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Comparison theorems for the
one-dimensional Schrédinger equation

Leonid V. Kovalev

Dedicated to the memory of Matts Essén

Abstract. Using rearrangements of matrix-valued sequences, we prove that with certain
boundary conditions the solution of the one-dimensional Schrédinger equation increases or de-
creases under monotone rearrangements of its potential.

1. Introduction

Let L[0,1] be the set of nonnegative bounded measurable functions on the
interval [0, 1]. The decreasing rearrangement of a function p€ L2°[0, 1] is defined by

p*(z) =sup{t: L'{y:p(y) >t} >z},

where £! is the one-dimensional Lebesgue measure. The increasing rearrangement
of p is then defined by p.{z)=p*(1—z). Here and in what follows the words “in-
creasing” and “decreasing” are used in nonstrict sense; however, “positive” means
“strictly positive”.

Given pe L$°[0, 1], consider the stationary one-dimensional Schrédinger equa-
tion

(1.1 u'(z)—p(x)*u(z) =0. z€[0,1].

By a solution of (1.1) we mean a function with absolutely continuous first derivative
that satisfies (1.1) for almost every z€[0,1]. The question that is answered in the
present paper is: under which boundary conditions the solution of (1.1) changes
in a predictable manner when p is replaced by p* or p,? The first results of this
kind were established by M. Essén (3], [4] in connection with estimates of harmonic
measure and the growth of subharmonic functions. Later developments can be
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found in [5]-[8]. J. M. Luttinger [9] obtained related results in the form of integral,
rather than pointwise, estimates for the solutions of (1.1).

We propose a unified approach to this problem. which is based on the analysis
of permutations of state transition matrices (Theorems 2.1 and 3.1). The main
tools used are polarization (see Section 2) and a certain partial order of 2x2 real
matrices {Section 4). The following two theorems are easily derived from our results
on state transition matrices.

Theorem 1.1. Let pe L3°[0,1) and let u and v be the solutions of the initial
value problems
v (2)—p(x)?u(z) =0. u(0)=1. v'(0)=a:
v (2)=p.(2)20(z) =0. v(0)=1. v'(0)=a,
where —1<a<1. Then u(1)>v(1). This result is no longer true if |a|>1.
The case a=0 of Theorem 1.1 was proved by M. Essén [3], see also [7].
Theorem 1.2. Let pe L2°[0.1) and let u and v be the solutions of the boundary
value problems
o (z)—p(z)?u(z) =0. u(0)=0. cu(l)+u'(1)=1:
V(@) ~p* ()20(2) =0, ¢(0)=0. av(1)+v/(1)=1.
where —1<a<1. Then u(x)<v(x) for all z€[0.1]. This result is no longer true if
lal>1.
Using Theorem 2.1, one can prove further inequalities concerning the values
of solutions at the endpoints of [0.1]. However, the boundary conditions in Theo-
rem 1.2 are (essentially) the only conditions of the form

under which the global majorization u(x)<v(x), €[0.1], holds. This fact also

follows from Theorem 2.1; we do not present its proof here {although some indication
is given in the proof of Theorem 1.2).

2. Preliminaries

Definition 2.1. For any subinterval [a.b]C[0.1] the corresponding state transi-
tion matriz T (a, b; p) is defined by the equation (u(a).u’(a))T(a.b; p)=(u(b), ' (b)),
where u is any solution of {1.1).

Below we record two elementary properties of T'(a.b;p). Here and in what
follows A;; stands for the entry of the matrix A in the ith row and the jth column.



Comparison theorems for the one-dimensional Schrodinger equation 405

Lemma 2.1. Let [a,b]C[0.1], pe L[0.1]. Then

(2.1) T(a,b;p)21 <T(a.b;p)ar:
det T'(a.b:p)=1.

Proof. Tt suffices to prove (2.1) and (2.2) for continuous p. Let u be the solution
of (1.1) with u(a)=0, u'(a)=1. Since u is convex, it follows that

b
u(b)z/ u'(m)dmg/bu'(b)dzgu'(b).

