 1 and 
Iluj-q~iul[+<=~2 -(j+2)/u. Since (u~--qgiU, Uk--q~ku)+=O for [ j - k ] > l  and u i -  
-gjuEC~"(O)cC,  one obtains ~Sj(uj-~oiu)EH + and [IZ(uj-~oju)lt§ Hence 
u,=~ujEH+ c~C~(O) and Ilu~-ull+<~. Note that ~ , u j  may not converge in 

H+ and that we may require that ~a~D~u~D#usEL 1 i f  ~a~aD~uDPuEL ~. 
Definition 2.1 states, for r = 0 ,  that there is a continuous mapping i :  H+ 

-+L~or ) which is the identity on C. ". Suppose that 

Dra~ E L~or for 7 <= ft. (2.4) 

Then (u, 9)e=(u, Pg)o if  uEC, and 9ECo(O ). By taking limits it follows that 
Ker icH+OCo(O)  so that i is injective if C o ( 0  ) is dense in H+. More gen- 
erally one has 

Lemma 2.4. I f  (2.4) holds and the mapping 

C~3u ~-+ ~ a~D~u .bPvE LI(O) (2.5) 

is continuous for every vEC~, then i is injective. 
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Proof If  C ,  3uj-+uEH+ and Co~(f2)3q~k/1, then (2.5) implies 

(u, v)+ = l iml im. f~  q~kZ a~pD~uj.O--~V for vEC~. 
k j " '  

Putting P k = Z  DPgka~ D~ integration by parts gives 

f 2 aaflDauj .D-~v = (U j ,  PkV)o . 

If  uj-+O in L~o~(f2) this implies u = 0  since PkVEL2(O) has compact support and 
C ,  is dense in H+. 

It is easily verified that (u, v) - - ~  a~a D" u.  D p v is a bounded Hermitean mapping 
from C ,  X C ,  to LI(O) if ]l" l[ is equivalent to the metric associated with the 
matrix B introduced just after (2.2) so that (2.5) is certainly satisfied in this case. 
To slightly simplify the statements it will be assumed that H+ is continuously 
embedded in L~or i.e. that i is injective, in the following sections. This can be 
achieved by simply orthogonalizing away Ker i which would not change the minimal 
relation (see Section 3). Put 

K = {uEH+I Itu[l = 0}. 

Then, by the Cauchy--Schwarz' inequality, one has (K, H+)p=0  and similarly 
(Ker i, H+)0,M=0 so that (Ker i, K)+ =0. Thus ilk is injective. 

Theorem 2.5. iK is a set o f  polynomials o f  degree <r  and hence dim K <  o,. 
I f  H is a subspace o f  H+ such that H n K =  {0} then II " II and I1" II + are equivalent 
norms on H. 

To prove Theorems 2.2 and 2.5 we need some lemmas. 

Lemma 2.6. ( Poincard inequality). For any non-degenerate bounded interval J c  R" 
there is a constant C such that for uECI(J)  

lulo,<-c(juf ,+lf, ul) 
A proof for n = 2 which immediately extends to the general case can be found in 
[6, Chapter VII, Section 3.1.]. 

Lemma 2.7. Let B be a Banach space with norm {L �9 JL and let I" { be a bounded 
semi-norm on B such that on some subspace B o with codim Bo finite [l" {[ and I" I 
are equivalent norms. Then they are equivalent norms on any subspace B 1 on which 
l" ] is a norm. 

Proof On B2=BonB1 the norms are equivalent so 1~TF=inf, c~ lul defines a 
norm on B]/B2. However, dim B1/B2<=dimB/Bo<~ so that B1/B2 is complete 
under 1. ]. Thus B~ is complete under ]- I and hence II" II and I" I are equivalent 
on B~ by Banach's theorem. 
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Lemma 2.8. Let J c I  be bounded intervals in R" with non-empty interior and 
p<=q<r natural numbers. Then there is a constant K such that for uECr(r) 

lull,, <= g([ul,,l+lUlp, j). 

Proof. Put ] lul l=~,=p lU[k,1. Let Pj denote the set of  polynomials in R" 
of  degree at most  j. By repeated application of the Poincar6 inequality one obtains, 
for u~C'( i)  

Ilull <= A0 lu lr , ,+Z~ l=j~ ,  &lfiD'u �9 (2.6) 

This inequality has an obvious sense also on C~(i)/Pp_I on which II �9 II is a norm 
so that we may complete to the Banach space B. All terms in (2.6) are bounded by 
II �9 II so that (2.6) extends to all of  B. [- 1,,i vanishes on K=P,-1/Pp-1 and on no 
other elements of  B. I f  it did, then ]. I,,x would vanish on so large a subspace of  
B that one could find a non-zero vector for which the right hand side of(2.6) vanishes. 
Now ]. [p, s is a bounded semi-norm on B which does not vanish on P,_I/Pp_I. 
Thus Lemma 2.7 implies that  [. 1,,i+]" [p,S and 11 �9 II are equivalent norms on B. 
The lemma evidently follows. 

Proof of Theorem 2.2. According to assumption, M may be covered with open 
intervals Cx, hence by a finite number r ---, Cq of  intervals, and since f2 is con- 
nected we may assume that  w d~j is connected. Recall that there are constants Cj 
and nj such that  [uI,j, oj<=Cjllull. We may assume that nl=r. Since vod~j is 
connected there is for any j, l<=j<=q, a sequence Jl ,  . . - ,L  such that j l=j,  Z = I  
and dPjk n (9& +1= w k is a non-empty open interval. I t  follows that 

Iuj,,% <= K(lul%,% + [ul,,w) <= K(Cj~llull + lul,,%+ 1) 

where we have used Lemma 2.8 and the assumption. Putting these inequalities together 
one obtains, for some constants  A j ,  Bj and Kj 

lul,,~ <= Ajllull § Bj[u],,~l <= Kjllull. 

The theorem follows with C = ~ K j  since Iul,,m<=lut~, u6<=~j lu{r,e. 

