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Carleson's counterexample and a scale 
of Lorentz-BMO spaces on the bitorus 

Oscar  Blasco and  S a n d r a  P o t t  

Abs t r ac t .  We introduce a full scale of Lorentz-BMO spaces BMOLp,q on the bidisk, and 
show that these spaces do not coincide for different values of p and q. Our main tool is a detailed 
analysis of Carleson's construction in [C]. 

1. I n t r o d u c t i o n  and  n o t a t i o n  

T h r o u g h o u t  the  p a p e r  T) deno tes  the  set  of  dyad ic  in tervals  in the  uni t  circle T .  

We wri te  7r x l )  for the  dyad ic  rec tangles  in the  b i to rus  T 2, [I[ for the  length  of 

I and  IR] for the  a rea  of R. We let  (hl)lev s t a n d  for the  Haa r  basis  in L 2 ( T )  and  

(hR)Rr for the  p r o d u c t  Haa r  basis  of L2(T2) .  Here 

1 
hx(t) = in---~ (x1+ ( t ) - x i -  (t)) 

for each dyad ic  in terval  l E D ,  where  I -  denotes  the  left hal f  of  I ,  and  I + de- 

notes  t he  r ight  half  of I .  For  each dyad ic  rec tangle  R=I x JET~, ha is defined by 

hn(s,t)=hi(s)hg(t). For any f E L 2 ( T 2 ) ,  we use the  no t a t i on  fn=(f, hn) for the  

H a a r  coefficients of  f ,  and  

mlf(s)= ~i~ jfzf(t,s)dt, 

mjf(t) = ~ f(t, s) ds, 

1 /nf(t ,s)dtds tuRf(t) = 
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for the averages in the first, second and both variables respectively. We will use "~" 
to denote equivalence of expressions. Given a complex-valued measurable function 
f E L e ( T 2 ) ,  we write #f(A)=[E.x] for A>0. where E~={wET~:[f(w)I>A}, for the 
distribution function of f ,  f* (t) =inf{A:p/(A) < t} for the nonincreasing rearrange- 

ment of f ,  and f**(t)=(1/t)fof*(s)ds. In this note. we introduce a scale of 
Lorentz-BMO spaces on the bitorus and distinguish the spaces in this scale by a de- 
tailed analysis of the Carleson counterexample. Now, given a measurable set ~2_c T 2 
and 0<p,  q<~, the Lorentz space L~'q=LP,q(ft, p~), where #f~(A)=]AI/I~ I is the 
normalized Lebesgue measure, consists of those measurable functions f supported 
in ~t such that  IIf][~,q <~c, where 

{ (q ~oltq/Pf*(t)qdt) 1/q 
(1) I[fll   , 

suptX/pf*(t), 0 < p <  ~c, q--~c. 
t>O 

P,q We write L p'q for the Lorentz space over LT2. The reader should be aware that  
[[fll~5,~ is in general not a norm on L~ "q. Nevertheless. replacing f* by f** in (1) 

and writing []f[[L~.q =[[f**[[[~i q, one gets a norm on L~ "q for l<p<cx~ and l_<q<~c, 

which is equivalent to ((f[[~.~ (see e.g. [SW]). The space L~ 'v, for which we will 

write L~, is then the ordinary L v space Lv(gL p~). We write S[f] for the dyadic 
square function of an integrable function f ,  

{ K-" XR , ,~1/2 
S [ f ] =  Z . . , - - I J R I  �9 

It is well known that IIS[f]l[p~ I[f[Ip for 1 <p<~c. Using interpolation, one has also 
IIS[f]IIL~,~,~[[J'[[L~,~ for l<p,q<~c. For each measurable set f~CT 2, let P~ be the 
orthogonM projection on the subspace spanned by the Haar functions hn,, R ~ER, 
R~Cf/. In particular, for each dyadic rectangle RET~ and for f=~-~R, Er~ hR'fn, E 
L2(T2), one has 

