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Criteria of solvability for 
multidimensional Riccati equations 

Kur t  Hansson,  Vladimir  G. Maz 'ya  and  Igor E. Verbitsky(1) 

Abstract .  We study the solvability problem for the multidimensional Riccati equation 
Au--IVu Iv +w, where q > 1 and w is an arbitrary nonnegative function (or measure). We also dis- 

cuss connections with the classical problem of the existence of positive solutions for the SchrSdinger 
equation Au--wu 0 with nonnegative potential w. We establish explicit criteria for the existence 
of global solutions on R n in terms involving geometric (capacity) estimates or pointwise behavior 
of Riesz potentials, together with sharp pointwise estimates of solutions and their gradients. We 
also consider the corresponding nonlinear Dirichlet problem on a bounded domain, as well as more 
general equations of the type Lu=f(x ,  u, Vu)q-w where f(x,  u, Vu)~a(x)lVul ql +b(~)l~l q~, and 
L is a uniformly elliptic operator. 

1. I n t r o d u c t i o n  

We s tudy  the solvabili ty problem for the generalized Riccati  equa t ion  

(1. 0 - A u  I W l q + ~  

on a domain ~ c R  n, n_~3, where q>  1 and w is a nonnegative funct ion, or a measure 

w c M + ( Q ) .  (Here and  in the sequel M+(f~) denotes the class of locally finite positive 

Borel measures  on ft.) Our  results hold, with obvious modifications,  also for n = l  

and  n = 2 .  

All solut ions are unders tood  in the usual  weak sense, i.e., u is a solut ion to 

(1.1) if ucWllo'q(f~) and  

for all test  funct ions  r C ~  (~).  (In the special case when w is a nonnegat ive  locally 

integrable  funct ion  we set dw w(x) dx in (1.2).) 

(1) Partially supported by the NSF and University of Missouri Research Board grants. 
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Our main goal is to establish necessary and sufficient conditions (with a gap 
only in the best constants) for the existence of global solutions of (1.1) on R n, 
together with sharp pointwise estimates of solutions and their gradients, without 
any a priori assumptions on a~_>0. We show that  all weak solutions of (1.1) belong 
to a function space intrinsically associated with the equation. The characteriza- 
tions of solvability are given explicitly in terms of the pointwise behavior of the 
corresponding Riesz potentials as well as in geometric (capacitary) terms. 

Analogous criteria and estimates of solutions are obtained for more general 
semilinear equations of the type - L u = f ( x ,  u, Vu) where f (x,  u, Vu) ~a(x) lVul ql + 
b(x)lul q2 +w, and L is a second order uniformly elliptic differential operator. We 
also characterize the solvability of the corresponding Dirichlet problem on a bounded 
domain f~ in the case q>2. 

We observe that  numerous results in the literature on the solvability of semilin- 
ear equations contain mostly sufficient conditions which usually are far from being 
necessary. Some interesting duality theorems for differential inequalities associated 
with (1.1) can be found in [B]. See also [API, [KV 1 where sharp criteria for the ex- 
istence of positive solutions are found in the case of equations without the gradient 
term. 

It is worthwhile to note that  (1.1) with q - 2  is intimately related to the problem 
of the existence of positive solutions for the SchrSdinger equation 

(1.3) - /Xv=c~v,  v >_O, 

which is easily seen via the substitution v = e  ~. (The case n = l  is discussed in [Ha] 
where the references to earlier work on one-dimensional Riccati equations are given.) 
The exponential substitution requires a change in the corresponding boundary val- 
ues, e.g., the Dirichlet problem for the Riccati equation with u = 0  on 0f~ corresponds 
to the inhomogeneous Dirichlet condition v 1 on 0f~. 

It is well known that  just the existence of a positive solution (without specifying 
boundary values) is equivalent to the positivity of the Schr6dinger operator - A -  
a~ on L2(f~) for relatively nice a~. (See [Ag], [CZ], [Si] where this equivalence is 

discussed for potentials cu in Ll~oc, r > n ,  or Kato classes.) 
The problem of the positivity of the Schr6dinger operator -A--a~ on L2(R n) 

for arbitrary c~EM+(R n) was solved in [M1] (see also [M2]) in capacitary terms. 
Other equivalent characterizations can be found in [S], [HI, [MV], and the literature 
cited there. It follows directly from our results on Riccati equations that  the class of 
all a~cM+(R ~) such that  (1.3) has a global positive solution is essentially the same 
(up to best constants). In contrast to previous work, the approach of the present 
paper yields not only the existence, but also new pointwise estimates for solutions 
of (1.3) and their gradients. 
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We define the Riesz potential I ~ = ( - A )  -~/2 of order c~, 0 < a < n ,  on R ~' by 

(1.4) I~f(x) = c(n, a) s  f(t)lx tl ~-~ dr, 

where fCL~or n) and fxl_>l Ixl~-nlf(x)l dx<~ .  Here we have the constant 

M n More generally, for any we  . ( R  ) and feLloc(CZ) such that 

/~  [xl~-nlf(x)ldc~176 
1>_1 

we set 
f 

I~(fdcz)(x) = c(n, (~) ]R~ f(t) lx--tl~ n dw(t) 

and I~w=I~(1 dw). The Riesz capacity Cap~,p(E) of a measurable set E c R  ~ is 
defined by 

(1.5) Cap~,p(E) inf{llfll~p(R,, ) :I~f>_xE, fELP+(Rn)}.  

This capacity is associated with the Sobolev space L~'P(R~). For integer a and 
compact sets E c R  ~ it is well known that Cap~,p(E)~cap~,p(E), where cap~,p is 
defined by 

(1.5') cap~,p(E) = i n f / / a , ~  IV~hl pdx:)(z<-h<-l,  h E C ~ ( R n ) } .  

(See [AH], [M2].) 
In what follows the capacity capl,p with a = l  and 1/p+1/q=1 will play an 

important role. As we will show, it is intrinsically associated with the equation 
(1.1). Note that  in a parallel theory of the equation 

(1.6) -Au = luj + , 

a similar role is played by the capacity cap2,p (see [AP], [KV]). 
The following theorem established in [MV] will play a crucial role in the sequel. 

(A different proof together with applications to equations of type (1.6) is given 
in [KV].) 
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T h e o r e m  1.1. [MV]. Let wEM+(R'~). Let l < p < o c ,  1 / p + l / q = l ,  and O< 
a < n .  Then the following statements are equivalent. 

(i) The inequality 

(1.7) C0(E) < C 1 Capo~,p(E ) 

holds for all compact sets E C R  n, with a constant C1 which depends only on p 

and n. 
(ii) The inequality 

(1.8) /E(I~w)q dx < C2 Cap~,p(E) 

holds for all compact sets E c R  ~, with a constant C2 which depends only on q 

and n. 
(iii) The potential I~w < cc a.e. and 

(1.9) I~(I~w)q(x) <_ C3Ic~w(x) a.e. 

Furthermore, the least constants C1, C l/q, and C~/(q 1) are equivalent, and the 
constants of equivalence depend only on q, a, and n. 

The class of measures characterized by (1.9) turned out to be extremely useful 
in applications to nonlinear equations. In particular, one of the main results of this 
paper is the following criterion for the existence of (global) solutions to (1.1) on R n. 

T h e o r e m  1.2. Let l < q < o c ,  and let ccEM+(R'~). Then there exist positive 
constants C1, C2, and C3 which depend only on q and n such that the following 

statements hold. 
(i) I f  (1.1) has a solution ucWllo'q(Rn), then Ipo<oo a.e. and 

(1.10) I i ( I i ~ ) q ( x )  ~ ClIlCO(x) a.e. 

(ii) Conversely, if (1.10) holds with C2 in place of C1, then (1.1) has a solution 
1,q n UCWlo r ( R )  such that 

(1.11) IW(x)l <CsIlW(X) a.e. 

