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Minimizing singularities of generic 
plane disks with immersed boundaries 

Tobias Ekholm(1) and Ola Larsson 

Abstract .  A cooriented circle immersion into the plane can be extended to a stable map 
of the disk which is an immersion in a neighborhood of the boundary and with outward normal 
vector field along the boundary equal to the given coorienting normal vector field. We express 
the minimal number of fold components of such a stable map as a function of its number of cusps 
and of the normal degree of its boundary. We also show that this minimum is attained for any 
cooriented circle immersion of normal degree not equal to one. 

1. In troduct ion  

We say tha t  a map  F :  M - + R  2, where M is a compact  2-manifold with bound-  

ary, is admissible if it is an  immers ion in some neighborhood of OM and  if it has 

only stable singularit ies.  The  singulari t ies  of such a map  F form a closed codi- 

mens ion  one submanifo ld  Z ( F )  of M and  the kernel field of its differential dF is 

t angen t  to E ( F )  at isolated points  called cusps of F ,  see Subsect ion 2.1. We call 

the components  of Z ( F )  the fold components of F .  Let N(F)  denote  the number  

of fold components  of F and  let C(F) denote  its number  of cusps. 

A cooriented circle immersion is an immers ion f :  S1--~R 2 equipped with a 

normal  vector field p. The  normal degree W( f )  of a cooriented immers ion f is the  

degree of the map  ~:St-+S 1, where the source is or iented by the t angen t  vector 

field 7- such tha t  the frame (v, df(r)) represents the posit ive or ien ta t ion  of R 2. Note 

tha t  this  normal  degree equals the tangent ia l  degree of f or; in other  words, its 

W h i t n e y  index [5]. 

Let (f, ~) be a cooriented circle immersion.  Let D be the un i t  disk wi th  OD=S 1 
and  let n be the  outward normal  vector field of 0 D  in D. Then  there exists a map  

F : D - + R  2 such tha t  FtOD= f and  such tha t  dF(n)=~. Note tha t  such a map  

(1) The first author is a research fellow of the Royal Swedish Academy of Sciences sponsored 
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is an immersion in some neighborhood of OD and that.  after an arbitrarily small 
deformation vanishing in some neighborhood of OD. F is admissible. We call such 

a map F an admissible map with boundary values (f, v). 

Theorem 1. Let (f, ~) be a cooriented circle immersion and let F be any ad- 
missible map with boundary values ( f, v). Then C ( F ) ~ W ( f ) mod 2 and the number 
of folds of F is bounded in the following way. 

(a) I f W ( f ) < O  then 

N(F) > max{ �89 l - C ( F ) ) ,  1}. 

(b) I f W ( f ) > l ,  or i f W ( f ) = l  and F is not an immersion, then 

N(F) >_ max{ �89  1}. 

Moreover, for any fixed re>O, m ~ W ( f ) m o d 2  there exists an admissible F with 
boundary values (f; v) such that C(F)=m and such that equality holds in the in- 
equality in (a) i fW( f )<O,  and in (b) /f W ( f ) > 0 .  

Theorem 1 is proved in Section 3. Similar results for stable maps of closed 
surfaces were found by Eliashberg [2]. Effective conditions for a circle immersion f 
with W ( f ) = l  to bound immersed disks were found by Blank, see [4]. 

2. Notat ion,  orientation conventions,  and elementary bordisms 

In this section the notions and basic techniques used in the proof of Theorem 1 
are described. 

2.1. Singularities of  stable maps 

Let F: M--+R 2 be a locally stable map of a 2-manifold to the plane. If OMr 
then let F be an immersion in some neighborhood of OM. A theorem of Whitney, 
see [1], shows that  for any point p ~ M  there are coordinates x=(xl ,x2)  around 
pEM and (Yl,Y2) around F ( p ) E R  ~ such that F=(FI(X), F2(x)) locally has one of 
the following forms: 

(F1 (x), F2(x)) : (Xl, x2), 

(Fl(X), F2(x)) = (x~, x2), 

(F1 (x), F2 (x) ) = (x31 + xl  x2, x2), 

(p is a regular point), 

(p is a fold point), 

(p is a cusp point). 
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Figure  1. T h e  charac ter i s t ic  vector  at  a cusp.  

