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Criteria of solvability for
multidimensional Riccati equations

Kurt Hansson, Vladimir G. Maz’ya and Igor E. Verbitsky(!)

Abstract. We study the solvability problem for the multidimensional Riccati equation
—Au=|Vu|94w, where ¢>1 and w is an arbitrary nonnegative function (or measure). We also dis-
cuss connections with the classical problem of the existence of positive solutions for the Schrédinger
equation —Awu-—-wu=0 with nonnegative potential w. We establish explicit criteria for the existence
of global solutions on R™ in terms involving geometric (capacity) estimates or pointwise behavior
of Riesz potentials, together with sharp pointwise estimates of solutions and their gradients. We
also consider the corresponding nonlinear Dirichlet problem on a bounded domain, as well as more
general equations of the type —Lu=f(z,u, Vu)+w where f(z,u, Vu)=<a(z)|Vul9 4b(z)|u/?, and
L is a uniformly elliptic operator.

1. Introduction

We study the solvability problem for the generalized Riccati equation
(1.1) —Au=|Vu|T+w

on a domain QCR™, n>3, where ¢>1 and w is a nonnegative function, or a measure
weM, (). (Here and in the sequel M, () denotes the class of locally finite positive
Borel measures on €2.) Our results hold, with obvious modifications, also for n=1
and n=2.

All solutions are understood in the usual weak sense, i.e., u is a solution to
(L.1) if ueW,59(2) and

(1.2) /QVu-thda::/QWuPd)der/Qqﬁdw

for all test functions p€C§°(Q2). (In the special case when w is a nonnegative locally
integrable function we set dw=w(z)dz in (1.2).)

(1) Partially supported by the NSF and University of Missouri Research Board grants.
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Our main goal is to establish necessary and sufficient conditions {with a gap
only in the best coustants) for the existence of global solutions of {1.1) on R",
together with sharp pointwise estimates of solutions and their gradients, without
any a priori assumptions on w>0. We show that all weak solutions of (1.1) belong
to a function space intrinsically associated with the equation. The characteriza-
tions of solvability are given explicitly in terms of the pointwise behavior of the
corresponding Riesz potentials as well as in geometric (capacitary) terms.

Analogous criteria and estimates of solutions are obtained for more general
semilinear equations of the type —Lu= f(x,u, Vu) where f(z,u, Vu)=<a(z)|Vu|" +
b(x)|u|”+w, and L is a second order uniformly elliptic differential operator. We
also characterize the solvability of the corresponding Dirichlet problem on a bounded
domain €2 in the case ¢>>2. ‘

We observe that numerous results in the literature on the solvability of semilin-
ear equations contain mostly sufficient conditions which usually are far from being
necessary. Some interesting duality theorems for differential inequalities associated
with (1.1) can be found in [B]. See also [AP], [KV] where sharp criteria for the ex-
istence of positive solutions are found in the case of equations without the gradient
term.

Tt is worthwhile to note that (1.1) with ¢=2 is intimately related to the problem
of the existence of positive solutions for the Schrédinger equation

(1.3) ~Av=wv, v>0,

which is easily seen via the substitution v=e*. (The case n=1 is discussed in [Ha]
where the references to earlier work on one-dimensional Riccati equations are given.)
The exponential substitution requires a change in the corresponding boundary val-
ues, e.g., the Dirichlet problem for the Riccati equation with ©=0 on 92 corresponds
to the inhomogeneous Dirichlet condition v=1 on 9.

It is well known that just the existence of a positive solution (without specifying
boundary values) is equivalent to the positivity of the Schrodinger operator —A—
w on L2() for relatively nice w. (See [Ag], [CZ], [Si] where this equivalence is
discussed for potentials w in L], 7>n, or Kato classes.)

The problem of the positivity of the Schrédinger operator —A—w on L?(R™)
for arbitrary we M, (R™) was solved in [M1] (see also [M2]) in capacitary terms.
Other equivalent characterizations can be found in [S], [H], [MV], and the literature
cited there. It follows directly from our results on Riccati equations that the class of
all we M, (R™) such that {1.3) has a global positive solution is essentially the same
(up to best constants). In contrast to previous work, the approach of the present
paper yields not only the existence, but also new pointwise estimates for solutions
of (1.3) and their gradients.
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We define the Riesz potential I, =(—A)"%/2 of order a, 0<a<n, on R" by
(1.4) Iof(z)=c(n,a) | f(t)lz—t|* ™ dt,
R’VL

where feLj, (R") and [, [2|*7"|f(z)|dz<occ. Here we have the constant

loc
c(n,a)= 7r_"/22—af(%(n—a))F(la)fl.

More generally, for any we M, (R") and feLl (w) such that

loc

[ lalis@)do <oo,
lz[>1

we set

To(fdo)(a) = <) | fOla—t"" dutt)

and Iow=1,(1dw). The Riesz capacity Cap, ,(F) of a measurable set ECR" is
defined by

(1.5) Cap, ,(E) =inf{|[ |7, (g~  laf 2 x5, fE€LL(R)}.

This capacity is associated with the Sobolev space L®P(R™). For integer « and
compact sets ECR"™ it is well known that Cap, ,(E)=cap, ,(E), where cap,, is
defined by

(1.5) capa’p(E):inf{/ [Veh|Pdx:xp <h<1, hEC(‘)’O(R")}.

(See [AH], [M2].)

In what follows the capacity cap; , with =1 and 1/p+1/g¢=1 will play an
important role. As we will show, it is intrinsically associated with the equation
(1.1). Note that in a parallel theory of the equation

(1.6) —Au=|u|94w,

a similar role is played by the capacity cap, , (see [AP], [KV]).

The following theorem established in [MV] will play a crucial role in the sequel.
(A different proof together with applications to equations of type (1.6) is given
in [KV].)
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Theorem 1.1. [MV]. Let weM,(R™). Let 1<p<oo, 1/p+1/gq=1, and 0<
a<n. Then the following statements are equivalent.
(i) The inequality

(1.7 w(E) <4 Cap,, ,(E)

holds for all compact sets ECR™, with a constant Cy which depends only on p
and n.
(ii) The inequality

(1.8) /E(Iaw)q dx < Cy Cap, ,(E)

holds for all compact sets ECR™, with a constant Cy which depends only on g
and n.
(iii) The potential I,w<oo a.e. and

(1.9) Ly(Inw)(z) < Cslaw(z) a.e.

Furthermore, the least constants C1, 021/ 1 and Cé/ @D e equivalent, and the
constants of equivalence depend only on q, o, and n.

The class of measures characterized by (1.9) turned out to be extremely useful
in applications to nonlinear equations. In particular, one of the main results of this
paper is the following criterion for the existence of (global) solutions to (1.1) on R".

Theorem 1.2. Let 1<g<oo, and let we M. (R™). Then there exist positive
constants Cy, Cy, and Cs which depend only on q and n such that the following
statements hold.

(i) If (1.1) has a solution u€ W24 (R™), then [Lw<oo a.e. and

(1.10) L{(Lw)(z) <CiLw(z) ae.

