Mean values of subharmonic functions

Bis6rNy DAHLBERG

1. Introduection

Let % be a subharmonic function in R*. We introduce the maximum modulus
M(ry = M(r, u) = max {u(x) : x| = r},
the lower order

log M(r)

A = Mu) = lim inf logr

r—>00

and the mean value

T(r) = T(r, u) = o f wt(rx)do(z),
f] 1
where do denotes the (n — 1)-dimensional Hausdorff-measure, o, is the area
of the unit sphere, o, = / i1 %0, and ut = max {u, 0}.
We shall study the relationship between the quantity

. T(r, u)
A(u) = lim sup WM, w)

and the lower order of «.
Suppose 1 € (0, ) is given. The Gegenabuer functions 07 are given as solutions
of the differential equation
dPu

du
g2 —— - - .
A—a®) o — @+ Do + A+ =0, —1<z<1,

with the normalization Cy(1) = I'(A -+ 2y)/I'(2y) (A + 1). Put

n—2

a,=sup{t:C, 2 (i) = 0}



294 BJORN DAHLBERG

and define the function %, in R®, » >3, by

0 if z <ar
wy(x) = n—2 )
7""0/l 2 (xyfry if x> ar,

where o = (%y,..., %) and 7= |z
Since u; is harmonic in {x € R*: 2; > a,|z|} = K and has boundary values
zero on 0K, u, is subharmonic in R® and the lower order of u, is 1. We define

C(4,n) = A(u,) (1.1)

We are now in a position to formulate our main result.

TreorEM 1.2. Let u be a subharmonic function tn R, n >3, of lower order
A, 0 <A< ©. Then we have that

T(r, u) -
M(r,w) — C(d, m).

Jim sup

Hayman [4] has shown that for the set of subharmonic functions of finite lower
order 4, A(w) has a lower bound; his bounds are not best possible but of the right
magnitudes as 4 — oo. By the construction of C(4, n), it is clear that our bounds
are best possible.

For subharmonie functions in higher dimensions Theorem 1.2 may be considered
as an analogue of the following result by Petrenko [10] on the Paley conjecture:

Let f be a meromorphic function in C and put u(r,f) = sup, [f(re®)] and let
T(r,f) be the Nevanlinng characteristic of f. If the lower order of f is

log T'(r
A = lim inf iL)— s
then
sin d
if 2<%
i e )
imsup ————
o ¥ log ulr, f) =

- if L<i< 0.
The plan of the paper is now as follows. In section 2 we derive some properties
of the Neumann function for a cone. In section 3 these are used to establish an
inequality for subharmonic functions. The proof of Theorem 1.2 is given in section
4 and we proceed in section 5 to some applications, which complete the paper.
I wish to express my gratitude to professor Tord Ganelius for his kind interest.
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2. Some properties of the Neumann funetion

If QcR", » >3, is an unbounded domain and y € O, then the Neumann
function of £ with pole at y, N(-, y), is a harmonic functionin £ — {y} such that

(i) djdvN(x,y) = 0 forall x € 92, where 90 is the boundary of 2 and d/dv
denotes directional derivative in the direction of the unit inner normal.

@) N(,y) —r, can be extended to a harmonic function in £ where
ry@) = lo — y

In the rest of this section we will use the following notation. Suppose
— 1 <a<1 and put

K={x€R"z=(2q,..., %), v > alx|}

Welet D={x€K:|x|=1} and D ={x€eK: |z|=1}. If x € R", then we
introduce polar coordinates by putting |x| ==r, 6 = arccos (xy/r) and z* = x/r.
The Neumann function of K is denoted by N. If 6 is the Laplace-Beltrami
operator on the unit sphere and A is the Laplace operator in R* then the following
relation holds:

e — — —2
_d72+ 7 dr_l_r 0.