Proof of Theorem 2.5. Let J be an arbitrary non-degenerate compact interval 
in f2. Repeated use of  the Poincar6 inequality gives 

luto,.,<=alulr,.,+ Y__,,o,~<=rA,, f.,O"u for uECg. (2.7) 

For  I=l<_-r  Lemma2 .8  shows that  fsD~'u is b o u n d e d b y  ]u[,.,,.+lU[o.. I and thus, 
II �9 Ii + being both r-positive and 0-positive, by Ilull +. Hence (2.7) extends to all of  
H+. As in the proof  of  Lemma 2.8 one sees that if uEH+, then lu[,.,s can only 
vanish if the restriction to J of  iu is a polynomial of  degree at most  r -  1. Since 

11-II is r-positive this is true for any uEH+ for which IluU vanishes. The first 
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statement of the theorem follows since J is arbitrary. For  J = l  Theorem 2.2 and 
(2,7) give 

]lull+ <- AoIIUII + ~I~,I~, A~ f z D~u[. 
Hence a direct application of Lemma 2.7 gives the desired result. 

3. Maximal and minimal relations 

Let S and T be formally symmetric partial differential operators in an open 
connected domain f2~R". Their coefficients are assumed to be so regular that Su 
and Tu may be formed and are locally square integrable for any sufficiently dif- 
ferentiable function u. We now make the basic 

Assumption 3.1. There is a Diriehlet integral ( . ,  " )e belonging to some P = a S  + 
+bT with a and bER, aspaee C .  andaninteger r such that ( . ,  .)p is r-posi- 
tive over C. .  

The discussion in Section 2 implies that we can choose a Hilbert space H which 
is continuously embedded in L~oc(f2) and for which ( . ,  ")e is the scalar product. 
Now define 

E~ax = {(u,v)EH~}(u, Sq~)o = (v, Tq~)o for all ~ECo~(g2)} 

where ( . ,  .)o is the scalar product  of  LZ(~2). Hence E~a x consists of  the pairs 
(u, v)EH 2 for which Su=Tv in a weak sense. Thus Ema x is in a natural sense the 
maximal relation associated with S and T in H. The continuity of the embedding 
HCL~oc(O ) implies that Ema x is a dosed linear relation on H. Let Lo 2 denote 
the functions in L2(O) with (essentially) compact support in ~. Then the mapping 

H)u~--~(u,f)o, fEL~. 

is a continuous linear form on H because of the continuity of  the embedding. Thus 
there is a unique linear operator G : L ~ H  such that 

(u , f )o=(u ,  Gf)p for uEH, fEL~ 

(In fact G =i*.) The minimal relation is now defined by 

Emln --- {(GTq~, GSq~)E H2IrpE Cg~ (f2)}. 

Clearly E*i .=Em.  ~ because for (u, v)EH ~ one has 

(u, s~o)o-(V, rq,)0 = (u, ~S~p)p-(~, ~Tq%. 

If  Emi~cEm,~, i.e. Emi n is symmetric, we are ready to apply the abstract theory 
of  Section 1. Unfortunately it seems difficult to give exact conditions for the choice 
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of H so that Emi . becomes symmetric. It  is not even clear if it is always possible to  
make such a choice. However, some reasonably general sufficient conditions for  
symmetry will be given below. 

Put  Q = b S - a T  so that Q is formally symmetric. Assuming a, b normalized 
so that a ~ + b ~ : l  and ~o and ~ in Co(O) one obtains 

(GT~o, GS~)p-(GSq~, GT~k)p = (aPq~, GQ~b)I,-(aQcp, GP~P)I, = 
(3.1) 

(P~o, GQ~b)o-(GQ~o, P$)o ~- (~o, GQt~)e-(GQq~, ~b)r. 

This must vanish in order that Emi n be symmetric. 

Theorem 3.2. Let K" be a subspace of K= {uEH+tllull =0} such that QK'=O. 
I f  Co(f2)cHq-K' ,  then Emi ~ is symmetric on H. 

Proof. By assumption we can write ~0ECo(f2 ) as ~p=cp0+~Ox, where q~oEH 
and ~olEK'. By Cauchy--Schwarz'  inequality we have (K', H ) e = 0  so that (3.1) 
becomes 

(~P0, GQ~P)e-(GQq~, ~ko) r ~- (~P0, Q~)o-(Q~P, ~o)o = (r QtP)o-(Qg, ~P)o = 0 

which proves the theorem. 
If  K={0},  i.e. ( . ,  ")e is 0-positive over C , ,  we may take H=H+ which 

gives a symmetric Emi . since Co( f2 )cH +. Note that in some sense Co~(f2)c 
cH-bK"  means that the restriction of  H+ to H+K"  is given by boundary con- 
ditions. It  is clear that Theorem 3.2 can not always be applied if the closure of  C o ( O  ) 
in H+ has codimension < dim K. To give an example of  this we use the following 
lemma, which is closely related to Theorem 2.1 in [11]. 

Let  I be a real interval and (u, v)+--fx(pu'v'+quf~) where p > 0  and q=>(} 
locally are absolutely continuous and integrable respectively. Assume f, q~0 and 
let H+ be the completion with respect to ( . ,  .)+ ofaU functions in C1(1) giving 
a finite value to (u, u)+. 

Lemma 3.3. Co(1 ) is dense in H+ if and only if 1/p+q is not integrable in 
any neighbourhood of an endpoint of L 

Now put (u, v)e=fzpu'~ 7 which is 1-positive over those uECI(I) for which 
it is finite. The norm-square of  the auxiliary space H+ is of  the form fz(p lu" [~+q lul 2) 
where q is positive and in L1(1). Lemma 3.3 shows that 1/1) must be integrable 
near at least one endpoint of  ! if  there is a non-trivial subspace of  H+ which 
contains Co(1 ). However, if this holds it follows from the proof  of the lemma_ 
that the function - - i  is not  in the hull of  Co(1 ). Hence lip integrable in one 
half of  ! is a necessary and sufficient condition for the existence of  proper sub- 
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spaces containing Co(1 ) on which flplu" [2 is a norm equivalent to the norm 

o f  H+.  