(i) Conversely, if (1.10) holds with Cs in place of Ci, then (1.1) has a solution
ucWLhY(R™) such that

loc

(1.11) [Vu(z)| < Cshw(z) a.e.

Remark 1.1. Some partial results related to Theorem 1.2 in the case of com-
pactly supported w were announced without proof in [MV]. They were obtained by
the first author, of this paper, using the equivalence of the capacitary inequalities
(1.7) and (1.8), which was established by the second and third author in [MV]. Here
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we give a complete proof based on the inequality (1.9) with ae=1 which yields a cri-
terion for the existence of any (weak) solution, and also leads to sharp pointwise
estimates of solutions and their gradients for arbitrary nonnegative w.

In Section 2 we will show (see Corollary 2.2) that the space X of ueVVli’cq (R™)
with finite seminorm

|Vu|? dz /1
“1U|"X = sup{ ({?Tpﬁ)— anpl’p(E) >0, FE compact
Lp

defines a natural function space associated with the nonlinear equation (1.1).
All (weak) solutions ue W,29(R™) of (1.1) satisfy the estimate

loc

(1.12) flullx <p?~.
Moreover, we will see that if (1.1) has a solution UEVVIE’C'] (R™), then necessarily
(1.13) W(E) < (p=1)""" cap, , (E)

for all compact sets F.

Remark 1.2. It follows from (1.13) that ¢g=n/(n—1) is a critical exponent for
the solvability of (1.1) on R™. If 1<g<n/(n—1), then cap; ,(£)=0 for all ECR"
(see [AH], [M2]), and hence (1.1) has no global solutions on R™ provided w#0.

In the case n/(n—1)<g<oo, the following simple sufficient condition for the
solvability of (1.1) can be derived in terms of weak L"-spaces using the known
estimate

capy ,(E) > c(p, n)|E|'"P/"  E compact.

It is immediate from Theorem 1.2, Theorem 1.1, and the preceding inequality
that there exists a constant C=C(p,n) such that (1.1) has a solution if w is ab-
solutely continuous with respect to Lebesgue measure and |lw]| /.00 <C, where
1/p+1/¢=1.

The solution u whose existence is claimed in Theorem 1.2(ii) satisfies some
additional sharp inequalities of Hadamard type (see e.g. [HK, Theorem 4.2]). These
estimates are collected in the following theorem. (Note that by Remark 1.2 it suffices
to consider the case n/(n—1)<g<co.)

Theorem 1.3. Let n/(n—1)<g<oo, 1/p+1/q=1, and let we M, (R™).

(i) Suppose that (1.10) holds with a small enough constant C=C(g,n) as in
Theorem 1.2(ii). Then there exists a solution u of (1.1) such that the following
statements hold.
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(a) If 1<g<2, then

(1.14) Lw(z) <u(z) <Chw(z)<oo a.e.,

—1 is the Newtonian potential

where C depends only on g and n, here Ih,=(—A)
of w.

(b) If q=2, then

(1.15) u(z) > c(n, 2)/ D) | oiog(ja]+1),

[t|<1 lz—t[n—2

where C<0 depends only on n.
(c) If q>2, then

(1.16) u(z) > c(n, 2) / dolh) . ole)+1)27,

lt<1 [z—t|" 2
where C'<0 depends only on n and q.
(ii) For the average values of |u| defined by

1

(1.17) Mell = (5@ t<R

u(t)] dt,

it follows that Mpgu]=0(¢¢(R)), as R—+oo, where

R*™P if q#2,
(1.18) oim)={, o
logR ifqg=2.
Remark 1.3. The estimates in Theorem 1.2 and Theorem 1.3 are sharp which
is easily seen from the equation

c
C A — 9L
{1.19) An=[Vu] +’$|p
on R™, where n/(n—1)<g<oo, 1/p+1/g=1, and ¢>0.
Note that if ¢ is small enough, i.e. 0<e<C(g,n), then (1.19) has a solution
(not necessarily unique modulo constants)

(1.20) u(:v):C’{ ja® g 72,

log |z| if ¢g=2,
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where the constant C=C(q, n, ¢) is positive if p>>2 and negative if p<2. Obviously,
|Vu(z)|=C|z|!"P and

/E |Vul|? de < C Cap, ,(F)

for all compact sets E. (The latter estimate follows easily from Theorem 1.1(iii).)

Remark 1.4. In Section 2 we will obtain a criterion for the existence of positive
solutions to (1.1), which is similar to Theorem 1.2, but requires additionally that
Ir,w< oo a.e., in this case there is a solution u such that Lw<u<Clyw a.e.

Theorems 1.2 and 1.3 in the case ¢=2 yield new pointwise estimates for positive
solutions of the Schrodinger equation (1.3) on R™ through the connection with the
Riccati equation mentioned above (see Corollary 2.9).

In Section 3 we treat the corresponding superlinear Dirichlet problem. For an
arbitrary inhomogeneous term we M, (), we prove an analogue of Theorem 1.2 in
the case ¢>2. The case 1<¢<2 turned out to be more difficult, since our results
hold true only with some additional a priori assumptions at the boundary, we do
not consider it here.

In Section 4 we demonstrate how our approach works for more general equations
of the type

(1.21) —Au= f(z,u, Vi) +w

where f(z,u, Vu)=a(z)|Vu|? +b(x)|u|?2. We observe that the solvability problem
for nonlinearities of this type does not reduce to a mere combination of the cor-
responding characterizations for equations of the type (1.1) and (1.6), its solution
requires a better understanding of the function spaces and classes of measures in-
volved and is based on additional analytic work.

We establish both necessary and sufficient conditions for the solvability of (1.21)
which coincide, in the same sense as above, for constant coefficients a,b>0 (The-
orem 4.1). Note that these generalizations do not completely cover our previous
results on Riccati equations. In the presence of the nonlinear term with >0 the
existence of any weak solution necessarily implies the existence of a positive solu-
tion. However, if b=0, then the restrictions on the inhomogeneous term at infinity
are much weaker and hence give rise to nonpositive solutions discussed above.

Most of our results depend only on the estimates of the Green function and its
gradient (see [A2], [GW], [HS], [W], |Z]), and hence can easily be carried over to
equations with more general uniformly elliptic second order differential operators
in place of the Laplacian, as well as certain higher order differential operators.
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2. Existence of global solutions for Riccati equations

We first show that all (weak) solutions ueW,"4(R™) of the equation

loc

(2.1) —Au=|Vu|T+w
satisfy the inequality
Vul|? dz \9
22 Julx=su (%) () >0, B compeet} <57

where the capacity cap, , is defined by (1.5"). Moreover, if (2.1) has a solution
UEI/VI})’Cq (R™), then

w(E) -1
2.3 Sup{— :cap; () >0, E com act}g 1P,
( ) Capl’p(E) l,p( ) p (p )

Lemma 2.1. Let 1<g<oo and 1/p+1/q=1. Let we M (R™). If (1.1) has a
solution ue WL (R™) then

loc

(2.4) /hp|Vu\qu§pp/ VhIP da
n R'n«

and

(2.5) / hpdwg(p—nf)*l/ VAP da
n Rn

for all heCg°(R™), h>0.