Denote by {4,}2, 0=1,<< 2 <2y <<..., the sequence of eigenvalues of &
in D, where the corresponding eigenfunctions ¢; are assumed to be symmetric
around the x,-axis and satisfy the relation
doi
é(pl + Alwl - O, d _ O on a,D (2.1)‘
Let i, fi, o 2> 0> pi, be the roots of the equation
Ht+n— 2) = 4. (2.2)

If r€R, then we identify r with (r,0,...,0) € R". We observe that the
function # — N(p, ) is symmetric around the z;-axisif ¢ > 0. Hence, following
Bouligand [2], we have, if g > 0 and [x| =7 % p, that
S 8% B gifa*)pi(1)

Moo =m2 o

(2.3)

where s = min (r, p) and R = max (r, ) and ¢; are normalized so that

f \s|2do = 1
D

and N is normalized by limy, .., N(g, ) = 0.
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It is well known that there exists an « € (0, o) such that

lim ¢ = o (2.4)
i=0o0

. In the sequel, the letter C will denote constants which will not necessarily be
the same at each occurrence, and which may depend on the cone K or the dimension
n.

We need some estimates of {g:}.

LevMA 2.5, There exists to each M > 1 a number C > 0 such that
(1) |pp)| < OM% for all p €D,
(1) |dg:i/db(p)| < CM% for all p € D,
Here @i is normalized by f b lgilfde =1

Proof. Since ¢; are assumed to be symmetric with respect to the x;-axis we have,

n—2

gi(p) = di 0y, 2 (p), P = (py,-. ., Pa) €D,

where C7? are the Gegenbauer functions and d; > 0 is chosen so that

f i Pdo = 1.
D

Trom the representation formula (22) in [3], p. 178, we have for y > 0 and
0 <6 <mf2: '
Oyfeos 0) = a3 Io - 2) Iy -+ YT EN T + DY %

X f {cos 0 + v/ — 1sin 6 cos £1%(sin t)~'dt

0
This gives easily that for y > 0 and 0 <0 << 7/2
|Cfeos 0)] < I + 29)/T(2p) Dlex + 1) = Cy(1). (2.6)
To estimate Cl(cos8) for 6 > x/2 we use representation formula (23) in [3]

p- 178, which gives
Cifcos 0) = 2t -+ 2p) Ty + DTGV @P) (> + D} %

X (sin 0)t=% f cos[(y 4 a)t](cos t — cos ) dt,
¢

which is valid if y > 0 and 0 < 0 <= Consequently
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|Ci(eos 0)] < 27 (sin 0)'* Iy + 1)(Iy))CY1) (2.7)
if y>1 and 0<0 <m If =14, then it is known that
|CZ(cos 0)] < 2x~Fn—(sin 6)~FC2(1)

for «>1 and 0 <0 <z, see Hobson [6], § 200. From (2.6) and (2.7) it follows
that there exists a number € > 0 such that |pi(p)| < Cgi(l) if p € D. From
formula (30), [3] page 178, we have that d/dxC(zx) = 2yC%"'(x), and hence, there
exists a number C > 0 such that

—2

d@i 2 n—2
0 (p)l < OO ({C.F (N} g(1).

[+4

-2

But C’[,‘/iz(1){0%__2_(1)}—1 = {o; -+ n)(o; 4 n — 1)(n? — n)~, so to prove Lemma 2.5
it is now sufficient to prove (I) for p = 1. An application of Green-s formula to
the harmonic function « — #*ip;(x*) and N(I,-) yields:

d
p)=on -2 [ {M“i—‘qoi(x*)zv(l, 7) — Moigy(a*) = N(L, x)} do ()
{v€:K|x| = M}

Hence there exists a number € > 0, such that
ei(1) < CM% f lpi(z) | do(x) < CM* (since f lpi2 = 1)
D D

and this completes the proof of Lemma 2.5.
We need to know where the Neumann function assumes its smallest value.

LemMA 2.8. Take any point e € 0K with |e| = 1. Then for all o > 0 and all
x € K we have

N(o, ) = N(o, |x|e).