This implies (2.1) because T'(a,b;p)2; =u(b) and T(a.b:p)ea=1'(h). In order to
prove (2.2), let v be the solution of (1.1) with v(a)=1 and v’(a)=0. The Wron-
skian of u and v is constant, since (u'v—uv') =p?uv—p?ur=0. Thus det T'(a, b: p)=
u'(b)v(b) —u(b)v'(b)=1(a)v(a)—u(a)r'(a)=1. O

Our main result for state transition matrices is the following.

Theorem 2.1. Let ®:R**2 3R be a linear function.

{a) The inequality ®(T(0,1:p*))<®(T(0,1;p)) holds for every pc LT[0,1] if
and only if ® has the form ®(A)=aAy, +BAsz, where |a|<3.

(b) The inequality ®(T(0,1;p,))<®(T(0.1:p)) holds for every p€ L[0,1] if
and only if ®(A)=adz +FA11, where |a|<8.

We will first prove Theorem 2.1 for piecewise constant functions p. It is straight-
forward to verify that if p(z)=y>0 on an interval [a.}], then

~+_{ coshy(b—a)  ysinhy(b—a)
(23) T(a,bip) = (y‘l sinhy(b—a) coshy(b—a) ) '

Therefore, if a piecewise constant potential p takes a value p; >0 on {(i—1)/n,i/n),
t=1,...,n, then

n .

cosh(p;/n)  p;sinh(p;/n)
T0,1;p)= . .
( P) H (pi Ysinh(p;/n)  cosh(p;/n)
Our goal is to describe how the matrix product is affected by rearrangements of the
numbers py, ..., pn. In doing so, we may factor out the scalar term []-_, cosh(p;/n),
since it does not depend on the order of p;.....p,. Thus we define

(2.4) Mn(y)z(y_ltﬁ(y/n) yth(ly/")), y>0. n=1,2, ...
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where th is the hyperbolic tangent, more commonly denoted tanh. It is easy to see
that such matrices do not commute; in fact,

(2.5) My (y) My (2) — Mo (2) Mo () = (g—g) th%thf (1 0 )

If p=(p1,...,pn) is an n-tuple of positive numbers, we write p*=(pj}, ..., pJ) to
denote the same numbers rearranged in decreasing order. It seems difficult to com-
pare [, M,(p;) and [T, M, (p;) directly, so we choose a step-by-step approach
whose origins can be traced back to the papers [10] and [1]. One can transform the
sequence (pi,...,Pn) into (p},...,ps) be successively applying an operation called
polarization, which is described below. First we extend the finite sequence p by
letting p; =00 for i<1 and p;=—o0 for i>n. For an integer m between 2 and 2n,
the polarized sequence 7, p is defined by

<i

IN
N+

max{p;, pm_i}, 1 m;
(2.6) I S
min{p;, pm-i}, zm=<1

IA

n.

Polarization has the effect of moving larger elements toward the beginning of a
sequence, so p can be transformed into p* by a finite sequence of polarizations
Ty eee y T .

3. Rearrangement of state transition matrices

Theorem 3.1. Let ®: R?*X2 R be a linear function. The following are equiv-
alent:

(i) For any pi,...,pn>0, ®([T_, Ma(p;:)) decreases when pi,...,pn are rear-
ranged in the decreasing order;

(ii) For any p1,...,pn>0, @(H?zl ,Mn(pi)) decreases when (p1,...,pn) is po-
larized;

(ili) There exist real numbers o and 3 such that |a| <8 and ®(A)=a Az +BA2
for any AcR?*2,

Note that implication (ii) = (i) holds because the decreasing rearrangement
can be obtained by a sequence of polarizations.