Proof. Let u be a solution to (2.1) in a weak sense, i.e. (1.2) holds for all
pcC(R™). Letting p=h* in (1.2) with he C$*(R™), h>0, we get

(2.6) Vu-V(h?) dz = /

|Vu|hP da:+/ hP dw.
R'n.

n n

Since V(hP)=ph?~1Vh, we have

(2.7 p/ (Vu-Vh)RP? da::/ |Vu|‘1hpd:1:+/ hP dw.

ka3

By Holder’s inequality, together with the inequality pab—a?<(p—1)?~18? for a,b>0,
it follows that

/ h? dwzp/ (Vu-Vh)RP~1 d:v—/ [Vul|h? dz
n n Rn

(2 8) 1/q
) §p</ [Vu|?h? dx) HVhHLp(Rn)f/ IVu|Th? dx
R~ R"

< (p_ 1)p—1 ||Vh“][ip(Rn)7
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which proves (2.5).
On the other hand, from (2.7) we get

1/q
/ |Vu|7h? dz §p/ (Vu-VR)RP~™! dz < p|| VR s (rr) (/ \Vu|Th? dm) .
7 n RTL
Since the right-hand side of the preceding inequality is finite, we obtain
/ |Vul?h? dz Spp||Vh||1£p(Rn),
Rn

which proves {2.4). The proof of Lemma 2.1 is complete. [

Minimizing both sides of (2.4) and (2.5) over all he C§°(R™) such that h>xg,
where E is a compact subset of R™, we obtain the following corollary.

Corollary 2.2. Under the assumptions of Lemma 2.1 any solution u of (2.1)
belonging to Wo*(R™) satisfies (2.2). If there is a solution u to (2.1), then (2.3)
holds.

Let we M, (R™). The inequality

P P

29 [P < CIVAI, oy
for he C§°(R™) is called the trace inequality. We will need the following character-
ization of (2.9) due to V. Maz’ya (see [M2], [AH]).

Lemma 2.3. Let 1<p<oo and let we M, (R™). Then (2.9) holds if and only
if
(2.10) w(E) <Ccapy ,(F)
Jor all compact sets E. Moreover, the least constants in (2.9) and (2.10) are equiv-
alent, with the constants of equivalence depending only on p and n.

The following theorem is the main result of this section.

Theorem 2.4. Let 1<g<oo and let we M (R™).

(i) If (2.1) has a solution, then Hw<oco a.e. and

(211) Il(Ilw)q(x)Slelw(x),

where C is a constant which depends only on g and n.
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(ii) Conwversely, there exists a constant Cy which depends only on q and n such
that if the inequality

(2.12) L(Lw)i(z) < Cyliw(z),

holds, then (2.1) has a solution ue W24 (R™).
(iii) The solution w claimed in (ii) satisfies the following inequalities:

(2.13) \Vu(z)| < ChLuw(z),

where C depends only on q and n;
if 1<q<2, then

(2.14) Lw(zr) <u(z) <Clhw(z) a.e.,

where C depends only on q and n, here Iy=(—A)"! is the Newtonian potential
of w;

if =2, then
(2.15) (@) > c(n, 2)/ ) L Clog(a|+1),
[t]<1 |x_t|n
where C <0 depends only on n;
if ¢>2, then
(2.16) u(z) > c(n, 2)/ MEJFC’(M—H)%”,
lt<1 [T—t|™
where C'<0 depends only on n and q.
(iv) Let
(2.17) M) = () dt
. == u .
" |BrR(O)| Jis<r
Then Mp[u]=0(¢4(R)), as R—+oo, where
R*™P if q#2,
(218) oum={ .
log R if g=2.

Remark 2.1. As was mentioned in the introduction, g=n/(n—1) is a critical
exponent for the solvability of (2.1). If 1<¢<n/(n—1), then p>n and Cap, ,(F)=0
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for all sets E. Hence by Corollary 2.3, w=0 and Vu=0 a.e., i.e. (2.1} has only a
trivial constant solution for 1<q<n/(n—1).

Remark 2.2. The existence of a solution in the space defined by (2.2) can be
proved by using the contraction mapping principle and Lemma 2.3 together with
Theorem 1.1. However, we prefer to construct a solution using iterations so that
we have a good control of the solution and its gradient to prove sharp pointwise
estimates.

Proof of Theorem 2.4. Statement (i) follows from Corollary 2.3 and Theo-
rem 1.1. To prove (ii), we will need several lemmas.

Suppose that (2.12) holds with a small enough constant Co=C5(g,n) which
will be determined later. We may assume (see Remark 2.2) that n/(n—1)<g<oo
and hence 1 <p<n. Then by Theorem 1.1

(2.19) w(E) <C Capy ,(F)

for all compact sets E. In particular, for any ball B=B(z,r) of radius r centered
at €R"™ we have Cap, ,(B)=const7"7? (see [AH], [M1]), and hence

(2.20) w(B(z,r)) < Cr™P,

where C' is a constant which depends only on ¢ and n. In the same manner, all
solutions w of (2.1) satisfy the estimate

(2.21) / [Vullde <Cr™?
B(z,r)

where C is a constant which depends only on ¢ and n.

For any measure w which satisfies (2.20) the Poisson equation —Aup=w has a
solution uo=Kow (see [HK]), where
ot~ "] )

(2.22) Kow(gu):c(n,2)</he |x—t|2‘"dw(t)+/

<1 [t[>1

Remark 2.3. We observe that if Ihw<oo a.e. (or, equivalently, flt(>1 [t]>™ dw<
oo), then ug(z)=Iw+const. By (2.20) this is true if 1<¢<2, and hence one can
use low in place of Kyw in this case.

Unfortunately, for ¢>2 there are measures w such that (2.20) and even
(2.19) hold but Ihow=+oo. However, (2.20) readily implies that, for all 1<g<oo,
f[t]>1 [t]}~™ dw< oo and hence I1w<oo a.e. This fact will be used repeatedly in the
sequel.

We will need the following estimates of Hadamard type for solutions of the
Poisson equation defined by (2.22). (See [HK].)
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Lemma 2.5. Suppose that we M, (R™) satisfies (2.20) with 1<p<n. Then
(2.22) defines a solution uwo=Kow to the Poisson equation —Aug=w which is a
superharmonic function on R™ such that the following statements hold.

(i) If p>2, then ug(z)=Iw(x)+const.

(i) If p<2, then

(2.23) wo(x) > o(n, 2) / 2=t~ dw(t) = (g, n)q (|2l +1),

ft|<1

where C(q,n)>0 and ¢q is defined by (2.18).

(i) For the average values of |ug|, defined by (2.17), Mgluo]=0(¢4(R)), as
R—+oo.

(iv) The inequality

(2.24) [Vup(z)| < e(n)w(x)

holds.