PRf= E hwfu,, 
R' ET~ 
R ' C R  

It is easy to see that  for R=I• 

(2) Pnf = (f - m l f  - rn j f  +mi•215 

We are now ready to introduce our scale of Lorentz-BMO spaces. Let l<p ,  q<oc.  
We denote by BMO/,,q the space of all ~ E L 2 ( T  2) such that 

]]~OIIBMOL~. ~ = sup ]]P~IIL~.~ < oc. 
RET~ 
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In contrast to the one-dimensional situation, functions in these spaces are not nec- 
d essarily in the so-called product BMO s p a c e  Bl%lOprod r the dual of the dyadic 

Hardy space H~(T2):={feLI(T2):S[f]eLI(T2)}. For p = q = 2 ,  a continuous ver- 
sion of this fact was shown in [F]. In [BP], this was shown for all l_<p=q<cx~. 
(For an overview of the theory of BMO spaces in two variables and characteri- 
zations of the duals of H~(T  2) and H I (T  2) in terms of the projections P~, see 
[Be], [Ch], [CF1] and [CF2]). Recall that in the one-variable case, due to the 
John-Nirenberg lemma, the spaces BMOL..~ coincide for all values of p and q. 
We shall see that  this is not the case in the two variables situation. Certainly 
BMOLp,q C_LP'q(T2), since mi(f)=ml(Pl•  and mj( f )=mi(PTxdf) .  Note that 
for f > 0  and s u p p f C f l  1 _Cf~2, 

(3) IlfllL~': = M ~ ]  IIflIL~:. 

It is well known that  for l < p ~ < p 2 < o c  and 1<ql,q2<_oc. we have LP2'q2C_L p~'q', 
and the embedding is continuous. For l < p < ~ c  and l_<ql<q2<oc,  L p'ql C_L re'q2, 
and the embedding is contractive. Therefore for f_>0, suppfC_D, l < p l < p 2 < o c  
and l <_ql, q2 <_oc, 

(4) IlfllL'~'~ --< Op.,p~,q~,q~ 1~211/pI-1/p~ IlfllL~'~" 

Hence, we have 

IIPRflIL~ ~Cp,q~,q=llPRfllL~'~= for l < p l  < p 2 < o c  and l<ql,q2<oc, 

and 

IIPRflILNI'~ ~Cpl,p2,q~,q~llPRfllL~.~ for 1 < p < o c  and 1 <q l  <q2 <c~.  

This shows that  BMOLp~,q2 C_BMOLp,.ql, if l < p l  <p 2 <o c  and l<_ql, q2_<oc, and 
BMOLp,ql C_BMOLp,q2, if l < p < o c  and l<_ql <q2_<OC. We shall see later that  they 
are actually different. L. Carleson showed in [C] in an ingenious geometric construc- 
tion that for each N E N ,  there exists a finite collection ON of dyadic rectangles in 
[0, 1] 2 such that  

(1) the total area of all rectangles is 1, i.e. ~ R e c N  IRI =1,  
(2) the rectangles "intersect heavily", [[-)Re~,N RI <C1/N, 
(3) the rectangles are evenly distributed over the unit square in the sense 

that  a localized version of (1) holds, i.e. for each dyadic rectangle R, we have 

~R,c~N,R,c_R [R'I<_C21RI. 
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Here, C1 and C2 are absolute constants independent of N. Let us write, as in [C], 

T h e o r e m  1.1. 
that 

ON = ~ hRIRI '12. 
RGr 

Hence we have that  

1 andisuppON]_<C1 1 for a l l N E N .  

This construction was originally devised to show that the naive generalization of the 
Carleson embedding theorem to two variables is not true. However, it contains much 
more information. R. Fefferman used the construction to show that  the dual of the 
Hardy space H a (T 2) does not coincide with the so-called rectangular BMO space in 
two variables [F]. C. Sadosky and the second author used the Carleson construction 
to give a new proof of the fact that  the Carleson embedding theorem also does 
not extend to operator-valued measures (first proved in [NTV]), and to show that  
Bonsall's theorem does not hold for little Hankel operators on the bidisk [PSI. 
Here comes our key result, which makes use of a "localization property" of CN. It 
establishes the following behaviour of the functions ON. 

