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Quadrature domains and 
kernel function zipping 

Steven R. Bell(1) 

Abstract .  It is proved that quadrature domains are ubiquitous in a very strong sense in the 
realm of smoothly bounded multiply connected domains in the plane. In fact, they are so dense 
that one might as well assume that any given smooth domain one is dealing with is a quadrature 
domain, and this allows access to a host of strong conditions on the classical kernel functions 
associated to the domain. Following this string of ideas leads to the discovery that the Bergman 
kernel can be "zipped" down to a strikingly small data set. 

It is also proved that the kernel functions associated to a quadrature domain must be alge- 
braic. 

1. I n t r o d u c t i o n  

In  this paper,  we will refine results of B. Gustafsson in light of recent results in 

[9] abou t  the complexi ty of the classical kernels funct ions to show tha t  quad ra tu re  

domains  in the plane are so dense tha t  one canno t  possibly devise a test  to deter- 

mine  if a given smooth  domain  is a quad ra tu re  domain.  The  combined methods  

of Gustafsson [12] and  [9] will also yield a me thod  to "zip" the Bergman kernel 

down to a very small  da t a  set consis t ing of finitely many  complex numbers  plus the 

b o u n d a r y  values of a single holomorphic funct ion,  which I would venture  to chris- 

t en  a Gustafsson function. These results are all a na tu ra l  outgrowth  of the work of 

Aharonov and  Shapiro [1] and Shapiro [15], and  one consequence of the Aharonov 

Shapiro theorem tha t  Ahlfors maps  associated to quad ra tu re  domains  are algebraic 

will be tha t  the Bergman and Szeg6 kernels associated to a quad ra tu re  domain  are 

algebraic functions.  

For the purposes of this paper,  we shall call an n -connec ted  domain  12 in the 

plane such tha t  no b o u n d a r y  componen t  is a point  a quadrature domain if there 

(1) Research supported by NSF grant DMS-0305958. 
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exist finitely many points {wj}N_I in the domain and non-negative integers nj such 

that  complex numbers cjk exist satisfying 

N nj  

(1.1) ~ f dA = ~ Z cjkf(k)(wj) 
j = l  kin0 

for every function f in the Bergman space of square integrable holomorphic func- 
tions on gt. Here, dA denotes Lebesgue area measure. Many of our results require 
the function h ( z ) - I  to be in the Bergman space, and so we shall often also assume 
that  the domain under study has finite area. We remark that there are results of 
Sakai that  show that,  under certain weaker assumptions, a quadrature domain does 
have finite area, so some of our results could be stated with weaker hypotheses. 
(See [12] for an explanation of how Sakai's results relate to the type of quadrature 

domains we study here.) 

The Ahlfors map associated to a point a in an n-connected domain l} such that  
no boundary component is a point, is the holomorphic function fa such that  fa maps 

into the unit disc maximizing the quantity If'(a)l with f~(a) real and positive. 
This map is an n-to-one (counting multiplicities) proper holomorphic mapping of 
12 onto the unit disc. 

Quadrature domains have particularly simple kernel functions, as our first the- 

orem shows. 

T h e o r e m  1.1. Suppose that ~ is an n-connected quadrature domain of finite 
area in the plane such that no boundary component is a point. Then the Bergman 
kernel function K ( z , w )  associated to ~ is a rational combination of two Ahlfors 
maps fa and fb in the sense that K ( z , w )  is a rational combination o f f , ( z ) ,  fb(Z), 
fa(W), and fb(w). The same can be said of the square S(z, w) 2 of the Szeg5 kernel. 
Furthermore, the classical functions Fj are rational functions of fa and fb. 

The functions F~ are defined precisely in Section 2. 

Aharonov and Shapiro [1] proved that Ahlfors maps associated to quadrature 
domains are algebraic. Hence, Theorem 1.1 yields that quadrature domains also 

have algebraic kernel functions. 

T h e o r e m  1.2. Suppose that gt is an n-connected quadrature domain in the 
plane of finite area such that no boundary component is a point. The Bergman 
and Szeg5 kernel functions associated to 12 are algebraic functions. The classical 
functions F~ are also algebraic. 
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Similar s ta tements  to Theorems 1.1 and 1.2 hold for the Poisson kernel and the 
first derivative of the Green's  function. These results follow from formulas appearing 
in [8] and we do not spell them out here. 

Ahlfors maps extend to the double (as described in Section 2 of this paper),  
and it follows that,  under the hypotheses of Theorem 1.1, the Bergman kernel 
function extends meromorphically to the double ~ of ~, and is therefore a rational 
combination of any two functions that  generate the meromorphic functions on the 
double, i.e., any two functions that  form a primitive pair for the double. The 
Bergman kernel always extends to the double as a meromorphic differential, but 
extending as a meromorphic function is a rather  unusual behavior for the kernel. 
This condition leads to a number of other strong conclusions that  we now begin to 
enumerate.  

