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Comparison theorems for the 
one-dimensional SchrSdinger equation 

Leonid V. Kovalev 

Dedicated to the memory of Matts Ess~n 

Abstract.  Using rearrangements of matrix-valued sequences, we prove that with certain 
boundary conditions the solution of the one-dimensional SchrSdinger equation increases or de- 
creases under monotone rearrangements of its potential. 

1. I n t r o d u c t i o n  

Let L~[0,  1] be the set of nonnegative bounded measurable functions on the 
interval [0, 1]. The decreasing rearrangement of a function p c L ~ [ 0 ,  1] is defined by 

p* (x) = sup(t: ~1 {y: p(y) > t} > x}, 

where s is the one-dimensional Lebesgue measure. The increasing rearrangement 

of p is then defined by p.(x)=p*(1-x). Here and in what follows the words "in- 
creasing" and "decreasing" are used in nonstrict sense; however, "positive" means 
"strictly positive". 

Given pEL+[O, 1], consider the s tat ionary one-dimensional Schr6dinger equa- 
tion 

(1.1) u"(x)-p(x)2u(x) =0 ,  x E  [0, 1]. 

By a solution of (1.1) we mean a function with absolutely continuous first derivative 
that  satisfies (1.1) for almost every xE[0, 1]. The question that  is answered in the 
present paper  is: under which boundary conditions the solution of (1.1) changes 
in a predictable manner  when p is replaced by p* or p ,?  The first results of this 
kind were established by M. Ess~n [3], [4] in connection with estimates of harmonic 
measure and the growth of subharmonic functions. Later developments can be 
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found in [5]-[8]. J. M. Luttinger [9] obtained related results in the form of integral, 
rather than pointwise, estimates for the solutions of (1.1). 

We propose a unified approach to this problem, which is based on the analysis 
of permutations of state transition matrices (Theorems 2.1 and 3.1). The main 
tools used are polarization (see Section 2) and a certain partial order of 2 x 2 real 
matrices (Section 4). The following two theorems are easily derived from our results 
on state transition matrices. 

T h e o r e m  1.1. Let pEL+~[O, 1] and let u and t, be the solutions of the initial 
value problems 

u" ( z ) -p (x )2u(x )  = 0, u(0)= 1, u'(0) = a: 

v"(x)-p . (x)2t , (x)  =0, v(0)= 1, v'(0)=-c~, 

where - l < c ~ < l .  Then u(1)_>v(1). This result is no longer true if Ic~]>l. 

The case ~ = 0  of Theorem 1.1 was proved by M. Ess6n [3], see also [7]. 

T h e o r e m  1.2. Let pE L~  [0.1] and let u and v be the solutions of the boundary 
value problems 

u"(x ) -p(x )2u(x)=O,  u(0)--0, a u ( 1 ) + u ' ( 1 ) = l :  

v"(x) -p*(x)2v(x)=O,  v(0)=0,  a v ( 1 ) + v ' ( 1 ) = l .  

where - l < c t < l .  Then u(x)<_v(x) for all xE[0, 1]. This result is no longer true if 
I 1>1. 

Using Theorem 2.1, one can prove further inequalities concerning the values 
of solutions at the endpoints of [0.1]. However. the boundary conditions in Theo- 
rein 1.2 are (essentially) the only conditions of the form 

c t ju ( j )+~ju ' ( j )=y j ,  j =0 .1 .  

under which the global majorization u(x)<_v(x), xE[0, 1], holds. This fact also 
follows from Theorem 2. i; we do not present its proof here (although some indication 
is given in the proof of Theorem 1.2). 

2. P r e l i m i n a r i e s  

Definition 2.1. For any subinterval [a. b] c [0, 1] the corresponding state transi- 
tion matrix T(a, b; p) is defined by the equation (u(a), u r (a))T(a, b; p)= (u(b), u' (b)), 
where u is any solution of (1.1). 

Below we record two elementary properties of T(a,b;p). Here and in what 
follows Aij stands for the entry of the matrix A in the ith row and the j t h  column. 