Remark 1.1. Some partial results related to Theorem 1.2 in the case of com- 
pactly supported w were announced without proof in [MV]. They were obtained by 
the first author, of this paper, using the equivalence of the capacitary inequalities 
(1.7) and (1.8), which was established by the second and third author in [MV]. Here 
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we give a complete proof based on the inequality (1.9) with c~=1 which yields a cri- 
terion for the existence of any (weak) solution, and also leads to sharp pointwise 
estimates of solutions and their gradients for arbitrary nonnegative w. 

In Section 2 we will show (see Corollary 2.2) that the space X of uEWllo'q(R '~) 
with finite seminorm 

caPl ,p(Z ) j :caPl,p(/~ ) > 0 ,  E 

defines a natural function space associated with the nonlinear equation (1.1). 
lq  n All (weak) solutions uCW]o' ~ ( R )  of (1.1) satisfy the estimate 

(1.12) IIlurll  1. 

Moreover, we will see that  if (1.1) has a solution 1,q uCW]o c ( R ) ,  then necessarily 

(1.13) 02(~) ~ (p- - l )  p l c a P l , p ( E  ) 

for all compact sets E. 

Remark 1.2. It follows from (1.13) that q = n / ( n - 1 )  is a critical exponent for 
the solvability of (1.1) on R n. If l<q<_n/(n-1),  then capl ,p(E)=0 for all E c R  ~ 
(see [AH], [M2]), and hence (1.1) has no global solutions on R ~ provided coCO. 

In the case n/ (n-1)<q<oc ,  the following simple sufficient condition for the 
solvability of (1.1) can be derived in terms of weak L~-spaces using the known 
estimate 

capl,p(E ) _> c(p,n)lEI 1-p/~, E compact. 

It is immediate from Theorem 1.2, Theorem 1.1, and the preceding inequality 
that there exists a constant C = C ( p , n )  such that  (1.1) has a solution if co is ab- 
solutely continuous with respect to Lebesgue measure and II~llL,~/~,~ _<C, where 
1 /p§  

The solution u whose existence is claimed in Theorem 1.2(ii) satisfies some 
additional sharp inequalities of Hadamard type (see e.g. [HK, Theorem 4.2]). These 
estimates are collected in the following theorem. (Note that  by Remark 1.2 it suffices 
to consider the case n / ( n - 1 ) <  q < oc.) 

T h e o r e m  1.3. Let n / (n -1)<q<eo ,  1 / p §  and let wcM+(Rn) .  
(i) Suppose that (1.10) holds with a small enough constant C=C(q,n) as in 

Theorem 1.2(ii). Then there exists a solution u of (1.1) such that the following 
statements hold. 
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(a) If l <q<2,  then 

(1.14) Izw(x)_<u(x)_<CI2w(x) <oo a.e., 

where C depends only on q and n, here 12 ( A) -1 is the Newtonian potential 
o fw.  

(b) If q=2, then 

s d~(t) 
(1.15) u(x)>>_c(n, 2) Ix_tin 2 ~Cl~ 

I<1 

where C<O depends only on n. 
(c) /f  q>2, then 

(1.16) u(x)>c(n'2)  r<l Ix- t l  *~dw(t) 2 ~-6(1X1-1-1)2 p' 

where C <O depends only on n and q. 
(ii) For the average values of lul defined by 

1 s I~(t)ldt, (1.~7) M.>] rBR(O)I i<R 

it follows that MRE~]=O(O~(R)), a~ R ~ + ~ ,  where 

R2-P ifq7~2, 
(1.18) qSq(R)= logR /fq 2. 

Remark 1.3. The estimates in Theorem 1.2 and Theorem 1.3 are sharp which 
is easily seen from the equation 

c 
(~.m) •,, Iwlq+-- rxP 

o n  R n, where n/(n-1)<q<oo,  1 /p+l /q=l ,  and c>0. 
Note that if c is small enough, i.e. O<c<C(q,n), then (1.19) has a solution 

(not necessarily unique modulo constants) 

C j" Ixl a-p ifqT~2, 
(1.20) u(x) I loglxl if q = 2 ,  
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where the constant C=C(q, n, c) is positive if p > 2  and negative if p<_2. Obviously, 

I w ( x ) l = c l x l  1 p and 

fE IWlq dx _< C Capl,p(E) 

for all compact  sets E.  (The latter est imate follows easily from Theorem 1.1(iii).) 

Remark 1.4. In Section 2 we will obtain a criterion for the existence of positive 
solutions to (1.1), which is similar to Theorem 1.2, but requires additionally that  

I2w<oe a.e., in this case there is a solution u such that  I2cz<u<CI2cz a.e. 

Theorems 1.2 and 1.3 in the case q=2  yield new pointwise estimates for positive 
solutions of the SchrSdinger equation (1.3) on R ~ through the connection with the 

Riccati equation mentioned above (see Corollary 2.9). 

In Section 3 we treat  the corresponding superlinear Dirichlet problem. For an 
arbi trary inhomogeneous te rm cz ~M+ (ft), we prove an analogue of Theorem 1.2 in 
the case q>2.  The case 1<q_<2 turned out to be more difficult, since our results 
hold true only with some additional a priori assumptions at the boundary, we do 

not consider it here. 

In Section 4 we demonstrate  how our approach works for more general equations 

of the type 

(1.21) - A n  = f (x ,  u, V u ) + w  

where f (x ,  u, Vu)xa(z) lvu lq l  +b(z)lul  q~. We observe that  the solvability problem 
for nonlinearities of this type does not reduce to a mere combination of the cor- 
responding characterizations for equations of the type (1.1) and (1.6), its solution 
requires a bet ter  understanding of the function spaces and classes of measures in- 

volved and is based on additional analytic work. 

We establish both necessary and sufficient conditions for the solvability of (1.21) 
which coincide, in the same sense as above, for constant coefficients a, b>0  (The- 
orem 4.1). Note that  these generalizations do not completely cover our previous 
results on Riccati equations. In the presence of the nonlinear te rm with b>0 the 
existence of any weak solution necessarily implies the existence of a positive solu- 
tion. However, if b 0, then the restrictions on the inhomogeneous te rm at infinity 
are much weaker and hence give rise to nonpositive solutions discussed above. 

Most of our results depend only on the estimates of the Green function and its 
gradient (see [A2], [GW], [HS], [W], [Z]), and hence can easily be carried over to 
equations with more general uniformly elliptic second order differential operators 

in place of the Laplaeian, as well as certain higher order differential operators. 
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(2.4) 

and 

2. Exis tence  of  g lobal  so lut ions  for Riccat i  equat ions  

We first show that an (weak) solutions ~cWI~o':(R n) of the equation 

(2.1) A~ = I w l ~ + ~  

satisfy the inequality 

\ capl,p(E ) ] : capLp(E ) > 0, E 

where the capacity capl,p is defined by (1.5'). Moreover, if (2.1) has a solution 

u E Wllo'q (Rn), then 

(2.3) sup cap l ,p (~  ) : c a p l , p ( E ) > 0  , E c o m p a c t  _<(p - l )  p 1. 

L e m m a  2.1. Let l < q < o o  and 1/p+l/q=l. Let a~r / f  (1.1) has a 
solution 1,q n uCWto r ( R )  then 

s  hPlVulq dx ~ PP /i r 'Vhl p dx 

(2.5) /R~ hPdaJ<(p-1) ~ 1/R~ IVhlPdx 

for all hEC~(Rn), h>0.  