Proof. If w is a function, which only depends on r and 6, then

d?u n-—1du d*u du

bt (- 2ot § g

Au = e do *

For a harmonic function % we have that for 0 <0 <=«

Adu — _2du » 9.9
75 = (n — Yrin )2 o (2.9)

Tet 2 ={x€K:0>0 and d/dIN(p, ) > 0}. Lemma 2.8 follows, if we can
show that 2 is empty. Assume that Q2 5= @. From relation (2.9) it follows that
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the function d/dON(p, ) is subharmonic in £ and has boundary values zero on
all of 92 with the possible exception of 02 N R. From inequality (2.6) and the
expansion (2.3) it follows that lim, d/dON(g,2) <O for all r % o. Let h, be
the harmonic function in K such that N(o, ») = |& — ¢|*™" 4 h,(x). We have
that djdflx — o> " = — (n — 2)|w — o) "p|#|sin 0 <O if @« 9. Since
dldf|x — p/* "-—+0 when z—>7r+# o we must have that lim,, d/dOhy(z) <O
for all # > 0, and hence lim sup d/d6ON(p, ) < 0. Recalling (2.4) and Lemma 2.5

we have lim, . d/d0N(o, x)g:: 0. The maximum principle now gives that
d/dON (o, z) < 0 in £, and this contradiction completes the proof of Lemma 2.8.

Now we shall prove a result concerning the boundary values of the Neumann
function.

Lemma 2.10. Take any e € 0K with |e| = 1. Given ¢ > 0, define y(p, x) =
N(p, |xle). Then v 1is independent of the particular e chosen and (o, ) s super-
hkarmonic in R®™ —{ 0}.

Proof. From Bouligand [2] it follows that u(p, ) is two times continuously
differentiable in R" — {0}. Suppose that there exists ry, 75, such that Ay(g, ) >0
in B={x:r < |x| <r). Then e&(g,)=v(o, ) — N(o,:) is subharmonic in
BN K = E. From Lemma 2.8 ¢(p,*) <0 and &(o,*) is0on 0E N 9K and has
normal derivatives zero on 0EN KN B =F. But each y €F is a regular
boundary point and a nonconstant subharmonic function has its normal derivatives
different from zero at a point where it assumes it maximum, see Protter and Wein-
berger [11], p. 67. This contradiction establishes the lemma.

Given x € K we define

d(x) = dist {x, 0K}. (2.11)

Lemma 2.12. Define &(o, *) = y(o, *) — N(o, *), with v as in Lemma 2.10. Given
M > 1, there exists a number C > 0 such that if |x| > Mo, x €K, then

ey — Cd(x)g™r" " < &g, ®) <0
and

de(o,
(II) e(gr x) < O@alrgl_l

Here (x| =71 and o py are defined in (2.2).

Proof. Take any v € 0K with |v] = 1. Since ¢, = const., we have from (2.3)
if o <7, then
= 0%l (g(v) — pi(a*))gi(1)

fle,®) = 6"21 V 4k + (n — 2)
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Lemma 2.5 now yields the second inequality of the lemma. Extend (g, :) to R
by putting it equal to 0 in R* — K. Then ¢(p, *) is superharmonic in R" — {o}.
If we define h(s) = inf,-e(0, %), then to all m > 1, there exists a C > 0,
such that if s> mg then h(s) > — Cp*s”. Pick a number e > 0, so small that
M, =1 —e)M>1 Fix €K with |z|> Mo and let z,€ 6K be a point
with |z — %] = d(x). To prove (I) we need only to consider the case when
d(x) < felx|. Choose bH€R and z € R" such that (z,%,) =0 and 2z is the
outward normal of 0K at wx, Let E ={y€R" |y — z,] < $er, (y,2) <b}
and B = {y: |y — 2y} = ter, (y,2) <b} and let w be the harmonic measure of
B with respect to K. There exists a number C > 0 only depending on the
dimension, such that «(y) <Ce Yy —x, for all y €E. Since e(g,*) is
superharmonic and has boundary values 0 on 8E — B and the boundary values
are > h((1 —e)r) on B, the minimum principle gives &(p, x) > Celr |z —
Zo (1 — e)r) > — Crd(x)e*r®~! for some number O > 0, and Lemma 2.12
is proved.