Let l < p < o c  and l <_q<oc. There exists a constant Alp such 

# 
]IONIILP,q ~ IIONIIBMOLp.q ~ ApHCNIIL'q 

for all N E N.  

It was shown in [BP] by the authors that  the spaces BMOrect,m and BMOrect,p2, 
again in contrast to the one-dimensional situation, are different for different values 
of Pl and P2 (for Pl =2 and p2=4, this is contained in [F]). Here we recover and 
improve the results given in [BP] as a consequence of Theorem 1.1. 

T h e o r e m  1.2. If  l < p a < p 2 < o o  and l <_ql,q2 <_oo then we have BMOL~I,q~ 
LP2'q2 ( T 2 ) .  I n  particular, BMOLpl.q~ #BMOL,2,q2. 

Proof. Let ~N :URE~SN t1~. Since Pt <P2 and 0N is supported on f~Y, one has 

HCNIILP, ql ~ Cpl,p2,qt,q2I~-~NI1/pi-1/P2HONIILp2"q2 . 

by (4). Therefore, Theorem 1.1 yields 

IlCNll/~,.= -> Cp, xm=,q,,q~llCNllZ,,.~, IftNI '/p~-x/m 

> (Ap)' --1 Cpl ,P2,ql,q2 CI/P2-1/Pll N1/m - l/p2 Jibs IIBMoL~,-~" 

Since IICNIIL'='o= --< IICNIIBMoLp=,~=, it also follows that BMOLa.q, ~BMOLp2,~. [] 

Moreover, the BMOL,., spaces can also be separated in the second index. 

T h e o r e m  1.3. If  l < p < e c ,  and l <_ql <q2_<~c then BMOL~,a~ does not embed 
continuously into L p'q2 (T2). /n particular, BMOL .... #BMOL,.~2. 
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2. The  Carleson cons truc t ion  

Before we can turn to the proof of Theorem 1.1, we need some more details 
of the construction of ON in [C]. (For a nice description of the Carleson coun- 
terexample, see also [T].) The function ON is obtained by the following process. 
We first identify T 2 with the unit square [0, 1 ]  2 �9 Take a sufficiently fast decreas- 
ing (N+l ) - tup le  (AN,... ,Ao) (for our purposes, we want to assume that  this is 
the tuple 22N, 22N-~, ..., 22~ Now cut the unit square into AN vertical rectangles 
with sides parallel to the axes, of sidelength AN 1 x 1. Discard every second of these 

rectangles, and denote the collection of the remaining rectangles by O(N!u. Then 
cut the unit square into AN horizontal rectangles with sides parallel to the axes, 
of sidelength 1 x A~ 1. Discard every second of these rectangles, and denote the 

remaining collection by (I)(~!~. The collection of the thus kept horizontal and ver- 

tical rectangles, �9 (1) , ,~(i) is denoted by O(N 1). Now we repeat the process and N , x  ~ ~ N , y  ' 

slice each rectangle in (I)(~) vertically and horizontally into AN-1 rectangles with 
sides parallel to the boundary and again discard every second of them to obtain the 
collection 4P(~ ). This process is iterated, until we get ON :=O(N N+I). 

Since the tuple (AN, ..., A0) decreases very fast, each rectangle in ON has a 
unique "history" in the sense that  it is generated from the unit square by a unique 
sequence of vertical and horizontal slicings. In particular, writing ON,x for the 

collection of those RE(I) N which are generated from a rectangle in d)(1) and O N , y  = N , x  

for the collection of those REON which are generated from a rectangle in O(NIv , we 
find that ON,xOON,y=O and of c o u r s e  O N , x U O N , y T - - O N  . Moreover, for REON, we 

have that  REON,~ if and only if there exists R~EO (1) with RCR ~. One direction N,x 

of this equivalence is clear, since each REON,x is generated from some R ~eN, ~ 
and therefore contained in this R'. Conversely, if REON,~, then its width in the 
y-direction is greater than or equal to AN1_1 ... Ao 1 >AN 1. Therefore, R cannot be 

contained in any R~E O~I x. A corresponding statement holds for ON,w 

Another property of the construction we shall frequently use is that  for each 
R~EO~ ), the collection {RE~N:RCR ~} is up to translation and dilation equal 

to the collection ~2v-1. For each REO~ ), we write T (N) for the composition of 

the translation and dilation which transform R into the unit square, T(RN)(R) = 
[0, 1] X [0, 1]. Given a dyadic rectangle Q=Ix  JC_REO(~ ), we have that ~-(RN)(Q) is a 

dyMic rectangle, and IQI = IR] IT~ N)(Q)I. With this notation, our statement above 
means that  for each REO~ ), 