Proof. Statements (i) and (ii) can be found in [HK], while (iv) follows by direct
differentiation. Note that (2.20) implies that [jw<oo a.e. (see Remark 2.3).
To prove (iii) note that clearly

|uo(z)| < CKyw(z),

where K is the integral operator with positive kernel defined by

Klw(a:):/ltKl P— dw(t)+/ ot du(t)

|zl /2<[t]<2]x]

2" dw(t).
+/1<t[<|:c+1l I ( )

It is easily seen from (2.20) that Mp[Kiw]=0(¢,(R)), and hence

(2.25)

Mg[ug] < Mp[K w]=O(¢4(R)),

as R—+oo. O

Now we construct a solution to (2.1) under the assumption (2.12). We set
Ug :KQ(.L) and

(226) uk+1:Ko({Vuk|q)+Kow, k=1,2,...,

which implies —Augy1=|Vu|/d+w.
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Lemma 2.6. Suppose ug=Kow and uy are defined by (2.26). There exists a
constant C1 which depends only on q and n such that if

(2.27) L[(hw){x) <CiLw(x) < oo,

then the following inequalities hold:

(2.28) [Vug(z)| < aliw(z),
and
(2.29) Vg1 () — Vug(z)] <b6* 1w (z)

where the constants a>0, b>0, and 0<8§<]1 depend only on q and n.

Proof. We first prove (2.28). If follows from Lemma 2.5 that (2.28) holds for
k=0, i.e. |Vug(z)|<aaliw(z) where ag=c(n) is defined by (2.24). Then we show
by induction that
(2.30) Vug(z)| < apliw(x).

By Lemma 2.5 and (2.26) we have
[Vigp1(z)] = VKo | Vur(2)| T+ VKow(z)| < cln) (11| Vug(z)|? +11w(z)),
where c(n) is the constant in (2.24). By (2.30) and (2.27),
LI Vu(2)|? < Lag(hw)]? =ai ] (Iw)? <aiCiLiw.
Combining these estimates, we get
(2.31) Yk 1 (2)] < gy ho(a),
where aj are defined by
a1 =c(n)(aiC1+1), k=0,1,2,..,
starting from the initial value a_;=0. I is easily seen that limz ,cc ax=a<c(n)p,

where a is the smaller root of the equation z=c(n){z%C;+1), provided that C) <
g 'p~%(n)~9. This proves (2.28) with a=c(n)p.
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We next prove by induction that (2.29) holds. We assume as above that C1 <
g 'p'=%(n)~? so that (2.28) holds with a=c(n)p. Note that u;—ug=Ko|Vugl?,
and hence by (2.24) and (2.28)

[Vuy —Vug| <e(n) 1| Vug(z){? < e(n)a?l (1w)9.
Then
(232) |V’U,1*VUJ0| §b011w,

where bo=c(n)a?C; and C; is a constant from (2.27).
Similarly,
Ukt1 — UL = K0(|Vuquf |Vuk_1 |q)

and by (2.24)
Vg — Vug| < e(n) I (|| Vug| 2= Vur—1]9]).

Using the inequality |r?—s|<q|r—s|max(r,s)9~! with r=|{Vu,| and s=|Vuj_1]
together with (2.28) we have

(2.33) Vg = Vug_119| < qalVuy —Vug_1|(Lw)? .
From this we obtain
(2.34) Vg1 — Vug| < c(n)galy[|Vug — Vg1 |(Iw)T .

Suppose
|Vuk —Vug—1| <bplw.

Then by (2.34)
|Vugs1—Vug| <ce(n)qabg I (Iiw).

Using (2.27), we see by induction that
Vg1 —Vug| <bgiilhw,

where bg11<c(n)qaCiby and Cy is a constant in {2.27). Thus
b1 < (c(n)qaC’l)kHbo,

where bop=c(n)a?C4. Choosing C; in (2.27) so that é=c(n)gaCi <1, we complete
the proof of (2.29). O
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Lemma 2.7. Let Ky be defined by (2.25). Then under the assumptions of
Lemma 2.6,

(2.35) lugy1(2) —ug ()] < e6¥ Kiwy (),

where dwy=(Lw)? dz, and the constants c>0 and 0<C<1 depend only on q and n.
Proof. We have

|1 (2) —un(2)] = | Ko (| Vur | = [ Vg1 |7) | < CKL |[Vag|? = [V |2

)

where C depends only on n. Combining this estimate with (2.33), we have
[tr41(x) ~ug(2)] < CgaK: [|Vug, — Vg |(Hw)? .
Applying Lemma 2.6, we obtain
[urt1(2) — uk(2)] < e8* Ka[(T1w) ],

where ¢ depends only on n and g, and 0<8<1. This proves (2.35). U

Now we are in a position to complete the proof of Theorem 2.4. Suppose that
(2.27) holds with a constant Cy =C1(gq,n) small enough so that the estimates (2.28),
(2.29), and (2.31) are valid. Let

(2.36) u(@) = uo(2)+)_(uny1 () —ur(z)),
k=0

where ug=Kow and ug are defined by (2.26). By Lemma 2.7,
k1 (2) —up ()] < 8 Krwi (2),
where dw)=(Ihw)?dzr and 0<6<1. Hence u(z)=limj_, ug(x) and
(2.37) [u(x)| <cKiwi(x) aee.
Note that by Theorem 1.1 it follows that w; satisfies wi(£)<C Cap, ,(E) for all

compact sets E. In particular, wy(B(0, R))<CR"P. This implies that Kjw; €
Li (R™) and Mg[u]=0(¢y(R)) (see Lemma 2.5). Moreover, by Lemma 2.6,

loc

(Vg1 (x)— Vug(z)] < b6 Lw(z)
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and hence |Vu(z)|<cljw(z), where the constants depend only on ¢ and n. Thus
u€W,5%(R™) and by Theorem 1.1

fulx =sup{ (—fg'Twwif)/ Can )0} < Clan)

Let ¢ C§°(R™) be an arbitrary test function. Since
o0
Vu(z) :klim Vg (z) :Vuo(ﬂc)+Z(Vuk+1(a:)—Vuk(:v)) a.e.,
* k=0

we have
/ Vé-Vuy de — Vé-Vude, / A Vgl dac%/ | Vul? dz,
as k—o0, by the dominated convergence theorem. By (2.26),
V-Vugi dw:/ | Vug|? de+ ¢ dw.
R~ R» R»
Letting k— oo in the preceding inequality, we obtain

Vo-Vudr = o Vul? dx+/ o dw.
R" R”

Rn
Thus u€ W,04(R") is a (weak) solution to (2.1). The estimates (2.15)—(2.18) follow
from (2.37) and Lemma 2.5. The proof of Theorem 2.4 is complete, except for the

estimates (2.14) in the case 1<¢<2 which are discussed in Corollary 2.8 below in
the context of the existence of positive solutions. [l

Corollary 2.8. Under the assumptions of Theorem 2.4, if (2.1) has a solution
u>0 a.e., then ILw<oo a.e. and (2.11) holds. Conversely, (2.12) together with
Tw<oo a.e. implies that (2.1) has a solution u such that

(2.38) Lhw<u<Clw a.e.,

where C' depends only on q and n.

