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Carleson’s counterexample and a scale
of Lorentz-BMO spaces on the bitorus

Oscar Blasco and Sandra Pott

Abstract. We introduce a full scale of Lorentz-BMO spaces BMOpr.q on the bidisk, and
show that these spaces do not coincide for different values of p and g. Our main tool is a detailed
analysis of Carleson’s construction in [C).

1. Introduction and notation

Throughout the paper D denotes the set of dyadic intervals in the unit circle T.
We write R=D x D for the dyadic rectangles in the bitorus T?, || for the length of
I and |R]| for the area of R. We let (h;)ep stand for the Haar basis in L?(T) and
(hg)Rrer for the product Haar basis of L?(T?). Here

(1) = i G ()= (1)

for each dyadic interval I€D, where I~ denotes the left half of I, and I* de-
notes the right half of I. For each dyadic rectangle R=Ix JE€R, hg is defined by

hr(s,t)=h;s(s)h;(t). For any feL?(T?), we use the notation fr=(f, hg) for the
Haar coefficients of f, and

mf(s) = ﬁ /I f(t,s)dt,
mif®) =7 [ f9)ds
me(t)zl—}lz'/Rf(t,s)dtds
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for the averages in the first, second and both variables respectively. We will use “~”
to denote equivalence of expressions. Given a complex-valued measurable function
feL?(T?), we write ps(A)=|Ey| for A>0. where E\={weT?:|f(w)|>A}, for the
distribution function of f, f*(t)=inf{A:us(A)<t} for the nonincreasing rearrange-
ment of f, and f**(t)=(1/t) fot f*(s)ds. In this note, we introduce a scale of
Lorentz-BMO spaces on the bitorus and distinguish the spaces in this scale by a de-
tailed analysis of the Carleson counterexample. Now, given a measurable set 2C T2
and 0<p,g< 00, the Lorentz space LE7=LP9({. ), where pa(A)=|A|/|Q] is the
normalized Lebesgue measure, consists of those measurable functions f supported
in Q such that Hszg.q <oc, where

q [* dt\/?
(*/ tq/pf*(t)q~—> ., O<p<oo, 0<g<oo,
®  Wflge={ \2h t
sup tY/P f*(t). 0<p<oc, g=coc.
t>0

We write LP? for the Lorentz space over LY. The reader should be aware that
el zgq is in general not a norm on LY9. Nevertheless. replacing f* by f** in (1)
and writing ||f[|L5-q :]lf**“’igq, one gets a norm on L%? for 1<p<oc and 1<¢<oc,
which is equivalent to |[f [(zgq (see e.g. [SW]). The space LE?P, for which we will
write Lf), is then the ordinary L? space LP(Q, ug). We write S[f] for the dyadic
square function of an integrable function f,

1/2
sl = (X Re?)
RER
It is well known that ||S{f]||,~ fll, for I<p<oc. Using interpolation, one has also
1S{f1llLra=|fllLr-e for 1<p,g<oc. For each measurable set QCT?, let Py be the
orthogonal projection on the subspace spanned by the Haar functions hgr/, R'€R,
R'CQ. In particular, for each dyadic rectangle RER and for f=) pcr hr fr €
L?(T?), one has
Prf= Y hafr.

ReR
R'CR

It is easy to see that for R=I'x JeR,

(2) Prf=(f-mif-myf+mrxsf)xixJ-

We are now ready to introduce our scale of Lorentz-BMO spaces. Let 1<p,g<oc.
We denote by BMOy»s.e the space of all o€ L2(T?) such that

[#llBMOp.e = sup || PrellLre <oc.
RER
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In contrast to the one-dimensional situation, functions in these spaces are not nec-
essarily in the so-called product BMO space BMOﬁ,od. the dual of the dyadic
Hardy space Hj(T?):={feL'(T?):S[f]eL*(T?)}. For p=¢=2, a continuous ver-
sion of this fact was shown in [F]. In [BP], this was shown for all 1<p=g<oo.
(For an overview of the theory of BMO spaces in two variables and characteri-
zations of the duals of H}(T?) and H!(T?) in terms of the projections Py, see
[Be], [Ch], [CF1] and [CF2]). Recall that in the one-variable case, due to the
John—Nirenberg lemma, the spaces BMOy».. coincide for all values of p and gq.
We shall see that this is not the case in the two variables situation. Certainly
BMO_r.q CLP%(T?), since mr(f)=m;(Prxrf) and m;(f)=mi(Prx;f). Note that
for f>0 and supp fCQ; TNy,