The structure of the singularity set E (F )  of F mentioned in the introduction is a 
straightforward consequence of this local characterization, see [1]. If p c M  is a cusp 
point of F then, following [2], we define the characteristic vector at F(p) to be the 
vector w tangent to F ( E ( F ) )  at F(p)  which points into the region where the map 
has local multiplicity 1. For convenience, we will also call a vector v in TpM such 

that  dF(v)=w a characteristic vector at p, see Figure 1. 

2.2. P u n c t u r e d  d i s k s  

For m > 0 ,  define an m-punctured disk Dm to be the unit disk D with m open 

balls, with mutually disjoint closures, removed from its interior: Dm = D \ (LJj~__ 1 Bj). 
Then Dm is a 2-manifold with boundary. We consider the boundary component  
ODCODm of Dm as distinguished. We call it the outer boundary component  of 
Dm and denote it OD ~  Other boundary components  of Dm are called inner, we 
denote their union OD*. 

2 .3 .  T h e  t r e e  o f  a n  a d m i s s i b l e  m a p  

Let F : D m - + R  2 be an admissible map. The tree F(F)  of F is the directed 

graph defined as follows. 
(V) The vertices of F (F)  are the distinguished boundary component  OD ~ and 

the fold components of F.  
(E) There is an edge connecting two vertices ~ and 3 of F(F)  if there exists a 

component  EC(D,~\E(F))  such that  ~U/3COE and, if (~r ~ and 13~OD ~ then 
c~ separates/3 from OD ~ Moreover, we direct an edge with one end on OD~ away 
from OD~ and we direct an edge between a~OD~ and 3 r  ~ as above from 

to/3. 
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It is easy to verify that F(F)  is a directed tree. We say that a fold "y in F(F)  is a 

level k fold if the shortest path in F(F)  from OD ~ to 3 ~ is k edges long. 

2.4. Orient ing immers ions  and coor ient ing  their  boundar ies  

Let M be an orientable 2-manifold with boundary O-hi. Let F:  M - + R  2 be an 

immersion. We orient M by pulling back the standard orientation of R 2 and we 

orient OM by the tangent vector ~- such that (n, r), where n is the outward normal 

of OM in M, represents the positive orientation on M. 

Let F:  D,~--+R 2 be an admissible map and let "ycE(F)  be a fold component 

of F. Note that "7 subdivides Dm into two components. We denote these compo- 

nents M(y)  + and M('~) with notation chosen so that OD~ +. Consider a 

tubular neighborhood N('~)='~ x I of % V~Te write ON='~ + U'~-, where "y+ C-hi(y) + . 

2.5. S imple  convex  double  po ints  and s tandard curves 

Let f :  S1--+R 2 be a self transverse immersion. Then the multiple points of f 

are transverse double points. A double point q of f is called innermost if there 

exists an arc AqCS 1 such that flint(Aq) is injective and such that OAq=f-l(q) .  It 
is easy to see that any self transverse circle immersion has an innermost double 

point. 

An innermost double point q together with a specified arc Aq as above of a 

self transverse circle immersion f is called convex if the planar disk Dq bounded by 

f ( Aq) satisfies 

area(BADq) 1 < 
area(B) 2 

for all sufficiently small disks B centered at q. Note that the orientation of S 1 

induces an orientation on f(Aq), which is an embedded circle with one corner at q. 

Smoothing the corner we get an oriented circle embedding. We say that q is positive 
(resp. negative) if the Whitney index of this circle embedding equals 1 (resp. -1 ) .  

A convex double point q of f is called simple if int(Aq) does not contain any 
double point preimages. A self transverse immersion f :  S 1 --+R 2 is a standard curve 
if all its double points q are innermost and admit arcs Aq so that they are convex 

q '* and simple. Note that if f :  S1--+R 2 is a standard curve with double points { j}j=l 
n 

and if Aqj is the specified arc corresponding to qj then f maps S 1 \ U j = I  Aqj to a 

simple closed planar curve with corners at ql,.-. ,  q,,. 
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Figure 2. An elementary bordism of type (0). 

1 t = l  t = O  t = g  

Figure 3. An elementary bordism of type ( - ) .  

t = O  1 t - - 7  

t 

t = l  

Figure 4. An elementary bordism of type (+). 