Proof of Lemma 3.3. Suppose 1/pE Li(j) where J c I  is an interval with 

fsq>O. For  x, yEJ one obtains easily from u(x)=u(y)+ f ;  u" that for uECI(I) 
the inequalities 

lu(x)--u(Y)[ <---- w.p. Null+ and lu(x)I <= {(f. f l)~/..~,[[uli+ 

hold. Hence l im,~,  u is a bounded linear form on H+ if a is an endpoint of  I 
near which 1/1) is integrable. I f  u is in the closure of  C~~ in H+ it follows 
that  lim a u=0 .  However, if also q is integrable near a any function which is ----1 
near a, = 0  near the other endpoint of  1 and in C~176 is in H+ so that Co(1 ) 
is not  dense in H+ in this case. The argument also shows that there is a 2-dimensional 
space outside the closure of  Co(I) if  1/p+qELi(I). 

On the other hand, it is well known, and follows f rom Lemma 5.1, that  u is in 
H+ •Co(I ) precisely if uECI(1)nH+, u'  is locally absolutely continuous and 
-(pu')'+qu=O. Hence, for J c I  and such a u, 

0 <= fi ( p l u ' ? +  q fut') = [p~uJj. 

Thus p~'u is increasing and has finite monotone limits in both endpoints of L 
I f  both limits are 0 then (u, u)+---0 so u - 0 .  Thus suppose that  l i m a p ~ ' u r  
where a is an endpoint of  L Then, near a, (p~'u)-lEL ~ so u'/uEL t near a 

since plu'12EU(I). Thus limaexp(f~u'/u)~O exists, if c is near a. However, 

( u . exp  ( -  f~ u'/u))'=o s o  

u(x) = u(c)exp(f'~ u'/u). 

Thus l i m a u ~ 0  exists and since l i m a p f i ' u ~ 0  also l imapu '~0 .  Since plu'l 2 and 
q fuI z both are in LI(I), multiplication by the bounded functions (pu') -~ and u -z 
respectively shows that  1/p+q is integrable near a. Thus the lemma is proved and 
it is easy to see that  dim H+ GCo(I) is 2, 1 or 0 depending on whether 1/p+q is 
integrable near both, just  one or neither of  the endpoints of  I. 

I f  Theorem 3.2 can not be used to find an appropriate space H there is another 
method of obtaining a symmetric Er.~, which was exploited by Pleijel already in 
[12] for special choices of  operators and boundary conditions. For  this one must 
assume that Q has a Dirichlet integral ( - ,  .)Q which is a bounded hermitean form 
on H+. Let dim K=k and define 

Ko = {u E Kf(u, H+)Q = 0}, dim K0 = k0, 

Kt = {u E K](u, K)a = 0}, dim K1 = kl, 

Hi = {uE H+I(u, K)Q = 0}. 
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Then codim H~=k-ko and Hl nK=K~ so that  //1 must  be further restricted 
to obtain a space H for which H n K =  {0} so that II �9 II may serve as norm on H. 

Lemma 3.4. Let v6K1. Then there exists wEH+, determined modulo K and 
with w E K if  and only if  v E Ko, such that for all u E H+ 

(u, v)~ = (u, w) , .  

Proof. Only the existence needs a proof. Put  / 7 = H +  OK. Then /7 is a Hil- 
bert  space with norm I[" [] and /7)u~-~-(u, v)Q, vEH+ is a bounded linear form 
on /7 since 

I(u, % l  <- CIIutI + llvIl + <- c" llvlI + llutl 

for some constants C and C" by the boundedness of  ( . ,  -)Q on H+ and since 
I1 �9 II + and II �9 II are equivalent norms on /7. Hence there is a unique linear operator 
d : H+ ~ / 7  such that  

(u, v)e = (u, Gv). (3.2) 

for uE / t  and vEH+. However, when vEK~ this holds for any u in H+ since 
both sides of  (3.2) are invariant when an element of  K is added to u. This proves 
the lemma. 

Now put L=GK1. From K e r G = K o  follows dim L=k l - ko  and f rom 
(HI ,  K ) e = 0  follows (HI,  L)e=0 .  Put  

/t~ = {u~/ t~l(u,  z ) e  = o}. 

Now H ~ n L - - { 0 }  because ( H ~ , K ) o = 0  and if vEK1, GvEH2 one has 

(Cv,  C v ) .  = (Gv, v)Q = o 

so Gv=0.  But 112 nK CH l nK=K 1  so assuming vEH2 n K  the same computat ion 
gives H2 n K=Ko. Now let H be any subspace of  H~ such that H n  K0=0 and 
codimH~ H=ko. Then one has 

Theorem 3.5. With H defined as above Emi . is symmetric 

Thus whenever Q has a Dirichlet integral which is bounded as a hermitean 
form on H+ there is a choice of  H with k=<codim H=k+kl-ko<-2k for which 
Emi . is symmetric. Note  that  the only freedom of  choice for the Hilbert space this 
method permits is the choice of  H as a subspace of  H~. The most  unfavorable case, 
i.e. when the largest codim H is obtained, occurs when K0 = {0} and KI=K and 
permits no freedom at all in the choice of  H. 
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Proof o f  Theorem 3.5. For q~ECo~(f2) we may write ~o=~0o+qh+qh 
tPoEH, qhEK and tp~EL. Then (3.1) becomes 

(q~o + ~ + q~,, GQ$ )p - (GQq~, tO o + q/x + t[/~)e = (q~o, Q$ ) o -  (Qq~, t, ko)o = 

(q,o, q,)~-(q, ,  ~o)~ = (q,o, 4 ,1+r  +q , , ,  4'o)e = o 
since (H+, K)e=(H,  L )e=(H,  K)Q=(H,  L)o=O by construction. 

with 

4. Examples 

The following are examples of  situations which may be analyzed with the aid 
of the preceding theory. In all cases the integrand of ( -, �9 )v is positive so according 
to the remarks after (2.2) one can choose C,={uECm(O)[(u,u)e<oo}.  This is 
assumed in this section. 

i. AAu=2Au. One has S = A A  and T = A  and maytake  P = - T .  As Dirichlet 
integral we choose 

(u, v)p = (u, v)l = f ~  grad u grad v. 