Proof. Let u be a solution to (2.1) in a weak sense, i.e. (1.2) holds for all 
CeC~(Rn) .  Letting r  ~ in (1.2) with h e C ~ ( R ~ ) ,  h>O, we get 

(2.6) /Rn VU-V(hP) dx /~n lWlqhP dX+/R h" d~. 
Since V(hP)=ph p 1Vh, we have 

(2.7) P./m(Vu'Vh)hP ldx /m ,Vu,qhPdx+/a hPdw. 

By Hhlder's inequality, together with the inequality pab-a q ~_ (p 1) p 1 bp for a, b > 0, 
it follows that 

/R hP dw=P/R (Vu'Vh)hP-l dX-/R~ 'Vu' qhp dx 

(2.8) ~_p(/R~ iVuiqhPdx)l/q]iVhiiLp(R,~)/R ,vuiqhPdx 

(P--1)P-- l l lv  hlIPLP(Rn ) , 
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which proves (2.5). 
On the other hand, from (2.7) we get 

/R~lVulqhl) dx<P/R,(Vu. Vh)hP-ldx<pllVhllLp(R.O(/Rn [VulqhPdx) 1/q. 

Since the right-hand side of the preceding inequality is finite, we obtain 

s Ivulqh p dx _< 7~ 

which proves (2.4). The proof of Lemma 2.1 is complete. [] 

Minimizing both sides of (2.4) and (2.5) over all h~C~(R '~) such that h>_XE, 

where E is a compact subset of R n, we obtain the following corollary. 

Coro l l a ry  2.2. Under the assumptions of Lemma 2.1 any solution u of (2.1) 
belonging to 1,q n Wlo c ( R )  satisfies (2.2). / f  there is a solution u to (2.1), then (2.3) 
holds. 

Let wEM+(Rn).  The inequality 

(2.9) /R~ Ihl~ dw < CIIVhIIPp(R n) 

for h E C ~ ( R  '~) is called the trace inequality. We will need the following character- 
ization of (2.9) due to V. Maz'ya (see [M2], [AH]). 

L e m m a  2.3. Let l < p < o o  and let wcM+(Rn) .  Then (2.9) holds if and only 

if 

(2.10) w( E) < C capl,p(E ) 

for all compact sets E. Moreover, the least constants in (2.9) and (2.10) are equiv- 

alent, with the constants of equivalence depending only on p and n. 

The following theorem is the main result of this section. 

T h e o r e m  2.4. Let l < q < o c  and let wcM+(Rn) .  
(i) I f  (2.1) has a solution, then I~w<oc a.e. and 

(2.11) Ii(IlCd)q(x) ~ ClI102(x), 

where C1 is a constant which depends only on q and n. 
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(ii) Conversely, there exists a constant C2 which depends only on q and n such 
that if the inequality 

(2.12) I1 (Ii~)q(x) _< C2/lw(x), 

holds, then (2.1) has a solution uEWlo cl'q (Rn). 
(iii) The solution u claimed in (ii) satisfies the following inequalities: 

(2.13) IVu(x)/< CIlw(X),  

where C depends only on q and n; 
if 1<q<2,  then 

(2.14) I2~(x) < u(x) < CI2w(x) a.e., 

where C depends only on q and n, here I 2 = ( - A )  1 is the Newtonian potential 

of ~; 
if q 2, then 

(2.15) u(x) > c(n, 2) fit dw(t) - i<1 Ix-tb n - ~  +Clog(Ixl+l), 

where C<O depends only on n; 
if q>2, then 

(2.16) u(x) > c(n, 2) fit dw(t) - I<1 [x-t] ~ 2+C(Ix[+1)2 p' 

where C<O depends only on n and q. 
(iv) Let 

1 /,t lu(t)ldt. (2.17) MR[u]--IB~(o)l i<R 

Then MR[u] O(r as R--~4-oo, where 

R -p if q ~ 2, 
(2.18) eq(R) ---- logR if q=2.  

Remark 2.1. As was mentioned in the introduction, q = n / ( n  1) is a critical 
exponent for the solvability of (2.1). If l < q < n / ( n - 1 ) ,  then p>_n and Capx,p(E ) =0 
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for all sets E. Hence by Corollary 2.3, w = 0  and V u = 0  a.e., i.e. (2.1) has only a 
trivial constant solution for l < q < n / ( n -  1). 

Remark 2.2. The existence of a solution in the space defined by (2.2) can be 
proved by using the contraction mapping principle and Lemma 2.3 together with 
Theorem 1.1. However, we prefer to construct a solution using iterations so that  
we have a good control of the solution and its gradient to prove sharp pointwise 
estimates. 

Proof of Theorem 2.4. Statement  (i) follows from Corollary 2.3 and Theo- 
rem 1.1. To prove (ii), we will need several lemmas. 

Suppose tha t  (2.12) holds with a small enough constant C2=C2(q,n) which 
will be determined later. We may assume (see Remark  2.2) that  n/(n-1)<q<oc 
and hence l < p < n .  Then by Theorem 1.1 

(2.19) w(E) < C Capl ,p(Z ) 

for all compact  sets E. In particular, for any ball B=B(z, r) of radius r centered 
at z E R  n we have C a p l , v ( B ) = c o n s t r  n-p  (see [AH], [M1]), and hence 

(2.20) co(B(x, r)) _< c <  ~, 

where C is a constant which depends only on q and n. In the same manner,  all 
solutions u of (2.1) satisfy the estimate 

(2.21) f JwJ~ d~_< Cr n-~ 
JB (~,r) 

where C is a constant which depends only on q and ~. 
For any measure co which satisfies (2.20) the Poisson equation --Au0 =co has a 

solution u0=K0co (see [HI(I), where 

(2.22) 2)(f,,<l 'z-'12-n ,co(t)+ s rico(t)). 

Remark 2.3. We observe that  i f /2co<oc a.e. (or, equivalently, fltf>i It12-~ dco< 
oc), then u0(z)=/2co+const .  By (2.20) this is true if 1 < q < 2 ,  and hence one can 

use I2co in place of Koco in this case. 
Unfortunately, for q_>2 there are measures co such that  (2.20) and even 

(2.19) hold but h w - + o o .  However, (2.20) readily implies that,  for all l < q < o ~ ,  
fN>l  [t[1 n dco<oo and hence Ilw<oo a.e. This fact will be used repeatedly in the 

sequel. 
We will need the following estimates of I t adamard  type for solutions of the 

Poisson equation defined by (2.22). (See [HI(].) 



98 Kurt Hansson, Vladimir G. Maz'ya and Igor E. Verbitsky 

L e m m a  2.5. Suppose that w e M + ( R  n) satisfies (2.20) with l < p < n .  Then 
(2.22) defines a solution uo-Kocv to the Poisson equation -Au0=a~ which is a 
superharmonic function on R n such that the .following statements hold. 

(i) If  p>2,  then uo(x)=I2cJ(x)+const. 
(ii) If p_<2, then 

(2.23) 
f 

~0(x) > ~(n, 2) / Ix-tl  2-~ dw(t)-C(q,~)Oq(Ixl+l), 
Jrt [<_1 

where C(q,n)>O and r is defined by (2.18). 
(iii) For the average values of I~oP, defined by (2.17), MR[uo]-O(Oq(R)), as 

R ~ + o c .  
(iv) The inequality 

(2.24) IVUo(X) I __~ c(n) i lo2(x)  

holds. 

Pro@ Statements (i) and (ii) can be found in [HK], while (iv) follows by direct 
differentiation. Note that (2.20) implies that hc~<oc a.e. (see Remark 2.3). 

To prove (iii) note that clearly 

where K1 is the integral operator with positive kernel defined by 

(2.25) 
/(la)(X) = f[t px-t[2ndco(t)+f 

I_<1 .J xl/2<N~21xl 

+ f l < l t ~ x l + l  Itl2 n da~(t). 