2 .6 .  E l e m e n t a r y  b o r d i s m s  o f  c u r v e s  

We define th ree  e l emen ta ry  bo rd i sms  of curves.  A bordism from an immersed  

curve f0: S1- -+R 2 to a an  immersed  curve f l :  S 1 --+R2 is an admiss ib le  m a p  F :  S 1 • 

[0, 1]--+R 2 such tha t  Flslx{o}=fo and  FIs~• 
(0) A bo rd i sm F :  S 1 x I - - + R  2 of t ype  (0) in t roduces  two self in te rsec t ion  po in ts  

p and  q, and  q is a s imple  convex double  point  of f l .  T h e  m a p  F is an immers ion ,  

see F igure  2. 

( - )  A b o r d i s m  F :  S 1 x I - - + R  2 of t ype  ( - )  removes  a convex double  po in t  of f0. 

The  m a p  f has  one fold componen t  homotop ic  to  S i x  {�89 wi th  one cusp wi th  

charac te r i s t i c  vec tor  po in t ing  towards  S 1 x {0}, see F igure  3. 

(+ )  A bo rd i sm  F :  S 1 x I - - + R  2 of t y p e  (+ )  in t roduces  one convex double  po in t  

on an  e m b e d d e d  are  of f0. The  m a p  F has  one fold componen t  homotop ic  to  

S i x  {�89 wi th  one cusp wi th  charac te r i s t i c  vec tor  po in t ing  towards  S 1 x{1} ,  see 

F igure  4. 

We nex t  descr ibe  how the  W h i t n e y  indices of f0 and f t ,  bounda r i e s  of an 
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elementary bordism F: S i x I---~R 2, are related. Let n be the outward normal vector 

field of O(S 1 x I) in S i x I .  Coorient f0 by the vector field dF(n)  and f l  by the vector 

field - d F ( n ) .  A straightforward check gives the following. If f0 and f l  are related 
by a bordism of type (0) then 

(1) W ( f l )  = W(fo). 

If f0 and f i  are related by a bordism with one fold without cusps then 

(2) W ( f l )  = -W( fo ) .  

If f0 and f l  are related by a bordism of type ( - )  then 

(3) W ( f i )  -- - W ( f 0 )  + 1. 

If f0 and f l  are related by a bordism of type (+) then 

(4) W ( f l )  = - W ( f o )  - 1. 

Note that  the elementary bordisms (0), ( - ) ,  and (+) above can be combined. 
For example one can construct bordisms which introduces 2j double points via (0), 
creates k simple convex double points via (+),  removes l convex double points via 
( - ) ,  and which has one fold component homotopic to S i x  {�89 with k+l cusps, 
k with characteristic vectors pointing towards S i x  {1} and l with characteristic 
vectors pointing towards S 1 z {0}. Moreover, the Whi tney indices of the boundary 

components of such a cobordism satisfy W(fl)=-W(fo)-k+l. 

2.7. C u s p  e l i m i n a t i o n  

Following [2], we define a surgery operation which decreases the number of 
cusps of an admissible map  F: M - - ~ R  2 . Let F be such a map and let p~=q be 
points in E (F )  which are cusps. Assume that  there exists a smooth arc a in M 
such that  anE(F)=Oa= {p, q} and assume that  the inward normals of Oa in a 
are characteristic vectors of p and q. Then we define a new map F ' :  M - + R  2 by 
redefining F in a neighborhood of a, see Figure 5. Note that  F '  has two cusps less 
than F and that  E ( F ' )  is obtained from E(F)  by surgery on {p ,q}~S  ~ 

2.8.  E u l e r  c h a r a c t e r i s t i c  a n d  i n d e x  

Let F: M - + R  2 be an immersion of a manifold with boundary. Let u be the 

normalized component  of dF(n), where n is the outward normal vector field of OM 
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Figure 5. Cusp elimination. 

in M, which is orthogonal to OM. Orient OM by a tangent vector field T such that  
(v, r )  gives the positive orientation of R 2. Then in analogy with the Poincar~-Hopf 
theorem, see [3], 

(5) x ( M )  ----ind (v), 

where x(M) is the Euler characteristic of M and where ind(v) is the degree of the 
map u: OM--+ S 1. 