Proof. 1f (2.1) has a nonnegative solution u<oo a.e., then u is superharmonic
on R"™ and u=1I5|Vu|?+ I,w+const (see [HK]). Hence Iow< oo a.e., and (2.11) holds
by Theorem 2.4.
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Conversely, if Ipw<oo a.e. and (2.12) holds, then by Remark 2.3 one can use
the Newtonian potential I» in place of K in the definition of uy (see the proof of
Theorem 2.4). Hence setting up=TIw and

U1 = Lo|Vug |2+ Lhw, k=0,1,..,
we see that Lemma 2.7 holds with I in place of the operator K defined by (2.25).
This gives
u < UO+Z |uk+1 —’U,k| <Cluw,
k=0
where C' depends only on ¢ and n. The lower estimate in (2.38) is obvious since

u=limg_,o0 g a-e., and ug>Iow for all k. O

The next corollary gives new pointwise estimates for positive solutions of the
Schrédinger equation
(2.39) ~Av=wv, v2=>0,
which, as was mentioned in the introduction, is equivalent to (2.1) with ¢=2 and
u=logv.

Corollary 2.9. Suppose we M (R™).
(i) If (2.38) has a nonnegative (weak) solution v, then Lw<oo a.e., and there
exists a constant C1=C1(n) such that

(2.40) L[(Lhw)(z) <Crhw(z) ae.

Furthermore,

(2.41) / |V logv|? dx <4dcap; 5(F) and w(E)<cap;,(F)
E

for all compact sets E.

(ii) Conversely, there exists a constant Ca=Ca(n) such that if (2.40) holds with
Cy in place of Cy, then there exists a positive solution v to (2.39) which satisfies
the following estimates:

(2.42) IVilogv(z)| <Clhw(z),
and
(2.43) v(z) > C(Jz|+1)°¢

for some C'>0 and ¢<0.
If in addition Iow<oo a.e., then there is a solution v such that

(2.44) Lw(z) <logv(z) < Clw(x)

for some C>0, where all constants depend only on n.
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3. Solvability of the Dirichlet problem

In this section we consider the nonlinear Dirichlet problem

—Au=|Vul?+w onf),
(3.1) {
u=0 on 99,

for ¢>1 and weM_ () on a domain QCR™. In what follows we assume for sim-
plicity that © is bounded, and the boundary of © is smooth enough (satisfies the
exterior sphere condition).

Let 8(z)=dist (z,09). We say that uc W,>¢(Q)NL(Q) is a solution to (3.1) in
a weak sense if [ |Vu|?6(x) dz<oo and

(3.1 —/uAhdxz/ |Vu|qhdx+/ hdw
0 Q Q

for all h€C?() such that h=0 on 5.

Since |h{z)| <Cé(z) for €, this definition is applicable to all we M () such
that [, 6 dw<oo. We remark that this implies Gw(x )= Jo G(z,y) dw(y)<oo a.e. on
Q, where G(xz,y) is the Green function of the Laplacmn on .

An equivalent definition of the solvability of (3.1), for the same class of w, is
that there exists ue W4(£2) such that

loc
(3.0") u(w)= | Gle)Vuwl® i+ [ Gle.)doty)
a.e. on Q. Note that uc L*() follows from (3.1”) and the assumptions
(3.2) / IVul?é dx < oo, / 4 dw < 00,
0 0

which are clearly necessary for the right-hand side of (3.1”} to be finite a.e.
Let 1/p+1/g=1. For any compact set EC{2, we set

(3.3) caplyp!Q(E):inf{/ [VhPdz:1>h>xE, hngo(Q)}.
Q

Let @={Q} be a Whitney decomposition of 2 into a family of cubes ¢ with
disjoint interiors such that Q=] @, dist (@, Q) <diam @Q (see [St]). Then it is
casily seen (cf. [M2]) that cap, , (E)=cap, ,(E) for any compact set ECQ with
the constants of equivalence independent of @, here cap, , is the capacity on R™
defined by (1.5"). In particular, capl)p7Q(Q)x|Q]1_p/”.
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Theorem 3.1. Let 1<g<oo and 1/p+1/q=1. Let Q be a bounded smooth
domain in R™. Let we M (). Then there exist positive constants Cy and Cy such
that the following statements hold.

(i) If (3.1) has a solution u€W,29(Q), then the inequality

loc
(3.4) w(E) < Ceap, , olE)

holds for all compact sets ECQ with a constant C<Cy(gq,n).

(i) Let 2<g<oo. If (3.4) holds with C<Cs(q,n,Q), then (3.1) has a solu-
tion u.

(ili) The solution u whose existence is claimed in (ii) satisfies the inequality

(3.5) |[Vu(z)| < Clhw(z) a.e. on Q,
with a constant which depends only on q, n, and Q.

Remark 3.1. One of the assumptions on £} we need below is that the following
Hardy inequality holds:

()P
(36) | Sy < Ol
for all heCgo(Q), where 1<p<oo. It is known that (3.6} is valid for a wide class of
Q (see [A1], [N]).

Proof of Theorem 3.1. We will need several lemmas. The following lemma is
proved in the same manner as Lermma 2.1 for Q=R".

Lemma 3.2. Let 1<p<oo and let Q be a bounded domain in R™. Let we
M, (Q). Suppose the equation

—Au=|Vull4+w on Q

. 1 . .
has a solution we W, 1 (2) in a weak sense, i.e.,

—/Vthdx:/ ]Vu|qhdx+/ hdw
0 Q Q

for all heCge(Q). Then the inequality
w(E) <Ccapy ,q(E)

holds for all compact sets EC), with a constant C which depends only on q, n,
and €.

Let {¢g} be a partition of unity associated with the Whitney decomposi-
tion of Q defined above: ¢geC§(Q*), ¢po>0, ZQ ¢o=1, and |V |<C/diam Q.
Note that dist (Q*, 09)=<diam Q and 1<}, x5 <C(n), here Q*=(1-+¢)Q, 0<e<7,
(see [St]).
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Lemma 3.3. Lel 1<p<oo and let Q be a bounded domain in R™ such that
(3.6) holds. Let we M (). Then the following statements are equivalent.
(i) The inequality

(3.7) / AP dwg()/ VA da
Q Q
holds for all heC§°(Q), with a constani C which depends only on p, n, and Q.
(if) The inequality
(3.8) w(E) < Ccaplﬁp’Q(E)

holds for all compact sets ECS), with a constant C which depends only on p, n,
and €.
(iil) The inequality

(3.8") w(E)<Ccap, ,(E), ECQ,
holds with a constant C which depends only on p, n, and S, here cap, , is the
capacity on R™ defined by (1.5).

Proof of Lemma 3.3. The equivalence of (i) and (ii) is known [M2]. Clearly,
(ii) = (iii), since as was mentioned above cap; , o(#)=<cap, ,(&) for ECQ.
To prove (iii) = (i) we observe that if (3.8") holds for all ECQ), then by the

preceding remarks
/ [R|P dw < C’/ |Vh|P dx
Q Q*

for all heC§(2) with a constant C' which depends only on ¢, n, and Q. Hence
applying this inequality with A¢g in place of A we have

/|h|pdw<CZ/ |h¢Q|pdw<CZ/ V(hoo)[P dz.