T h e o r e m  1.3. Suppose that f~ is an n-connected quadrature domain of finite 
area in the plane such that no boundary component is a point. If  f is any proper 
holomorphic mapping of ~t onto the unit disc, then f '  extends to the double of f~ 
as a meromorphic function. 

Under the assumptions of Theorem 1.3, since both f and f '  extend to the 
double, they are algebraically dependent,  i.e., there exists an irreducible polynomial 
P(z ,w)  on C 2 such that  P ( f ' , f ) - O  on f~. This was proved by other means by 

Aharonov and Shapiro in [1]. It  is proved in [9] that  the condition P(f ' ,  f ) = 0  has 
a number of implications, two of which are that  the kernel functions are generated 

by only two functions and that  the kernel functions extend to a compact Riemann 
surface. In the setting of Theorem 1.3, however, we have the stronger conclusion 
that  the Bergman kernel extends to the compact  Riemann surface which is the 
double of ft, and that  it is generated by any two functions that  form a primitive 
pair for the double. 

When combined with the main theorem of [10], Theorem 1.3 yields that  the 
infinitesimal Carath@odory metric associated to an n-connected quadrature  domain 
of finite area such that  no boundary component  is a point is a real algebraic function 

which is a rational combination of two Ahlfors maps and their conjugates. 

It  is shown in [7] that ,  under the assumptions of Theorem 1.3, if f is any proper 
holomorphic map of ~ onto the unit disc, then it is possible to find an Ahlfors map 

fb such that  f and fb extend to the double and generate the meromorphic functions 
on the double. Hence, it follows that  f ' = R ( f ,  fb) for some rational function. Also, 
we may conclude that ,  given a proper map f ,  the Bergman kernel is a rational 
combination of f and some other Ahlfors map. Furthermore, since both f l  and f~ 
extend meromorphically to the double, we deduce the next rather  odd sounding 
theorem. 
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T h e o r e m  1.4. Suppose that f~ is an n-connected quadrature domain of finite 
area in the plane such that no boundary component is a point. I f  H is any mero- 

morphic function on ~ that extends meromorphically to the double of f}, then H'  
also extends meromorphically to the double of 12. Furthermore, H is algebraic. 

Of course if H is meromorphic on f~, then H' is meromorphic on fL The content 
of the theorem is that  H' extends meromorphically to the double if H does. 

The property in Theorem 1.4 turns out to characterize a class of generalized 

quadrature  domains, and we explore this line of reasoning in Section 5. 

When we combine the ideas used in the proofs of the results above with those 

of Aharonov and Shapiro [1] and Gustafsson [12], we can show that  the kernel 
functions associated to quadrature  domains are particularly simple when restricted 

to the boundary. 

T h e o r e m  1.5. Suppose that ~ is an n-connected quadrature domain in the 

plane of finite area such that no boundary component is a point. The Bergman 
kernel K(z ,  w) and the square S(z,  w) 2 of the Szeg5 kernel are rational functions 

of z, 2, w, and ~ on bl2xbf} minus the boundary diagonal. The functions F~(z) 
are rational functions of z and 2 when restricted to the boundary. Furthermore, the 
unit tangent vector function T(z)  is such that T(z) 2 is a rational function of z and 
2 for zebra. 

I had conjectured in [6] that  every n-connected domain in the plane such that  no 
boundary component  is a point is conformally equivalent to a domain with algebraic 

kernel functions. Jeong and Taniguchi [14] recently verified this conjecture. Since 
Gustafsson proved in [12] that  every such domain is conformally equivalent to a 
quadrature domain of finite area, Theorem 1.2 gives an al ternate way of seeing that  
every n-connected domain in the plane such that  no boundary component is a point 
is conformally equivalent to a domain with algebraic kernel functions. 

We remark here that,  although the last part  of Theorem 1.5 might seem to 
suggest that  the Bergman kernel associated to a quadrature  domain could be a 
simple rational function of some kind. it can never happen that  the Bergman kernel 
is a rational function in the setting of multiply connected domains (see [5]). 

The main results of this paper  together with Gustafsson's theorem that  any 
finitely connected domain in the plane such that  no boundary component  is a point 
is conformally equivalent to a smoothly bounded quadrature  domain, suggests that  
quadrature domains might serve to play a role in the multiply connected setting 

similar to that  played by the unit disc for simply connected regions. 

Quadrature  domains with smooth boundaries are particularly appealing and 
we can refine arguments of Gustafsson to prove the next theorem, which shows that  
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very fine modifications can be made to any smoothly bounded domain to make it a 
quadrature  domain. 

T h e o r e m  1.6. Suppose that f~ is a bounded n-connected domain whose bound- 
ary consists of n non-intersecting C a smooth simple closed curves. There is a 

meromorphic function g on the double of ft which has no poles on ~ such that g is 

as close to the identity map in C ~ ( f t )  as desired. The domain given by g(ft) is a 

quadrature domain which is C ~ close to ft and conformally equivalent to ~2. 