1/p
3) e = (1) Wl

It is well known that for 1<p; <p;<oo and 1<q;, g <oc. we have LP22C P19t
and the embedding is continuous. For 1<p<oc and 1<q; <gz2<oo, LP0 CLP1-92
and the embedding is contractive. Therefore for f>0, supp fCQ, 1<p; <p2<00
and 1<¢1, g2 <00,

(4) “fHLPW“ < Cplyp2yq1s(12|Q|1/pl_l/p2”fHLP?'q?'

Hence, we have

1PrfllL55 < Cp gy g0l PRSI 702 for 1< p1 <pz <oc and 1<q;,q2 <00,

and

||PRf||L5;1»Q1 <Cp, ,P2,Q1,Q2”PRf||L’;f“’2 for 1<p<oc and 1<q; < g2 <o0.

This shows that BMOpe;.00 CBMO 001, if 1<p; <pa<oc and 1<q;, g2 <00, and
BMOpr.a1 CBMOgp.a:, if 1<p<oo and 1<q) <g2<oc. We shall see later that they
are actually different. L. Carleson showed in [C] in an ingenious geometric construc-
tion that for each N &N, there exists a finite collection @ 5 of dyadic rectangles in
[0,1)? such that

(1) the total area of all rectangles is 1, i.e. >_pcq, [RI=1,

(2) the rectangles “intersect heavily”, |Ugcq, RI<C1/N,

(3) the rectangles are evenly distributed over the unit square in the sense
that a localized version of (1) holds, i.e. for each dyadic rectangle R, we have
Y reon.rcrlRISCR].
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Here, C) and C, are absolute constants independent of N. Let us write, as in [C],
ON = Z hr|R|'2.
Red N
Hence we have that

1
I¢nllz2 =1 and |suppén| < Cr 4 for all NEN.

This construction was originally devised to show that the naive generalization of the
Carleson embedding theorem to two variables is not true. However, it contains much
more information. R. Fefferman used the construction to show that the dual of the
Hardy space H'!(T?) does not coincide with the so-called rectangular BMO space in
two variables [F]. C. Sadosky and the second author used the Carleson construction
to give a new proof of the fact that the Carleson embedding theorem also does
not extend to operator-valued measures (first proved in [NTV]), and to show that
Bonsall’s theorem does not hold for little Hankel operators on the bidisk [PS].
Here comes our key result, which makes use of a “localization property” of ¢n. It
establishes the following behaviour of the functions ¢y .

Theorem 1.1. Let 1<p<oo and 1<q<oc. There ezists a constant Aj, such
that

lonllLee <N llBMOLs.a < Apllon|lLe-a
for all NeN.

It was shown in [BP] by the authors that the spaces BMOrect p, and BMOrect, p,
again in contrast to the one-dimensional situation. are different for different values
of py and po (for p;=2 and p,=4, this is contained in [F]). Here we recover and
improve the results given in [BP] as a consequence of Theorem 1.1.

Theorem 1.2. If 1<p;<py<oc and 1<qy, g2 <oo then we have BMOpp .oy €
LP2:92(T?). In particular, BMO s .e1 #BMO_r2.02.

Proof. Let QN=UR€@N R. Since p; <p- and ¢y is supported on {2y, one has

I onllzera < Cpy pagr,aa [P P2 9N (|72 o2
by (4). Therefore, Theorem 1.1 yields
@nllzr2o2 > Crlo or aalldnllLorar [Qu |1 /P2 =2/
Z (A.;)WICpl,pz,q»qzcll/prl/plNl/p‘_l/p2 lénIIBMO 5y .01 -

Since [|¢n || Lr2-02 <||ONBMO  s.as - it also follows that BMOsi.a ZBMOpr2az. O

Moreover, the BMOp».. spaces can also be separated in the second index.