Since
|h?

dx,
g+ 07

/ V(ho)Pde<C [ |V dz+C
Q* Q*

it follows by the properties of @ and (3.6) that
/ /P dwgC/ VPP do
Q Q

In the following two lemmas we make use of the assumption 2<g<oo in a

for all heCg°(Q). O

crucial way.
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Lemma 3.4. Let QCR"™, n>2, denote a bounded domain with boundary 6Q
which is C1 embedded in R™. Assume further that w is a measure on Q such that
(3.8) holds. Then, if 1<p<2, we have [, 6 dw<oo, where 6(x) is the distance from
x€€) to 0%, and there is a constant k depending only on p, n, and Q such that for
acs)

(3.9) / §dw <kCr"t=P >0,
B(a,r)

where C is the constant in (3.8).

Proof of Lemma 3.4. We may assume that a€d2 and it is also enough to prove
(3.9) for r<%R, where R is some fixed positive constant depending on 2. We may
then assume (see [St, pp. 180-190]), that 2N B(a, R) is a special Lipschitz domain,
i.e. such that if (z,y) is a point in QN B(a, R) then

{(z,y):2eR"!, p(z)<yeR, |z <R}
with the point a corresponding to (0,0) and ¢ a Lipschitz function such that

©(0)=0 and |p(z')—¢(z")|<L|z'—x"|, where the constant L is the same for all
balls B(a, R). Furthermore, the sets QN B(a, R) are parametrized as

{(z,y): () =y, 2| <R}.
Let ncWy? (B(a,2r)), 0<n<1, n=1 on B(a,r), and let 7 be extended as 0 outside
B(a,2r) in such a way that |Vn|<(1/7)XB(a,2r)-

By Lemma 3.2 it follows that (3.8) is equivalent to (3.7), and hence (see [M2])
to the inequality

/qmpdng/ |VhIPdz, heWyP(Q),
Q Q

for 1<p<oo. Furthermore, A is equivalent to the constant C in (3.8).
The preceding inequality gives with the test function

h(z,y) = (y—p(@)/"n(z,y),

where §(z) <y—p(z), that

/ 6dw§/ hPdw<A [Vh|P d.
B(a,r) Q QNB(a,2r)
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Since
VAP <207 (y—p(2))|VnlP+2°7 (1/p)P (y—p(x)) P~V |V (y—p(@))Pn,

and the Lipschitz condition implies that [V(y—-(z))|<v/1+L? and, when (0)=0,
also —L|z|<e(x)<L|z|, we obtain the estimate

2r

1
[ weevirdsays S [ an [ -et@)dy
QNB(a,2r) r |z|<2r p(x)
1 2 _
=— 2 — ()2 de < kir"TiP,
v | (r @) o<k

Since p<2, we have

IV(y—e(@)? - 2\p/2 - z dy
/QmB(a,zr) (a1 TH W= (LT /z|<2rd /go(m (y—p(2))r

1L [,2)\p/2
= g / (2r—p(z))2 P do < kyr™ 1P,
2—p lz|<2r

which proves the lemma. [

Lemma 3.5. Suppose 1<p<2 and weM_ (). Suppose the inequality (3.8)
holds, i.e.
W(E) < Ccapy ol F)

for all compact sets ECQ. Then a similar inequality holds for the measure dwy=
IVGw|?dz, i.e.

(3.10) / |VGw|?dz < Ccap, , o(FE)
E

for all compact sets ECQ). Furthermore, fQ 6 dwy <o0.

Proof of Lemma 3.5. Assume that (3.8), or equivalently (3.8’), holds. Let Q
be a Whitney family of cubes associated with Q. By Lemma 3.3 it is enough to
prove

(3.11) / |VGw|?dz < C cap, ,(E)
E

for all FCQ with a constant which depends only on ¢, n, and €.



Criteria of solvability for multidimensional Riccati equations 109

We will use the following known estimates for the gradient of the Green kernel
(see (W], [GW]):

(3.12) |VZG(x,y)l§C',;£~y;,n, |VxG(x,y)l§Cﬁﬁ

for all z,y€Q), z#y.
To prove (3.11), for a fixed cube Q€ Q, we define the measures v; and vy by

(3.13) dvi =xg- dw, dvy=(1—xg-)dw.

We show that (3.11) holds with 4 and vy in place of w.
Since supp v; CQ*, it follows that

vi(F) <Ccapy , o(FNQ*) < Ccap, ,(F)

for all compact sets FCR”™. Hence by Theorem 1.1, for any ECQ we have

/ (hiv)ide<C cap; ,(F) =< C cap , o(E),
E
where [; is the Riesz potential of order a=1. Then, by the second estimate in
(3.12),
/ VG |%dz < C/ (Iin)?dx <Ccap, , o(E).
E E

We now prove a similar inequality for 5. By the first estimate in (3.12) it

follows
6(y)

o lz—y|”

Let zg be the center of Q. Then for all :z:GQ and y€(Q*)° we have |t —y|=<|zg—y|-
Hence for any ECQ

[VGus(x |<C/ dv(y).

/ \VG1|? dz < C|E| f 5@ 7 de(y).
Thus the desired estimate reduces to

(3.14) B[ 2 it ) < Cenn, (B)

Qv lz—yl

for ECQ. From the known isoperimetric inequalities (see [AH], [M2])

(o) ezt

(3.15) Q] capy (Q)
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we see that it suffices to prove (3.14) for E=Q, i.e.

(3.16) ]Q](%l)/n /(Q*)c %d&;(y) <C,

with a constant C which depends only on p, n, and €.

Let du(y)=6(y) dw(y) and let B(z,7) be a ball of radius r centered at x€£2. By
Lemma 3.4 u(B(x,0))<Co" PT! for p>6(x) and 1<p<2. Then letting r=58(zq),
we get

|Q|<p‘1>/n/ 0) gty < ort /°° wBa.0) ;.
@) Iyl B roooort

oo
d
gCrpfl/ —Q§C<oo,
ro O

which proves (3.11). The estimate [, § dw<oo follows from this and Lemma 3.4.

Now we are in a position to complete the proof of Theorem 3.1. The necessity of
(3.8) follows from Lemma 3.2. The sufliciency is proved by the contraction mapping
principle in the Banach space X of functions » such that ueLllo’z (Q)NLH(Q) with
norm
I |Vu|? dz

1/q
:cap E)> 0}.
o)) P

fullx =l o sup
Note that it follows from Lemma 3.5 that [Ju||x <oco implies [, §/Vu|? dz<oo, where
q>2.

Letting u=0v where ( is a positive constant, we see that the equation u=
G|Vu]?7+4-Gw has a solution if and only if the equation v=Av+ f is solvable, where
Av=39"1G(]Vv|?) and f=8"'Gw. We apply the contraction mapping principle to
the equation v=Av+ f on the unit ball of X, where 3>0 is chosen small enough so
that A is a contraction.

By Lemma 3.4 and Lemma 3.5 we have that ||f]|x <1 if (3.4) holds with the
constant C' < Cs(q,n,?). Furthermore, as in the proof of Lemma 2.6, it follows from
Lemma 3.5 that [|Af—Ag|lx <c||f—gllx with ¢<1 for any f and g in the unit ball
of X. Thus there exists ¢ such that |Ju]x <1 and

u=G|Vu|"+Gw a.e.