Then ( - ,  ")e is 1-positive, vanishing on constants, and Q = - A A  which clearly 
also vanishes on constants. Hence, according to Theorem 3.2, choosing as Hilbert 
space any hyperplane in H+ not containing the polynomial 1, the minimal relation 
will be symmetric. In fact, in this case the minimal relation will be the graph of  a 
symmetric, but not  necessarily densely defined or closeable, operator (Holds whenever 
P = b T ) .  In particular, if C o ( t 2 ) c H ,  it will be the graph of the operator A, defined 
on Co(Q).  In general, one finds for an element (GAq~, GAAq~) in Emi,, that 

(GAqg, GAd~o)e = --(A~o, Aq~)o <- O. 

Hence the minimal relation is bounded from above and one may use the method of 
Friedrichs to obtain a selfadjoint extension which in a generalized sense corresponds 
to the Dirichlet boundary condition. 

ii. AAu=2Au. The same relation as in i. may be considered in other Hilbert 
spaces. Choose P = A A - b A ,  let a and b be constants and assume, for simplicity 
of  notation, Y2cRL Let 

and put  ( . ,  . ) p = ( . ,  .)(ai+b(-, ")1" For  0 < a < l  this is easily seen to be a 
Dirichlet integral for P which is 2-positive for b = 0  and 1-positive for b >0 ,  in 
which case one may also allow a = 0 .  For  b > 0  everything may be handled as in i. 
and the minimal relation is bounded from above by b. In case b =0 ,  ( . ,  ")e van- 
ishes on all polynomials of  degree 1, but  since also Q = - b A A  - A  does this, any H 
chosen according to Theorem 3.2 will give a symmetric minimal relation. 
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iii. AAu=2~lO2u. Here one must choose P = A A  and may take 

( ' '  ")P = ( ' ,  " )(a), 0 < a < 1. 

Then Q--0102 so that  Q vanishes on the polynomials on which ( - ,  -)v vanishes. 
Hence also in this case we will have no difficulty in choosing a Hilbert space. In 
this case the minimal relation is not  semi-bounded. However, if t2 is bounded 
and of decent regularity, Q will have Dirichlet integrals that  are bounded in H+ 
and this fact may be used to construct selfadjoint extensions of  the minimal relation. 

iv. - A u = 2 k u .  Here k is a function which is not assumed to have a fixed 
sign in f2 and is even allowed to vanish on parts, but not  all, of  f2. This is one of  
the cases Pleijel considers in [12]. We choose P = - - A  and ( - ,  - ) v = ( - ,  ")1- Then 
Q = k  and it may of course happen that  f~ ~u~ is a bounded form on H+ in 
which case we may follow Pleijel and apply Theorem 3.5. However, if  this fails the 
possibility that  one may use Theorem 3.2 still remains. Since k ~ 0 one must choose 
H such that C o ( O ) c H .  Suppose for example that  there is a compact  piece F of 
~f2 which is sufficiently smooth. Then L u = f r  u is a continuous linear form on 
H + .  Clearly L ( 1 ) ~ 0  and L vanishes on C o ( O  ) so one m a y p u t  H =  {uEH+ ILu=0} 
and then apply Theorem 3.2. This method seems both fairly general ands atisfactory 
in that  it uses boundary conditions to determine H. Hence it may deserve some 
elaboration. For  this, we allow other domains than open ones in the definition of  
r-positiveness. 

Theorem 4.1. Let ( . ,  .)p be r-positive over C ,  on F wt2 where F is a 
compact, connected part o f  012 with strictly positive ( n - 1 )  dimensional measure. 
Assume that there is a bounded neighbourhood (9 of  F such that r c~ 1"2 is a properly 
regular domain in the sense o f  [7, p. 21]. Then any element u o f  H+ has strong 
LZ-derivatives o f  all orders <r  on F and the mapping 

Lr+ ~u  ~ {D~u}l~ I <~ (4.1) 

is continuous in the sense that there is a constant C such that 

Z,,,<, fr IO~u? <- ClluN~+ for uCH+. 

The proof  depends on the fact that  Lemma  2.6, the Poincar6 inequality, can be 
proved for properly regular domains. I t  follows that  Theorems 2.2 and 2.5 hold for 
F u~2. Now one may apply the result on the continuity of  the trace operator (4.1) 
as proved e.g. in lecture 4 of  [7] and the theorem follows. This shows that  if Pr is 
a differential operator o f  order at most  r -  1 and with coefficients, the restrictions 
of  which to F are in L2(F), then the linear form H+ 3 u ~ f r  Pru  is continuous. 
Hence such forms may be used for restricting H+. I t  is evident that  they vanish on 
(70(0) ,  and for a given polynomial p of  degree at most  r - 1  one can always find 
a boundary form of  this type that  does not  vanish on p. 
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5. The case of ordinary operators 

Consider an ordinary differential operator L ~ 0  on the interval I ~ R  of  
the form 

L = ~ D~a~i Di (5.1) 

This operator is called A~ if a~EA~nA J where A j denotes the space 
W~o~(I ) of  functions u E C J-l(1) for which DJ-lu is locally absolutely continuous 
and D~u, which exists a.e., is in L~oc(I ). However, all statements made in the 
sequel remain true if A J is instead interpreted as W{o+a'~(I) or CJ+a(I) for some 
fixed d, 0 ~ d =  < + ~ .  Only the proof  of  Lemma 5.1 needs some, mainly simplifying, 
modifications. Since the formal adjoint of  L is L + = ~ D i ~ D  j also L + is 
AO-proper, B y  carrying out differentiations in (5.1) it is seen that in addition to 
a~fA~c~A j we may also assume that L is on Jacobi form, i.e. a i j=0  if l i - j l > l  
and aj, i_l=aj_a,j.  One may also carry out the differentiations in the Jacobi form 
to obtain 