Theorem 1.3. If 1<p<oo, and 1<q; <qa<oc then BMOyr.a1 does not embed
continuously into LP92(T?). In particular, BMOps.c; ZBMOpr.0.
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2. The Carleson construction

Before we can turn to the proof of Theorem 1.1, we need some more details
of the construction of @y in [C]. (For a nice description of the Carleson coun-
terexample, see also [T].) The function ® is obtained by the following process.
We first identify T? with the unit square [0,1]2. Take a sufficiently fast decreas-
ing (N+1)-tuple (An, ..., Ao) (for our purposes, we want to assume that this is
the tuple 22" ,22" | ..., 22°). Now cut the unit square into An vertical rectangles
with sides parallel to the axes, of sidelength A,_\,1 x 1. Discard every second of these
rectangles, and denote the collection of the remaining rectangles by @%)y Then
cut the unit square into Ay horizontal rectangles with sides parallel to the axes,
of sidelength 1><A"1. Discard every second of these rectangles, and denote the
remaining collection by <I> . The collection of the thus kept horizontal and ver-
tical rectangles, @%?zU{)g’)y, is denoted by <I)§\1,). Now we repeat the process and
slice each rectangle in @5\}) vertically and horizontally into An_1 rectangles with
sides parallel to the boundary and again discard every second of them to obtain the
collection @ N) This process is iterated, until we get ®x: —<I>(N+l)

Since the tuple (Aw, ..., Ag) decreases very fast, each rectangle in @5 has a
unique “history” in the sense that it is generated from the unit square by a unique
sequence of vertical and horizontal slicings. In particular, writing <I>N,I for the
collection of those Re®y which are generated from a rectangle in 3 N, x, and ®n
for the collection of those R€®y which are generated from a rectangle in @%?y, we
find that @N,IHQN,?,:(Z) and of course ®n ,UPn ,=Px. Moreover, for RE®y, we
have that Re®y , if and only if there exists R’ G<I>(1) with RCR’. One direction
of this equivalence is clear, since each R€®y , is generated from some R’ €<I>(1)
and therefore contained in this R’. Conversely, if RE®y ,, then its width in the
y-direction is greater than or equal to A;,l_l Ay ! >A;,1. Therefore, R cannot be
contained in any R’ GCDS\?Z. A corresponding statement holds for @y ,,.

Another property of the construction we shall frequently use is that for each
R’E@S), the collection {R€®yN:RCR'} is up to translation and dilation equal
to the collection ®n_;. For each Re@f,\l,), we write TR ™) for the comp031t10n of
the translation and dilation which transform R into the unit square, TR (R)—
[0,1]x[0, 1]. Given a dyadic rectangle Q=1 x J§R€<I>( we have that (N)(Q) isa
dyadic rectangle, and |Q|—|R| ks (N)( Q)]. With this notation, our statement above
means that for each Re®} N ,

(5) (r8(Q):Qedn, QCR}=®n_1,
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and consequently

(6) ON_1°74") = Pron|r.

3. Proof of Theorem 1.1
Lemma 3.1. For Q=IxJCRe®Y, write Q'=74"(Q). Then

I1S(Poon ]Il = [1S[Po-on-1lllLzs -

In particular
ISIPrON]lI Lz = | Slon-1]llLra

for any Re®Y.
Proof. Observe that
HzeQ:S[Poén](z) > A} =|R||{x € Q": S[Po:én—1](z) > A}|.
Therefore
(M) pe({z€Q:S[Poonl(z) > A}) = po' ({2 € Q' : S[Po ¢n-1](x) > A}).

This gives the result. O
Lemma 3.2. If Q€[0,1]xD, say Q=[0.1]xJ. and |J|>Ay', then

(8) IS[Poén.lllLye =27 VPlIS[on 1]l Lro
and
(9) 1S1Paow.ylllige =277 1S [Paox—1]llzye-

In particular

(10) IS[gny)lzes = lISlonalllzea =277 |S[on-1]llra-

A corresponding statement holds for Qe Dx[0,1], Q=1x[0,1] with |I|>Ax'.