Comparison theorems for the one-dimensional SchrSdinger equation 405 

L e m m a  2.1. Let [a,b]c[O, 1], peL~[O. 1]. Then 

(2.1) T(a, b; P)21 < T(a, b; P)2~: 

(2.2) det r(a, b: p) = 1. 

Proof. It suffices to prove (2.1) and (2.2) for continuous p. Let u be the solution 
of (1.1) with u(a)--0,  u'(a)=l. Since u is convex, it follows that  

f f u(b) = u'(x) dx <_ u'(b) dx < u'(b). 

This implies (2.1) because T(a,b;p)m=u(b) and T(a,b:p)22=u'(b). In order to 
prove (2.2), let v be the solution of (1.1) with v ( a ) = l  and v'(a)=O. The Wron- 
skian of u and v is constant, since (ulv-ut/) '  =p2uv-p2uv=O. Thus det T(a, b; p)= 
u'(b)v(b)-u(b)v'(b) =u'(a)v(a)-u(a)v'(a) = 1. [] 

Our main result for state transition matrices is the following. 

T h e o r e m  2.1. Let ~: R 2 X ~ R  be a linear function. 
(a) The inequality ag(T(O, 1;p*))<-(P(T(0, 1;p)) holds for every pEL~[O, 1] if 

and only if q~ has the form ~(A)=aA21 +/3A22, where lal <_/3. 
(b) The inequality q~(T(O, 1;p.))<_O(T(0, l :p))  holds for every pcL~[O, 1] if 

and only if q~(A)=aA21 +/3All, where lal <9. 

We will first prove Theorem 2.1 for piecewise constant functions p. It is straight- 
forward to verify that  if p(x)==-y>O on an interval [a, b], then 

( c o s h y ( b - a )  ysinhy(b-a) ) 
(2.3) T(a,b;p)= \y_ls inhy(b_a ) coshy(b-a) " 

Therefore, if a piecewise constant potential p takes a value Pi >0 on [ ( i - 1 ) / n ,  i/n), 
i=1  .... ,n,  then 

T ( 0 , 1 ; P ) = l ~ i  [" cosh(pi/n) pisinh(pi/n)'] 
i=1 \ p ; t  sinh(pi/n) cosh(pi/n) ]" 

Our goal is to describe how the matrix product is affected by rearrangements of the 
numbers Pl, .-. ,P . .  In doing so, we may factor out the scalar term 1-Ii~__l cosh(pi/n), 
since it does not depend on the order of Pl,--- ,Pn- Thus we define 

1 y th(y/n) ) 
(2.4) Mn(y)= y- l th(y/n)  1 , y > 0 .  n = l , 2 , . . .  
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where th is the hyperbolic tangent, more commonly denoted tanh. It is easy to see 
that  such matrices do not commute; in fact, 

(2.5) M n ( y ) M n ( z ) - M n ( z ) M n ( y ) =  ( Y - y )  thYthZn  n (10 -01)"  

If P=(Pl,---,P,~) is an n-tuple of positive numbers, we write p*=(p~, ... ,p*) to 
denote the same numbers rearranged in decreasing order. It seems difficult to com- 

n j ~  n . pare Hi=l  n(pi) and n i= l  M,~(p~ ) directly, so we choose a step-by-step approach 
whose origins can be traced back to the papers [10] and [1]. One can transform the 
sequence (Pl, .-. ,Pn) into (p~, ... ,p~) be successively applying an operation called 
polarization, which is described below. First we extend the finite sequence p by 
letting p~=cc for i<1  and p i = - o c  for i>n.  For an integer m between 2 and 2n, 
the polarized sequence 7rmp is defined by 

max{pi ,pm_i} ,  l < i < � 8 9  
(2.6) (TrmP)i ~--" min{pi ,pm-i} ,  1 < i < n .  5m 

Polarization has the effect of moving larger elements toward the beginning of a 
sequence, so p can be transformed into p* by a finite sequence of polarizations 
71"2, . . .  ~ 71"2n .  