3. P r o o f  o f  T h e o r e m  1 

In this section we present a sequence of lemmas which together constitute a 
proof of Theorem 1. 

L e m m a  1. Let F: D - + R  2 be an admissible map. Then the Whitney index 
W(FIoD ) of FIOD satisfies W(FIoD)~C(F ) mod 2. 

Proof. To simplify notation, we use the following convention in this proof: if 
a ~ Z  then (~=amod2EZ2.  Consider the tree F(F)  of F.  For each k let n(k) denote 
the number of fold curves of level k in F(F)  and let e(k) denote the number of 
cusps on the fold curves of level k. We denote the set of fold curves of level k by 

{~j (k)}~(~). Define 
n(k) 

W:~(k) = E W(F("/J(k)• 
j = l  

(Note that  if f :  S 1 - + R  2 is an immersion then W ( f )  is independent of the orientation 
on $1.) Let E(k-1,  k) denote the submanifold of D which is bounded by 

n(k-~) n(k) 

U "/J(k-1)-uU "Tj(k)+" 
j = l  j = l  
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Note that x (E(k-1 ,  k ) ) = n ( k - 1 ) - n ( k )  and that F)~(k-x,k) is an immersion. 
Let m be the largest integer such that n(m)r Then, for "y a fold curve of 

level m, W(F(~/- ) )  = 1 since F(~-)  bounds an immersed disk. Thus 

A 

It then follows from (2)-(4) that 

= 

Assume inductively that 

Equation (5) then implies 

i n  

W+ (J) -= fi(J)+ E ~(k). 
k=j  

A A 

W- ( j -  1) = W + (j) + ~ ( E ( j  - 1, j ) )  
m 

---- fi(J) + Z  5(k)+f i ( j )+f i ( j -  I) 
k=j 

f r t  

= f i ( j -  1)+ E d(k), 
k-~ j 

and another application of (2)-(4) gives 

W+( j -1 )  = f i ( j - 1 )+  5(k). 
k = j -  1 

The final stage of this inductive procedure gives 

W(Floo ) = 1+ Z 5(k) = I+C(F) ,  
k-----1 

which is the statement of the lemma. [] 

L e m m a  2. Let F: D - + R  2 be an admissible map with C ( F ) = m .  Then there 
exists an admissible map G:Dm--+R 2 such that F = G  in some neighborhood of 
OD=OD ~  such that C(G)=O, and such that for all inner boundary components 

5 c O D ~ ,  W(GIs)=0. 

Proof. Let qED be a cusp of F. Let a C D  be a short line segment with one end 
point at q and directed along a characteristic vector at q. If a is sufficiently short 
then aNE(F)=q .  Let B be a ball centered at some point in a such that FIB is an 
embedding and such that BNE(F)=0.  V~ define the admissible map F :  D1--+R z 
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t ~  0 _ 1 1 t - ~  t = ~  t = l  

Figure 6. The cylinder map glued in. 

by letting it agree with F on D \ B  and by replacing FIB by the map H of the 
cylinder S I •  shown in Figure 6. Note that  the boundary component of S i x  I 

where H does not agree with FIo s is a curve of Whitney index zero. Applying 
the cusp elimination procedure to the map  F '  we obtain a map C :  D1 ---~R 2 which 
agrees with F in some neighborhood of OD. Repeating this construction at each 

cusp of F gives the desired map G. [] 

L e m m a  3. Let F: D,~-+R 2 be an admissible map which is not an immersion 
and let (f, v) be the cooriented circle immersion f=FIoDO and u=dF(n), where 
n is the outward normal vector field of OD ~  Assume that W ( F ] , ) = 0  for each 
inner boundary component (~COD~ and that C ( F ) = 0 .  Then the number of fold 
components of F is bounded in the following way. 

(a) IfW(f)<_O then 

N(F)  > max{ �89 l - m  ), 1}. 

(b) I f W ( f ) > O  then 

N(F) > max{ �89 3 - m ) ,  1}. 

Proof. In this proof we use the following notational convention: if F: Dm--+R 2 
is a map and if V is an oriented curve in Dm such that  FIT is an immersion then 
we write W(V) for W(FIT),  suppressing the map from the notation. 