Proof. We write ¢n 2= pcg, . hr|RI'/? and Ony =3 pes, , hr|R|'/%. Note
that S[on o]=(X reay . xr)Y? and S[on y)=(C geo, , Xr)'/? are supported on
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the union of the disjoint collection of rectangles <I)(,\1,)I and @%?y, respectively. In the
first situation, we have

S*[Poon . Z S?[Pron].
Re®(),
RCQ

where the S[Pr¢n] are equimeasurable for different R and disjointly supported.
Then we have, for any RCQ, Re@ﬁ&,

1Ql

{z€Q:S*[Poén.zl(x)> A} = 2R

|{x € R: S?[Pron]|(z) > A}

Therefore by (7), for any A>0,
to({z: S[Peén.s)(z) > A}) = 3l{z: Slon—1](z) > A}l

This gives S[Poén ]**(t)=S5[¢pn_1]**(2t). Therefore we get (8).
For the second situation we have

S Podnyl= D S*|Prngon]:
Reay),

where S? [Prng@én] are equimeasurable for different R and disjointly supported.
Then we have, for any Re®y 1)

{zeQ:S?[Poonyl(x) > A= Y H{ze€RNQ:S*[Prnoén](z) > A}
Rea(),
Therefore, using (7) and observing that T}(ZN)(QQR):Q for any RE@%L we get
e SlPasn,)@) > M = (2 1R1) e SlPoon-l(w)> A}
Redy),
= 5 l{z: STPaon 1](@) > M.
This gives (9). O

Before we can prove the main technical result Theorem 1.1, we need to collect
some more facts.
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Lemma 3.3. Let 1<p<oo and 1<qg<oo . There exists C’l,2(21/p—1)‘1 such
that

(11) 1S[Padnllize <Cp _max [IS(ulllzrs

1<k<N -1
for any Q€(0,1]xD. A corresponding statement holds for Q€D x [0,1].

Proof. We shall prove this statement by induction. It is obvious for N=1.
Assume it holds true for N~1. We first consider the case Q=[0,1]x.J, where
{Ji>AR". Using the inequality

S[Pa¢n] = (S*[Paén o]+ 5%[Poodn )2 < S[Poén.c]+S[Po¢n.
and Lemma 3.2, we obtain
(1S[Peénllicys < S[Podn.al+S[Padnylllye
<[IS(Peén olliLzs +IS[Padn il Lge
=27VP(([S[pn-1]l|ro +S[Pedn-1]llLz)

(12) <27 (ISonalllira+Cp_max | IS[oxllzes)

<27VP(C,+1) | (S[Bx]lLra

<G, _max IS{oellzne

In the case @=[0,1]x J and A", Ay' <|J|<AR', we either have Pyén=0, or QC
R for some Re @%)I and Q’ITI(?N)(Q):[O, 1]x J’ with |J'|>Ax", . Now Lemma 3.1
and the previous case give

I5[Pednllye = I1S[Pordnlllns <Cp  _max |IS[dk]l|Lee-

1<k<

Similarly, we get the result for any Q=[0, 1] x J with |J| <Ay and S[Poén]5#0. O
Now we can give the proof of the main theorem of the paper.

Proof of Theorem 1.1. We shall first prove that there exists a constant A,

(13) lonllrre <N llBMOLs.c < A”lgglgaﬁr{q |k lze.a

for all NeN. For such a purpose we will show that

(14) 151 qenlllLye < By max | [IS{¢]llLo-e
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for all NeN and all QeR. Now from Littlewood-Paley theory (albeit with a
different value of the constant B,) the result will follow. We shall use induction
again. The case N=1 is trivial. Assume the statement holds true for N —1. First
consider the case when @ is contained in some rectangle R in <I>§\1,) . Using Lemma 3.1,
we obtain

ISIPoénllge < By _max  IS(ollrs.