3. Rearrangement  of  s tate  trans i t ion  matrices  

T h e o r e m  3.1. Let ~: R 2x2-+R be a linear function. The following are equiv- 
alent: 

n (i) For any Pl, ... , p n > O ,  (I)(Hi= 1 ~:[n(Pi)) decreases when Pa, ... ,pn are rear- 
ranged in the decreasing order; 

(ii) For any Pl, ... ,pn>0,  (I)(Hnl 2~In(pi)) decreases when (Pl, ... ,pn) is po- 
larized; 

(iii) There exist real numbers a and 13 such that la[ </3 and oh(A) =aA21 +flA22 
for any A c R  2x2. 

Note that  implication (ii) ~ (i) holds because the decreasing rearrangement 
can be obtained by a sequence of polarizations. 

Proof of (i) ~ (iii). Suppose that (b is such that (i) holds. We will identify (I) 
in three steps which involve little besides straightforward computations. 
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Step 1. O(A) does not depend on A12. Suppose that AI~ appears in (I) with a 
positive coefficient. Let a>b>c>O. Using (2.5), it is easy to compute 

(3.1) 

A = M3 (a)M3 (b)M3 (c) - M3 (b)M3 (a)M3 (c) 

(b  b)  a b (  1 c t h 3 )  
c = - t h ~ t h ~  - t h ~  - 1  

According to (i), (I)(A)_<0. Now let a=c+2v /~ ,  b=c+v/~, and c--+co. Since AI~-~ 
and Aij--+O for ( i , j )~ (1 ,  2), it follows that (I)(A)--+cc, a contradiction. 

To exclude the possibility that A12 has a negative coefficient, consider 

(3.2) 

A = M3(a)M3(b)M3(c) - M3(a)M3(c)M3(b) 

(! = - t h ~  th g _1 th a 

with a, b, and c as above. As c--->oo, we have A12 ~ -oc and Aij --+0 for (i, j )  # (1, 2). 
Thus A12 cannot appear in (I) with a negative coefficient either. 

Step 2. O(A) does not depend on All. Suppose that All appears in (I) with a 
positive coefficient. Consider 

(3.3) 

A = M4(a)M4(b)M4(c)M4(d)-M4(a)M4(b)M4(d)M4(c) 

a a b - a t h  4 - b t h  b / d l + ~ t h ~ t h ~  [cd  c 
= ~ d - c J t h 4 t h 4  1 a 1 b b a h b ] "  

a t h ~ + ~ t h ~  - l - a t h ~ t  

Let a = d  3, b=d+2 ,  and c = d + l .  For d sufficiently large we have a>b>c>d, hence 
(P(A)<0. On the other hand, as d--+~c, we have All--+~c and Am, A22--+0. Since 
does not depend on A12, it follows that (I)(A)--+cc, a contradiction. Next, consider 

(3.4) 

A = M4 (a)M4 (b) M4 (e) M4 (d) - ]t14 (a)M4 (c)]~h (b) ]t14 (d) 

(th a/ 
a a d d th  ~ - a t h  

( !  b ) ~  4 l - ~ t h ~ t h ~  
= - th th 1 a 1 d d a . d | 

a ~ - ~ t h  1 - a t h ~ t h ~ ]  

with the same values of a, b, c and d. As d--+ cx~, we have All --+-co and A21, A22-+0. 
It follows that All  cannot enter O with a negative coefficient. 
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Step 3. So far we know that  O(A)=oA21+3A22 for some a , 3 E R .  It remains 
to prove that ]al</3. First note that for any positive integer k and any y>0  we 
have 

(3.5) 

cosh(y/n) ysinh(y/n)) k 
M,,(y) k =C1 y-1 sinh(y/n) cosh(y/n) 

cosh(yk/n) y sinh(yk/n) 
=C1 (y_lsinh(yk/n) cosh(yk/n) ) 