For a domain 2 on the unit sphere with boundary 0'Q let 1 = A(2) be the
first eigenvalue to the problem du 4 A(A+n —2u =0, u=0 on 902 and
let ¢ = ¢, be the corresponding eigenfunction, normalized so that ¢ > 0. .

Lemma 2.13. Let A be the first eigenvalue of D and let ¢ = @ be an eigen-
Sunction. Then we have that 2 < o, and ¢(p) < (1) for all p € D. Here «, is
given by (2.2).

Proof. Suppose oy < 4. Pick z € 0K with [2] =1 and let e = sign ¢,(2).
The Phragmén-Lindelof theorem (see Lelong-Ferrand [9]) applied to & — r%eqp,(@*)
yields that ep; > 0 in D. But this contradicts the fact that f » 1= 0. Since
¢y and ¢ are given by Gegenbauer functions we cannot have «; == 1. For the
second half of the proposition, suppose that dg/d8(p) = 0 for some p € C — {1}.
Let Dy ={q€D:¢q, > p,}. For D), let «; be given by (2.2). Since C; c C we
have 1, = A(C;) > 2 and we have also oy < 4 < 4;. But this contradicts the first
half of the proposition, applied to D;.

3. An inequality for subharmonie funections

We continue the notation of section 2. In addition we introduce
Krp=KN{x| <R} and Dy = KN{|x| =R}

We take as our starting point the following lemma, which gives a relation between
the values on the symmetry axis of Ky and the averages over Dy, 0 <r <R,
of a smooth function in Kp.
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Levma 3.1, Suppose w is two times continuously differentiable in Ke I f
0 <o <R, then we have that

(o) = V(u, 9, B) + o7 (n — 2)71 / Au(z)e(o, 2)dz + S(u, o, R).
Kr

Here £(g,°) s given Lemma 2.12, y(p,*) by Lemma 2.10,

V(, 0, B) = — o7 '(n — 2) f u(z) dp(o, )iz,

Kr
and
St 0 1) = or'tn — 29 [ e 2222 g

Dgr

Proof. Observing that e(p, x) = d/dve(p,z) =0 for all x € 0K N 0Ky, an
application of Green-s formula to &(g,-) and « gives Lemma 3.1.

In order to make use of Lemma 3.1 we need a preliminary result on the Green
function.

Luvma 3.2. Let G and Gy be the Green functions of K and Kip. Then, with
the notation of Lemma 3.1, we have for all ¢ > 0 and all y € K

& 9) = — o7'(n — 2)-* f Gz, y)Ap(o, 2)dz.
K

There exists a number C > 0, only depending on K, such that if 0 << o << R[2
ond y € Kz, then
E(o, R, y) = Grlo, y) — V(Gr(:s ), 0, R) = OQalRﬁl'
Proof. Since the function F(g, ) = &(p, ") -+ G(g,*) is superharmonic in K,
has boundary values zero, and lim,,, F(9o, 2) = 0, the largest harmonic minorant

of F(o,*) in K is 0, and hence F(p,-) is a potential (by Helms [5], p. 117).
Hence, by Lemma 2.12 and Riesz decomposition theorem, we have for y € K,

(o, 2) = F(o, 2) = oy (n — 2) f Gz, ) dp(o, ).
K

If y, 2z € Ky and 2* = (3R)%[z|~%, then

Gr(z, y) = G(z, y) — h(z, y),
where h(z,y) = (3R/|2|)""*G(z*, y). Now we have
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E(o, B, y) = G(o, y) — h(e, y) — V(G(, 9), 0, BR) + V(h(:, 9), ¢ B).

By the first part of the lemma and by Lemma 3.1 applied to the harmonic function
h(-,y) we get

E(Q’ R, Y) = V(h( Y); 0 R) - k(g’ y) = — S(h(: Y)s 0 -R)

We record the following fact for later use (cf. Protter-Weinberger [11]): If #
is harmonic in a domain 2 ¢ R® and S/ # denotes the gradient of %, then for
all 2z €0

IV w(x)] < OM{[dist. {z, 02}] (3.3)
where M = sup {|u(z)|: x € 2} and C is a number only depending on =.