Proof of (i) = (iii). Suppose that @ is such that (i) holds. We will identify &
in three steps which involve little besides straightforward computations.
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Step 1. ®(A) does not depend on A;s. Suppose that A;s appears in ® with a
positive coefficient. Let a>b>c>0. Using (2.5), it is easy to compute

A=M3(a)M3(b)M3(c)~M3(b)M3(a)M3(c)
(3.1) (a b b 1 cth%
(8-t me thg(_lthg " )
c

According to (i), ®(A4)<0. Now let a=c+2,/c, b=c++/c, and c—o0. Since A;2—
oo and A;;—0 for (4,5)#(1,2), it follows that ®(A)— o0, a contradiction.
To exclude the possibility that A;2 has a negative coefficient, consider

A= M3(a)M3(b)M3(c)— M3(a) M3(c) M3(b)
(3:2) /b e\ b cf 1 —athg
_(E—l_))thgthg(lthg . )

with a, b, and ¢ as above. As ¢— 00, we have A;;——oc and A4;; —0 for (7, 7)#(1,2).
Thus A2 cannot appear in ® with a negative coefficient either.

Step 2. ®(A) does not depend on A;;. Suppose that A;; appears in ® with a
positive coefficient. Consider

A= My(a)M4s(b)M4y(c )M4(d) My (a)My(b)My(d)M4(c)

a b a b
d 4 4 l ha 1 b —1—éthgth§
4 b 4 a 4 4

Let a=d3, b=d+2, and c=d+1. For d sufficiently large we have a>b>c>d, hence
®(A)<0. On the other hand, as d— oo, we have A1, —oc and As1, Ay —0. Since
does not depend on A4;3, it follows that ®(A)— o0, a contradiction. Next, consider

A= M4(a)M4(b)M4(c)M4(d) '—]L[4((1)M4 (C)AL;(b)AL;(d)

a .a ., d d a

S Nt Nt 2 ath=

(3_4) _ é__ théthf 1 dth4th4 dth4 a 1
A R - B

a 4 d 4 a 4 4

with the same values of a, b, c and d. As d— oo, we have A;; ——00 and Az, A2 —0.
It follows that Ay, cannot enter ® with a negative coefficient.
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Step 3. So far we know that ®(A)=a A, +3Ag; for some o, 3€R. It remains
to prove that |a|<3. First note that for any positive integer k and any y>0 we
have

K cosh(y/n) ysinh(y/n) k
Mn(y)” = ( lsinh(y/n) cosh(y/n) )

cosh(yk/n) ysinh(yk/n)
(3:5) ( lsinh(yk/n) cosh(yk/n) )

B 1 yth(yk/n)
=& (g ")

where C;=cosh(y/n)~* and C2=C; cosh(yk/n). Now for a>b>c>0 we have

My (@) My (b) M (¢)" ™2 — M (b) M (a) My (c)"

1 cth M
~¢ Lipdr=?) _1"
¢ n
with C>0. The assumption (i) implies
2 th cn=2) +3>0.
¢ n
Letting ¢—0 and n— o0, we obtain a+3>0. Next. the identity
M (a)" "2 M, (b) M, (c) — M, (@) 2 M, (c) M, (b)
1 —ath (n=2)
=C 1th a{n—2) 1
a n
and assumption (i) imply
2 th a(n=2) —-3<0.
n

As a—0 and n— o0, we obtain a—~3<0. In conclusion. |a|<G3. O

In order to complete the proof of Theorem 3.1 we must establish the implication
(iii) = (ii). This is the main part of the proof. and it relies on the properties of a
particular partial order of 2 x 2 matrices. which are derived in the next section.
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4. Monotonicity of state transition matrices

Definition 4.1. Define a partial order on R?*? as follows

A<B <= A|3<Bj;, Ay <Bs;, A< By and trA<trB.

It is easy to see that this order is not stable under multiplication. However, it
turns out to be well suited to state transition matrices for the Schrodinger equation.
The following theorem asserts that a state transition matrix T'(a, b; p) decreases (in
the sense of the above partial order) when the potential p is polarized with respect

to the midpoint of [a,b]. For the remainder of this section, we fix a positive integer
n and write

M(y):Mn(y): (y—l tli(y/n) yth(ly/n)) y y>0.