( 1 yth(yk/n)) 
=C2 y-1 th(yk/n) 1 ' 

where Cl=cOsh(y/n) -k and C2=C1 cosh(yk/n). Now for a>b>c>O we have 

M n (a)M,~ (b)Mn (c) n-2 - Mn (b)Mn (a)Mn (c) n-2 

( 1  cth c(n------2) ) 

= C  __1 th c (n -2 )  _1 n 
C n 

with C>0.  The assumption (i) implies 

~- th c(n-2) +3>0. 
C ~t 

Letting c-+0 and n--+oc, we obtain c~+3>0. Next. the identity 

M. (a)n-2 M,~ (b)M,~ (c) - M,, (a)"-2 Mn (c)Mn (b) 

= C  _1 th a ( n - 2 )  - 1  n 
(/ n 

and assumption (i) imply 

a t h a ( n - 2 )  3 < 0 .  
a /1 

As a-+0 and n--+oe, we obtain a - 3 < 0 .  In conclusion. [a[<3. [] 

In order to complete the proof of Theorem 3.1 we must establish the implication 
(iii) ~ (ii). This is the main part of the proof, and it relies on the properties of a 
particular partial order of 2 x 2 matrices, which are derived in the next section. 
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4. M o n o t o n i c i t y  o f  s tate  trans i t ion  matrices  

Definition 4.1. Define a par t ia l  order  on R 2• as follows 

A <_ B ~ A12 <_ B12, A21 <_ B21, A22 <_ B22 and t r  A _< tr  B.  

I t  is easy to see t ha t  this order  is not  s table  under  mult ipl icat ion.  However,  it 
tu rns  out  to be  well sui ted to s t a te  t rans i t ion mat r ices  for the  Schr6dinger  equat ion.  
T h e  following theo rem asserts  t ha t  a s ta te  t rans i t ion ma t r ix  T(a, b; p) decreases (in 
the  sense of  the above par t ia l  order)  when the  potent ia l  p is polar ized with  respect  
to the midpoin t  of [a, b]. For the  remainder  of this section, we fix a posi t ive integer 
n and wri te  

( 1 y t h ( y / n ) )  
M(y) = Mn(y) = y-1 th(y/n) 1 ' y > O. 

T h e o r e m  4 .1 .  Given positive numbers po, .-. ,ps ,  define 
J" max{p,. ,p~_,-}, r _< i s ;  

1 Pr min{p~,ps_~}, r > ~s. 

Then 

(4.1) I I  M ( ~ )  < ~I  M(p~). 
r=0 r=O 

T h e  proof  of  T h e o r e m  4.1 is based on four l emmas  tha t  follow. T h e  first of  
t h e m  describes wha t  happens  when s ta te  t rans i t ion matr ices  are mult ipl ied in the 

reverse order.  To simplify formulas,  we use the  no ta t ion  q~ =th(p~/n), r = 0 ,  ..., s. 

L e m m a  4.1 .  Let (a bd) denote the product s 1]~=o M (p~ ) . Then 

r~-O 

Proof. Let D=ad-bc=l-I:=o det M(p~). Then  

(~ )1 s i s (  1 ~q~> 

~n//~ ~ ~ 
r ~ 0  

8 

(~ ~ ~,~,) (~ ~ 
olIa ~) (c ~ a~)~ [] 
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In the course of proving Theorem 4.1 it will be necessary to compare the upper- 
left and lower-right entries of a state transition matrix. The following lemma makes 
this possible. 

L e m m a  4.2. Suppose that po<Ps. Let a, b, c and d be nonnegative numbers 
such that a<d. Then 

(4.2) (M(po) ( ;  bd)M(p,))u< (M(po) ( :  ~)M(p~))22. 