Since the boundary values of A(-, y) are zero on 0K N 0K,z and k(-,y) >0,
we have that m(y) = sup {|k(z, ¥)|: 2 € Ky} = sup {k{z, y): y € Dyz} and con-
sequently m(y) = (3/2)""* sup {G(z, ¥): z € Dygp}. If we put

== (3/2) max {G(z, x}: x € Kz, z € Dy},

then 4 < o and m(y) < R*"A. There exists a number ¢ > 0 such that
dist {2z, 0K,z} > ¢d(z) for all z € Dy, where d is given in (2.11). From (3.3) and
Lemma 2.12 it follows that ’

dh(x
E(g, R, y) = — S(h(-, y), 0, B >”“f} dr

_fk

and Lemma 3.2 is proved.
The next lemma is the main result of this section.

s w)do(x) —

@> x)

do(z) > — Co*R%,

Lrmma 3.4. Suppose u is a two times continuously differentiable nonnegative sub-
harmonic function in R® and suppose further that Aw = 0 in {|x| << e} for some
e> 0. Then there is a number C >0, only depending on K, such that if
0 <o < R/2, then

u(e) < V(u, ¢, R) + CM(6R, u)(o/R)™.
Here V s given in Lemma 3.1 and «; in (2.2).

Proof. Let h be the harmonic majorant of # in K;z. Then w=h — p in
K., where

Py) = o7 — 22 f (Gly, 2)Mu2)dz, y € Ko,

K3r
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and Gy is the Green function of Kz.
From Lemma 3.2 we have

u(o) = V(u, o, B) + o7} (n — 2)1 f Auz)e(e, 2)dz + S(u, 0, B).

It remains to estimate the last two terms in this equality. We write S(u, o, R) =
S(h, 0, B) — S(p, 0, R). An application of (3.3) and Lemma 2.12 yields

1S(h, 0, 1) < C / M(3R) o™ RP—'do(x) — CM(3R)(o/R)*, (3.5)
remembering that f, = — le (n — 2).

It remains to estimate o n — 2)- fK Aufz — S(p, e, B)=H. An

application of Lemma 3.1 gives (since Ap = — Au) H = V(p, o, R) — plo). If B

is as Lemma 3.2, then a change of the order of integration gives

H=— f E(q, B, y)Auly).

K3r

If we put u(t f ly¥<t (y)dy, then Lemma 3.2 yields
H < Co*RPu(3R). (3.6)
To estimate u we argue as follows: From the Riesz representation formula we have
w(0) = TR, ) — o7 — 2% [ (P — R duy)dy.

|yl<2R

Since we have assumed that Au = 0 for |y| < e, the integral above is convergent.
Since % >0 we have

2R

QR 0 = o' — 27 [ {87 — RRF"du)

But f ST — QR Tu() = (v — 2) [IF @)t Tdt > p(R)(1 — 2R
This implies that there exists a number C > 0, depending only on #, such that
u(R) < CM(2R)R*™™. If we use this inequality in (3.6) we have that

H < C(p/R)*M(6R, u). (3.7)
Combining (3.5) and (3.7) we find that
w(e) = V(p, o, B) + H + S(h, 0, B) < V(u, 0, B) + CM(6R, u)(g/E)*,
and this completes the proof of Lemma 3.4.
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4. The main result

The proof of Theorem 1.2 will be based on the following result, which is interesting
in itself. We continue the notation of section 1.

TarorREM 4.1. Suppose u is subkarmonic in R", n > 3 and there exists a number
7o > 0, such that

Tr,u) <C@A,n)M(r,u) for all r> 7, (4.2)

Then either w is bounded from above or lim, , M(r,u)r " = A exists and
0 << 4 < 0.

We remark that by the construction of C(J, n), 4 is the best possible choice
for the growth of functions satisfying (4.2).