The analytic objects at tached to the quadrature  domain g(ft) have the strong 
extension properties given in the preceding theorems and they are C a close to the 

analytic objects attached to ft. In particular, Aharonov and Shapiro [1] (with some 
refinements by Gustafsson [12]) showed that  the boundary of g(ft) is an algebraic 
curve minus perhaps finitely many points. Thus, the proof of Theorem 1.6 will yield 
a concrete method to approximate in C a a non-intersecting group of n simple closed 
C ~ curves by an algebraic curve. In fact, the algebraic curve can be described by 
I f ( z ) [2= l ,  where f is any Ahlfors map. 

We describe in Section 4 how the Bergman kernel can be recovered from the 
boundary values of g in a very simple and efficient manner. 

Gustafsson proved that  the function 9 in Theorem 1.6 maps ft to a quadrature  
domain. We shall show that  g(z) can be taken to be a linear combination of functions 
of the form S(z,  b ) /L(z ,a) ,  where S(z,  b) is the Szeg5 kernel and L(z ,a )  is the 

Garabedian kernel, and b ranges over a small open subset of f~ while a is fixed. 
Consequently, we shall be able to restrict the points wj in the defining property 
(1.1) of the quadrature domain g(f~) to a small set. We shall also be able to 
specify the numbers nj in rather  surprising ways. In particular, we shall be able to 
stipulate that  n j - -  1 for each j .  Thus, any smooth domain is conformally equivalent 
to a nearby quadrature  domain where the simple point masses are contained in an 
arbitrarily small arbi t rary disc that  is compactly contained in ft. Another way to 

s tate  this is to say that  it is possible to strongly approximate  the two-dimensional 
field generated by a uniform charge density on a smoothly bounded plate with holes, 
by point charges at finitely many points in an arbitrarily small open subset of the 
plate. This result is stated precisely in the following theorem. 

T h e o r e m  1.7. Suppose that ft is a bounded n-connected domain whose bound- 

ary consists of n non-intersecting C ~ smooth simple closed curves. Let DE(wo) be 
any disc which is compactly contained in f~. There is a quadrature domain which is 

C ~ close to ft and conformally equivalent to 12 such that the point masses appear- 

ing in (1.1) all fall in Ds(wo) and have weight n j = l .  Furthermore, given wo in ft, 
there is a quadrature domain which is C ~ close to ft and eonformally equivalent to 

f~ such that wo is the only point mass appearing in (1.1), i.e., N = I  in (1.1). 
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In Section 6 of this paper, we show how many of the same ideas can be extended 

to quadrature  domains with respect to boundary arc length measure. 

2. P r e l i m i n a r i e s  

I t  is a standard construction in the theory of conformal mapping to show that  
an n-connected domain ~ in the plane such that  no boundary component  is a point 
is conformally equivalent via a map �9 to a bounded domain ~ whose boundary 
consists of n simple closed C ~ smooth real analytic curves. Since such a domain 

is a bordered Riemann surface, the double of ~ is an easily realized compact 
Riemann surface. We shall say that  an analytic or meromorphic function h on 

extends meromo~phieally to the double of ~ if ho~ -1 extends meromorphically to 
the double of ~. Notice that  whenever ~ is itself a bordered Riemann surface, this 
notion is the same as the notion that  h extends meromorphically to the double of ~. 

We shall say that  two functions G1 and G2 extend to the double and generate the 
meromorphic functions on the double of ~, and that  they therefore form a primitive 
pair for the double of ~, if GloO -1 and G2o~ -1 extend to the double of ~ and 
form a primitive pair for the double of ~ (see Farkas and Kra  [11] for the definition 

and basic facts about  primitive pairs). 

It  is proved in [7] that  if ~t is an n-connected domain in the plane such that  no 
boundary component  is a point, then almost any two distinct Ahlfors maps fa and 
fb generate the meromorphic functions on the double of ~. It  is also proved that  
any proper holomorphic mapping from ~t to the unit disc extends to the double 

of f~. 

Suppose that  ~t is a bounded n-connected domain whose boundary consists of 
n non-intersecting C ~ smooth simple closed curves. The Bergman kernel K(z, w) 
associated to ~ is related to the Szeg6 kernel via the identity 

n - 1  

(2.1) K(z,w)=4~rS(z,w)2+ ~ AjmF~(z)F~(w), 
j , rn= l  

where the functions F~(z) are well-known classical functions of potential  theory 
described as follows. The harmonic function wm which solves the Dirichlet problem 
on ~ with boundary data  equal to one on the boundary curve ~/m and zero on ~k 
if k~m has a multivalued harmonic conjugate. Let 7~ denote the outer boundary 
curve. The function F~(z) is a single-valued holomorphic function on ~ which is 
locally defined as the derivative of ~m+iv, where v is a local harmonic conjugate 

for win. The Cauchy-Riemann equations reveal that  F~n(z)=2Owm/Oz. 
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The Bergman and Szeg5 kernels are holomorphic in the first variable and anti- 
holomorphic in the second on f tx  ~ and they are hermitian, i.e., K(w, z)=K(z, w). 
Furthermore, the Bergman and Szeg5 kernels are in C~((~t  > f t ) \{ (z ,  z):zEb~t}) as 
functions of (z, w) (see [3, p. 100]). 