Pro@ Routine calculation yields 

(4.3) I/ a+cp~176176176 
= ~ c+aPolqo+P21q~(d+bPolqo) 

p~q~(a+cpoqo)+b+dpoqo 
psq,(c+apolqo) +d+bpolqo )" 

It is easy to check that  the function x~-~x -1 th(x/7~) is decreasing for x>0.  Since 
po<p~, it follows that  polqo>p~lq~. Hence 

bPslqs <bPolqo, cpoqo <_cpsq~ and a(1-polpsqoq~) <_d(1-pop21qoq,). 

Together with (4.3) these inequalities imply (4.2). [] 

What  follows is a crucial observation: the partial order introduced above is 
stable under two-sided multiplication by state transition matrices, provided that 
the matrix on the left corresponds to a higher level of potential. 

L e m m a  4.3. Suppose that po>_ps. For i=1 .2  let ai, bi, ci and di be nonneg- 
ative numbers such that 

( a l  b l ) < ( a 2  b2)  
cl dl - c2 d2 " 

M(po) (alcl 
Then 

a2 b2 
bd:)M(Ps)<M(PO)(c 2 d2)M(Ps) - 

Proof. Let 

We need to prove that  

(a bl)(o2 b2) 
c cl dl c2 d2 " 
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In view of (4.3) this relation is equivalent to the following four inequalities: 

psqs(a +cpoqo) +b+dpoqo <_ 0; 

c+aPol qo+p~l qs(d+bPol qo) < 0; 

psqs(c+aPol qo)+d +bPol qo _<0; 

a+cpoqo+p:l qs(b+dpoqo)+psqs(c+apol qo)+d+bPol qo < O. 

Since b, c, d<0  and a + d < 0 ,  the above inequalities follow immediately. [] 

The final lemma contains a special case s=2 of Theorem 4.1. 

L e m m a  4.4. Suppose that po <-p~. Let a. b, c and d be nonnegative numbers 
such that a>d. Then 

(4.4) M(p~) d M(po) <_ M(po) a c 

Proof. In view of (4.3) the relation (4.4) is equivalent to the following four 
inequalities: 

Poqo(a+cpsqs) +b+dpsq~ < Psqs (a+cpoqo) +b+dpoqo; 

c +ap:l qs +pol qo(d +bp~ l q~) <_ c +aPol qo + p; lqs(d+bpol qo); 

poqo(c+ap~lqs)+d+bp[lqs < p~q~(c+apol qo)+d+bpo~qo: 

a+cpsqs +Pol qo(b+dpsqs)+poqo(c+ap;l qs)+d+bp;l qs 

< a+cpoqo+p-jlq~(b+dpoqo)+psqs(c+apolqo)+d+bPolqo �9 

One can easily verify the above inequalities by comparing the coefficients of a, b, c 
and d on both sides and using the inequality a>d if necessary. [] 

Proof of Theorem 4.1. If/5,.=pr for every r, there is nothing to prove. Oth- 
erwise there exists t such that  f t<fs- t  and fr>_f~-r whenever r< t .  Obviously 
0 < t < [ � 8 9  We use backward induction on t. 

Base of induction. Suppose t =  [�89 ( s -1) ] .  Applying Lemma 4.4 with 

(: bd)= 0 .  s isodd: 
1 

we obtain 
s - - t  s - - t  

1-[ < II  
r ~ t  r ~ t  
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Applying Lemma 4.3 t times, we obtain (4.1). 

A_Vis-t-1 Step of induction. Let " ' -**~=t+l  M(p~). Consider two possibilities. 

Case 1. Au>_A2:. Let g~=Ps-~ for rE{t,s-t},  and g~=p~ otherwise. 
Lemma 4.4 

s - - t  s--t 

II M(g~)_< HM(p~). 
r=t r=t 

Lemma 4.3, applied t times, yields 

By the induction hypothesis 

I I  M(g~) <- [ I  M(pr). 
r = O  r = 0  

By 

s 

1-I M(~) < M(g,.), 
r = 0  r = 0  

and we are done. 

Case 2. An<A22.  By Lemma 4.2 

(4.5) (M(pt)AM(ps-t))u <_ (M(pt)AM(ps-t))22. 