Proof of Theorem 4.1. Let a, be given as in the beginning of section 1. Put
K={x=(r,..,2) ER" 2y > a;lz|}, D={r€K:|x|=1}

Let us make the assumption that « is not bounded from above and that r,
is so large that M(ry, ) > 0. Define

v = (ut — M(ry, u))*. (4.3)

Then » has the following properties:
v >0, vy =0 if |z] <7, and M(r,v) = M(r, u) — M(ry, w) for r >7r, (4.4)
T(r,v) < CA,n)M(r,v) for all r> 0. (4.5)

The relation (4.4) follows from the maximum principle. To prove (4.5), fix
r>0 and put Q= {lz|=1:ut(x) > M@, w)} If fg do < 6.C(2, n), then
(4.5) follows easily. For the case when o = fg do > 0.0(4, n), we have that

T(r,v) = o f {u(re) — M(ry, u)}do(x) < T(r, w) — o, ‘oM (ry, w).

By (4.2) and (4.4) we find

T(r,v) < C4, n)M(r,u) — o7 ' 0M(ry, u) = C(A, n)M(r, v) +
+ (O(A: n) - G;lw)M(T’ ’M) S O(}" ”)M(T’ ?))7

and (4.5) is proved.

Now by Helms [5], p. 71, there exists a sequence {v,}n_; of two times con-
tinuously differentiable subharmonic functions in R®, such that v, | v as
m —> co. Moreover, since v = 0 for |z]| <<r, all v, may be taken to be 0 for
lz] < 7y/2. If we fix o > 0, then we have after a rotation that v(p) = M(p, v).
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A rotation does not change any of our assumptions. We now apply Lemma 3.4 to
all v,, and then let m — co. Then we have for 0 << ¢ << R/2

Mo, v) < V(v, 0, R) + CM(6R, v)(o/R)™. (4.6)
Define P(g,7) = — (n — 2)~4%""'dy(p, ), with |z| = . Then we get from (4.6)
when 0 << ¢ << Rj2:
R
Mo,v) < f T(r, v)P(o, r)dr + CM(6R, v)(o/ R)™ (4.7)
0

Let @ be the first eigenfunction of D (which is 0 on the boundary of
D) normalized so that ¢(1) = 1. Then by the construction of K, ¢ corresponds
to the eigenvalue 4 and @: x> r'p(x*), x € K, is equal to u,(1)u,|K, where
u, is as in section 1. From Lemma 2.13 and the definition of C(4,n) we have

o7t f @(rx)do(x) = C(A, n)r* for all r >0 (4.8)
b

From Lemma 3.1 applied to & we have o' = ff C(Ayr[P(p, r)dr + S(D, o, R).

It is known (see Azarin [1]) that there exists a number C > 0, such that
p(z) < Cd(z) for all z € C, where d(z) = dist {x, 9K}. Hence, if 0 < ¢ < R/2,
then it is easy to see that |S(®, ¢, R)| < Cp*R** and Lemma 2.13 gives when
R— w

ot = / C(A, n)"P(o, r)dr. (4.9)

Define the function H:7rw+>r"2M(r,v). Then H is upper semicontinuous in
[0, o[ and is 0 in {0, 7)]. We want to show that there exists a number C > 0
such that if 0 <1 < R, then

H(r) < CH(R). (4.10)

Put m(R) = max {H(r): 0 <r << 6R}. Thereexistsa g, 0 < ¢ < 6R, such that
m(R) = H(p). If R/2 < ¢ < 6R, then

m(R) = H(o) = M(0)o™" < M(6R)(6R)™*(6R/o)" < 12°H(6R). (4.11)
If 0 <p < R/2, then we have from (4.7)

o'm(R) < m(R) f C(A)PPlo, )dr 4 CM(6R, v)(o/ RY*.
R

Using (4.9) we have
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R

m(R) / C(A)*P(o, r)dr < CM(6R, v)(o/R)™. (4.12)

From (2.3) we have that if ¢ <r, and ¢ € 0K, [e] =1, then

Pt S e)pi(1)ilBi + n — 2)
\V 4k + (n — 2)2

P(o, 1) = — (n — 2)—1an§

Using that ¢i(e) < 0, (2.4) and Lemma 2.5 we see that there exists a 9y > 1 and
a number k> 0 such that r > yp implies