Theorem 4.1. Given positive numbers pg, ..., ps, define
- ma‘x{pnps—r}, r< %5;
Dr=

min{p,,ps—_r}, T>38.
Then

(4.1) I MG <] M)
r=0 =0

The proof of Theorem 4.1 is based on four lemmas that follow. The first of
them describes what happens when state transition matrices are multiplied in the
reverse order. To simplify formulas, we use the notation ¢, =th(p./n), r=0, ..., s.

Lemma 4.1. Let (‘C1 3) denote the product [ _o M(p,). Then

fIM(ps—r):<i Z)

r=0
Proof. Let D=ad—bc=[]’_, det M(p,). Then

o (A TN
=50 &) (Mwen) (5 2)
(2 D=(¢ 8 c

ol
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In the course of proving Theorem 4.1 it will be necessary to compare the upper-
left and lower-right entries of a state transition matrix. The following lemma makes
this possible.

Lemma 4.2. Suppose that py<ps. Let a, b, ¢ and d be nonnegative numbers
such that a<d. Then

a2 (e (7 5)awa) < (s (4 G) M)

Proof. Routine calculation yields

M (po) (i Z) M (p;)

(4.3) :( a+cpogo+p; ' gs(b+dpogo) Pgs(a-+cpogo) +b+dpodo )
ct+apg o+D; ' go(d+bpy ' g0)  Psds(c+apg qo)+d+bpg ' qo

It is easy to check that the function z++z~! th(z/n) is decreasing for 2>0. Since
po<ps, it follows that pg'go>p;lq,. Hence

bp;'qs <bpy'qo. cpogo <cpsgs and  a(l—py psgogs) < d(1—pop; ' qogs).

Together with (4.3) these inequalities imply (4.2). O

What follows is a crucial observation: the partial order introduced above is
stable under two-sided multiplication by state transition matrices, provided that
the matrix on the left corresponds to a higher level of potential.

Lemma 4.3. Suppose that pp>p,. For i=1.2 let a;, b;, ¢; and d; be nonneg-

ative numbers such that
ar b < by
cp di) ~ \cg dy '

M) (210 ) M <G (222 ) M)

a b _ ai b1 - Qg b2
c dj) C1 d1 C2 d2 )

We need to prove that

M(m)(i g)ﬁ!{psK(g ?)),

Then

Proof. Let
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In view of (4.3) this relation is equivalent to the following four inequalities:

Psqs(a+cpogo)+b+dpogo <0;

c+apy ' qo+p;  gs(d+bpy ' g0) <0;
psas(c+apy ' qo)+d+bpy g0 <O;

a+cpogo+ps ' qs(b+dpogo) +psas(c+apy ' o) +d-+bpy g0 < 0.

Since b, ¢, d<0 and a+d<0, the above inequalities follow immediately. [
The final lemma contains a special case s=2 of Theorem 4.1.

Lemma 4.4. Suppose that po<p,. Let a. b, ¢ and d be nonnegative numbers
such that a>d. Then

(4.4) M) (4 0) s < Mew) (¢ ) M)

Proof. In view of (4.3} the relation (4.4) is equivalent to the following four
inequalities:
Pogo(a+cpsqs) +b+dpsqs < psqs(a+cpogo) +b+dpoqo;
c+ap; ' qs+p; qo(d+bp; 'gs) < c+apy 'qo+ps g5 (d+bpg o)
pogo(c+ap; ' qs)+d+bp; g, < psgs(c+apy  qo) +d+bpy qo:
a+cpsgs+py  qo(b+dpsqs) +pogo(c+ap; tgs)+d+bpy g,
< a+cpogo+p; ' qs(b+dpogo) +psqs(c+apy o) +d+bpy  go.