(5) (~-(RN)(Q) :QEON, QC_R} ~-- r  
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and consequently 

(6)  
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ON-1 cT(N) = PRON IR" 

3. P r o o f  o f  T h e o r e m  1.1 

L e m m a  3.1. ForQ=I•149 ), write Q'=v(N)(Q). Then 

IIS[PQON]IIL~ ----IIS[PQ'eN-']IILs,~' 

In particular 

for any R�9 ). 

Proof. Observe that 

Therefore 

IIS[PR~N]II~-~ = I IS[0N-,] I IL,~ 

I{x �9 Q: S[PQON](~) > ~}1 = IRI I{x �9 Q' :  S[PQ, ON-,](~) > A}I. 

(7) #Q({XEQ:S[PQCN](X)>A})=pQ,({xeQ':S[PQ, dPN_I](X)>A}). 

This gives the result. [] 

L e m m a  3.2. If Q �9 [0, 1] x 79, say Q = [0,1] x J ,  and I gl > AN 1, then 

IIS[PQCN,x] IILs~ -- 2-'/~11S[ON-~] II L,~ (s) 

and 

(9) 

In particular 

(10) 

IIS[PQ~N,~]II~$~ : 2-'/~IIS[PQO.~'-,]II~. 

I IS [eN,~] I IL , .~  = IIS[ON.x]IIL~.~ : 2 - ' / ~ I I S [ 0 N - 1 ] I I L ~ ' ~ "  

A corresponding statement holds for QE79x [0, 1], Q=Ix  [0, 1] with IIl>A~v'. 
Proof. We write ~)N,x-~-ERe@N.x hRIR[ 1/2 and ON,y:ERe~p~v,~ hR[R[ 1/2" Note 

that  S[r XR) 1/2 and S[0N,y]=(Y2Re~.~-~ ~R) 1/2 are supported on 
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the union of the disjoint collection of rectangles (I)(1) and (p(1) respectively. In the N , x  N , y  ", 

first si tuation,  we have 

S2[pQr = ~ S2[PRON], 

R C Q  

where the S[PRCN] are equimeasurable for different R and disjointly supported.  

we have, for any RcQ, RCr Then  

Q Cx I{x e Q:S2[PQON,x](x) > A}I = 2 - ~  l �9 R:S2[PRON](X) > A}I. 

Therefore  by (7), for any A>0, 

#Q({z: S[PQON,x](x) > A}) = !l-rx : S[ON-1](x) > A}l. 2 L 

This  gives S[PQCN,x]**(t)=S[r Therefore  we get (8). 
For the second s i tuat ion we have 

S2[pQON,y] = ~ S2[pRnQON], 

where S2[PRNQbN] are equimeasurable  for different R and disjointly supported.  

Then  we have, for any . . . .  N,~, 

[{x �9 Q:  S2[PQCN,~](x) > A}[ = ~ [{x �9 RAQ: S2[pRnQON](X) > A}[. 

Therefore,  using (7) and observing tha t  v(RN)(QNR)=Q for any ReO(~!y we get 

I{x:S[PQCN,y](x)> A}I=( ~ IRI) I{x:S[PQON-,](x)> A}I 

= ~l{x :  S[PQON-1](x) > A}I. 

This gives (9). [] 

Before we can prove the main technical result Theorem 1.1. we need to collect 
some more facts. 
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that 

(11) 

L e m m a  3.3. 
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Let l < p < o c  and l <_ q < cc . There exists Cp >_ ( 21/ P -1)  -1 such 

IIS[PQCN][[L~q<Cp max IIS[r 
l < k < N - - 1  

for any Q e [0,1] x Z). A corresponding statement holds for Q e:D x [0, 1]. 