We shall also need to use the Garabedian kernel L(z, w), which is related to 
the Szeg5 kernel via the identity 

1 
(2.2) - L ( z ,  a)T(z) -- S(a, z) for z e bft and a �9 f~, 

where T(z) represents the complex unit tangent vector at z pointing in the direction 
of the standard orientation of bft. For fixed a �9 ~, the kernel L(z, a) is a holomorphic 
function of z on f~\{a} with a simple pole at a with residue 1/27r. Furthermore, as 
a function of z, L(z, a) extends to the boundary and is in the space C~ In 
fact, L(z, w) is in C ~ ( ( Q  x ~) \{ ( z ,  z ) : ze f i} )  as a function of (z, w) (see [3, p. 102]). 
Also, L(z, a) is non-zero for all (z, a) in ~ x ~ with z#a and L(a, z ) = - i ( z ,  a) (see 
[3, p. 49]). 

For each point aGf}, the function of z given by S(z,a) has exactly n - 1  zeroes 
in ~ (counting multiplicities) and does not vanish at any points z in the boundary 
of a (see [3, p. 491). 

Given a point aEf~, the Ahlfors map fa associated to the pair (ft, a) is a proper 
holomorphic mapping of f~ onto the unit disc. It is an n-to-one mapping (counting 
multiplicities), it extends to be in C ~ (~), and it maps each boundary curve 7j one- 
to-one onto the unit circle. Furthermore, fa (a )=0 ,  and fa is the unique function 
mapping ~ into the unit disc maximizing the quantity If~(a)l with f~'(a)>0. The 
Ahlfors map is related to the Szeg5 kernel and Garabedian kernel via (see [3, p. 49]) 

(2.3) f~(z) - S(z, a) 
L(z,a)" 

Note that  f~(a)=27cS(a, a)~O. Because f~ is n-to-one, fa has n zeroes. The simple 
pole of L(z, a) at a accounts for the simple zero of fa at a. The other n -  1 zeroes 
of f~ are given by the n - 1  zeroes of S(z,a) in Q\{a}.  

When ~ does not have smooth boundary, we define the kernels and domain 
functions above as in [8] via a conformal mapping to a domain with real analytic 
boundary curves. 

3. P r o o f s  o f  t h e  t h e o r e m s  

If ~t is an n-connected quadrature domain of finite area in the plane such that  
no boundary component is a point, then the Bergman kernel function associated to 



278 Steven R. Bell 

12 satisfies an identity of the form 

(3.1) 
N n j  

1 = ~ ~ cjmK(ml(z, wj), 
j = l  m=0 

where K(m)(z, w) denotes (Om/o~m)K(z, w) and the points wj are the points that  
appear in the characterizing formula (1.1) of quadrature domains. This observation 
is usually at t r ibuted to Avci in his unpublished Stanford Ph.D. thesis. It can be 
seen by noting that  the inner product of an analytic function against the function 
h ( z ) ~ l  and against the sum on the right-hand side of (3.1) agree for all functions 
in the Bergman space. Hence the two functions must be equal. Note that  we must 
assume that  fl has finite area here just so that  h(z)-=l is in the Bergman space. 

Proof of Theorem 1.1. Since the Bergman kernel is equal to cO2/OzO~ of the 
Green's function, functions that  are of the form of the right-hand side of (3.1) 
belong to the the class `4 of [9, p. 20]. Hence, the function A ( z ) = l  belongs to .4. 
Theorem 2.3 of [9] states that  if G1 and G2 are any two meromorphic functions on 
f~ that  extend to the double of 12 to form a primitive pair and if A(z) is any function 
from the class .4 other than the zero function, then the Bergman kernel associated 

to ~ can be expressed as 

K(z, w) = A(z)A(w)R1 (G1 (z), G2(z), G1 (w), G2(w) ), 

where R1 is a complex rational function of four complex variables. Similarly, the 
Szeg5 kernel can be expressed as 