Ix-tl2-nd~(t) 

It is easily seen from (2.20) that Mn[Klw]=O(r and hence 

MR[~o] _< MR[Kiwi : O(r 

as R--~+ec. [] 

Now we construct a solution to (2.1) under the assumption (2.12). We set 
u0 K0aJ and 

(2.26) Uk+l= K0(IVuk[q)+K0~, k = 1 , 2 , . . .  , 

which implies AUk+I=[VukIq+w. 
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L e m m a  2.6. Suppose uo-Koco and uk are defined by (2.26). 
constant C1 which depends only on q and n such that if 

then the following inequalities hold: 

IW~ (x) l <_ allw(x),  (2.28) 

and 

(2.29) 

99 

There exists a 

]VlLk+I(X) VUk(X)] ~ bSkJflfM(5) 

where the constants a>O, b>O, and 0 < 5 < 1  depend only on q and n. 

Proof. We first prove (2.28). If follows from Lemma 2.5 that (2.28) holds for 
k=o, i.e. Iw0(5) l_<a0/~(x)  where a0=e(n) is defined by (2.24). Then we show 
by induction that 

(2.30) I Vuk (x)] < akIlCO(x). 

By Lemma 2.5 and (2.26) we have 

I VUk+l (X) l : I V~O IV%Lk (5)I q J- V ~ O  0..; (31) 1 < C(Tb)(I 1 I Vz,  k (5g) l g + Ii LO (5)), 

where c(n) is the constant in (2.24). By (2.30) and (2.27), 

I11~TUk (5) lq ~ I1 [ak (/102)] q = aqkI1 (Ilco) q < aqkCllla). 

Combining these estimates, we get 

(2.31) ]Vuk+l (x) l < ak+~l~w(x), 

where ak are defined by 

ak+l=c(n)(aqkCl+l), k = 0 , 1 , 2 , . . .  , 

starting from the initial value a-1 =0. It is easily seen that l i m k ~  a~=a<c(n)p, 
where a is the smaller root of the equation x=c(n)(xqC1 +1), provided that C1 < 
q-lpl-qc(n) q. This proves (2.28) with a-e(n)p.  



100 Kurt Hansson, Vladimir G. Maz'ya and Igor E. Verbitsky 

We next prove by induction that (2.29) holds. We assume as above that C1_< 
q-lpl-qc(n)-q so that (2.28) holds with a=c(n)p. Note that Um-uo=KolVuo] q, 
and hence by (2.24) and (2.28) 

lVUl-- VUOI < c(n)I~ IVuo(x)l  q < c(n)aqI~ (Ilad) q. 

Then 

(2.32) IVUl --Vu01 < b0hw, 

where bo-c(n)aqC1 and C 1 is a constant from (2.27). 
Similarly, 

 k+l-- k=Ko(IVukr q IWk-al q) 

and by (2.24) 
]Vuk+~ Vukl ~c(n)Zl(llVuklq-lvuk mlq]). 

Using the inequality Irq-sql<qlr-sp max(r,s)q 1 with r=tVuk 
together with (2.28) we have 

(2.33) I Ivukl q -  IVuk llql _< qalVuk --VUk--ll(II(-d) q-1 

and s=lVuk 11 

From this we obtain 

(2.34) IVuk+l - Vuk I G c(n)qah [I Vuk - Vuk-11 (Iiw)q-1]. 

Suppose 
IVuk V u k - l l G b k h w -  

Then by (2.34) 
]Vuk+i - V u k l  _< c(n)qabk h (Ilw) q. 

Using (2.27), we see by induction that 

IVuk+l -Vuk[  < bk+lllCJ, 

where bk+~<c(n)qaC~bk and C~ is a constant in (2.27). Thus 

bk+l < (c(n)qaC1)k+lbo, 

where bo=c(n)aqCi. Choosing C1 in (2.27) so that 6=c(n)qaCl<l, we complete 
the proof of (2.29). [] 
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(2.a5) 
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Let K1 be defined by (2.25). Then under the assumptions of 

l~k+~(~)--Uk(~)l <- e e ~ K ~ l ( x ) ,  

where dWl=(Ilw) q dx, and the constants e>O and 0 < C < 1  depend only on q and n. 

Proof. We have 

luk+l (x ) -u~  (x) l = IKo (IW~ I q -  IVuk 11q)l _< CKI  I lWkl ~ -  I W ~ - I  I ~ I, 

where C depends only on n. Combining this estimate with (2.33), we have 

P~,~ . l (x ) -~ (x ) l  < C q a K l [ p W k - W ~ _ ~ l ( 5 ~ )  q-l]. 

Applying Lemma 2.6, we obtain 

I~+l(x) ~(x)l_<e*kKlI(I~)q], 

where c depends only on n and q, and 0<8<1 .  This proves (2.35). [2 

Now we are in a position to complete the proof of Theorem 2.4. Suppose that  
(2.27) holds with a constant C~ =C1 (q, n) small enough so that  the estimates (2.28), 
(2.29), and (2.31) are valid. Let 

O O  

(2.a6) u(x) = u o ( ~ ) + ~ ( ~ + ~ ( ~ ) - u ~ ( ~ ) ) ,  
k--0 

where uo----KoaJ and uk are defined by (2.26). By Lemma 2.7, 

I~k+l (x) - ~ (x) l _< ~ K I ~  (x), 

where dc~l = (Ila~) q dx and 0 < 5 < 1. Hence u(x) = l i m k _ ~  uk (x) and 

(2.37) I~(x)l _< e K ~ ( ~ )  a.e. 

Note that  by Theorem 1.1 it follows that  wI satisfies wt(E)<CCapl ,p (E  ) for all 
compact sets E. In particular, w,(B(O,R) )<CR "-p. This implies that  K~wtC 
L 11o~v *~(n~j and MR[~,]=O(~q(FI)) (see Lemma 2.5). Moreover, by Lemma 2.6, 

[VUk+ 1 (X) -- VU k (X) I ~ b(~kJ[l(M(X) 
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and hence IVU(X) I~__CIlk~(X), where the constants depend only on q and n. 
UCWllo'q(R n) and by Theorem 1.1 

Illu]lIX = sup{ (fE]gu]qdx'~ 1/q > 0 }  
\ CaPl ,p( /~)  ] : C a p l , p ( E  ) < C(q, n). 

Let r  ~) be an arbitrary test function. Since 

OO 

V u ( x ) =  lim Vuk(x) Vuo(x )+E(Vuk+a(x ) -Vuk (x ) )  a.e., 
k ~ o o  

Thus 

we have 

k=O 

~ ~lVukl q dx~ f OlVul q dx, 
n dR n 

as k-+oo, by the dominated convergence theorem. By (2.26), 

s V r 1 6 3  r163 

Letting k--~c~ in the preceding inequality, we obtain 

Thus uCWllo'q(R ~) is a (weak) solution to (2.1). The estimates (2.15)-(2.18) follow 
from (2.37) and Lemma 2.5. The proof of Theorem 2.4 is complete, except for the 
estimates (2.14) in the case l < q < 2  which are discussed in Corollary 2.8 below in 
the context of the existence of positive solutions. [] 

C o r o l l a r y  2.8. Under the assumptions of Theorem 2.4, if (2.1) has a solution 
u>O a.e., then hw<oo a.e. and (2.11) holds. Conversely, (2.12) together with 
I2w<oc a.e. implies that (2.1) has a solution u such that 

(2.38) I2w < u < CI2w a.e., 

where C depends only on q and n. 