The assumption that  F is not an immersion implies N(F)_> 1. The lemma thus 
follows once we establish 

IW(f)I+I-m<2N(F), ifW(f)<O, 
(6) 

IW(f)I+3-m<_2N(F), ifW(f)>O. 
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We prove (6) by induction on N(F) .  Assume that  N ( F ) = I  and denote its unique 
fold component % Note that  ~/ subdivides Dm into two components M(')~) + and 
M(- / ) - ,  where we use the notation introduced in Subsection 2.4. Furthermore, 
let m + be the number of inner boundary components of Dm which are subsets 
of OM(~) • Consider slight shrinkings of M(~/) • (still denoted by the same sym- 
bols) such that  ~f+ cOM(~)  +. Noting that  F]M(~)• are immersions and using the 
boundary coorientation conventions in Subsection 2.4, we compute, using (5) and 
the assumption on vanishing Whitney indices for inner boundary components, 

W(OD ~  + W ('7 + ) = x(M(~/)+) = - m  + 

and 

W("f-)  = x(M(') ')-)  = l - m - .  

Since F has no cusps, (2) implies 

w ( , f )  = 

(Note that  the orientation of 3,+ in the present setup differs from the corresponding 
orientation in Subsection 2.6.) Thus, 

W(OD~ = m-  - (m + + 1). 

Now, if W(OD ~  <_0 then 

IW(OD~ = 2 - 2 m -  < 2, 

and if W(OD~ then 

IW(OD~247 = 2 - 2 m  + ~ 2. 

This establishes (6) for N ( F ) =  1. 
Let F: Dm-+R 2 be a map with N ( F ) = N  and assume that  (6) holds for all 

admissible maps G: D r - + R  2 with N(G)< N (for all r). Consider the component E0 
of D m \ E ( F )  such that  OEo\OD~ consists of the outer boundary component OD ~ 

and level one folds. Let {'yj }7 (1) be the set of level one folds of F and let m0 be the 
number of inner boundary components of Dm which are subsets of cOEo. By (5) we 
have 

n(1) 

W(OD~ E W('yf  ) = X(Eo) = 1 - n ( 1 ) - m 0 .  
j = l  
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Since F has no cusps, (2) implies that  

Thus, 

(7) 
n(1) 

W(OD~ = - Z (W(3'j-) + 1) - (m0 - 1), 
j = l  

which implies 

(8) 
n0) 

IW(OD~ <_ } - ~ ( I W ( ~ , / ) l §  II. 
j=l 

Note that  M(~/j)- is a punctured disk with outer boundary ~/j. Let mj be 
the number of inner boundary components of M(~j)-. Moreover, Fj=FIM(~f) is 

an admissible map. Let Nj=N(Fj) and note that Nj <N. Let XC{1, ..., n(1)} be 
the subset of j such that Nj=O and m j = O ,  let YC{1 .... , n(1)} be the subset of j 
such that N j = 0  and mj>O and let Z={1,...,n(1)}\(XUY). For jcXUY, Fj is 
an immersion and (5) gives 

(9) w( j) = 

For rE Z, the inductive assumption gives 

(10) IW("/;-)I + 1 _< 2N,.+m,.. 

Equations (8), (9), and (10) imply (with I A] denoting the number of elements 
in the set A), 

IW(OD~ <_ Z ( l + l ) +  Z((mk-1)+l)+~-~(2N~+mr)+]mo-ll 
jEX kGY rEZ 

_< 2 1 X l + m + l +  Z 2N~ = 2(N-]YI-]Z])+m+I. 
r~Z 

Thus, if IYl § IZI ~2 then IW(OD~ + 3 - m < 2 N ,  and it remains only to check that 
(6) holds when IYt+lZl<2  (and N > I ) .  

Assume first IYl=lZl=0.  Then W ( ' ~ j ) = I  for l<j<_n(1).  Equation (7) then 
implies 

W(aD ~ = -2n(1)  - t o o  + 1 = - 2 N  - m +  1 < 0, 
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since N > 1, and 

IW(OD~ 

Hence (6) holds if Igl=rzl=o. 
Assume secondly that  IYI=I and IZI=0. Choose notation so that  1EY. Then 

W ( % - ) = 1 - m l  by (5), and (7) gives 

W(OD ~ = -2 (n(1)  - 1) + (ml - 2) 4-1 - m0 = 17/1 - -  mo 4-1 -- 2N. 