S(z, w) 2 ---- A(z)A(w)R2(G1 (z), G2 (z), G1 (w), G2 (w)), 

where R2 is rational, and the functions F~ can be expressed as 

F~(z) = A(z)R3(GI (z), G2(z) ), 

where R3 is rational. Furthermore, every proper holomorphic mapping of ~ onto 
the unit disc is a rational combination of G1 and G2. It therefore follows now that  
the Bergman kernel is a rational combination of any two meromorphic functions 
on f~ that  extend to the double to form a primitive pair. Since almost any two 
distinct Ahlfors maps form a primitive pair (see [7]), the proof of Theorem 1.1 is 

complete. [] 
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Proof of Theorem 1.3. Suppose that  f~ is an n-connected quadrature  domain in 
the plane such that  no boundary component  is a point and suppose that  f is a proper 
holomorphic mapping of ~ onto the unit disc. We may compose f with a MSbius 

t ransformation ~ so that  F = ~ o  f has only simple zeroes at, say a l, a2, ..., aN, where 
N is the order of the proper map f .  It is proved in [3, p. 65] that  the Bergman 
kernel transforms under this proper map  according to 

N K(z,a.) 
F'(Z)KD(F(z),O) = E F'(an)" ' 

n = l  

where KD(Z,W)=Tr-l(1--z~) -2 is the Bergman kernel for the unit disc. Notice 
that  KD(Z, 0)=Tr -1,  and so it follows that  F'(z) is given by a linear combination 
of functions of the form K(z, an), and thus F' extends to the double of ~ by 

Theorem 1.1. But F'(z)=f'(z)~'(f(z)), and since ~ is rational and f extends to 
the double of ~, it now follows that  if(z) extends to the double of ft. The proof is 
complete. [] 

Proof of Theorem 1.5. In the setting of Theorem 1.5, Gustafsson [12] general- 
ized a result of Aharonov and Shapiro [1] to prove that  the boundary of ft is given 
by an algebraic curve and that  there exists a function H(z) which is meromorphic 
on ft with continuous boundary values such that  H(z)=5 on b~t. Let G(z)=z. 
Gustafsson proved that  H(z) and G(z) extend to the double of ~t to form a prim- 
itive pair. Hence, there exists an irreducible polynomial P(z, w) on C 2 such that  

P(H(z),G(z))-O on f~. This shows that  H(z) is an algebraic function of z. We 
know tha t  the Bergman kernel is generated by z and H(z). Hence, this gives an- 

other way to see tha t  the Bergman kernel is algebraic. It  is proved in [6] that  if 
the Bergman kernel is algebraic, then so is the Szeg5 kernel, all proper holomorphic 
maps onto the unit disc, and the classical functions F~. 

Now since the kernels K(z, w) and S(z, w) 2 and the proper holomorphic maps 
to the unit disc and the functions F~ are all generated by G(z) and H(z), and since 
these functions are equal to z and 5, respectively, on the boundary, we may deduce 
most of the rest of the claims made in Theorem 1.5. To finish the proof, note that  
identity (2.2) yields that  

T(z) z _  S(a, z) 2 
L(z,a) 2' 

where a is an arbi trary point chosen and fixed in 12. The function S(z, a) 2 is a 
rational function of z and 2 on the boundary. Identity (2.3) yields that  L(z, a )2=  

S(z, a)2/fa(z) 2, and so L(z, a) 2 is also a rational function of z and 2 on the bound- 
ary. Finally, it follows that  T(z) 2 is a rational function of z and 2. [] 
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We remark that ,  since the antiholomorphic Schwarz reflection function S(z) 
across a real analytic boundary curve of ft satisfies f (S(z) )=l / f (z )  when f is a 
proper holomorphic mapping onto the unit disc, it follows that  S(z) is algebraic 

whenever proper holomorphic maps to the disc are. 

Proof of Theorem 1.6. Suppose tha t  ft is a bounded n-connected domain whose 
boundary consists of n non-intersecting C *r smooth simple closed curves. I proved 
in [4] (see also [3, p. 29]) that  the complex linear span of the set of functions of z given 
by {S(z, b):bcf~} is dense in A ~ (ft), the subset of C a (~) consisting of holomorphic 
functions on ~. The proof given there is constructive. It  is proved in [2] that  there 

is a dense open set of points a in ft such that  S(z, a) has n -  1 simple zeroes as a 
function of z. Fix such a point a and let al ,  a2, ..., an-1 denote the zeroes of S(z, a). 
The functions of z given by S(z, b)/L(z, a) extend meromorphically to the double 

of ft because identity (2.2) shows that  S(z, b)/L(z, a) agrees with the conjugate 
of L(z,b)/S(z,a) on the boundary of Ft. Let R(z) denote the antiholomorphic 

reflection function which maps ft to its reflected copy in the double. Notice that  
the extended function has no poles in ~ and, if b is not equal to any of the zeroes 

n--1 aj, then it has simple poles at R(b) and the points {R(aj)}j=l. 
The function H(z) which is equal to (z-a)L(z,  a) for zEft ,  zCa, and equal to 

1/27r at z=a is in ACC(f~). Hence, we may find finitely many points bj in ft such 

tha t  a linear combination }-IN 1 cjS(z, bj) is as close to H(z) in A~(f~) as desired. 