Proof. We shall prove this statement by induction. It is obvious for N = I .  
Assume it holds true for N - 1 .  We first consider the case Q=[O, 1] x J ,  where 
I JI > A~r t. Using the inequality 

S[PQON] = (S2[pQON,x]-t-S2[PQ4)N,y])I/2 <_ S[PQON,x]T S[PQON, y] 

and Lemma 3.2, we obtain 

{[S[PQCN] [[L~ q ~ IIS[PQCN,xl + S[PQCN,y] IIL~ 
<_ (iS(PQCN.~II{L~q + IIS[PQCN.,IIIL~q 

= 2-1/P(IIS[r IILp.q "b I[S[PQCN-1111L~ q ) 

(12) _<2-x/P(llSI4)N-1]llL~.q+Cpl<k<N_2max }}S[r 

_<2-i/p(Cp+l) max IIs[r 
l < k < N - I  

_<cp max {Is[r 
l < k < N - - 1  

In the case Q=[0, I] x J and A~I_IANI< IJI <A[q 1, we either have PQON=O, or Q C 

R for some R e  ~(~Iz and Q' =7 (N) (Q)= [0, 1] x J '  with IJ ' l>  AN1_1 . Now Lemma 3.1 
and the previous case give 

IIS[PQCN]IILf~q = IIS[PQ, CN_,JlIL~,~ < C.  max II,S'[edll/~,,... 
--  " l < k < N - 2  

Similarly, we get the result for any Q=[0, 1] x J  with IJI<AN 1 and S[PQCNI#O. [] 

Now we can give the proof of the main theorem of the paper. 

Proof of Theorem 1.1. We shall first prove that  there exists a constant Ap 

(13) tlCNllL~',q -< lieN IIBMoL,,.,~ --< Ap 1 < ~ - : ,  IlCkJlL,',', 

for all N E N. For such a purpose we will show that 

(]4) IIS[PQCNJIIL~. < B. m~x IIS[OkIIIL,',~ 
- -  ~ l < k < N - i  
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for all N E N  and all QETr Now from Lit t lewood-Paley theory (albeit with a 
different value of the constant Bp) the result will follow. We shall use induction 
again. The case N =  1 is trivial. Assume the statement holds true for N - 1 .  First 

consider the case when Q is contained in some rectangle R in (I)~) . Using Lemma 3.1, 
we obtain 

IIS[PQCN]IIL~q < Bp max ]]S[~)k]liLP,q. 
- -  l < k < N - 2  

Consider now the case when Q is not contained in any RE(1)~ ). Note that if Q-- 
Ix J, with IJl<_A~v I, then PQ~N=PQCN,x. This is due to the fact that IJ'I>A~' 
for any R ' : I ' •  J'ceP(~)y,, So either QC_R for some RC(I)(~!~,, or PQCN : 0 .  Similarly, 

one can deal with the case Q=I • J, where III A N  1. Hence it remains to consider 
the case that  Q=I • J, where [I I, l J I-> AN 1. Let us write 

= Z S:[PQ '0N] + 

Observe now that  

S2[PQON,x]= E S2[PRnQON]' 

RAQ~O 

where the S[PRnQCN] are equimeasurable for different R, and disjointly supported. 
Then we have 

I{xeQ:S:[PQCN, ](x)> Z 

RNQ~O 

]{x E RAQ: S:[PRnQCN](X) > A}I. 

Hence, for any RC(I)(~I ~ with RNQ•O, we can write 

I{xeQ:S [pQCN,x](X)> IJl ~xE RNQ:S2[PRnQCN](X)> A}I" 
2R  ~ 

This gives that  for any A>0, 

/ z q ( { x  : S[PQdPN,x](X ) > A}) = IJI IRAQI #Rnq({x: S[PRnQdpN](X) > A}) 
2[nl IQI 

= �89 : S[PRnQCN](X) > A}). 