Therefore, if W(OD~ >0 then 

W(OD~ = 4 - 2 m o - 2 N  _< 2N, 

since N > I ,  and if W(OD~ then 

[W(OD~ <2N. 

Hence (6) holds if IYt=I  and tZi=0.  
Assume thirdly that  IYl=0 and IZl=l .  Choose notation so that  1EZ. Then 

(7) gives 

W(OD ~ = -2(n(1)-l)-(W('Tf )+ l)-mo+ l = 2-2n(1)-W('~f )-mo. 

Suppose first that  W ( % ) > 0 .  Then W(OD~ and 

tW(OD~)I + 1 - m  = 2n(1)4- W(?  i- ) +m0 - 2 +  1 - m  

_< 2n(1) + (2N1 - l + m l ) + m 0 - 1 - m  = 2 N - 2  < 2N, 

where the inductive assumption and N1 >0 (since 1EZ) was used. Hence (6) holds 
if W(71)>0 .  Suppose secondly that W(~-)_<0. Then 

W(OD ~ = 2 - 2 n ( 1 ) +  IW(~t{ ) l -m0 .  

If W(OD~ then 

W(OD ~ + 3-m = 5 -  2 n ( 1 ) + I W ( F ( G ) )  I - m 0  - m 

<_ 5 - 2 n ( 1 )  + (2N1 - l + m l )  - t o o  - m  = 4 -  2n(1) 4-2N1-2too <_ 2N, 

since n ( 1 ) > t  (and hence N-NI>I). If, on the other hand, W(OD~ then 

[W(OD~ = 2 n ( 1 ) + m 0 -  [W(-~i-)[-2+ 1 - m  

= 2n(1) - 2 m l  - [  tg  (7i-)1-1 _< 2N. 

We conclude that  (6) holds in the ease IY[=0 and IZ[=I.  
We have thus shown that (6) holds also when IYI+IZI<2 for N(F)=N. This 

completes the proof of the lemma. [] 
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Figure 7. A disk bounded by a figure eight curve. The boundary is dashed and the fold 
is solid. 

L e m m a  4. Let (f, u) be a cooriented circle immersion with W ( f ) = 0 .  Then 
there exists an admissible map F: D - 4 R  2 with boundary values (f ,  u), such that 
N ( F ) = C ( F ) = I .  Moreover, if 7 denotes the fold component of such a map then 
the characteristic vector at the cusp points into M ( ? )*. 

Proof. We first note that there exists such a map F: D--+R 2 if f :  S 1 --+R 2 is 

the figure eight curve with any coorienting vector field, see Figure 7. Note that if 

3' is the fold component of F then the characteristic vector of the cusp of F points 

into M(3,) +. 
Let (f, u) be any cooriented circle immersion with W ( f ) = 0 .  We first transform 

f to a curve of standard form using a combination of elementary bordisms. In 

the construction below we use the coorientation convention for the boundary of a 

bordism described in Subsection 2.6. 

First note that f has an innermost double point, see Subsection 2.5. Let q be 
such a double point and let Aq C S  1 be the corresponding arc where f is injective. 

Fix some a r e  Bq Co e l  such that Bq N Aq = ~  and such that there are no double point 

preimages of f in Bq. We construct a bordism F : S l x I - - + R  2 from f = f o  to fl  

which removes q and introduces simple convex double points with preimages in Bq. 
Moreover, all fold components "y of F have the following property 

(P) "y is homotopic to S 1 x { �89 } and has exactly two cusps with characteristic 

vectors pointing into different components of S 1 x I - ' ~ .  

Assume first that  q is a convex positive innermost double point. Then we 

use a bordism which is a combination of elementary bordisms of types ( - )  and 

(+): we shrink the loop f (Aq)  into a cusp and we create, through a cusp in Bq, a 
small simple convex double point in B~. Note that if fl  is the resulting cooriented 

circle immersion then W ( f l ) = 0  by (3) and (4). and that the fold component of F 

satisfies (P). 