Now the function g(z) given by 

S(z, bj) 
a + ~  cj 

~=1 L(z,a) 

extends to be a meromorphic function on the double of Ft which is close in C ~ ( ~ )  
to the identity function. It is this function g tha t  we wish to call a Gustafsson 
function. We shall use it in the next section to zip the Bergman kernel. 

Gustafsson proved in [12] that  the poles of the function g on the reflected copy 
of f~ in the double of f~ reflect back to the points in ft that  map under g to points 
that  appear  in the quadrature  identity for g(ft). Hence, the points in g(ft) that  
would appear  in the quadrature  identity (1.1) for g(f~) are among the images under 
g of the points al ,  ..., an-1 and bl, . . . ,  bN. We shall refine the proof above to get 

more control over these points momentarily. [] 

Proof of Theorem 1.7. The proof just given of Theorem 1.6 can be altered 
so that  the points bj fall in a very small set and so that  all the integers nj in 
the quadrature  identity for g(ft) are equal to one. Indeed, let D~(wo) be any disc 
which is compactly contained in ft. Choose a in ft such tha t  S(z,a) has n -1  
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simple zeroes as a function of z. Let al,a2, ... ,a~-i denote the zeroes of S(z,a) 
and let ao=a. We shall now repeat  the argument above, but we shall restrict the 
points b to be in DE(Wo). Indeed, we now claim that  the complex linear span s 

of {S(z,b):beDe(wo)} is dense in A~(f~).  The dual space A - ~ ( ~ )  of A ~ ( ~ )  is 
described in [3, p. 117] (see also [4]). If  ~ were not dense in A~ then there would 
be a function hEA-~ which is not the zero function, but which is orthogonal 
t o /2  with respect to the non-degenerate pairing which extends the usual L 2 inner 

product  on ~. But the function H(b) given as (h, S ( - ,  b)} is a holomorphic function 
of b on ~.  Thus, if h is orthogonal to s then H(b) vanishes on D~(wo), and is 
therefore zero on all of D. This shows that  h is orthogonal to S(z, b) for all b in D, 
and we know that  these functions span a dense subset of A~(Q) .  Hence, h - 0 ,  and 
this contradiction yields tha t  s must be dense. 

The function H(z) given by 

Zfa(z)L(z,a), zeD, zr  
H ( z ) =  affa(a)/2~r z=a, 

is in A~(f~).  Hence, we may find finitely many points by in Ds(wo) such that  a 

linear combination L(z)=y]~;_,  cjS(z, bj) is as close to H(z) in A~ as desired. 
Now the function g(z) given by 

1 N S(z ,  bj) 
j~l cj L(z, a) fa(z) = 

extends to be a meromorphic function on the double of f~ which is C ~ close to 
the identity function near and up to the boundary of ft. We shall now make some 

adjustments  to this function to eliminate any poles that  might occur at the zeros 
of fa. Since the complex span {S(z,b):bED=(wo)} is dense in A ~ ( ~ ) ,  there exist 
points Bk in D= (w0) such that  det[Mjk] ~0, where [Mjk] is the n x n matrix given by 
Mjk=S(aj, Bk) in which the indices range over j = 0 ,  1, ..., n -  1 and k=O, 1, ..., n -  1. 
Since H(z) vanishes at the zeroes aj, j = 0 ,  1, ..., n - 1 ,  of f~, the complex numbers 
L(aj) are small, and the closer L(z) is to H(z) in A~ the smaller they are. Let 
]Zjk solve the system 

n--1 

L(aj) = Z #jkS(aj, Bk) for j = 0, 1, ... , n -  1. 
k=0 

Note that  the complex numbers IZjk are small and tha t  they go to zero as L tends 
to H in A~176 We now revise the definition of the function g(z) to be 

- -  k = O  
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This function has the virtue that  it has no poles at the zeroes of fa, and because 
it is C a close to the identity near the boundary of f~, it is close to the identity 

in C ~ ( ~ ) .  Furthermore, the extension of this function to the reflected side in the 

double is given by the conjugate of 

(Z  ~ N L(z, b j ) _ Z p j k  

- j = l  k=0 

(where we are thinking z=R(~) ,  where R is the reflection function on the double). 
This function has only simple poles at the points bj and Bk in D~(wo). This com- 
pletes the first part  of the proof of Theorem 1.7. To prove the last assertion in 
the s tatement  of Theorem 1.7, repeat  the argument above, noting that  the same 

reasoning shows that  the complex linear span of {S(m)(z, w0) :m=0,  2, ... }, where 
s(m)(z, w)=(om/o~m)S(z, w) is also dense in A~C(f~), and also observing that  iden- 

t i ty (2.2) can be used in the same way to show that  S(m)(z, wo)/L(z,a) extends 

meromorphieally to the double. F1 

4. How to  zip the  B e r g m a n  kernel 

Suppose that  ft is a bounded n-connected domain whose boundary consists of 
n non-intersecting C ~ smooth simple closed curves. Let g(z) denote a Gustafsson 

function as constructed in the proofs of Theorems 1.6 or 1.7. Let ~ denote the 

double of f~ and let R(z) denote the antiholomorphic reflection function which maps 