One can easily verify the above inequalities by comparing the coefficients of a, b, ¢
and d on both sides and using the inequality a>d if necessary. O

Proof of Theorem 4.1. If p,=p, for every r, there is nothing to prove. Oth-
erwise there exists t such that f,<fs_; and f,>fs., whenever r<t. Obviously
0<t<[3(s—1)]. We use backward induction on t.

Base of induction. Suppose t=[1(s—1)]. Applying Lemma 4.4 with

M(fs/2). s iseven:

(a b)_ Lo
c d) ( 1). s is odd:

0

we obtain

I_IM(ﬁr) <[[ ).
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Applying Lemma 4.3 ¢ times, we obtain (4.1).

Step of induction. Let A=]’I:Z} M(p,). Consider two possibilities.

Case 1. Aj1>A2. Let g =p,., for r€{t,s—t}, and g-=pr otherwise.

Lemma 4.4
s—t s—t
I M) <] M(p-).
r=t r=t

Lemma 4.3, applied ¢ times, yields

H M(gr) < H M(pr)'
=0

r=0

By the induction hypothesis
S s
T M) <] M),
r=0 r=0

and we are done.

Case 2. A3 <Ass. By Lemma 4.2

(4.5) (M(p)AM (ps—t))11 < (M (pe) AM (ps—t))22-

By

Let g-=p,_, for t<r<s-t, and g,=p, otherwise. In view of (4.5) and Lemma 4.1

s—t s—t

I M) <] M@:).

r=t r=t
Lemma 4.3, applied s times, yields

I M) <] M@,
r=0

r=0

By the induction hypothesis

[TMG) <[] Mg
r=0 r=0

and we are done. [
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5. Completion of the proof of Theorem 3.1

Let us recall the setup. Given a sequence of positive numbers p=(p1, ..., pn),
let M(p)=I]~., Mn(p;), where the matrices M, (p;) are defined by (2.4). Our goal
is to prove that for any |a|<1 and m=2, ..., 2n,

(5.1) aM(TmP)a1 + M(TmP)22 < aM(p)21 + M(p)22-

Here ,,p is the polarized sequence defined by (2.6).
The reason we are interested in M(p) is that

(ITcoshtom) ) M(w) =70, 159)

=1
where T'(0,1;p) is the state transition matrix for equation (1.1) with piecewise

constant potential p=3"]_ DiX[(i~1)/n,i/n)- Since the scalar multiple on the left-
hand side is invariant under rearrangements of p, inequality (5.1) is equivalent to

aT(0,1; m,p)21+T(0, 15 Tmp)az < aT(0, 1;p)21 +717(0, 1; p)22,

where m,p=3 7" | (TmP)iX|(i—1)/ni/n) is the piecewise constant function corre-
sponding to the polarized sequence 7,,p. We will first prove (5.1) for 0<a<1,
and then use the connection with state transition matrices to extend this result to
all |a|<1.

Proof of (iii) = (ii). Step 1. The inequality (5.1) holds when 0<a<1.

Fix an integer m between 2 and 2n. From the definition of 7,,p we see that in
general not all of the elements of p are rearranged under polarization. When m<n,
mm affects only the elements with indices 1, ..., m—1; otherwise it affects only the
elements with indices m—n, ..., n. We treat these two cases separately.

First, suppose that m<n. Theorem 4.1 implies

(HM (TP ) (HM p,). [=1.2.

Therefore, for j=1,2 we have

2 n

M(Tmp)a; —Z(H Mu((rop) (TT Moo

=1 i=m Lj

32(1_1 Map). (}jﬂM(pl) — M(p)a,.

1=1 ] Lj



414 Leonid V. Kovalev

We see that in this case (5.1) holds for any o>0.
Now suppose that m>n. Introduce the notation

m—-n~1 n n
Il M), B= [[ M) and B= [ Mu((mmp)s).