P(o, r) = k(o/r)r L. (4.13)

Hence f;" r*Po, r)dr > f:; > k,(o/R)“R"
Inserting this in (4.12) we find m(R) << CH(6R) and this taken together with
(4.11) proves (4.10). If we put A = liminf,  H(r), B = limsup,,, H(r) and

r—-00

L = sup,. o H(r), then relation (4.10) gives that
0<A<B<L<CA. (4.14)

We will now prove that 4 = B, i.e. limr~*M(r, v) exists. If 4 = co, then this
is clear, so we assume that A4 <C co. If we let R-> oo in (4.7), then ¢ > 0 implies

Mo, v) < C(2) [ M(r, 9)P(o, r)dr, C(3) = CO(Jy ) . (4.15)

To prove that 4 = B, we use a technique similar to Kjellberg [7]. We start
by showing that B = L. If B < L, then the upper semicontinuity of H implies
the existence of a ¢ > 0, such that H(s) = L. From (4.15) we have that

Ls* < f C(Ay*P(s, r)dr,

since p(r) =0 for 0 <r <7, But f:: C(A)r*P(s, r)ydr < f;” C(AWP(s, r)dr = &,
by using (2.10) and (4.9). This contradiction establishes that B = L. If we put
L(R) = maxy,<gH(r), then L(R) <L and limg,, L(R)= B. Assume that
A << B. Pick an B such that H(R) ~ 4 and so large that L(R) ~ B. Take o,
0 < ¢ < R, such that L(R) = H(p) and put t = R(H(R)/L(R))"*. If t <r <R,
then

H(r) = r~*M(r, v) < M(R, v)R™HR[r)" <V H(E)L(R).

We have therefore the following estimate of H:
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L(R) if 0<r<t
Hr) <!V HRLER) if t<r<R
B if BR<r.

This implies that ¢ < ¢. From (4.15) we get

L(R)o* < L(R) f C(Ay*P(g, r)dr - \/H(R)L(R)f C(A)yr*P(o, r)dr -+

+ Bf C(A)r*P(g, r)dr.

We subtract L(RE f * C(A)*P(p, r)dr from both sides of the inequality.
This yields

R ©
(L(R) — vV LR)HR)) / ¥ Po, r)dr < (B — L(R)) f PP(o, dr.  (4.16)
t R

There exists a number C > 0 such that o <t implies that P(g, r) < C(g/r)™r?
and hence

oo

f r*P(o, r)do < C(p/R)*R*". (4.17)

R

We now want to show that there exists a number ¢ > 0, only depending on
the ratio ¢/R, such that

R

f r*P(p, r)dr > c(o/R)*R". (4.18)

t

It is easy to see that it is sufficient to consider the case when R = 1. From (4.13)
it follows that ¢ <y and 0 <<k << 1 implies that
1

f P(g, r)dr > ko* (0, — A)y YR ™™ — 1}

h
The function ¢ — [* #*P(g, r)dr is continuous and strictly positive in [y, 2] and
hence there exists a number ¢ > 0 depending on % such that / " P(g, r)dr > Co™.
This proves (4.18), and combining (4.18) and (4.17) with (4.16) we find that there
exists a number C > 0 such that (L(R) —V H(R)L(R)) < C(B — L(R)). But
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this gives a contradiction, since the right hand side of the inequality tends to 0 as

R — o and the left side tends to B — 4/ AB as R-> oo. This contradiction
arose from the assumption that 4 < B, and hence Theorem 4.1 is proved, since
from (4.4) M(r,v) = M(r,u) — M(ry, u) for r >,

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose w is subharmonic in R®, # > 3, and of lower
order 1, 0< A< oo. Take any &> 0. Then liminf_ _r *"*M(r, u) =0
and from Theorem 4.1 it follows that there must exist a sequence {r,}y,
r,—> 0o as m— oo, such that T(r,, u)>C(A-+ ¢ n)M(r,, u). Hence
lim sup,_ ., T(r, w)/M(r,u) > C(A 4 &,n) for all ¢>0, and letting e—0 we
find that lim sup,, T(r, w)/M(r, w) > C(2, n).