Proof. If (2.1) has a nonnegative solution u < o c  a.e., then u is superharmonic 
on R n and u=I21Vulq+I~w+const (see [HK]). Hence I2w<oc a.e., and (2.11) holds 
by Theorem 2.4. 
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Conversely, if I2w<oc a.e. and (2.12) holds, then by Remark 2.3 one can use 
the Newtonian potent ia l /2  in place of K0 in the definition of uk (see the proof of 
Theorem 2.4). Hence setting uo=I2w and 

uk+l=hIVuklq+I2a~,  k = 0 , 1 , . . . ,  

we see that Lemma 2.7 holds with 12 in place of the operator K1 defined by (2.25). 
This gives 

O O  

<_  0+y] luk+l-- kl _< Ch , 
k--0 

where C depends only on q and n. The lower estimate in (2.38) is obvious since 
u = l i m k ~ u k  a.e., and uk>_I2w for all k. [] 

The next corollary gives new pointwise estimates for positive solutions of the 
SchrSdinger equation 

(2.39) - A v = w v ,  v > 0 ,  

which, as was mentioned in the introduction, is equivalent to (2.1) with q=2 and 
u=log  v. 

C o r o l l a r y  2.9. Suppose w~M+(R~) .  
(i) / f  (2.38) has a nonnegative (weak) solution v, then I laJ<oc a.e., and there 

exists a constant C1 C l (n) such that 

a . e .  (2.40) 

Furthermore, 

f 
(2.41) / R I V l o g v l 2 d x ~ 4 c a p l , 2 ( E )  and ~(~)  ~ capl,2(~) 

for all compact sets E.  
(ii) Conversely, there exists a constant C2-C2(n )  such that if (2.40) holds with 

C2 in place of C1, then there exists a positive solution v to (2.39) which satisfies 
the following estimates: 

(2.42) IV log v(x) l < CSl~(x),  

and 

(2.43) _> c(Ixl +l )  c 

for some C>O and c<O. 
I f  in addition I2aJ<oc a.e., then there is a solution v such that 

(2.44) [2w(x) < logv(x) < CI2w(x) 

for some C>O, where all constants depend only on n. 
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3. S o l v a b i l i t y  o f  t h e  D i r i c h l e t  p r o b l e m  

In this section we consider the nonlinear Dirichlet problem 

S Iwl +  on 
(3.1) 

t u = 0 on Oft, 

for q > l  and coEM+(~) on a domain ~ c R  n. In what follows we assume for sim- 
plicity tha t  ~ is bounded, and the boundary of ~ is smooth enough (satisfies the 
exterior sphere condition). 

Let 5(x) dist (x, 0D). We say that  uCWln'q(D)MLl(D) is a solution to (3.1) in " l v v  - 

a weak sense if f a  IV<q~(.)  d.<oo and 

(3.1') - ~ uAhdx=Salvulqhdx+ ~ hdco 

for all h~C2(~)  such that  h = 0  on 0g/. 
Since Ih(x)l <CS(x) for xC~, this definition is applicable to all cocM+(~)  such 

that  ff2 6dco<oc. We remark that  this implies Gco(x)=f~ G(x,y) dco(y) <oc  a.e. on 
ft, where G(x, y) is the Green function of the Laplacian on fL 

An equivalent definition of the solvability of (3.1), for the same class of co, is 
that  there exists UEWllo':(a) such that  

(3.1") u(x)-- s a(x,y)lW(y)l dy+Jo a(x,y)dco(y) 

a.e. on ~. Note that  uELl(~) follows from (3.1") and the assumptions 

(3.2) /~ IVuiqhdx < oo, if~ 8dco< oo, 

which are clearly necessary for the right-hand side of (3.1") to be finite a.e. 
Let 1/p+l/q=l. For any compact set E C ~ ,  we set 

(3.3) capl,p,~(E)=inf{if2iVhiVdx:l>h>xE, h E C~~ 

Let Q={Q} be a Whitney decomposition of ~ into a family of cubes Q with 
disjoint interiors such that  ~ = U Q e Q  Q, dist (Q, 0 ~ ) x d i a m Q  (see [St]). Then it is 
easily seen (cf. [M2]) that  capl,p,~(E)xcapl,p(E) for any compact set EcQ with 
the constants of equivalence independent of Q, here capl,p is the capacity on R n 

defined by (1.5'). In particular, capl,p,~ (Q) ~ I QI 1-p/'C 
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T h e o r e m  3.1. Let l<q<oo  and 1 / p + l / q = l .  Let f~ be a bounded smooth 
domain in R n. Let cvEM+(f~). Then there exist positive constants C1 and C2 such 
that the following statements hold. 

l q  (i) I f  (3.1) has a solution u~Wlo' ~ (ft), then the inequality 

(3.4) < c eapl,p, (E) 

holds for all compact sets ECf~ with a constant C<CI(q ,  n). 
(ii) Let 2<q<oo. I f  (3.4) holds with C<C2(q,n, f~) ,  then (3.1) has a solu- 

tion u. 

(iii) The solution u whose existence is claimed in (ii) satisfies the inequality 

(3.5) kw(x)l<cIl (x) a.e. on 

with a constant which depends only on q, n, and f~. 

Remark 3.1. One of the assumptions on ft we need below is that the following 
Hardy inequality holds: 

(3.6) ~ Ih(x)lP _< CIIhll l,,(a) 

for all hcC~~ where l<p<oo.  It is known that (3.6) is valid for a wide class of 
ft (see [A1], IN]). 

Proof of Theorem 3.1. We will need several lemmas. The following lemma is 
proved in the same manner as Lemma 2.1 for f~=R n. 

L e m m a  3.2. Let l < p < e c  and let ft be a bounded domain in R n. Let a~C 
M+(f~). Suppose the equation 

- A ~ t =  lvulq +w on ft 

has a solution uEWlto'q(ft) in a weak sense, i.e., 

for all h E C ~ ( ~ ) .  Then the inequality 

holds for all compact sets EcrU, with a constant C which depends only on q, n, 
and ft. 

Let {r be a partition of unity associated with the Whitney decomposi- 
tion of ft defined above: ~QEC~(Q*) ,  r Ec2 0Q=1, and IVr 

Note that dist (Q*, 0f~) xdiam Q and I_<~Q x ~ < C ( n ) ,  here Q*=(I+s)Q,  0<e<~,  
(see [St]). 
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L e m m a  3.3.  Let l < p < o o  and let ft be a bounded domain in R n such that 

(3.6) holds, Let a~E M+(ft).  Then the following statements are equivalent. 
(i) The inequality 

(3.7) s IhrP ~ ~< c s IVhl~ d~ 

holds for all h E C ~ ( f t ) ,  with a constant C which depends only on p, n, and ~2. 
(ii) The inequality 

(3.8) w(E) < C capl ,p ,a (E  ) 

holds for all compact sets E C f t ,  with a constant C which depends only on p, n, 
and ft. 

(iii) The inequality 

(3.8') cz(E) <Ccap l ,p (E) ,  E c Q ,  

holds with a constant C which depends only on p, n, and ~,  here eaPl,p i8 the 

capacity on R ~ defined by (1.5~). 

Proof of Lemma 3.3. The  equivalence of (i) and (ii) is known [M2]. Clearly, 
(ii) ~ (iii), since as was ment ioned above capl ,p ,a(E)xcapl ,p(E)  for E C Q .  

To prove (iii) ~ (i) we observe tha t  if (3.8') holds for all E C Q ,  then  by the 
preceding remarks 

Ji 'h'P dw< C JO " 'Vh'  p dx 

for all h E C ~ ( ~ )  with a constant  C which depends only on q, n, and ft. Hence 
applying this inequali ty with hCQ in place of h we have 

Since 

fQ. IV(h,Q)lP dx<_C /~. IVhlP ~x+C s IhJP dx, 

it follows by the propert ies  of Q and (3.6) tha t  

f IhJ' ~,~_< C f IVhlP ~x 
Jr2 df~ 

for all hEC~(ft). [] 
In the following two lemmas we make use of the  assumption 2 < q < o c  in a 

crucial way. 
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L e m m a  3.4. Let f t c R  n, n>2, denote a bounded domain with boundary Oft 
which is C 1 embedded in R n. Assume further that w is a measure on [~ such that 
(3.8) holds. Then, if l < p < 2 ,  'we have fa5 daJ<oc, where 5(x) is the distance from 
xE~  to Of~, and there is a constant k depending only on p, n, and ft such that for 
a c ~  

s 

(3.9) [ 5 dw < kCr ~+I-p, r > O, 
JB (a,~) 

where C is the constant in (3.8). 