Hence S[PQCN,x]** (t) = S[PRnpCN]** (2t), and consequently 

[IS[PQCN,x][[L~.q = 2-'/P[IS[PQnRCN]IILPn,~Q. 
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Notice that  RAQCREO(~!x, and that  T(R N) (RNQ)=I x [0, 1]. Applying Lemmas 3.1 
and 3.3, we have 

(15) 

IIS[PQON,x] IIL~ = 2-1/PlIS[PQnRON] IIL~~Q 
~_ 2-1/PlIS[PI• 0 ,10N-1] I IL 'L<% ,, 

<_c~2 -lIp m a x  I I S [ o d l l L ~ .  
l < k < N - 1  

A similar argument shows that  

IIS[PQCN,~]IIL~ ~ Cp2 -lIp m a x  IIS[OdlIL~-~. 
l<k<N-1  

F i n a l l y ,  s i n c e  S[PQCN] <_S[PQON,x] +S[PQON,g], we get  

IIS[PQON]IIL~'~ <--IIS[PQON,x]IILfJ+IIS[PQON.~]IIL~'~ 
<_Cp2 l-lIp m a x  IIS[Odl lLp.q.  

l<k<N--1 

Letting Bp=Cp21-Up, we finish the proof of (13). To finish the proof, by (13), 

it suffices to prove that there exists a constant Dp such that IIS[ON_I]][Lp.q<_ 
DplIS[ON]IILp,q for all N E N .  Since S2[ON]=S2[ON.x]-'~-S2[ON.y], w e  have, by Lem- 
ma 3.2, that  

IIS[ON]IILp,~ = II(S2[ON.~]+S2[oN,y])I/211L~.~ 
> IIS[ON,~]IIL~.~ = 2-1/PlIS[ON-1]IIL . . . .  

This completes the proof of Theorem 1.1. [] 

4. P r o o f  o f  T h e o r e m  1.3 

For N E N ,  l e t  (~N=S2[ON]=ERE~p.\. XR. Using that  PQ(S2~?)=PQ(S2pQ~) for 
any Q E 7~ and q0 E L 2 (T2), one easily gets the following as an immediate consequence 
of Theorem 1.1. 

Remark 4.1. For l_<p< vc and 1 _<q<_ ~c, there exist constants ap.q, Ap,q >0 such 
that  

Ctp,q[l(tONllLp.q ~__ II~.gN]IBMOLp.q ~__ A'pll~NllLp,q 
for all N E N. 

Here comes the key lemma for the proof of Theorem 1.3. 
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L e m m a  4.2. Let l < p < ~ ,  l<qx,q2<cx~ and e>0.  Then there exists an in- 
creasing sequence (Nj) je  N and a constant Bp,q~.q2 such that for each M E N  and 

qe{ql ,q2},  

M - - ( I - - 2 - M ) r  _ [[CPN, IIL... 

and 

< Bp,q, ,q2 ( m +  (1 - 2-  M)e). 
_ I t ~ N j I I ~ , , ~  B M O ~ , . ~  

Proof. We prove this by induction. The result trivially follows for M = I  
choosing N1=1. Suppose we have already found N1, . . . ,NM-1 .  For qC{ql,q2} 

let ON=~gN/I[~ONI[Lp,q and ~(q) ~-,M-1 ,,, JM-I  =2.,j=a ~N~/II~N~ IIL'~. Let C = C ( M , p ,  ql, q2) = 

2SUpqe{ql,q2) ][f2~)_1][o~, and define 

~ />={( t , s )  E T 2 : 0 N ( t , s ) > C }  and ~ t_<=T2 \Q>={( t , s )  ET2:~N( t , s )<_C},  

which depend on N, M, p, qa and q2. We first observe that 

(q) + ~  * t { (~U[~>)*(t) f o r O < t < [ f t > [ ,  
(f)~/-1 :Nln>) ()= tr(q) ~*:t_lqt>]) fort)la>l, 

and therefore 

{ = ( 0 U ] a > ) * * ( t ) f o r  0<t_< Ifl>l, 
(f~)_ 1 +0NI~>)**(t) (q) ** [~>[. 