M L = ~ j = 0 1 j D i ,  IMp-O, 

where the functions IjEA ~ If  M = 2 m  or 2 m - 1  it is easily seen that Ij+M_zEA ~ 
for  j->0. In particular IMEA m. I f  L has fixed order, i.e. lM(x)#O throughout L 
we say that L is regular. Suppose that L is regular A~ and let K = ~ ; = 0  kiDS 
be another A~ operator such that M > N .  Then we have the basic 

Lemma 5.1. Let uE L~o~(I ) and yEA p for some p>=O and assume that 

(~, L~o)0 = (v, K~o)0 (5.2) 

for all q)ECo(I). Then uEW where s = m i n ( M ,  M - N + p ) > = M - N .  

The proof  depends on 

I_emma 5.2. (du Bois-Reymond). Assume that uE L~oc(I) and for all (p E Co(I)  
one has (u, Dr"~O)o=O. Then, after correction on a null-set, u is a polynomial o f  
degree at most (m-1) .  

The proof  is well known, at least for m = 1, see e.g. [4, Section 6]. The general 
case may be handled by induction. 

Proof of  Lemma 5.1. By repeated partial integrations in (5.2) one obtains 

(ZY=0 FM_j(lju--~jv), DUq))o = 0 for all (pECk(I). 

Here Fi(w) denotes a function in A ~ such that DiFi(w)=w. It follows from Lemma 
5.2 that for some polynomial q 

Zf2o Fg_j(l ju-Icjv)  = q. 



Spectral theory for pairs of differential operators 53 

Since 1Mr everywhere in I and ku=--O this may be written 

- - 1  M - 1  u = (lM) {q - -2 j=0  fM-j(ijU--k'j'l))}" (5.3) 

According to assumption uEL~oc(I)=A ~ Suppose that, for some d_->0, we have 
uCA j for j = d  but not for j>d.  It  follows from the known regularity of  lj, kj 
and v that the right hand side of (5.3) is in A*, where s = m i n  (d+  1, m, M - N + p ) .  
Thus the assertion follows unless M - N + p > m .  In that case we have at least 
uCA 'n. By carrying out differentiation in the Jacobi form of  K one obtains 

i K = Zi<=p D (2j<M-,,  bj, Dj) 

with biped t where t=p+max(O, j -n )  if  N=2n or 2 n - 1 .  FurthermorebjiC 
{ A J n A  i for i<p. Integrating by parts in (5.2) it then follows that 

f ,  Z a j, D' uD-J v, = f ,  Z D' vDJ o for all q~ ~ Co ~ (I). 

Integrating by parts in the other direction one obtains 

f1~"~=oF,,_j(Zi(ajiDiu--~j~Div)) .D'~= 0 for all q~EC~'(I). 

As before there is then a polynomial q such that 

- - - 1  m - - 1  Dmu = (lM) {q--Z,=o a,,i D i u -  27-o 1Fm-j(Zi (ajl Diu-bjiDiv))} (5.4') 

if lM=amm. I f  atom=O, SO that IM=2am,,,-x, the formula reads 

Dmu = (5.4") 

- -  l - - 1  m - - 2  - -  �9 - -  
- -  ( M )  [D{q-Z~=0 ami D~u -ZT-ol Fm-j(Zi(ClflDiu--~jiDiv))}--Dm-luDam, m-1], 
where the term ~,,_l.mDmu does not appear in the last sum. From these formulas 
it is easily concluded that if uEA m+d for some d=>0, then the right hand side 
of  (5.4) is in A * where s ' m i n  ( M - m ,  d+ 1, M - m - N + p ) .  This proves the lemma. 

Corollary 5.3. Under the assumptions of lemma 5.1 and if p>=N, then u is a 
classical solution of the equation L +u= K+v. 

Proof. Lemma 5.1 implies sufficient differentiability so that integrating by parts 
in (5.2) one obtains 

f1(L+u--K+v)(o = 0 for all qgCC~(I) 

from which the corollary follows. 
Returning to spectral theory, let S and T be formally symmetric ordinary 

differential operators over I having a symmetric minimal relation Emi" in the 
Hilbert space HCL~o~(I ) with scalar product ( . ,  .)p, a Dirichlet integral over I 
belonging to P = a S + b T  for some real numbers a, b. We assume furthermore 
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(i) S and T are A~ on L 
(ii) S is regular of  order M and the maximal order N over I of T satisfies 

N<M.  
Put E--closure of  Emi . so that E*=Em, • Then we have 

Corollary 5.4. For all (u, v)EE* the function u belongs to Wqg~2(I) where 
q=M--N.  

This is an immediate consequence of Lemma 5.1 by the definition of  E* and 
since HCL~oc(I ). 

Corollary 5.5. E ~ c A ~ X A  M for every 2EC. 

This follows since /3x, according to Lemma 5.1 with L=S--2T,  K=T, is 
in A M. Repeating the argument with L =  S - - ~ T  proves the corollary. Now define 
(cf. Pleijel [14]) 

E[/]  = {(., v) E*lvCa N} 

E • = E[I] n (E[I])*. 

By Corollary 5.3 the space E[I] consists of  all pairs (u, v)EH 2 nAM•  N for which 
Su=Tv classically. By Corollary 5.5 we have EacE[I]. 

Theorem 5.6. I f  yEA n n i l ,  then for any non-realnumber 2 there is an element 
(u, 2u + v)E E[I]. 

Theorem 5.7. E[I]=E • 4-E~ as a direct sum for any non-real 2. 
In [3], [13] and [14] these theorems are proved by a limiting process directly from 

the standard existence theorems for differential equations. They then form the basis 
for the spectral theory. 