Assume secondly that q is a convex negative innermost double point. We use 

an initial bordism of type (0) along Bq which creates double points p', and q' which 
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t = 0  _ 1 1 t - -~  t - -~  t = 3  

Figure 8. The cylinder map glued in. 

is a simple convex positive double point in Bq. We compose this initial bordism 
with a bordism as above removing q' and introducing another simple convex double 
point in Bq. Note tha t  this bordism satisfies (P). Moreover, the coorientation of 

the resulting f l  is opposite to that  of f and therefore q is a convex positive double 

point of f l -  Also, p'  is a simple convex double point of f l  in B a. We now repeat  
the construction from above removing q and introducing yet another convex double 
point in Bq. 

Assume thirdly that  q is a non-convex positive innermost double point. Then 
we apply an initial bordism shrinking f(Aq),  as shown in Figure 8, creating two 
small positive convex simple double points. Composing this with a bordism as 
in the first case we remove one of these double points and introduce one convex 
double point in Bq. We finally continue the bordism as indicated in the last picture 
in Figure 8 and remove the remaining two double points. The resulting bordism 
has the desired properties. 

Assume fourthly that  q is a non-convex negative innermost double point then 
we first reverse the orientation of f as in the second case and then proceed as in 
the third case. Again the resulting bordism has the desired properties. 

Note that  for all the bordisms above, the number of double points of f l  in the 
complement of the distinguished arc Bq is strictly smaller than the corresponding 

number of double points for f--fo. To continue the construction we consider the 
immersion ] obtained by deleting the small kinks in Bq from f .  Let ql be an 

innermost double point of ] .  If  BqAAq,--0 then ql is an innermost double point 

also of f and the above construction can be continued with Bql CBq. If Bqf-qAql 7t0 
then BqCAql. Choose Bq~ disjoint from Aq and use initial bordisms as in the first 
and second cases above to remove all the simple convex double points from Bq at 
the cost of introducing new convex simple double points in Bql. The construction 
then proceeds as above. 

This procedure is i terated until f has no double points except for simple and 
convex double points with preimages in the distinguished arc. This way we have 
constructed a bordism F: S 1 • 2 of the required form. Moreover, W ( f l ) - - 0  
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1 t = l  t = 0  t = ~  

Figure 9. Removing two convex double points of opposite signs. 

Figure 10. Eliminating all cusps but one. 

and thus the sum of the signs of all the double points must equal +1. 

We remove a pair of a negative and a positive double point using a bordism 
of the following type. Contra~t the loop of the positive double point and add a 
new double point on the negative loop, see Figure 9. (This is a combination of 
elementary bordisms of types ( - )  and (+)).  The resulting curve looks like the 

result of a (0) elementary bordism with reversed orientation we can thus cancel 
the two double points. Also this bordism satisfies (P). We continue this removal 

procedure until we reach a curve (ambient) isotopic to the figure eight curve. Thus, 
there exists a bordism F: S 1 x I - + R  2 such that  f o = f  and f l  is a figure eight curve 
and such tha t  all fold components of F satisfy (P). We complete the map  of the 
cylinder to a map of the disk by filling F(S 1 • {0}) by the solution for the figure 
eight curve discussed above. 

We have constructed an admissible map G: D--+R 2 such that  F(G) is homeo- 
morphic to an interval with integer endpoints and vertices at the integers between 
the end points. Moreover there is one characteristic vector pointing in each direc- 
tion on all fold components except the last (i.e. the innermost) one which has an 
outwards characteristic vector. Applying cusp cancellation we arrive at the desired 
F : D - - + R  2, see Figure 10. [] 
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L e m m a  5. Let (f,u) be a cooriented immersion and let m be any integer 
such that m r  Then there exists an admissible map F:D-+R 2 with 
boundary values (f, u) such that C(F)=m and such that 

(a) i fW(f)<O then 

N(F) = max{ �89 ( IW(f) l  + 1 -C(F)) ,  1 }: 

(b) i fW(f)>O, then 

N(F) = max{ �89 ( W ( f ) + 3 - C ( F ) ) ,  1 }. 