( f i t / - 1 )  ( t)  for  t > 

Altogether, 

(q) + -  q a q 
]]f~l-1 ~N]]Lp,q ~--[[f~)I +0NI  >llLv,q 

>-[IONIa> q (q) ** q P/q-~ [[Lp,q + (fM-1) (t) t dt 
> i  

>ll~Nla>ll~-:q+ ~(q) II~,q s  - , JM-1 -- (f(~)- 1)** (t)qt p/q-1 dt 

+ r q f laxlrr(q) "l**[t'lq~P/q--1 dt. 
>(1--]]~NI~<_IIL'~) q ~M-1 LP'q-- L kJAl--l] k~] ~ 

Using that IIONla< IIL,~--<llC)m< IIL~ <--C[f~N[ lip and that I~Nl--~0, as N ~ ,  we 
can then find N c N ,  N > N M _ t ,  such that 

(1--11~Nla< IILp,q) q > 1-- 2M+---- ~ for qE {ql,q2} 
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and 

f(o (f(~)_ll**(t)qt q/v-1 dt < c 2M+1 fo rqE{ql ,q2} .  
,laNI] 

Hence choose such an N and apply the induction assumption to obtain 

(q) + ~  q c r 
[[f~}-i ~N[[L2,,q >-- 1--2--~-~'+(M--1)--(1--2-(M-I))r = M - - ( 1 - - 2 - M )  r 

Now we will show that  (Nj)je N can be chosen in such a way that  there exists a 
constant Ap,ql,q ~ such that for each M c N ,  
(16) 

PQ ~/2 j <av,q~,q~lQtq/P(M+(l-2-M)e) for qE{ql,q2}. 

Let us take QE7~ and w r i t e  ~Q,N~-S2(pQ~N). We first show that  for a suitable 
constant Ap,q~,q 2 independent of N and Q, 

(17) ][~DNHLP,q <~ Av,q,,q2]Q[ q/p. 

Indeed, using the boundedness of the dyadic square function and Theorem 1.1, one 
gets 

~PQ,N ~.q~" S(PQON) 2;2.p,2 

< 
- -  , 1 / 2  II~oNII/~.. 
<_ iQiq/vCp,q Ox~/2 BM2qO~ 

2q 

_< iQlq/p(A,2.)Uqcv,q 0N1/2 U.--L~ 
[[~NII/,,~ 
$2r ~p,. 

<-]Q]q/~(g'2v)2qc'v'q ][~gIInp,q 

= Ap,q, ,q: IQI q/p, 

where Ap,ql,q ~ =-sup~eiql,q2}(A~p)2qc~,,q and the constant Cp,q contains the bounds 
appearing from the square function norm and the equivalence norm between L 2p'2q 

and L2. p'2q. The inequality (16) is now easily checked for M = I  and N l = l .  As 
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before, fix qE{ql,q2} and assume tha t  N1,..., NM-1 satisfying (16) have already 
been found. By the Carleson construction, we know that  

Nj 

A -2 for each R E (I)Nj I R I = I I A ;  1> N~ 
i=1 

Assume first tha t  IQI--<AN2_I �9 Observe that  in this case 

M-1 CN, 
PQ ~-~ 1/2 - -0 '  

�9 = II~N~ IIL~.q 

hence, applying (17) for any N>NM-1, we obtain 

1/2 I- --~1/2 = < Ap,q,,q:IQIq/P" 

Assume now tha t  IQI>AN21 �9 Let 

Then 

C=C(ql,q2, M) = 2 sup 
qC { ql ,q2t 

[ I f~.~) 1 A 2 . 

M-1 ~)Nj ](t,s)<f~)_l(t,s) < C S 2 Pv ~ 
1/2 

As before, we write ?N =~N/]I~N IIL~.q, 

~> = { ( t , s )  E T 2 : ~ N ( t , s )  > C }  and 

We have 

and 

M--1 (~Nj 

PQ " E ']~Nj L~,~1/2 S 2 

for all Q E T~. 

~_< = { ( t , 8 )  E T 2 : ? N ( t , 8 )  < C}.  