Proof of Theorem 5.6. According to Lemma 1.10 there is an element (u, 2u + v) E E*. 
Applying Lemma 5.1 with L =  S - S T ,  K= T it follows that uEA M. Hence (u, 2u+v)E 
EE[I]. 

Proof of Theorem 5.7. Since E~cE[I] an intersection of E*=Eq-Ez by E[I] 
shows that E[I]=EnE[I]4-Ez. From E~cE[I]cE* one obtains Ec(E[I])*cE~ 
and hence E n E[I] c E L c E~ n E [I]. From the definition of adj oint and E* = E-I- E~ 
it is easily seen that E ~ n E * = E .  Thus E•  and hence E[I]=E• 

Theorem 5.8. E[I] is dense in E* and E L in E. 
I 

Proof. The proof  of Theorem 5.7 shows that E L is a subspace of E. It follows 

that the sum EL-[ - E~ is topological and hence that 
I 

E[I] = E• ~ E~ ( I m 2 ~ 0 ) .  
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m 

Thus from E[I]=E* follows E•  To prove E[I]=E* write an arbitrary 
element U~E* in the form U=(u, 2u+v) where I m 2 # 0 .  Let ~cANc~H and 
determine w ~ S  x so that W=(w,  2 w + ~ - v ) C E * .  This may be done and [[w]] <- 
=< [Im 21-1 ][O-vii according to lemma 1.10. Now take ~ so that []~-v[[ is arbitrarily 
small which then also holds for ][wl]. Put  ~ = u + w .  Then ~7= U +  W=(ff, 2t~+~) 
is an arbitrarily good approximation of U, and O~E[I] since ~EA N and ~ A  M 
according to Lemma 5.1 with L = S - ~ T  and K = T .  This proves the theorem. 

Theorem 5.8 implies that E -L and E have the same selfadjoint extensions. 
In this sense our theory agrees with that of Pleijel in [13], [14]. The regularity require- 
ments for the coefficients of  S and T made in these papers are roughly the same 
as here. Certain positivity assumptions related to an increasing sequence {Jk}o 
of  compact subintervals of  I with w Y k = I  are made with respect to a Dirichlet 
integral 

(u, = f ,  Z aijD' OJ---  

belonging to P =  T in one and P =  S in the other paper. Apart from a trivial transla- 
tion of  the spectral parameter this covers the possible choices of P in the present 
theory. Setting 

(., v) .k = f 2 a,jD'.Y  

these positivity assumptions read, in slight paraphrasing, 

i. The order p of  P is constant in L 
ii. I f  uEA p does not vanish in Jo, then (u, U)p,0>0. 

iii. (u, U)p,k increases with k for  any f ixed uEA p. 

Put C.P= {uE CP(I)llimk (u, U)p,k< + ~o}, which is easily seen to be linear. The con- 
dition iii. is used in [13], [14] to prove Theorems 5.6 and 5.7. However, the example 
at the beginning of Section 2 shows that it need not be satisfied by a Dirichlet integral 
which is 0-positive over C. p. On the other hand, i., ii. and iii. imply that ( - ,  -)e 
is 0-positive over C. p. To sketch a proof, consider the Hilbert space H obtained 
by completion of  W p' ~ (Jk) in the norm-square (u, U)p,k + (U, U)O,S k. The problem 
of  finding an element of  H which minimizes (u, U)p,k under the side condition 
(u, u)0,s = 1 is equivalent to finding the first eigenfunction of the eigenvalue problem 
Pu=2u in Jk with free boundary conditions in Courant's sense. Because of  i. this 
eigenvalue problem has a discrete spectrum so that there exists a minimizing func- 
tion l.lk~ WP'2(Jk) such that (uk, Uk)o, Jk:  l and (llk, ?.lk)P,k ~(gl , U)O, lk (U , U)p,k for 
all u C H. Because of  assumptions ii. and iii. we must have Ck = (Uk, Uk)p, k strictly 
positive and 

(u,u)l, >=(U,U)p,k >- Ck(U,U)o,s~ for any uECP,. 

Since {Jk}o exhausts I it follows that ( - ,  . ) ,  is 0-positive over C, p. 
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6. Eigenfunction expansions and Green's function 

Let a be a positive measure on R and v: R-~{1, 2 . . . . .  ~} a-measurable. I f  
f j :  R-~C are : a-measurable and f (~ )= ( f l (~ ) ,  ... ,f,(r then the set of  (equiv- 
alence classes of) functions ~-~f(~) for which S'~(r ~ j = l  [fj(~)[2 is a-integrable is a 

Hilbert space L2(a, v) with scalar product ( - ,  .)~ and norm ][ �9 []~. The spectral 
theorem (yon Neumann, [10]) states that for every selfadjoint operator Eo on a 
Hilbert space H o there is a space L ~(6, v), with a determined modulo equivalent 
measures and v determined a-a.e., and a unitary mapping o~: Ho)u~-~EL2(a, v) 

such that E0u(~)=~(~) .  Finally, u~@eo precisely if ~(~)EL2(a ,  v). Let S and 
T be ordinary differential operators on the interval I c R  satisfying the assump- 
tions of  Section 5 and assume that there exists a selfadjoint realization E o f  Su= Tv 
in the Hilbert space H with norm ][-[1 = 1/(', ")e. Thus according to Theorem 1.15 
and the spectral theorem, there is a space L~(a, v) and a unitary mapping o~ 
from H o = H O H ~  to L~(a, v) with ~(~)=~fi(~) for (u, v )EEo=EnH ~. F o r  con- 
venience, define o~Hoo={0} so that ~(~)=~a(~) for any (u, v) in E and (u, w)e= 
=(fi, ~) ,  if at least one of u and w is in H 0. We will need the following lemma, 

which is similar to theorem 5.8. 

Lemma 6.1. The set EonAMXA ~t, where M = o r d e r  S, is dense in E o. 