Proof. Assume first that  W ( f ) > 0 .  Let m'=max{rn -W( f ) - l ,O} .  Note that  
m' is even. Create W(f)+l+�89  simple convex positive double points using a 
combination of elementary bordisms of type (0). Compose this bordism with a 
bordism that  removes all these W ( f ) + l +  1 , 5 m double points and which introduces 
l + � 8 9  I simple convex double points. (A combination of elementary bordisms of 
types ( - )  and (+).)  If G: S 1 x I - + R  2 denotes this bordism (90=f )  then N ( G ) = I ,  

C(G)=W(f)  + 2 + m ' ,  and using the orientation convention in Subsection 2.6, 

W(gl ) = - W ( f ) +  (W(f)+ 1+ �89 - (1 + �89 1) = 0. 

Moreover, W ( f ) + l +  7ml ' of the cusps have characteristic vectors pointing towards 
S t • {0} and 1+ �89 of them have characteristic vectors pointing towards S 1 )< {1 }. 
Since W(91)=0  we can complete the map of the cylinder to a map of a disk gluing 
in a map as in Lemma 4. We obtain a map G: D--+R 2 with N ( F ) = 2 .  Since at 

least one of the cusps on the level one fold component has its characteristic vector 
pointing towards the level two fold component and the characteristic vector on the 
level two fold component is outwards we apply cusp elimination and obtain a map 
F : D - - + R  2 with N ( F ) = I  and C ( F ) = W ( f ) + I + m  ~. If m ' > 0  then W ( f ) + l + m ' =  
m and this is the desired map. Assume m~=0 then F is a map with N ( F ) = I  
and C(F)=W(f )+1 and all characteristic vectors of the cusps point towards OD. 
Applying cusp elimination to p pairs of such vectors we obtain 

C ( F ) = W ( f ) + I - 2 p  and N(F)=I+p .  

Thus 

W(f)  + 3 -  C(F) = 2(p+ 1) = 2N(F) ,  

as desired. 

Assume second that  W(f)_<0. Let m ' = n l a x { m - - [ W ( f ) ] + l ,  0}. Note that  m '  
is even. Create 1 , ~m simple convex positive double points using a combination of 
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elementary bordisms of type (0). Compose this bordism with a bordism that  re- 

1 ' double points and which introduces [W(f)[+hm moves all these ~m 1 i simple convex 

double points. (A combination of elementary bordisms of types ( - )  and (+).)  If 
G: S 1 x I - - + R  2 denotes this bordism (g0=f )  then N ( G ) = I ,  C(G)=W(f)+m', and 

using the orientation convention in Subsection 2.6, 

W(gl)=-W(f)-([W(f)l-t-l ,m') 1 ' +~rn =0 .  

Moreover, 1 t ~rn of the cusps have characteristic vectors pointing towards S 1 • {0} 
and IW(f)l+ 15rrz' of them have characteristic vectors pointing towards S 1 • 

Since W ( g l ) = 0  we can complete the map of the cylinder to a map of a disk gluing 
in a map as in Lemma 4. We obtain a map G: D--+R 2 with N ( F ) = 2 .  

Noting that  I W ( f ) l = 0  implies m'>2, we conclude ]W(f)l+Im'>O. Thus, at 
least one of the cusps on the level one fold component  has its characteristic vector 
pointing towards the level two fold component.  Since the characteristic vector on the 
level two fold component is outwards we may apply cusp elimination and obtain 
a map F:D-+R 2 with N ( F ) = I  and C(F)=[W(f)[+rr~'-l. If m ' > 0  then m =  

[W(f)[+m'-i  and this is the desired map. Assume r a ' = 0  (and hence W(f):/=0), 
then F is a map  with N ( F ) - - 1  and C(F)=IW(f)I-1 and all characteristic vectors 
of the cusps point inwards. Applying cusp elimination to p pairs of such vectors we 
obtain 

C(F)=[W(f)[-1-2p and N(F)=I+p. 

Thus 

I W(f)l+ 1-  C(F) = 2(p+ 1) = 2N(F) .  

This completes the proof of the lemma. [] 

Proof of Theorem 1. The first s tatement is Lemma 1. The estimates in (a) and 
(b) follow from Lemmas 2 and 3, respectively. The last s tatement  is Lemma 5. [] 
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