Consider now the case when Q is not contained in any R€ @%) . Note that if Q=
IxJ, with |J|<AR', then Poén=Podn .. This is due to the fact that |J'|> A3
for any R'=1' x J’e@%’)y. So either Q C R for some Re @%?x, or Po¢n =0. Similarly,

one can deal with the case Q=1xJ, where |I|<Ay'. Hence it remains to consider
the case that Q=1IxJ, where |I|,|J|>AR". Let us write

S [Po¢n) = S*[Podn o)+ S [Podnyl= D S*[Ponrénl+ Y S*[Ponrén].
Reay), Redy),

Observe now that
S*Podnel= Y S*[Prrodn],
Re®y),
RNQ#0

where the S[Ppng¢n] are equimeasurable for different R, and disjointly supported.
Then we have

{z€Q:5%[Pa¢nz)(@)> A} = Y [{z€RNQ:S*(Praoénl(z) > A},
Re®y),
RNQ#0
Hence, for any Re @%)z with RNQ#D, we can write

V]

Hre@: SZ[PQ¢N,I](x) > A} = mHI € RNQ: 52[PR0Q¢N](‘T) > A}
This gives that for any A>0,
po({zx: S[Podn z)(z) > A}) = I(;US%HROQ({$ :S[Prnqon|(z) > A})

= %ﬂRﬂQ({z :8[Pragoén](z) > A}).

Hence S[Po¢n,:]**(t)=S[Prngdn]**(2t), and consequently

1S[Peén.alllLys =277 |S[Panrdn]liLy

RNQ
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Notice that RHQQREQE\}?I, and that TI(%N)(ROQ):I x[0,1]. Applying Lemmas 3.1
and 3.3, we have

||S[PQ¢N,I]”L5" =277 S[Pgnron]llLre

RAQ
(15) <27VP|IS[Prxojon—1lllLrs,
< -1/p poa.
<Cp2 | max I1S(owlle

A similar argument shows that

I1S(Poéw.olllzge < Cp2"7 | max  [IS[o]llzrs.

Finally, since S[Poon]<S[Poon.o]+S[Podn.yl. we get

1S[Peén]llLzs < IIS[Poon.cllicye+I1S[Poon .yl

SCPQI_I/” max ||S[¢k]||Lp-q.
1<k<N-1

Letting B,=C,2'~/P  we finish the proof of (13). To finish the proof, by (13),
it suffices to prove that there exists a constant D, such that |[S[én_1][Lre<
D,||S[¢n]||Le-a for all NEN. Since S%[on]|=5%[on -]+ S%[dnN.y]. we have, by Lem-
ma 3.2, that

I1S[6n]llLes = 1(S*[on.c]+ S 6Ny * | r-a
> |[S[on.zllLea =277 S[on-1]llLr-a-

This completes the proof of Theorem 1.1. O

4. Proof of Theorem 1.3

For NeN, let on =52[N]=3" peo . Xr- Using that Po(S%p)=Pq(S*Pqy) for
any Q€R and p€ L?(T?), one easily gets the following as an immediate consequence
of Theorem 1.1.

Remark 4.1. For 1<p<oc and 1<¢< o, there exist constants a, 4, Ap.q >0 such
that

apgllonllLra <llonllBMOLsg S ApllonliLee

for all NeN.

Here comes the key lemma for the proof of Theorem 1.3.



Carleson’s counterexample and a scale of Lorentz-BMO spaces on the bitorus 299

Lemma 4.2. Let 1<p<oo, 1<q;,q2<00 and £>0. Then there exists an in-
creasing sequence (N;);en and a constant B4, 4, such that for each ME€N and

qe{le‘h};

M—-(1- 2M€<

||qu Lra

and
e < Bp,qg1.q2 (M+(1 _2_M)5)-
BMOgp.q

Proof. We prove this by induction. The result trivially follows for M =1

choosing N;=1. Suppose we have already found Ny,...,Np;_1. For q€{q:, g2}

let on=¢n/|lonlLra and f(q) "Z;\iII@Nj/H(PNJ”LP.q. Let C=C(M,p,q1,q2)=

25UPye (4.0} ||f1(v'})_1[|oo, and define
Q>={(t,9) €T?:gn(t,s) >C} and Qc=T\Q ={(t.s) € T*:gn(t,5) <C},
which depend on N, M, p, ¢; and ¢,. We first observe that

(Bnlas)* (1) for 0 <t <|s ],

(f2  +@nla. )" ():{
= (A (=195 ]) for > |95,

and therefore
= (¢N|Q>)**(t) for 0<t< |Q>|,

(F12 +@nla. ) (@) { >(f9 @) for t>1Qs].