The pointwise estimate |Vu| <CIiw can be proved in the same manner as in the case
Q=R" in Section 2, we omit the details. The proof of Theorem 3.1 is complete. [l
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4. Some generalizations

In this section we demonstrate how our approach works for more general su-
perlinear inhomogeneous equations of the type

(4.1) —Au=f(z,u, Vu),

where f(z,u, Vu)=<a(z)|Vu|? +b(z)|u|?? +w(z), and g1, q2>1.

As was mentioned in the introduction, we are interested in sharp solvability
results with close sufficiency and necessity conditions, for an arbitrary nonnegative
inhomogeneous term w=£0.

For simplicity, we consider in detail the solvability problem on R™ for the
equation

(4.2) —~Au=a|Vu|" +bju|? +w,

with bounded coefficients a,b>0 and arbitrary we M, (R™). (The necessity part of
our results is proved for constant a and b.)

The solvability of (4.2) is understood in a weak sense, i.e. there exists ue
Wo (R™)NLE_(R™) such that

loc
(4.3) / Vu-quda::/ aqul‘thda:—k/ blu|”? ¢ dx+ ¢ dw
™ RTL R’n, R’n

for all peC§e(R™). We will actually show that under certain assumptions (for
b#0) there exists a nonnegative solution ucW,o® (R™)NLE (R™) satistying (4.3),
or equivalently

(4.4) u=I(a|Vu|")+ I (bu®)+ Lw+c ae.,

where ©>0, ¢>0 and Iy=(—A)"!=1? is the Newtonian potential.

Theorem 4.1. Let 1<g;<oo and 1/p;+1/q;=1, i=1,2. Let weM (R").
Then there exist positive constants C;, j=1,...,6, which depend only on q; and n
such that the following statements hold.

(1) If equation (4.2) with constant coefficients a,b>0 has a solution u belonging

to WhT (R™M)NLE (R™), then
G
(45) I (qu)lh (:E) < 7[1&)(%) <o a.e.,
and
Cy
(4.6) L(Iw)?(z) < —=lhw(z)<oo a.e.

b



112 Kurt Hansson, Vladimir G. Maz’ya and Igor E. Verbitsky

(i) Conversely, let a—||a]t and b=|b]|r~ (0<a,b<oc). Then if the in-
equalities (4.5) and (4.6) hold with the constants Cs and Cy in place of Cy and
Cy and @ and b in place of a and b, respectively, then (4.2) has a solution u€
W'I})’fl (R™)NLE (R™) such that the following inequalities hold:

(4.7) [Vu(z)| < Cshyw(z), Lw(x)<u(x)<Cslhw(x) a.e.

Remark 4.1. As we will see below, any solution ue W, (R")NLE (R™) of
(4.2) (with constant coeflicients a and b) satisfies the estimates

/ (alVul +bJu]®) da+w(E) <a' P C(qr) capy . (E),

E

/ (a| Vul® +bJu]#) dz-+w(E) < b2 C(ga,n) caps,, (E),
E

for all compact sets E, here cap,, ,, is the capacity of order a=1,2 defined by (1.5).
In particular, a nontrivial global solution to (4.2) may exist only if n/(n—1)<g; <00
and n/(n—2)<gr<o0.

1t follows from the known relations between Riesz capacities (see [AH, Theo-
rem 5.5.1]) that, for p; =2p,, the inequality

capy p, (F) <Ccap, ,, (E)

holds for compact sets FCR"™, with a constant C which depends only on p1, ps,
and n. In this case the second term on the right hand side of (4.2) is “dominated”
by the first one. In all other cases the contributions of the nonlinearities involving
|[Vu|? and |u|? are generally not comparable.

Remark 4.2. Similar inequalities with weighted capacities hold for variable a
and b. Unfortunately, they generally are not sufficient for the solvability of (4.2).
{(See [KV] and [VW] where this problem is considered for equations without the
gradient term.)

Proof of Theorem 4.1. To prove statement (i), notice that as in the proof of
Lemma 2.1 it follows from (4.3), with kP! in place of ¢, that for any he C§°(R™),
h>0, we have

1/q1
/(a|vu|m+b;u|qz)hmdx+/ hpldwgpl(/ |Vu|‘“hp1d:c> IV s ey
Rn Rn Rn

From this (see the proof of Lemma 2.1 and Corollary 2.2) we have

/ IVl doe <a P Clqr) capy ,, (E),
E
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and
/ blu|® dz+w(E) <a' P C(q) cap, ,, (E)
E

for all compact sets E. This proves the first estimate in Remark 4.1, by Theorem 1.1
the preceding inequality also yields (4.5).

The proof of (4.6) is a little more technical. Notice that by Theorem 1.1 it
suffices to obtain an equivalent capacitary estimate

(4.6") w(E) <b'7P2C(ge, n) cap, y, (E)

for all compact sets F. Suppose uGWI})’fl (RMNLE

2 (R™) is a solution of (4.2) so
that (4.3) holds. We first prove the inequality

/ |u]?2 dx <b~P2C(qo, n)r"*2p2,
B,

together with (4.6") for any ball B.=B,(zg) of radius r centered at zy. Without
loss of generality we set xy=0.

Let »eC§P(R™) be a cut-off function such that >0, ¥(x)=1 if |z|<1 and
P(x)=0 if |z|>2. We will also need the inequalities |V (z)|*<C(s)y(z)*~! and
|AY(z)|* <C(n, s)(z)*~! for any s>1. For r>0 set ¢, (x)=1(z/r), then we have
|rVap(x) |5 <C(s)¢(x)*t and |[r?Av,.(2)]* <C(n, ). (2)*~t for r<|z|<2r. Now
using (4.3) with ¢, in place of ¢ we get

Vu'Vw,.dx:~/ uAd)Tda::/ (a|Vu|® +blu|??), de+ P dw.
R R™

n

R~

In particular,

7/ ’uAl/)Td.TZ/ blu|?2 1, dx.
n R”

By Hoélder’s inequality, the preceding estimate implies

1/g2 1/p2
/Rn blu|, dx < (/Rn Ju|%24p, dm) (/Rn | A, |P2apl P2 dw) ’ .

/ | A, [P2ap P2 d S/ 72 dy = C(n)r™ 2Pz,
R» r<|z|<2r

Since

we have

/ bP2 [u|2 4, da < C(qg, n)r™ 2Pz,
Rn
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From this and the preceding estimates it follows

[ @IVl ) doto(B,) <6 Clan
which in particular gives (4.6") for E=B,(zg).

Now we prove (4.6") for arbitrary compact E. Let h=1Ig, where gcC§°(R"™),
9g>0. Then >0 and Ah=—gcC5°(R™). Note that h(z)=(]z|+1)> " and hence by
the estimate [, [u|% dz<Cr™~?F2 proved above, we have that [p, hP?|u|? dz<oo.