5. Applieations

We will as a first application give a result on the eigenfunctions of the Laplace-
Beltramioperator.

TueorREM 5.1. Suppose 2 is a domain tn 8" ' = {x € R™ |x| = 1}, where
n >38. Let 1 be the first eigenvalue of
ou+MA+n—2u=0, u=0 on 080,

and let @ be the corresponding eigenfunction, normalized so that max,c, (p) == 1.
Then

fﬂwwmzmkm

Q

Let 2 = {ra:r > 0,2 € 2} and define
0 if xe
o —={ .
re(lr) if x€82, r= |z

Then w is subharmonicin R, since 4 > 0 in £’ and |2’ has boundary values
0 on 082. Clearly M(r, u) = #* and from Theorem 1.2 we have

T(r, u)
W) = Qf gdo > C(4, n)

lim sup
r—ow

Remark. Theorem 5.1 may be interpreted as follows: among all domains £ on
the unit sphere with first eigenvalue 1 the quantity f o, Pdo is minimized for
geodesic balls.

The next result should be considered as a mean value anlogue of Hall’s lemma.
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TuEOREM 5.2. Let u be a positive superharmonic function in & cone
K={z= (2, ..., %) 2 > a|z|}

where a€(—1,1) and n>3. Put D={zx€K:|x|]=1} and w:fDdG'
Suppose

f w™ u(re)o(x) > 1 for all r > 0.

D

Then wu(r) >1 for all r> 0.

Proof. Let G and P be the Greenfunction and the Poisson kernel of K. Let
@ be the Martin function of K with pole at infinity. There exists a number & > 0,
a nonnegative measure 4 on 00X and a nonnegative measure u on K such
that for all « € K we have

u(@) = xp(e) + f P(y, )iMy) + f Oz, @)dpu(z). (5.3)
oK K
For any function 2 >0 in K define,
Vb, 0) = — o, (n — 2)72 f h(z)Ay(0, 2)dz, 9 as in Lemma 2.10.
K
If we put #r, b) = o’ fD hrz)do(x) and Q(o,7) = — (n — 2)7 7" Uy(e, 7),

where || =17
V(h, ) = f tr, W)Q (0, 7)do.
0
From the proof of Theorem 4.1 we have V(gp, 0) = ¢(p) for all ¢ > 0. Lemma

3.2 says that V(G(z,*), 0) < G(g,2) for all z€ K. Take any point y € 0K and
let » be the inward unit normal of 0K at y. Then

V(Py, ), 0) = — oy (n — 2)7" | lim Gy + hw, 2)Ay(p, 2)dz <
B0

< lim inf A-1V(G(y + I, *), @) < lim inf k-3G(y + b, o) = P(y, o),
By0 hy0

by Fatouss lemma and (3.2). We now find from (5.3) that u(e) > V(u, o) for all
¢ and Lemma 3.1 yields that 1 = V(1, p) for all p > 0. We see that from the
assumption on % we have u(p) > V(1,9) =1 for all ¢ > 0, and this finishes
the proof of Theorem 5.2,

We can also prove the following result by Huber [7].
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THEOREM 5.4. Let u be subharmonic in R, n > 8 and put

E = {x € R* u(z) < 0}.

Suppose there exists number ¢ >0 and r,> 0 such that f n {m:r}d“ >t

Jor all v > r,. Then there exists a w > 0, such that either w is bounded from above
or lim,  r™*M(r) > 0.

Proof. The assumptions on % implies that T'(r, u) < o7 (0, — C)M(r, u) for

all >, and an application of Theorem 4.1 fulfills the proof.

We remark that our method of proof goes through without change for n = 2,

A > % If 2<%, then we use as an extremal function Re 2*. We summarize this in

THEOREM 5.5. Suppose wu ts subharmonic in C and is of lower order A. Then

we have
, sinwijnd if A<}
lim sup T'(r, w)/ M(r, uy > .
re>© 1 / A if A < -%.
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