Ft to its reflected copy ~. Let G(z) denote the meromorphic extension of g(z) to 
the double. Gustafsson [12] proved that  G(z) and G(R(z)) form a primitive pair for 

the field of meromorphic functions on ~. Now g(f~) is a quadrature  domain and the 

function g(z) transforms to be the function z on g(~).  Hence, z and G(R(g-a(z))) 
extend meromorphically to the double of g(f~) and form a primitive pair. Let h(z) 
denote the meromorphic function G(R(g -1 (z))). Notice that  h(z) is equal to ~ on 

bl2 and that  h extends C ~ smoothly up to the boundary. 
Let {wj}N_l denote the finitely many poles of h(z) in f~ and let nj be equal to 

the order of the pole at wj. The numbers N, wj, and nj are exactly the numbers that  
appear  in (1.1) in the quadrature identity for g(fl). Let Pj(z) denote the principal 
part  of h(z) at wj. Theorem 1.1 yields that  the Bergman kernel associated to g(f~) 
is a rational combination of z and h(z). We do not need to zip the function z. Recall 
that  h(z)=2 on the boundary of g(~),  and so the function h(z) can be zipped via 

the formula 
N 1 

h ( z ) - Z  Pj(z) = 
j = l  
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But fb~ d~/(~--wj)k(r -z) is zero for positive integers k. Hence 

h(z) = p j ( z ) +  57/  dr 
j = l  

Define Q via 

(4.1) 
1 

We may state that  Q is a holomorphic function on ~ which extends meromorphically 
to the double of ~t without poles in ~ and that  Q is an algebraic function. We have 

just proved that  the Bergman kernel associated to g(~t) is a rational combination 
of z, Q(z), ~, and Q(w). A rational function is encoded by finitely many complex 
coefficients and a few positive integers. These numbers carry all the information 
tha t  is needed to unzip the Bergman kernel for the quadrature  domain g(fl) via 
formula (4.1). (Gustafsson [12] proved that  any quadrature domain of finite area 
can be expressed as g(~)  for some such g and smooth ~t, and so this result can be 
easily generalized.) 

We now turn to zipping the Bergman kernel K(z,w) for ~t. Let H(z) denote 
the function G(R(z)), which is meromorphic on ~t and extends C ~r smoothly up 

to b~t and has boundary values equal to g(z). The transformation formula for the 
Bergman kernel under biholomorphic maps together with the form of the Bergman 
kernel for g(~)  reveals that  K(z, w) is equal to g'(z)g'(w) times a rational function 
of g(z), H(z), g(w), and H(w). The Cauchy integral formula 

j( ,l A 
allows us to obtain g'  inside ~t from the boundary values of g, and of course g can 
be unzipped in the same manner.  The function H(z)=G(R(z)) can be recovered 
in a way to similar to how we handled h above. Let P(z) denote the sum of the 
principal parts  of H(z). Then, as above, 

H(z) = P(z)+ ~---~ ~bb~ g(~)~ d~. 

Hence we see that  the Bergman kernel can be recovered from the boundary values 
of the single function g, assuming that  finitely many coefficients from two rational 
functions are known. 
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5. Generalized quadrature domains 

We shall call an n-connected domain ~ in the plane such that  no boundary 
component is a point a generalized quadrature domain if there exist finitely many 
points N {Wj}j= 1 in the domain, non-negative integers nj, and finitely many contin- 
uous closed curves or curve segments am in ~ such that complex numbers cjk and 
bm exist satisfying 

N rtj AI 

i .l> s :,. = v. v :(z>,. 
j = l  k = 0  r a = l  m 

for every function f in the Bergman space of square integrable holomorphic func- 
tions on ~. Here, dA denotes Lebesgue area measure. As before, we shall also need 
to assume that the domain under study has finite area. The property of being a 
generalized quadrature domain and the conditions mentioned in Theorems 1.1 1.4 
are tied together nicely in the following theorem. 

Theorem 5.1. Suppose that ~ is an n-connected domain in the plane of finite 
area such that no boundary component is a point. The following conditions are 
equivalent: 

(1) The domain ~ is a generalized quadrature domain. 

(2) The Bergman kernel extends to the double of ~ as a meromorphic function, 
i.e., the Bergman kernel is generated by the restriction of two functions of one 
variable that form a primitive pair for the field of meromorphic functions on the 
double of ~. 

(3) There exists a proper holomorphic mapping f of ~ onto the unit disc such 
that f '  extends to the double of ~ as a meromorphic function. 