Let g~=ps_r for t<r<s-t ,  and g~=p~ otherwise. In view of (4.5) and Lemma 4.1 

s - - t  s - t  

1-[ M(9~) <_ 1-I M(p~). 
r~t r=t 

Lemma 4.3, applied s times, yields 

r � 8 8  r ~ 0  

By the induction hypothesis 

l~I M(p~) _< I~I M(g~), 
r = 0  r ~ 0  

and we are done. [] 
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5. Complet ion of  the proof  of  Theorem 3.1 

Let us recall the setup. Given a sequence of positive numbers P=(Pl , - . - ,pn) ,  
let 2~4(p)=1-[i~=1 Mn(p~), where the matrices Mn(p~) are defined by (2.4). Our goal 
is to prove that  for any Ic~l<l and m=2,  ... ,2n, 

(5.1) aA//(Trmp)2t +~4(Trmp)~2 < a.tcl(p)2t +Jk4(p)22. 

Here 7rmp is the polarized sequence defined by (2.6). 
The reason we are interested in Ad(p) is that 

(fI cosh(p~/n jk4(p) =T(0 ,  1;p), 
--i=1 

where T(0, 1;p) is the state transition matrix for equation (1.1) with piecewise 
p '~ constant potential = ~ i = 1  PiX[(i-1)/n,i/n). Since the scalar multiple on the left- 

hand side is invariant under rearrangements of p, inequality (5.1) is equivalent to 

aT(0, 1; 7rmp)21 +T(0, 1; 7rmp)22 < aT(0, 1; P)21 +T(0,  1; P)22, 

n where 7rmp-~-~i=l(TrmP)iX[(i_l)/n,i/n) is the piecewise constant function corre- 
sponding to the polarized sequence 7rmp. We will first prove (5.1) for 0 < a < l ,  
and then use the connection with state transition matrices to extend this result to 
all l a l< l .  

Proof of (iii) :=~ (ii). Step 1. The inequality (5.1) holds when 0 < a < l .  
Fix an integer m between 2 and 2n. From the definition of 7rmp we see that in 

general not all of the elements of p are rearranged under polarization. When m<_n, 
71- m a f f e c t s  only the elements with indices 1,..., m -  1; otherwise it affects only the 
elements with indices m - n ,  ..., n. We treat these two cases separately. 

First, suppose that  m<n. Theorem 4.1 implies 

m--1 m--1 

Therefore, for j = l ,  2 we have 

A4(Trmp)2,j = ~ Mn((Trmp)i M,(pi 
l = l  z 1 / 2 , l  \ i ~ r n  .J 

___ ~ Mn (Pi p~ = ,s (p)2,j. 
/=1 z 1 l k i = r n  / l , j  
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We see that in this case (5.1) holds for any c~>_0. 
Now suppose that m>n. Introduce the notation 

m--n--1 f l  f l  
A =  H Mn(Pi), B =  J~/ln(Pi) and / 3 =  Mn((Trmp)/). 

i=1 i=m-- n i=m-- n 

Obviously, AJ(p)=AB and .M(rCmp)=A/?. By Theorem 4.1 we have B<_B; fur- 
thermore, Lemma 2.1 implies A21_<A22. Combining these inequalities and using 
the assumption 0 < a < 1, we obtain 

= aA21 tr B + ( A22 -aA21) B22 + A~2 B2~ + A~, B12 

<_ aA21 tr B +  (A22 - aA~l)B22 + A22B21 + A2IB12 

= aAmBll +aA22B21 +A21B12+A22B22 = a(AB)m +(AB)22, 

as required. 
Step 2. 

inequality 
The inequality (5.1) holds when - l_<a<0 .  For now we assume the 

(5.2) M( mp)21 > M(p)21 
M( r.P)22 -- M(P)22" 

Since (5.1) is already proved for a=0 ,  we have .A/[(TrmP)22 ~.A/[(P)22. This inequality 
together with (5.2) yield 