Proof. If  (u,v)EEo then Ri(v--iu)=u and for e = 0  one can find OEAMnH 
so that Ilv-iu-~][<~. Since []R~][<=I this implies that [[u-~7[]<~, where a=Ri~.  
Hence (~7, i~7+~) approximates (u, v). However, ~E/~cH0 so that Lemma 5.1 
implies ~EA ~t n Ho. It  remains to show only that one may take fiEA~tn H0. This 
follows, however, since we have just seen that A M n /~  is dense in b v and thus in H 0. 
Hence we may take ~EAMc~ /~ which proves the lemma. 

Let s ( . ,  ; )  be a fundamental solution for S, i.e. if ~oEA ~ with compact 
support one has q~(x)=(Sg, s(x, "))0. Such a function is easily constructed, e.g. 
by solving an appropriate Cauchy problem, and has the property 

(x, y) ~-~ D~s(x, y) is locally bounded for j -<_ M -  1 and 

continuous except when j = M - 1  and x = y. (6.1) 

Now suppose (u, v)EE 0 nAMXA ~t. Let J c  c I  and q)sECo(I) be realvalued and 
1 in a neighbourhood of  aT. Then one has 

u (x) = CsU(X) = ( S ~ u ,  s(x, "))o = (Su, ~js(x, -))0+(K~u, s(x, "))o 

for xEJ. Here Ks=[S, r is the commutator of  S and the operator c s  of  
multiplication by q~j. Thus K s is a skew-symmetric differential operator with 
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coefficients in L~(I) and of order < M .  Now Su=Tv and order T-<M so that  
T~Pss(x, .) and Kjs(x, .) are in L~(I) and thus in the domain of  G (see sec- 
tion 3). Integration by parts gives thus 

u (x) = (v, T~oss(x, �9 ))o--(u, Kas(x,.  ))o = (v, GTq~ss(x,. ))p-(U, GKss(x, .))p. 

Setting aa(x, .)=~(GT~o,s(x, .)) ,  ba (x , . )=~(GKjs (x , . ) )  and ea(X,{)= 

=~aa(x, ~)-bs(x, ~) one obtains, since vEHo, 

u(x) = (•, es(x,-))~ for xEJ. (6.2) 

Clearly ej(x, .)EL2(~r_, v) where da_=(l+I~p)-lda. Since uE/~ means that 
and ~fi(r v) one has ~LV=L~(a+, v) where da+=(l+[~[~)da. Taking 
limits it is thus clear from Lemma 6.1 that (6.2) holds for any uE/~. It follows also 
that ej(x, .)=es.(x, .) i f  xEJt~J'.  Thus e(x, .)=lims~ies(x, . ) i s  defined as 
an element of L~&, v) and 

u(x)=(f i ,  e(x,.)),~ for xEI  and uC/~. 

I f  uEHo\L ~ put, for any compact J, fij(~)=fi(~) for ~Ea r and = 0  otherwise. 
Clearly ~jEL~(a+, v) and f i j - ~  in L2(a, v) when J ~ R .  Thus 

( ~ j , e ( x , . ) ) ~ u  in H0 when J - + R  (6.3) 

which is the desired formula for the inverse transform ~ - ~  : L~(a, v)~Ho. To show 
that this is an "eigenfuncfion expansion" first note that as an L~(a, v) valued func- 
tion x~-,-e(x, .) is continuous. This follows easily from (6.1) and the fact that  
~G : L~(I)~L2(a, v) is continuous. We need the following 

Lemma 6.2. Let I )  x~--~g(x, .) be a continuous Lg(a_, v) valued function. Then 
one can for each x choose an element e(x, ~) of the equivalence class ~(x, .) so 
that e(x, ~) is measurable with respect to the product measure dxda. 

Proof. Let {x j} be a dense sequence in I and choose for each x i a representa- 
tive e(xj, ~) for ~(xj, .). Put e,(x, r  4) where xy is the closest to x of  
Xl . . . .  , x, (if there are two equally close, take the left one). It is clear that en, being 
piecewise independent of x, is measurable. Furthermore, since ~(x, .) is locally 
uniformly continuous it is clear that e,(x, �9 )~g(x, �9 ) locally uniformly in L~((r_, v). 
By a standard device we may thus for every compact J c  c I choose a subsequence 
{e,~(x, r which for each xEJ converges to ~(x, .) except on a a-nullset. But 
the sequence {e,s } of dxda-measurable functions converges except on a dxda- 
measurable set M, whose trace for fixed xEJ is a ~r-nullset. Hence M n J X R  
is a dxda-nullset and one may take e(x, ~)=lim~ e,,(x, ~) for xEJ. The lemma 
follows. 
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We will assume that a choice of  representatives for e(x, .)  making e(x, 4) 
measurable has been made, and then it immediately follows from the continuity of  
.e(x, .) that e is L~(dxda_, v) on J •  for any J c  c L  ForfELZo(I) and uE/~ 
.one then obtains 

(G'], f~),, = (Gf, u)v = (f,  U)o = ( f ,  (ft, e(x, ")),)o = ((f,  e ( . ,  ~))o, a)~ 

the change of  order of  integration being legitimate by the absolute convergence of 
the double integral. Since E is dense in Ho one obtains 

A 
Gf(~) = (f ,  e ( . ,  4))0 a-almost everywhere. (6.4) 

I t  follows also that e ( . ,  ~)EL~or ) for a-almost all 4, and setting e ( . , ~ ) = O  
in the exceptional set this holds everywhere. From (GTq~, GSq~)EEmincE for 

~0ECo(I  ) it follows that GS~o(r162 a-a.e. After setting e ( . ,  4 )=0  on a 
certain a-nullset, which may depend on 9, one obtains by setting f =  Tq~ and f - -  Sq~ 
respectively in (6.4) that 

((S-~T)q~,e(.,4))o -- 0 for all 4- (6.5) 