Obviously, M(p)=AB and M(m,,p)=AB. By Theorem 4.1 we have B<B; fur-
thermore, Lemma 2.1 implies A3 <A5,. Combining these inequalities and using
the assumption 0<a <1, we obtain
a(AB)g1 +(AB)ay = @A) By +aAgy By + Az Big+ Az2 Bas

= adg tr B+(Agy—adgy)Bag+ Agg By + Agy Bua

< ady tr B+(Ag —ada )Bap+ Ao Bay + A1 Biz

= Ay B11 +aAg Bay + Ao Bia+ A22 Bay = a(AB) 2 +(AB)22,
as required.

Step 2. The inequality (5.1) holds when —1<a<0. For now we assume the
nequality
(5.2) M(Tmp)n > M(p)m'
M(mmp)2z ~ M(P)22

Since (5.1} is already proved for =0, we have M(m, p)22 <M(p)22- This inequality
together with (5.2) yield

aM(Tmp)21 + M (T, Pp)o2 = < E::I;;z; +1>M(7Tmp)22
< ( Mgp;n +1) (p)22 = aM(p)21 + M(p)22

for —1<a<0. (Note that the expression in parentheses is nonnegative by virtue
of Lemma 2.1.) This completes the proof of Theorem 3.1, modulo inequality (5.2)
which will be established in the next section (Remark 6.1). O

Proof of Theorem 2.1. Since the piecewise constant functions are dense in L$°
with L' norm, Theorem 3.1 immediately implies part (a) of Theorem 2.1. The
part (b} follows by applying (a) to the function p(z)=p(1~z). Indeed, if we denote
(0, l;p):<‘c’ Z), then 7°(0,1;p)=T(0, lgp)_lz(i _ab>, where the last equality
follows from (2.2). O

Remark 5.1. One can define the polarization of functions in the same way as
it was done above for sequences (see, e.g., [2]). By virtue of Theorem 3.1, the
statements of Theorems 1.1, 1.2 and 2.1 can be expanded to include analogous
results for polarized potentials.
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6. Proofs of Theorems 1.1 and 1.2

We start with a maximum principle that will be applied to the solutions of the
Schrodinger equation with polarized potential. Note that neither p, nor p* satisfy
the conditions imposed on § in Lemma 6.1, but a polarization of p does.

Lemma 6.1. Suppose that p,p€ L[0.1] are such thaet p<p on the interval
[0,7] and p>p on the interval [v,1], for some v€[0.1]. Suppose further that the
following inequalities hold.

(6.1) T(0,1;9)21+T(0,1: p)22 <T(0.1:p)21 +T(0.1; p)22;
(62) T(Oa 1;13)22 S T(O l;p)22-

Let u be the solution of (1.1) with u(0)=0 and u'(0)=1. Let v be the solution
of v —p?v=0 with the same initial data. Then for any a€[—1.1] one has

u(z) v(x)

(6.3) cu(1}+u'(1) ~ av{1)+o/(1)’

z€[0.1].

Proof. First we consider the case o=1. By an approximation argument we may
assume that p and p are continuous, so that u,v€C?[0.1]. On the interval [0,]
we have (v'v—uv')' =(p?—p?)uv<0, which together with (u'v—uv')(0)=0 imply
w'v—uv <0 on [0,7]. As a consequence,

i oy ’
(E) ZUU_;“’_SO on [0.4],
() v

hence u(z)/v(z)<lim,_ou(z)/v(zr)=1 whenever 0<zr<+y. By assumption (6.1)
u(1)+4/(1)>v(1)4v'(1), so we conclude that inequality (6.3) holds on the inter-
val [0,v] with a=1.