Proof of Lemma 3.4. We may assume that aCOf~ and it is also enough to prove 
1 (3.9) for r <  ~R, where R is some fixed positive constant depending on fL We may 

then assume (see [St, pp. 180-190]), that  QNB(a, R) is a special Lipschitz domain, 
i.e. such that  if (x, y) is a point in ~NB(a, R) then 

{(x,y):xew ~-~, ~(x)<yem I~I_<R} 

with the point a corresponding to (0,0) and p a Lipschitz function such that 
p (0 )=0  and IF(x')-~(x")l<_LIx'-x"l, where the constant L is the same for all 
balls B(a, R). Furthermore, the sets OftNB(a, R) are parametrized as 

{(~,y) :~(~)=y, I~l _<R}. 

Let rl~W~'P(B(a, 2r)), 0<rj_<l, ~]=1 on B(a,r), and let r /be  extended as 0 outside 
B(a, 2r) in such a way that  IVr]l <_(1/r)XB(a,2r). 

By Lemma 3.2 it follows that  (3.8) is equivalent to (3.7), and hence (see [M2]) 
to the inequality 

/al hl~ dcJ<_A /ulVhlP dx, hEW~'P(ft), 

for l < p < o o .  Furthermore, A is equivalent to the constant C in (3.8). 
The preceding inequality gives with the test function 

h(.,  y) = (y ~(.)) l /~v(x,  y), 

where ~(~) ~y-~(~) ,  that 

- 
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Since 

IVhl p < 2 p - X ( y - ~ ( x ) ) W ~ l p + 2  p l(1/p)P(y--~(x)) (P-1)lV(y-~(x))lP~l, 

and the Lipschitz condition implies that  l V ( y - ~ ( x ) ) i < _ l ~ L  2 and, when ~(0)=0 ,  
also -Llxl ~ ( x )  <_Llxl, we obtain the estimate 

(y-~(~) ) lv~ l  ~ dx dy < ;; d~ (y -  ~(x)) dy 
nB(~,2~) l<_2~ (~) 

_ 1 f (2r ~(z))~ dx < k~r ~+~-'. 
2rP J]xl<2r 

Since p<2 ,  we have 

2 r f IV(Y-~(x))l~dxdy < (l+L9 p/~ dx 

- (1+L~)~/~2 P /~1<~(2"-~(~)) ~ "dx_< k~r ~+~ < 

which proves the lemma. [] 

L e m m a  3.5. Suppose 1 < p < 2  and ~cM+(Q). 
holds, i.e. 

.for all compact sets EC~ .  
]VGw] q dx, i.e. 

Suppose the inequality (3.8) 

~(E) < c capl,p,~(z) 

Then a similar inequality holds for the measure dwl = 

f 
(3.~o) J~ IvG~l ~ d~ <_ c caPl,p,f~ (E) 

for all compact sets ECt).  Furthermore, f~ 6 d~l <exp. 

Proof of Lemma 3.5. Assume that  (3.8), or equivalently (3.80, holds. Let Q 
be a Whitney family of cubes associated with ~. By Lemma 3.3 it is enough to 
prove 

(3.11) ]E IV Gwl~ dx << C caPl,p(E) 

for all E c Q  with a constant which depends only on q, n, and t2. 
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We will use the following known estimates for the gradient of the Green kernel 
(see [W], [GW]): 

(3.12) I V = G ( x , y ) l < C  6(y)) 1 - Ix_y ln '  IVxG(X ,Y) l~C I .T_y ln  1 

for all x, yE~, xCy. 
To prove (3.11), for a fixed cube Q~Q,  we define the measures ul and t,2 by 

(3.,a) d,,=XQ, dco, dzJ2=(1-gQ.)dw. 

We show that  (3.11) holds with ~1 and v2 in place of w. 
Since supp ~, c Q*, it follows that  

~q ( F) <_ C cap<p,a( FNQ* ) <_ C cap<p( F) 

for all compact sets F c R n .  Hence by Theorem 1.1, for any E c Q  we have 

L ( I l t q  capl,p(E) x cap l,p,~(U), ) q dx <_ C C 

where I1 is the Riesz potential of order a = l .  Then, by the second estimate in 
(3.12), 

s Ivc.,Iq dx_< cs ax < Ceap,,p, (E) 

We now prove a similar inequality for t,2. By the first estimate in (3.12) it 
follows 

I v c . 2 ( x ) l < C [  ~ a(v) _ J(Q*) i ~_y ln  d,,(y). 

Let XQ be the center of Q. Then for all xEQ and ye(Q*) c we have Ix yl~lxQ-yl.  
Hence for any E cQ 

s }xQ_yln dw(y). 

Thus the desired estimate reduces to 

6(y) dw(y) <Ccapl,p(E ) (3.14) IEI .)~ I x - y b  - 

for EcQ.  From the known isoperimetric inequalities (see [AH], [m2]) 

1El * P/'~ < cap lp (E)  
(3.15) (IO~) -- Ccapl,p(O-'~~ " ) 
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we see that  it suffices to prove (3.14) for E=Q, i.e. 

(3.16) [Q](p-1)/n 9s (~(Y) �9 )o IxQ-yl n d~(y) <_ C, 

with a constant C which depends only on p, n, and f~. 

Let dp(y)=5(y) &J(y) and let B(x, r) be a ball of radius r centered at xcf~. By 
Lemma 3.4 #(B(x, ~o))<C~o n p+l for p>~(x)  and 1 < p < 2 .  Then letting r=5(xQ), 
we get 

IQI(p-1)/,~ f ~(Y) dod(y)<Crp-l~r ~176 ~(B(XQ'L~ dL 0 
j(Q.)~ [xQ--Y[ n - ~,~+~ 

<Or p l jfrC~ --da~ < e < 

which proves (3.11). The estimate fu 51 dw<oc follows from this and Lemma 3.4. [] 

Now we are in a position to complete the proof of Theorem 3.1. The necessity of 
(3.8) follows from Lemma 3.2. The sufficiency is proved by the contraction mapping 
principle in the Banach space X of functions u such that  u CL~oq(f~)NLl(a) with 

norm 

su-fP// ' rE IVulq dx'~l/q 0}.  IPI~IIIx = II~IILI(~)+ [ , eap l , , , a (E) )  :eapl,p,a(E) > 

Note that  it follows from Lemma 3.5 that  IIP~lllx <o~ implies fr~ ~lVu] q dx<oc, where 
q>2.  

Letting u=/3v where fl is a positive constant, we see that  the equation u =  
GIVulq+Gw has a solution if and only if the equation v = A v + f  is solvable, where 
Av=fl q 1G(IVvlq ) and f=f l - lGw.  We apply the contraction mapping principle to 
the equation v = A v + f  on the unit ball of X,  where ,2>0 is chosen small enough so 
that  A is a contraction. 

By Lemma 3.4 and Lemma 3.5 we have that  IIIflllx<_l if (3.4) holds with the 
constant C<C2(q, n, Ft). Furthermore, as in the proof of Lemma 2.6, it follows from 
Lemma 3.5 that  IIPAI-AglIIx<_dlK gllPx with c<1  for any f and g in the unit ball 
of X.  Thus there exists u such that  INIx _< 1 and 

u=GIVu]q +G~ a.e. 