Repeat ing the same procedure for a denumerable set �9 of  functions q~ we have 
still only changed e ( - ,  4) on a a-nullset. The set �9 can be taken dense in C o (I) 
with the usual topology, and then (6.5) will hold for all q~ECo(I ) by continuity 
since e ( - ,  4) E L~oc (I) for all 4. According to Lemma 5.1 this implies that e ( . ,  4) E AU 
for each ~ and satisfies (S--~T)e( . ,  4)=0.  It is easy, but  somewhat tedious, to 
see that there is an element 2EL~(a+, v) such that ~ , ~ j ( r  ~ )=0  but 
~(~)--0 only for those ~ for which the components e i ( . ,  4) of  e ( - ,  4 )  are linearly 
independent. This implies 

/~(X) ----- (~"- I ,~ , ) (X)  ---- (~, ~ ) a  ---- 0 

:so that ~=0.  Hence e ( . ,  4) has linearly independent components for a-almost 
all 4. Since e j ( . ,  4) is a solution of  the regular M t~ order equation (S-~T)u=O 
this implies that v(r a-a.e. It is also easy to see that /~ is a proper eigenvalue 
o f  E if and only if a has a jump at /t, i.e. a({/~})>0. In this case all components 
o f  e ( - ,  #) are in /~, being inverse transforms of functions with support {p}, and 
they span the eigenspace at p. 

Since the range of G is dense in H, a consequence of  H c  L~oc(I ), a formula 
for computing a is given by (6.4). However, it is not clear in general how to find 

2 fELo(1 ) so that Gf approximates a given uEH. A more satisfactory formula is 
obtained by making the following 
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Assumption6.3, For ~pEL~176 there exists Cr162 such that 

i. I(u,v)e [~-Cr for vEH and anyfixed uEH. 
ii. Cr depends continuously on u for fixed q~. 

iii. I f  q~j \0  when j-~oo, then C,j~O for anyfixed u. 

Here we have defined, first for u, vE C~ and then by continuity, 

(u, v),,o = f i q' Z a,iD'ufiT-~ 

so that ( - , - ) e  = ( - , - ) p  if ~p--1, and if ~oECo(/) we define 

P~ = z~ DJ ~oa~ D i. 

The assumption is easily verified if I[" II is equivalent to the norm 1/-fB(., .) 
introduced just after (2.2). For ~0 E Co (I) and u E A M n H one obtains from Assump- 
tion 6.3 

(u -Ger u-GPq, u)e = (u, u-GPcu)el_,~ <= Cl-~,llu-Ger 

so that GP~u-,-u in H when ~0/1.  Thus also GP~,u--,-fi in L2(a, v) and from 
(6.4) one obtains 

Ger (0 = (u, e(., r 
so that 

(u, e ( . ,  r ~ a in L2(a,v) when q~/1. (6.5) 

This has been proved for uEAUnH but follows easily from Assumption 6.3 in 
general. In fact it follows that ~0 may be taken as the characteristic function of 
a compact subinterval of I so that (6.5) together with (6.3) gives a perfect 
analogy to the classical theory of the Fourier transform. 

We give now a brief discussion of the Green's function of E. For Im 2 ~ 0  

we have (Rzu, 2Rxu+u)EE so it is clear that (~-2)R.~u(O=a(r hence that 

R;~u(x) =((~-- 2)-~a, e(x,. )), = (a, (4-- 2)-~e(x, �9 ))~. However, since e(x, .)  E L2(~_, v) 

clearly (~-2)-~e(x,  -)ELf(a, v) and is thus the transform of g.~(x, -)EH. The- 
refore 

R~ u (x)  = (u,  g~(x ,  �9 )), 

valid pointwise for any uEH. Thus ga( . ,  .) is the kernel of the resolvent R a ,  i.e. 
the Green's function of E at 2. Using Rx--R x and the resolvent relation (Theo- 
rem 1.11) one obtains the basic properties 

gx (x, y) = gx (Y, x) 

g.~(x, y ) -  gg(x, y) = (2--#)(gx(. ,  y), g.(x, �9 ))v. 
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I f  P = T  one also obtains, using EmlnCE, that if  C ~ ( I ) c H ,  then 

( S - 2 T ) x g z ( x , y )  = 0 for y ~ x. 

However, if  P = a S + b T  with a ~ O  one obtains instead 

gz(x, y) = ~,~(x, y ) - a ( a 2  + b ) - l p ( x ,  y) 

where ( S - 2 T ) x ~ , z ( x , y ) = O  for all x ~ y  and p is the kernel of  the operator G 
on L02(/), or equivalently, of  the evaluation operator on H 

Gf(x) = ( f ,  p(x,  "))0, u(x) = (u, p(x, .))p. 

One may  construct p in a way similar to the construction of  e ( . ,  -) and it is easily 

seen that  Pxp(x ,y )=O for x C y  and that  p(x,  y )=p(y ,  x). In an appropriate 
sense one may also show that  g~(x, .) satisfies the (abstract) boundary condition 
which determines E a s a  restriction of Era,x, but  we will not give any details here. 

Finally we mention that since the dependence on 4 of  e(x, 4) is rather arbitrary 
it is convenient to redefine L2(a, v) somewhat as is usually done in dealing with ordi- 
nary differential operators. One chooses a basis E(x,  O = ( E l ( x ,  4) . . . . .  Eu(x,  4)) 
for the solutions of  ( S - - ~ T ) u = O  which is analytic in 4, e.g. by solving Cauchy 
problems with data analytic in 4. Then e(x, ~)=A(~)E(x ,  4) where A(O is a 
v ( ~ ) X M  matrix. Setting B = A * A  the matrix B is non-negative with rank v(~). 
Let d~=Bda,  the spectral matrix, and L2(O) be the Hilbert space of equivalence 
classes of  functions U=(UI . . . .  , UM) for which 

(u, = f U*BUd  < oo. 

Then U ( ~ ) = l i m , ~  (u, E ( - ,  4 ) )v  defines an element of  L"(e) (under assumption 
6.3) and Fi=AU so that  

(x) = (U, E ( x ,  �9 ))o 

and the mapping H ) u ~  UEL2(o) diagonalizes E, vanishes on H~  and is unitary 
on H0. Clearly do is uniquely determined once E(x, .)  has been fixed. 
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