M - 1  

+ ~,1/2 =$2 PQ IIr L~.+ II+NIIL~,+ = ~/~ 

~N,Q § 

s 2 Pc ~ -J (t) 

= II~NIIL~,~ a > )  "(t) 

M--1 Cxjl/2 ]).(t_l~>l) 
(S2[Po ~ I}~njJlsp,,~ 

for O < t <  I~>h 

for t > [ft>l. 
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Thus, using continuity of addition in the LP. 'q quasinorm and that  Ilq~Nl~< IlL~.a--+0, 
as N--+c~, for qE{ql,q2}, one has for sufficiently large N, 

$2 [ M-1 r aN )]  ~p.q 

s2[  ] ]. (18) = ~ r ~N,Q 
1/2 + 

�9 = II~Nj LP.', II~NIIL".'~ 

.< [ ._1 ~ 1 
II~N ILL,',', +$2 PQ 1/2 % 

_ = I I ~ N ~  ILL,, ,, J 
~N,Q ~> qLp,q 

II~NIIL~.~ 

M-1 
- 1/2 

�9 = II~Nr L~,~ 
qON'Q f~> L qp'q "I-A-2q/p E 

+ II~NIIL,'.', --''N,,, _~ 2~+2'  

For sufficiently large N and qE{ql, q2}, 

(19) f0 $2 PQ .= 
)q 

I1~ (t) (t+lf~>l) q/p-a dt 

< PQ ~ 1/2 ~- 2~--X~NM-, " 
- -  = I I ~ N j I I L , - q ]  

Indeed, if q<_p, then (tWl~2>J)q/p-1 <t q/p-1 and the estimate holds trivially. For 
q>p, one uses (t+lf2>l) q/p-1 <_ (t+l~2NI) q/p-1 and then the Lebesgue monotone 
convergence theorem. Therefore, from the previous estimates, 101 >AN2,_,, (17), 
(18), and (19), we obtain 

$2 PQIj~I  11~gNj Lpml/2 ~ iiq~gNiiLp ml/2 

~N,Q ~> . qp.q -2q/p 
< II~'NIIL".'~ +ANM-' 2M+2 

+Zl(UE o;  
< ~PN,Q q -2q/p e 
-- []WN][LP,q +2ANM-' 2M+2 ~- PQ = H~Nj liLy.q1~2 J 
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--2qlp . . . .  <Apq, q~lQiqip+Ava~,q=lOlq/V(M_l+~_ e )+2AN._~2 M+2z 2M-1 

=Ap,q~,q=lQIqiP(M+(z-~-~M)). 
Thus by choosing N M > N M _  1 sufficiently large, the induction proceeds. To finish 
the proof of Lemma 4.2, remark that  

. =  I I ~ N j l I L , , ~  _ I I<ZN: L-<',<, 

M 

-<Aq'qt'q22q ~2[j~1"= "~N,PQ+NJL,.,I/2 ] 7p, q [] 

Proof of Theorem 1.3. It suffices to show the theorem for the case q2 < cr So 
let l < p < o c  and l_<ql<q2 <oc.  Assume towards a contradiction that BMOL,.~2 
embeds continuously into L p,ql. Since by Remark 4.1, ll~N I1Lp-, ~II~N IIBMOLp,q for 
all p, q and N, it follows in particular that  I]~.9NIILv.ql "~]]~NIILP,"2" Let c>0.  For 
M E N ,  let 

M 
~N~ 

f ( ' )  = ~  II~j ILL.., ' j=l 
where (Nj)jE N is the sequence from Lemma 4.2. Then 

M - g  <_ IIf (M) ql 

< ]If(M) I]q~oL.,~2 

= sup ItPQ, f(U)ilqL%~ iQI -q'lp 
QE~ 

--< 2ql 1/2 
Q~'r<.. _ II<,o.,'v., IIL~.<'I L,>.<,:, 

Qe'r<. _ II~o.,'v., ILL,,.,= J 

< Bq, tq2 (M+~)q, tq2 
- -  P , q l  , q 2  

by Lemma 4.2. Letting M--+oc, we obtain a contradiction. [] 
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