We next prove the inequality

1/a2
‘/ uA(hP?) dx| <C(ga,n) </ hP2z |y |2 da:) | AR ez (mm)

following the argument in [AP]. Clearly,
/ uA(hP?) dx:pz/ [(po—1)hP22|Vh|>+RP2 "L Ahudz.
Since h=—I5(Ah), then by Hedberg’s inequality [He] we have
\VhI? < c(n)hM(Ah),

where M is the Hardy-Littlewood maximal operator. Applying this estimate to-
gether with Holder’s inequality and the maximal inequality in LP2(R"™), we have

V uA(hP?) d M(Ah)hpr1|u|dx+/ |Ah|hp21yu|dx)
T R'n.

gC(qg,n)<

R'VL
1/Q2
<C(g2,m) (/ hP2 |92 dx) | AR Lra (7Y

The rest of the proof can be completed by making use of (4.3) with v, (I29)P?,
where I2g>xg, in place of ¢, and repeating the estimates used above, or by the
following approximation argument as in [AP]. Choose a sequence of functions ¢, €
C§°(R™) such that ¢, —hP? in C*(R"), and use (4.3) with ¢,, in place of ¢, so
that

—/ U, dx = Vu-V(;Smd:z:/ (a|Vul? +blul9?),, dz+ Gy dw.

R’!L
Letting m—o0, we have

—/ uA(hpZ)da::/ (a| V| +bluf?2 ) 1?2 dm+/
n R'n.

hP? dw.
Rn
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From this and the preceding estimates it follows

1/92
Clam)( [ wultde) Aoy > [ (alFupt b ds
n Rn

+/ hP? dw.

/ Bl de <677 Clga, ) [ AR, ()

Hence

and
/ah”QIVUIqldH/ hP2 dw <P C (g2, n) | AR L2 (r).-

Minimizing over h=1I5g>x g, we obtain w(FE)<b'"?2((ga,n) Cap, ,, (E), where
Cap, ,, is the Riesz capacity defined by (1.5), which is equivalent to cap, ,,. This
by Theorem 1.1 yields (4.6), as well as the second estimate in Remark 4.1.

To prove statement (ii) of Theorem 4.1, we will need the following lemma.

Lemma 4.2. Let 1<g<oco and 1/p+1/q=1. Let we M (R™). Then the in-
equality
(4.8) L(Iw)¥(z) <CiLw(z) a.e.
holds if and only if

(4.9) I (Iow)¥(z) < Coliw(z)  a.e.,

provided Iow(x)<oco a.e. Moreover, C1<Cy<C(q,n)C.
Remark 4.3. Tt is not difficult to see that, more generally, for all 0<a<fg<n
and we M, (R™) the inequality
Io(Taw)¥(z) < Clyw(z) <oo  a.e.
is equivalent to
Ig(Igw)?(z) < Claw(z) <oo a.e.

In the case a>f the second inequality obviously implies the first one, but the
converse is not true.

Proof of Lemma 4.2. Applying I; to both sides of (4.9) and taking into account
that Io=1I%, we see that (4.9) = (4.8) with C; <Cs.
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In the opposite direction, suppose that (4.8) holds. Then by Theorem 2.1
in [MV] the “testing inequality” of E. Sawyer type

(4.10) /B(IQWB)‘I dz < C(g,n)Ciw(B)

holds for all balls B, here dwp=xp dw. It is well known (see e.g. [MV]) that (4.10)
implies the estimate

(4.11) w(B) <C(q,n)CP 1y

for all balls B=B,(x) of radius r, which we will need below. The proof of the
implication (4.10) = (4.9) is based on the same idea as in Theorem 2, [VW]. Let
dv=(Iw)?dz. Then

L|(Bw))(w) = Clg.m) /OOO B &

For a fixed z€R™ and t>0 we estimate v(B;(z)). We set dwi=xpg,,(z)dw and
dws=(1=XB,,(z)) dw, so that w=w +ws, and hence

ve) < ([ )y / (e )

By (4.10), fBL(I) (Iow1)? dy<C(g,n)Crw(Ba:(z)). To estimate the second term
note that for all ye By (x) obviously lowa(y)=<Izwa(x) with the constants of equiva-
lence depending only on ¢ and n. Hence

/ (Low2)? dy < C(g, n)t" (Tawa(2))".
B (z)

Since
Twa(x) :C(q,n)/ W(TLHT;(;"D ﬁa

2t r

by combining the preceding inequalities we obtain

(B() <Ol (w(Br(y e [~ EEA AT,

From this it follows

L) )(a) < Clamcs [ AP &y g [7( [T ABLD IV,

0 tn t =2y
=I+1II.
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Clearly,

I=C(g,n)C,y /000 % %é <C(q,n)CiLw(x).

On the other hand, by the Hardy inequality

II=C(g,n) /OOO (/too 4“’(51’"_(;3)) %)q dt < C(q,n) /Ooo W(Br (@)

7‘("’2)f1
By (4.11) we have
w(B(2))7 < C(g,n)Crw(B,(x))rn2) a1,

Hence o (B 4
HSC(q,n)Cl/ w(Br(z)) dr _

o Ll C(g,n)Crlhw(z).

Thus
5 [(Lw))(z) < Cohw(z),

where Cy=C(g,n)C,. O

We now complete the proof of statement (i) of Theorem 4.1. Suppose that
(4.5) and (4.6) hold with the constants C; and C5 small enough depending only on
¢; and n. By applying I to both sides of (4.5) we get

C

(4.12) L(hw)® < ?lfgw.
Also, by Lemma 4.2 it follows that (4.6) is equivalent to
(413) Il(lgw)q2 S %Ilw.

We set ug=1Iw and
(414) U1 :IQ(G|VUqu1>+Ig(buz2)+12w
for k=1,2,....

We need simultaneous pointwise estimates of ug(x) and |Vug(z)| based on
(4.5), (4.6), (4.12), and (4.13), similar to those established in Lemma 2.6 in the

case of the Riccati equation.
Since |Vug|<c(n)lw, by (4.12) and (4.6) we have

up < 6112([1(.&))91 —}—bfg(fgw)qz—i—lgw < szw,
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where C' depends only on ¢ and n. As in the proof of Lemma 2.6, using repeatedly
(4.12) and (4.6) we get by induction

(4.15) ug{z) < Alw(z),

where A depends on ¢ and n, provided C; and Cy are small enough.
Clearly, it follows from (4.14) that

(4.16) Vugs1| <c(n)(ali|Vug|® +bluf +Lw).
Arguing as above and applying (4.5) and (4.13) we get
|Vui| <e(n)lali (1iw)? +bl (Iow)® +1hw] < Clhiw.
Then again by induction we obtain
(4.17) Vug(2)] < ALw(z),
where A depends on g and n, provided C; and Cy are chosen small enough. Us-

ing (4.15) and (4.17), we proceed as in the case of the Riccati equation to obtain
simultaneously the inequalities

(4.18) Vg1 () — Vug(z)| < B6*Lw(z)
and
(4.19) Jups1 () —ug ()| < B6* Lw(x),

where the constants A, B, and 0<é<1 depend only on ¢ and n. By the same
argument as in the proof of Theorem 2.4, the preceding estimates yield that

o<

u(z) =uo(@)+ ) _ (i1 (@) —un(@))

k=0
is a solution of (4.2), and the estimates (4.7) hold. O

It follows from the known estimates of Green functions of uniformly elliptic
differential operators L mentioned above (see [A2], [HS], [GW], [W]) that our main
results remain true for equations of the type (4.1) with L in place of the Laplacian.
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