~,t / M(TrmP)21. ) O~ O~.h/[ (Trm p) 21 -b J~  (Trm p) 22 M(TrmP)22 +1 M (TrmP)22 

/" M(p)21 ) 

for - l<c~<0.  (Note that the expression in parentheses is nonnegative by virtue 
of Lemma 2.1.) This completes the proof of Theorem 3.1, modulo inequality (5.2) 
which will be established in the next section (Remark 6.1). [] 

Proof of Theorem 2.1. Since the piecewise constant functions are dense in L~  
with L 1 norm, Theorem 3.1 immediately implies part (a) of Theorem 2.1. The 
part (b) follows by applying (a) to the function/5(x)=p(1 -x ) .  Indeed, if we denote 

T(O, 1;p)=(~cbd), then T(O, 1;~=T(O, 1;p)-I=( ~-c -ab) ' where the last equality 

follows from (2.2). [] 

Remark 5.1. One can define the polarization of functions in the same way as 
it was done above for sequences (see, e.g., [2]). By virtue of Theorem 3.1, the 
statements of Theorems 1.1, 1.2 and 2.1 can be expanded to include analogous 
results for polarized potentials. 
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6. P r o o f s  o f  T h e o r e m s  1.1 a n d  1.2 

We start  with a maximum principle that will be applied to the solutions of the 
Schr6dinger equation with polarized potential. Note that neither p. nor p* satisfy 
the conditions imposed on/5 in Lemma 6.1, but a polarization of p does. 

L e m m a  6.1. Suppose that p,/SEL~162 [O, 1] are such that p<~ on the interval 
[0,7] and p>/5 on the interval [7, 1], for some 7c[0,  1]. Suppose further that the 
following inequalities hold. 

(6.1) 
(6.2) 

T(0, 1;/5)2, +T(0, 1:/5)22 _< T(0, 1;p)m +T(0.1;p)22; 
T(O, 1;#)22 ~ T(O, 1;p)22. 

Let u be the solution of (1.1) with 4(0)=0  and u'(O)=l. Let v be the solution 
of v'-/52v=O with the same initial data. Then for any (~E[-1, 1] one has 

~(w) v(x) 
(6.3) c~u(1)-t-u'(1) -< c~v(1)+v'(1)' we [0,1]. 

Proof. First we consider the case a - -  1. By an approximation argument we may 
assume that  p and/5 are continuous, so that u, vEC2[O, 1]. On the interval [0,7] 
we have (u'v-uv') '=(p2-/52)uv~O, which together with (u'v-uv')(O)=O imply 
u ' v - u v '  <0 on [0, 7]- As a consequence, 

U) t utu--UF / 
v - v ~ -<0 on[0,7] ,  

hence u(x) /v(x)~l imx~oU(X)/V(x)=l  whenever 0 < x < %  By assumption (6.1) 
u(1)+u'(1)>_v(1)+v'(1), so we conclude that inequality (6.3) holds on the inter- 
val [0, 7] with c~=l. 

Suppose that the function w(x)=u(x ) / (u (1 )+u ' (1 ) ) -v (x ) / ( v (1 )+v ' (1 ) )  at- 
tains a positive maximum at a point x0C[7.1]. Since w(1)+w' (1)=0 ,  it follows 
that  x0 < 1. But then the inequality 

w"(x0)- p~(x0)u(w0) #~(x0)v(w0) > 0 
u(1)+~'(1) v(1)+v'(1) 

contradicts the maximality of x0. Hence w(x)<_O for xc[0,  1], which means that 
(6.3) holds with (~=1. In particular, we have 

u(1) < v(1) 

u(1)+u,(1) - v(1)+v'(1)' 
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which implies 

(6.4) u(1) < v(1) 
u'(1) - v'(1)" 

To extend the result to arbitrary hE[ - 1 ,  1], note that  the function ~ ( t )=  
(l+t)/(l+at) is increasing on [0, 1]. Using (6.4), we deduce 