Suppose that the function w(z)=u(z)/(u(1l)+u'(1))—v(z)/(v(1)+2'(1)) at-
tains a positive maximum at a point zo€[y.1]. Since w(1)+w'(1)=0, it follows
that zo<1. But then the inequality
P*(zo)u(zo) _p*(z0)v(z0)

w(wo) = w)+w'(1)  o(1)+v'(1)

contradicts the maximality of x¢. Hence w(z)<0 for r€[0,1], which means that
(6.3) holds with a=1. In particular, we have

u(1) < v(1)
u(1)+u/(1) ~ v(1)+v' (1)’
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which implies

u(l
I(l

~—

v(1)

(6.4) oL

|

<

2

~—

To extend the result to arbitrary a€[—1,1], note that the function p(t)=
(14t)/(14+at) is increasing on [0, 1]. Using (6.4), we deduce

ue) _u@e®)/vW ) _v@e@@)/v) ()
ou(l)+u/(1) w(l)+w/ (1)~ v(1)+v(1) av(1)+v'(1)

for any z in the interval [0,1]. O
Remark 6.1. If p and 7,,p are as in Theorem 3.1, then the functions
n n
p= ZP?X[(i—I)/n,i/n) and I3=z(7fmp)?X[(i—1)/n,i/n)
=1 i=1

satisfy the conditions of Lemma 6.1. Inequality (6.4) then reads as

T(0,1;p)n1 < T(0,1;p)2:1
T(0,1;p)22 ~ T(0,1;P)22’

(6.5)

which proves (5.2). Notice that there is no circular reasoning here, as we have used
only a part of Theorem 3.1 that does not rely on (5.2).

Remark 6.2. Even though in Lemma 6.1 we cannot set p to be p*, the con-
clusion of Lemma 6.1 is still true in this case. To see this, take a piecewise con-
stant function p and transform it into p* by a sequence of polarizations, applying
Lemma 6.1 at each step. This gives inequalities (6.3) and (6.5) with p=p*. By
approximation, (6.3) and (6.5) are true whenever p€ L°[0, 1] and p=p*.

Remark 6.3. Tt is evident that the functions U(x)=u(z)/(cu(1)+v'(1)) and
(z)=v(z)/(aw(1)+0'(1)) that appear in (6.3) satisfy the boundary conditions
(0)=0=V(0) and aU(1)+U’(1)=1=aV(1)+V’(1). Since Lemma 6.1 holds with
p=p*, inequality (6.3) contains a part of Theorem 1.2.

Vv
U

Proof of Theorem 1.1. Let u be the solution of (1.1) with initial values u(0)=0
and u/(0)=a, where |a|+]3]>0. Changing the sign of u if necessary, we may assume
that 32>0. Since (u(1),%'(1))=(u(0),u'(0))T(0, 1: p). it {ollows that

u(1)=pT(0,1;p)11+aT(0,1:p)2.
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According to Theorem 2.1, u(1) can change in either direction when p is replaced
by p*. If p is replaced by p., then u(1) decreases provided |a|<g. O

In the following proof we consider more general boundary conditions than those
in the statement of Theorem 1.2. It turns out that the choice of conditions in
Theorem 1.2 is the only possible one, up to normalization.

Proof of Theorem 1.2. Let T=T(0, 1; p), where p€ L>°[0. 1]. Let u be a solution
of (1.1) such that

(6.6) aou(0)+5ou’'(0)=0 and oju(l)+5u'(1)=1

Define v in the same way with p replaced by p*. Without loss of generality we may
assume that 8 >0. Equations (6.6) together with (u(0).v'(0))T=(u(1), (1)) form
a linear system, which we solve to find

u(0) = Bo(e1BoTh1 +BoSr Tha — o Toy ~ oS Toz) ™

By Theorem 2.1 both of the inequalities u(0)}<v(0) and u(0)>v(0) can occur unless
Bo=0. Let By=0, then u(0)=0=v(0) and u'(0)= (a1 T2y +31T22)"'. Since u(0)=
v(0), we must have u'(0)<v’(0) in order for the inequality u(z)<v(z) to hold for
all z€[0,1]. The above formula for u’(0) together with Theorem 2.1 imply that
4’ (0)<v’(0) holds when |a;|</3;, but may fail when |a;|>8;. Without loss of
generality 81 =1 and |ay|<1. Now it follows from Remark 6.3 that u(z)<v(z) for
all z€[0,1]. O
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