The pointwise est imate I Vul_< CI1a~ c a n  be proved in the same manner as in the case 
f t = R  n in Section 2, we omit the details. The proof of Theorem 3.1 is complete. [] 
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4. Some generalizations 

In this section we demonstrate how our approach works for more general su- 
perlinear inhomogeneous equations of the type 

(4.1) - A u = f ( x , u ,  Vu),  

where f (x ,  ~, V~)•  +b(x)lul~ ~ +co(x), and ql, q2 > 1. 
As was mentioned in the introduction, we are interested in sharp solvability 

results with close sufficiency and necessity conditions, for an arbitrary nonnegative 
inhomogeneous term cor 

For simplicity, we consider in detail the solvability problem on R n for the 
equation 

(4.2) - A n  = alVul ql +blul q2 +co, 

with bounded coefficients a, b_>0 and arbitrary coEM+(Rn). (The necessity part of 
our results is proved for constant a and b.) 

The solvability of (4.2) is understood in a weak sense, i.e. there exists uC 
w l,ql {Rn~c~xq2 [Iz~n~ such that 

loc \ ] '  ' ~ l o c \  ~ "  ] 

( 4 . 3 ,  L n V u . ~ 7 ~ d x  fRna,Vu,qlr163162162 

for all CEC~(R'~).  We will actually show that  under certain assumptions (for 
b~0) there exists a nonnegative solution U~Wllo': 1 R "  L q2 n ( )N loc(R ) satisfying (4.3), 
or equivalently 

(4.4) u=I2(alV'u[ql)+I2(buq2)+I2co+c a.e., 

where u>0,  c>0 and I ~ = ( - A ) - I = I ~  is the Newtonian potential. 

T h e o r e m  4.1. Let l<q~<oc and 1/p~+l/q~=l,  i=1 ,2 .  Let coEM+(Rn). 
Then there exist positive constants Cj, j = l ,  ... ,6, which depend only on q,i and n 
such that the following statements hold. 

(i) / f  equation (4.2) with constant coefficients a, b >O has a .solution u belonging 
to W~ l'q~ (R n~c~Lq~ (R nh then loc k ) '  ' l o c \  ] 

(4.5) I1(Ilco) ql (x) _< c l  Ilco(x) < 
a 

and 

(4.6) I2(I2co)q2(x) < ~ I2co(x) < <xD 

a.e., 

a.e. 
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(ii) Conversely, let ~=llalln~ and b=llbllL~ (0<a ,b<oc) .  Then if the in- 
equalities (4.5) and (4.6) hold with the constants C3 and C4 in place of C1 and 
C2 and gt and b in place of a and b, respectively, then (4.2) has" a solution uE 
Wlocl,q~ (R)n NLq2lo~tfR.~Sj such that the following inequalities hold: 

(4.7) a.e. 

Remark 4.1. As we will see below, any solution u~W]o el'q1 (Rn)ALloc(Rq2 n) of 
(4.2) (with constant coefficients a and b) satisfies the estimates 

/z(alVu[ql +blu[ q2) dx+cv(E) <_ a 1-m C(ql) (E), caPl ,p  1 

JE(a[Vulql +blul q2) dx+w(E) < bl-P2C(q2, n) (E), caP2,p2 

for all compact sets E, here cap~,p is the capacity of order a 1, 2 defined by (1.5~). 
In particular, a nontrivial global solution to (4.2) may exist only if n / ( n -  1) <ql <oc 
and n/(n-2)<q2<oc.  

It follows from the known relations between Riesz capacities (see [AH, Theo- 
rem 5.5.1]) that,  for Pl =2/)2, the inequality 

caPl,m (E) _< C cap2,p ~ (E) 

holds for compact sets E C R  '~, with a constant C which depends only on Pl, P2, 
and n. In this case the second term on the right hand side of (4.2) is "dominated" 
by the first one. In all other cases the contributions of the nonlinearities involving 
IVu] ql and [ul q~ are generally not comparable. 

Remark 4.2. Similar inequalities with weighted capacities hold for variable a 
and b. Unfortunately, they generally are not sufficient for the solvability of (4.2). 
(See [KV] and [VW] where this problem is considered for equations without the 
gradient term.) 

Proof of Theorem 4.1. To prove statement (i), notice that as in the proof of 
Lemma 2.1 it follows from (4.3), with h pl in place of r that for any h E C ~ ( R ~ ) ,  
h_>0, we have 

~,(alVu[ql+b,u[q2)hPldX+fR, h P l d w < p l ( ~  n [vU,qlhPldx)l/ql[[vhllLpl(Rn). 
Prom this (see the proof of Lemma 2.1 and Corollary 2.2) we have 

 lVul (E), a caPl ,p  1 
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and 

~ blu] q2 dx+w(E) < a 1 P~C(ql) capl,pl (E) 

for all compact sets E. This proves the first est imate in Remark  4.1, by Theorem 1.1 
the preceding inequality also yields (4.5). 

The proof of (4.6) is a little more technical. Notice that  by Theorem 1,1 it 

suffices to obtain an equivalent capaci tary est imate 

(4.6') 

I)[71,ql R n Lq2 n for all compact  sets E. Suppose uC, , lo  c ( )N loc(R ) is a solution of (4.2) so 
that  (4.3) holds. We first prove the inequality 

L lu[q~dx<b p=C(q2,n)rn 2p~, 

together with (4.6') for any ball B~ Br(x0) of radius r centered at x0. Without  
loss of generality we set x0 =0.  

Let r  ~) be a cut-off function such that  4 > 0 ,  r  if Ixl<l and 
g?(x)=0 if Ixl>2. We will also need the inequalities IV~(x)l~<_C(~)~(x) ~ 1 and 
IAr162 ~-1 for any s > l .  For r > 0  set r162 then we have 

I~Vr ~-* and I~Ar s)r ~-1 for r <  1~1<2~. Now 
using (4.3) with ~ in place of r we get 

/R~ Vu'Vr dx = - /a,~ u Ar dX = /R~ (alVulqa +blulq2 )r dx + [J m~ r dw. 

In particular, 

Inn uAr dx >_/I{n b]ulq2r 

By H6lder's inequality, the preceding est imate implies 

dx. 

/R, blulq2~rdx< (/Rn ]u]q2~rdx)l/q2 (/Rn lA~rlP2@l P2 dx) 1/p2. 

Since 

we have 

fa  g IZx~ p2~-p2 dx < f~ r 2p2 dx = C ( ~ ) <  -2"2, 
<lxl<2r 

/R ~ bP2]ulq2%brdx < O(q2,n)rn 2p2. 
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From this and the preceding estimates it follows 

fB (alVulql +brul q~) dx+co(Br) < ba-p2C(q2, n)r n 2p2, 
v 

which in particular gives (4.6') for E=BT(xo). 
Now we prove (4.6') for arbitrary compact E. Let h=/2g, where gcC~(R'~), 

g>0.  Then h > 0  and Ah - g e C ~ ( R n ) .  Note that  h(x)x(Ixl+l) 2-n and hence by 
the estimate fB,. lul q~ dz<_Crn 2v~ proved above, we have that  fm~ hp2 lul q~ dx<oc. 

We next prove the inequality 

s  uA(hP2) dx < C(q2,n) (s hP2iu] q2 dx)l/q2iiAhiiLp2(R,O 

following the argument in [AP]. Clearly, 

/i:t n uz2k(hP2) dg=p2 fi~n[(p2- l ) hp2 2[Vhl 2~-hp2-1z~h]udx. 