~(~) _ ~ ( ~ ) ~ ( ~ ( 1 ) / ~ ' ( 1 ) )  < ~ ( ~ ) ~ ( , ( 1 ) / ~ ' ( 1 ) )  _ ~ ( x )  

au(1)+u'(1) u(1)+u ' (1)  - v(1)+v'(1) av(1)+v ' (1)  

for any x in the interval [0, 1]. [] 

Remark 6.1. If p and ~rmp are as in Theorem 3.1, then the functions 

n n 

2 2 p =  EPi~[ ( i_ l ) / n , i / n  ) a n d  15= E(7rmP)i~([(i--1)/n,i/n) 
i=1  i=1 

satisfy the conditions of Lemma 6.1. Inequality (6.4) then reads as 

(6.5) T(0, 1;p)21 < T(0, 1;15)21 
T(0, 1;p)22 - T(0, 1;i5)22' 

which proves (5.2). Notice that  there is no circular reasoning here, as we have used 
only a part of Theorem 3.1 that  does not rely on (5.2). 

Remark 6.2. Even though in Lemma 6.1 we cannot set 15 to be p*, the con- 
clusion of Lemma 6.1 is still true in this case. To see this, take a piecewise con- 
stant function p and transform it into p* by a sequence of polarizations, applying 
Lemma 6.1 at each step. This gives inequalities (6.3) and (6.5) with 15---p*. By 
approximation, (6.3) and (6.5) are true whenever pEL+[0,  1] and iS=p*. 

Remark 6.3. It is evident that the functions U(x)=u(x)/(au(1)+u'(1)) and 
V(x)=v(x)/(av(1)+v'(1)) that  appear in (6.3) satisfy the boundary conditions 
U(0)=0=V(0)  and aU(1)+U'(1)=I=aV(1)+V'(1). Since Lemma 6.1 holds with 
iS=p*, inequality (6.3) contains a part of Theorem 1.2. 

Proof of Theorem 1.1. Let u be the solution of (1.1) with initial values u(0)=~3 
and ul(0) = a ,  where lal + [/3[ >0. Changing the sign of u if necessary, we may assume 
that/3_>0. Since (u(1),u'(1))=(u(O), u'(0))T(0, l :p),  it follows that  

u(1) =/~T(0, 1;p)ll +aT(0 ,  1; P)21. 
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According to Theorem 2.1, u(1) can change in either direction when p is replaced 
by p*. I f p  is replaced by p, ,  then u(1) decreases provided la]_<~. [] 

In the following proof we consider more general boundary conditions than those 
in the statement of Theorem 1.2. It turns out that  the choice of conditions in 
Theorem 1.2 is the only possible one, up to normalization. 

Proof of Theorem 1.2. Let T = T ( 0 ,  1;p), where pEL.~[O, 1]. Let u be a solution 
of (1.1) such that 

(6.6) aou(O)+/3ou'(O)=O and a l U ( 1 ) + 3 , u ' ( 1 ) = l .  

Define v in the same way with p replaced by p*. Without loss of generality we may 
assume that 31 >0. Equations (6.6) together with (u(0), u'(O))T=(u(1), u'(1)) form 
a linear system, which we solve to find 

u(0) = Z0(al Z0Tll + 3o31T~2 -,~oc~ T21 - ~ o ~  T22) -~. 

By Theorem 2.1 both of the inequalities u(0)< v(0) and u(0)> v(0) can occur unless 
/30=0. Let fl0=0, then u (0 )=0=v(0 )  and ut(O)=(alT21+fllT22) -1. Since u(0)=  
v(0), we must have u ' (0)<v ' (0)  in order for the inequality u(x)<_v(x) to hold for 
all xE[0, 1]. The above formula for u'(0) together with Theorem 2.1 imply that 
u ' (0)<v ' (0)  holds when [al[_<dl, but may fail when [a1[>~1. Without  loss of 
generality f l l = l  and [al[__<l. Now it follows from Remark 6.3 that  u(x)<_v(x) for 
all xE[0,1]. [] 
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