Altogether,
HfM 1+80N||qu Z ”fM 1+99N|Q> ”qu

1
2||€5N|n>||‘£p‘q—+-/IQ (FD_ Y= (8)22/a1 dy
> (9) 1
el [ H I [ AL Ol a

Qx|
e o Py T v / (A /o dt.

Using that [|gn | [lLre <IICxa. |lLe« <C|Qn|'/? and that [Qx]—0, as N — o0, we
can then find NeN, N> Ny _1, such that

€
(1-llenlacllzea)? > 1=y forge {q1, 92}
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and
/(O |QN|](f1(\Z) ()P g < — 2M+1 for g€ {q1,42}-

Hence choose such an N and apply the induction assumption to obtain

£ _ _ —
1P+ IE0 2 1= gapy + (M=1) (1 =27 D) sy = M- (1-27M)e.

Now we will show that (N;);en can be chosen in such a way that there exists a
constant A, g, 4, such that for each M €N,
(16)

M
on, 1|°
32[”@2—11177]

j=1 H(PN “qu

< Ap gy 01 QIP(M+(1-27M)e)  for g€ {a1,42}.

Let us take Q€R and write pg Ny =S5%(Pgpn). We first show that for a suitable
constant A, g, 4, independent of N and @,

< APJIlaqz lqu/p-

H Le?

<PN||LP a

Indeed, using the boundedness of the dyadic square function and Theorem 1.1, one
gets

H pon || “S(PQ¢N
llon|lLe-a L2 ”‘PN“LM L2P2a
PQ¢N &
”(PN“qu L2?p-29
on |
<1QIPCp gl ——
“ N”LPQ BMO  2p.2¢
ON 4
§|Q|q/p(A’2p)2qCp,q N g1/2
“‘PN“LM L?r.2q
2 q
< 1QI7/P (43,)1C | > E
Lra

= AIMI) 192 |Q|q/p7

where Ay o ¢, =SUD e g, 401 (A45,)%9C;, , and the constant Cj, , contains the bounds
appearing from the square function norm and the equivalence norm between L2P24
and L?*?7, The inequality (16) is now easily checked for M=1 and Ny;=1. As
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before, fix ¢€{q1,¢2} and assume that Ny,..., Np_, satisfying (16) have already
been found. By the Carleson construction, we know that

N;
|R| :1_IA1.“1 > A;,JZ for each Rec ®y;.
i=1

Assume first that Q| SA;,L_I. Observe that in this case

M-1

PN,

Pp Y =0,
i=1 ”(pNj”LP-q

hence, applying (17) for any N> Ny, _1, we obtain

oS el

j=1 HQON ”qu “‘pN“an

“lwie
12 Tonlzre

AP:QI »q2 ‘Q‘q/p .

qu

Assume now that |Q|>A;,12W~1. Let

C=Cla,¢,M)=2 suwp |If\7 A%, .-
g€{q1,92}

Then

& 9w,
52 [pQ 3 —-—1/2_] (t,s) < fD [ (t,8) <

<¢
7=1 ”cpNj”Lqu 2

for all Q € R.