(4) The derivative of every proper holomorphic mapping of ~ onto the unit 
disc extends to the double of ~ as a meromorphic function. 

(5) Every function H on ~ that extends meromorphically to the double of 
is such that H'  also extends to the double of ~. 

We have proved most of the equivalences in Theorem 5.1 in the proofs of 
Theorems 1.1-1.4. To finish the proof, we need only show that  if f is a proper 
holomorphic mapping of ~t onto the unit disc such that  f '  extends meromorphically 
to the double of ~, then [t is a generalized quadrature domain. The condition 
that  f '  extends to the double means that there is a conformal map O from ~ to a 
bounded domain ~ whose boundary consists of n simple closed real analytic curves, 
and f ,  oO-1 extends to the double of ~. Let ~ denote the inverse of ~. Since 
f o ~  is a proper holomorphic mapping of ~ onto the unit disc, and since these two 
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domains have real analytic boundary, the mapping f o p  extends holomorphically 
past the boundary of ~. Hence, the derivative ~ ' . ( f ' o~)  extends holomorphically 
also. Furthermore, the derivative of the extension does not vanish on the boundary. 
Since f'og~ extends to the double of ~, and since ~ has real analytic boundary, it 
follows that  f '%o extends holomorphically past the boundary of ~. We conclude 
that  ~o' extends past the boundary of ~ at all but the finitely many boundary points 
where f'%o might vanish, and at the vanishing points, ~9 maps the boundary of 
to a cusp-like boundary point of ~t. Thus we conclude that ~ must have piecewise 
real analytic boundary. 

Next, to see that ~ is a generalized quadrature domain, let z(t) parameter- 
ize one of the boundary curve segments of ~t. Since log [f(z(t))[-1, it follows by 
differentiating with respect to t that  

(5.2) f'(z(t)) z'(t) = - ( f'(z(t)) ~ z'(t). 
f(z(t)) f(z(t)) / 

Let fb be an Ahlfors map such that  f and fb generate the meromorphic functions 
on the double of ~t. Since f '  extends to the double as a meromorphic functions, we 
know that  f '=R(f ,  fb) for some rational function R. Now f = l / / o n  the boundary 
of ~ since f maps the boundary into the unit circle. The same is true for lb. Hence, 
(5.2) yields that  

1/R ( 1 , 1 ) ( f ' ( z ( t ) )  )z'(t), z '  ( t )  - -  - 
\ f 7 7 - ~  fb(z(t)) \ f(z(t)) 2 

i.e., that  dz=H(z)d2 on bFt, where H extends meromorphically to ft. Following 
Aharonov and Shapiro [1], Gustafsson shows in [12, p. 223] that  this condition is 
equivalent to being a generalized quadrature domain. This completes the proof. 

6. Q u a d r a t u r e  d o m a i n s  w i t h  r e spec t  to  arc l e n g t h  m e a s u r e  

An analogous theorem to Theorem 1.5 can be proved for smooth quadrature 
domains with respect to boundary arc length measure. Suppose ~t is a bounded 
n-connected domain in the plane bounded by n non-intersecting C ~ simple closed 
curves. We say that  ~ is a quadrature domain with respect to arc length measure if 
there exist finitely many points {wj}g_l in the domain and non-negative integers 
nj such that  complex numbers cjk exist satisfying 

N nj  

(6.1) ~n f ds = E E c J k f ( k ) ( W j  ) 
j = l  k~O 
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for every function f in the Hardy space H2(b~) of holomorphic functions on gt with 
square integrable boundary values on bgt with respect to arc length measure ds 

(see [3] for basic facts about  H2(b~)) .  The techniques used in the previous sections 
can be adapted to replace the Runge theorems used by Gustafsson in the proofs of 
his more general results by density theorems in A ~ for the Szeg6 kernel. Indeed, we 
can follow Gustafsson's argument in [13, p. 76] to the letter, noting that  Gustafsson's 

function h can be taken to be a complex linear combination of functions of the form 
S(z,  b), where b ranges over an open subset of ~. This is because identity (2.2) 

shows that  S(z,  b ) 2 d z = - L ( z ,  b) 2 d2, and hence, hv/-~ is a "half-order differential" 

where h ( z ) = S ( z ,  b). Similar reasoning reveals the same thing about  complex linear 
combinations of such functions. We may now follow Gustafsson's argument,  using 
the fact that  the complex linear span of {S(z, b ) :bc~}  is dense in A~(gt)  in place 
of the Runge-type approximation theorem he uses. Gustafsson's functions f j  on 
p. 77 in [13] can also be approximated in A~( f l )  by functions in this linear span. 
In this way, we may construct a function h in A~r such that  h 2 has a single- 
valued antiderivative g which is as close to the identity map in C ~ ( ~ )  as we desire. 
This yields a quadrature domain with respect to arc length measure g(12) which is 

conformally equivalent to ~t and as C ~ close to gt as we desire. 
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