Since h - - / 2  (Ah), then by Hedberg's inequality [He] we have 

dvhr: _< c(~)hM(Ah), 

where M is the Hardy Littlewood maximal operator. Applying this estimate to- 
gether with Hhlder's inequality and the maximal inequality in L v: (Rn), we have 

/RnUA(hP~) dx <~C(q2,n)(im M(Ah)hP~ lluldx+ fm lAhlhr'~ X,uidx) 

<_ C(q2,rs (ian hP21ulq2 dx)l/q211/khHLp2(R,'~ ) �9 

The rest of the proof can be completed by making use of (4.3) with ~,b,,(/2g) v=, 
where /2g>_xE, in place of 0, and repeating the estimates used above, or by the 
following approximation argument as in [AP]. Choose a sequence of functions r E 
C ~ ( R  n) such that  O~+hP~ in C2(R~), and use (4.3) with 0m in place of 0, so 
that  

--JR ~Z/kd)mdX:iR~ V~z'~7r (al~7~z,q~q-bl?,,qe)r Cm rico" 

Letting m-+oc,  we have 
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From this and the preceding estimates it follows 

C(q2,n)(]R, hP2lu[q:dx)l/q:l[AhllLp2(R~)>/R~(alVulq~+blu[q2)hP2dx 
+ /I~,~ hP~ dcv" 

Hence 

and 

s h~'~lul q~ dx <_ b ~C(q2, n)ll/Xhll~?,~(R,,), 

/R ahP~lWl~ldx+f hP ~ d w < _ b  I ~O(qu,~)IIAhlIL,~(R~). 
n j l:tn 

Minimizing over h =  I29 > XE, we obtain w ( E) <_ b 1 p~ C( qu, n) Capu,p 2 (E), where 
Capu,p ~ is the Riesz capacity defined by (1.5), which is equivalent to capu,p ~ . This 
by Theorem 1.1 yields (4.6), as well as the second estimate in Remark  4.1. 

To prove s ta tement  (ii) of Theorem 4.1, we will need the following lemma. 

L e m m a  4.2. Let l < q < o o  and 1 / p + l / q  1. Let wEM+(Rn) .  Then the in- 
equality 

(4.8) I2(I2ao)q(x) < ClI2c~(x) a.e. 

holds if and only if 

(4 .9 )  Ii(I2a))q(Y) ~_ C2/ lCO(z )  a .e . ,  

provided I2co(x)< oc a.e. Moreover, Cl <_C2 <_C(q, n)C1. 

Remark 4.3. It  is not difficult to see that ,  more generally, for all 0<c~</3<n  
and co E/1//+ (R" )  the inequality 

z ,~ ( i , ~ )q (x )  _< c •  < o~ a.e. 

is equivalent to 

Ig(I~w)q(x ) <_ CI~w(x)  < oo a.e. 

In the case a> /3  the second inequality obviously implies the first one, but the 
converse is not true. 

Proof of Lemma 4.2. Applying I1 to both  sides of (4.9) and taking into account 

that  I2=I~, we see that  (4.9) ~ (4.8) with C1<C2. 
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In the opposite direction, suppose that  (4.8) holds. Then by Theorem 2.1 
in [MV] the "testing inequality" of E. Sawyer type 

(4.10) f (h~o,) q clx < C(q, n)Cl~o(B) 

holds for all balls B, here dc~B Xu da3. It is well known (see e.g. [MV]) that  (4.10) 
implies the estimate 

(4.11) ~ ( B ) < C ( q , n ) C ~  ir "n 2p 

for all balls B=B~(x) of radius r, which we will need below. The proof of the 
implication (4.10) ~ (4.9) is based on the same idea as in Theorem 2, [VW]. Let 
d l / = ( 1 2 c J )  q d x .  Then 

c(q, f0 
L I ( ~ t ( X ) )  dt 

t ~ 1 t 

For a fixed x E R  n and t > 0  we estimate u(Bt(x)). We set dC~l=XS~,(x)da~ and 

dc~2=(1--)CB~(x)) dc~, so that  cJ=C~l+~2, and hence 

"(Bt(x)) < 2q 1( fBt(x)(12w1)q dY--/Bt(x)(12c~ dY ) . 

By (4.10), fB~(~)(/2cJ1) q dy<_C(q, n)ClcJ(B2t(x)). To estimate the second term 

note that  for all y E gt (x) obviously hc~2 (y) x h a  J2 (x) with the constants of equiva- 
lence depending only on q and n. Hence 

L ,(z) (/2w2)q dy <_ C(q, n)tn(I2w2(x) ) q. 

Since 
C(q,n) f ~~ w(B,,(x)) dr" I2~2(x) 

L fi r n 2 r" ' 

by combining the preceding inequalities we obtain 

I ) 
- -  \ J 2t  r n 2 " 

From this it follows 

I~[(I2x)q](x)<C(q,n)C~ oo ~(B2t(x)) dt ~C(q,n) x(B,.(x)) dt 
- -  t n 1 t r n  2 

=I+II .  
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Clearly, 

I C(q,n)C1 fo ~ a~(B2t(x))[n 1 dtt 

On the other hand, by the Hardy inequality 

C(q,/g) C1/lCJ (x). 

II:C(q,n) co(Br (x)) dt<C(q,n) cv(B~(x))q dr. 
rn_ 2 -- r(n--2)q 

By (4.11) we have 

Hence 

Thus 

OJ(~r(2C)) q ~ C ( q , n ) C l a 2 ( B r ( x ) ) r  (n 2p)(q--1) 

I I  _< C(q, :r$)C 1 jfs (M(/t~r (X))7.n 1 dFT. = C(q,  n)Cll l ( ,u(x) .  

/1 [(I2co) q] (x) _< C2IiaJ(x), 

where C2=C(q,n)Ci. [] 

We now complete the proof of statement (ii) of Theorem 4.1. Suppose that 
(4.5) and (4.6) hold with the constants C: and C2 small enough depending only on 
qi and n. By applying Ii to both sides of (4.5) we get 

(4.12) _< c: 
a 

Also, by Lemma 4.2 it follows that (4.6) is equivalent to 

(4.13) [1(I2~u) q2 ~ ? I : 0 2 .  

We set uo I2w and 

(4.14) I2(alw lq:)+I2(bC2)+I2  

for k----1,2,.... 

We need simultaneous pointwise estimates of u~(x) and [Vu~(x)l based on 
(4.5), (4.6), (4.12), and (4.13), similar to those established in Lemma 2.6 in the 
case of the Rieeati equation. 

Since IVuo}<c(n)I:co, by (4.12) and (4.6) we have 

Ul ~ ah(Ilb~) ql +bIi(hw)q~+I2oJ < CIzw,  
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where C depends only on q and n. As in the proof of Lemma 2.6, using repeatedly 
(4.12) and (4.6) we get by induction 

(4.15) uk(x) < AI2aa(x), 

where A depends on q and n, provided C1 and C2 are small enough. 
Clearly, it follows from (4.14) that  

(4.16) [Vuk+l [ _< c(n)(aI1 [Vuk [q~ +bIluqk 2 +Ilco). 

Arguing as above and applying (4.5) and (4.13) we get 

IVul ] < c(n)[aI1 (I1co) q~ q-hi1 (hod) q2 q- IlCO] < CIla;. 

Then again by induction we obtain 

(4.17) IVuk(x)] < AIsco(x), 

where A depends on q and n, provided C1 and C2 are chosen small enough. Us- 
ing (4.15) and (4.17), we proceed as in the case of the Riccati equation to obtain 
simultaneously the inequalities 

(4.18) 

and 

(4.19) 

where the constants A, B, and 0<6<1  depend only on q and n. By the same 
argument as in the proof of Theorem 2.4, the preceding estimates yield that  

U(X)=Uo(X)+~-~(Uk+I(X)--Uk(X)) 
k--O 

is a solution of (4.2), and the estimates (4.7) hold. [] 

It follows from the known estimates of Green functions of uniformly elliptic 
differential operators L mentioned above (see [A2], [HS], IGW], [W]) that  our main 
results remain true for equations of the type (4.1) with L in place of the Laplacian. 
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