As before, we write on=¢n/||¢n| Lr-2,
Qs ={(t,s) € T?:n(t,s)>C} and Qc={(t.s)€T:Hn(t,s)<C}.
We have

& on dn K oew PN.Q
2 3 J s
S [PQ<Z 72t 172 )]:SQ[PQZ 1/2}+

Illen 1 lenllih = e I d lenllzss

Qj(t)

)(t) for 0 <t <25,
o)

and

M-1 o o
52[PQ ; J+ N.Q
( ;Ilwmlliffq lenllLea
( PYN,Q
len e

M-1 Q"N

(52 [PQ > ——‘I—ND*(t—mq) for t >[5 ].

j=1 H‘PN]— HLp,q
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Thus, using continuity of addition in the LY'? quasinorm and that ||¢n|a_[|Lr-«—0,
as N —oo, for g€{q1, g2}, one has for sufficiently large N,

M-1
|52 o (X =2+ 2 )]

i=1 lenligee  llonll o
M-1
(18) =152 [PQ Z ¢le/2 ]+ PN.Q
= len 1] lenllees

q

LEe

LY

q
YN,Q

”SON”LM

L’.”q

& on YNQ
2 j »
Ry |+
<

21 len; e lenllee lq,

q
A—QQ/P €
Na-19M+2°

IA

M-1 oN ono
2 f] .
S [PQ Z 1/2 ]"’

=1 llen; e len|lLr-a

Qs HLee
For sufficiently large N and ¢€{q1,¢2},

M-1

(19) /0 1((52 [PQ i #D*(t))q(t+|o>|)q/rldt

=1 jllLp.a
AM—1
ON
2
S [PQ Z 11/2
=1 llen; | v-a

q
€ ~2g/p

< T oarrz ANaa

LEe

Indeed, if g<p, then (t+]Q|)9/P~1<t9/P~1 and the estimate holds trivially. For
g>p, one uses (t+|Q5])9/P~1<(t+|Qn])9/P~! and then the Lebesgue monotone
convergence theorem. Therefore, from the previous estimates, |Q|>A Nu_po (A7),
(18), and (19), we obtain

M-1
¢N- ¢N a
Sz[PQ(Z Tt 73
Jj=1 ”(pNj“LP-q H@N”Lp-q Ly
$N.Q ! —2q/p €
+ Nar—1 9M+2
lenlLr.a Q. llpea 2
1 M-1 o « \q
+/ <(52 [PQ > ——1/2D (t)) (t+]05 )97~ dt
0 j=1 “‘PNj ”Lp.q
14 3 M1 (,251\/ q
N.Q —2q/p 2 f
st ol ]
” lonllLe-e || pp-a Nua-1 g2 = ||<PNJ-||1L/:»2..; L
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3 -2q/ I3
= AIMIl,qz |Q|q/p+Apyt11‘qz |Q|q/p (AI" Ite— iy A1 ) AN: 11)2M+2

= Anan s Q7 (Mt (== 57 ) )

Thus by choosing Nas > Nps_1 sufficiently large, the induction proceeds. To finish

the proof of Lemma 4.2, remark that

q M p q
QON;
HPQZ lon, =HPQS2 [Z 1/2 }

Lpa i=1 lon, llra HiLe-a

M
Poodn,
i

j=1 ||<PN] ”an

||Lv .

q
< A 27

P.q1:92

a

L2

Proof of Theorem 1.3. It suffices to show the theorem for the case g2<oo. So
let 1<p<oo and 1<q; <qy<oo. Assume towards a contradiction that BMOj».e,
embeds continuously into L”9. Since by Remark 4.1, lon| e~ liBMOLp.q fOT

all p, g and N, it follows in particular that ||on|Lr-a1 =|l@n|Lre2.

MEeN, let
YN
f(]\/[) N

Z lle

N llppar”
where (N;) en is the sequence from Lemma 4.2. Then
M—e <||f*0|%,.,

M
S ”f( )||BMOLP q2

= sup ”PQf M)”Lp&z,Ql_(h/p
QER

M
Poon, || ~
- gup o o
R = lew, e dllore
M q
P, )
S 291 sup 52 {Z ___;Q__QST%_‘J IQ[_qI/p
QER j=1 ”<pNj”LP~‘21 Lr-a2
M
P, '3}
w52 5" L0 jgrns
QER j=1 ”(pNj”LPJIz Lr-az

Bg1q/1q:;2 (M+e)n /a2

by Lemma 4.2. Letting M —oc, we obtain a contradiction. O

Let €>0. For
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