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Residues of holomorphic 
sections and Lelong currents 

M a t s  A n d e r s s o n  

A b s t r a c t .  Let Z be the zero set of a holomorphic section f of a Hermitian vector bundle. 
It is proved that the current of integration over the irreducible components of Z of top degree, 
counted with multiplicities, is a product of a residue factor RI and a "Jacobian factor". There 
is also a relation to the Monge~Amp~re expressions (dd c log Ill) k, which we define for all positive 
powers k. 

1. I n t r o d u c t i o n  

Le t  f=( f l , . . .  ,fro) be  a h o l o m o r p h i c  m a p p i n g  on  a c o m p l e x  m a n i f o l d  X of  

d i m e n s i o n  n a n d  let  Z={z:f(z)=O}. I f  f is a c o m p l e t e  i n t e r sec t ion ,  i.e., c o d i m  Z =  

m,  a n d  

R ch -- O-~m 

is t h e  c lass ica l  C o l e f f - H e r r e r a  cu r r en t ,  t h e n  

(1.1) Rf A dfl A...Adfm 
(2~ri)m - Z c~j [Zjl, 

J 

w h e r e  Zj are  t h e  i r r educ ib l e  c o m p o n e n t s  of  Z a n d  a j  a re  n m l t i p l i c i t i e s  r e l a t e d  to  

t h e  m a p p i n g  f .  

Le t  F-+X be a h o l o m o r p h i c  H e r m i t i a n  v e c t o r  b u n d l e  o f  r a n k  m.  G i v e n  f ~  

O(X, F ) ,  we de f ined  in [1] t h e  r e s idue  c u r r e n t  R f, which  is a s ec t ion  of  

( ~  D'od( X, A t F  *) 
l 
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(considered as a subbundle of 79'(X, A(T*(X)OF*))) with support  on Z. If p =  

codim Z, then 

(1.2) Rf = Rfp +...+ Rf,,,. 

where R[ is the component in :D~.I(X. AtF*), see Section 2. 

If f is a complete intersection, then locally 

i fej  is a local holomorphic frame for F, e~ is the dual frame, and f = f l e l  +...+fmem. 
Notice tha t  the duality of F and F* induces a duality between the exterior algebra 
bundles AkF and AkF *. If D is any connection on F.  then the factorization (1.1) 

can be written invariantly as 

(1.4) Rf  "( D f /27vi)'" 
, n !  = 

J 

In fact, in a local holomorphic frame D f = ~ j  df jAej+O(f) ,  the latter expression 

denoting smooth terms that  contain some factor fj: it is well known that  f jRf=O, 
and so (1.4) follows from (1.1) and (1.3). (In [6] a factorization like (1.4) is found 

when Z locally is a complete intersection but not necessarily the zero set of a 

holomorphic section.) 

Our main result is the following more general stateinent. 

T h e o r e m  1.1. Let f be a holomovphic section of the Hermitian vector bundle 
F--+ X and let p=codim Z. If  R f is the residue current and D the Chern connection, 
then 

(1.5) R f . (Df  /27ri)p 

J 

where Z p are the irreducible components of top dimension ( codimension p) of Z 
and ~j are the multiplicities of Z~. 

Let a be a given point on the regular part  of some Z p. If f l , . . . ,  fp are the 
first p coefficients with respect to a generic holomorphic frame at a. then c U is the 
multiplicity of the restriction of the mapping (fl  .... , fp) to a generic complex p- 
plane through a (with respect to some local holomorphic coordinates), see. e.g., [5]. 
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Corollary 1.2. Under the hypothesis in the theorem it follows that R[,p is not 
identically zero. 

Given a local frame ej and its dual frame e~, then 

Rip= E'(R~)IAe*I,A...Ae;p. 
I*l=p 

If F is a trivial bundle equipped with the trivial metric then 

D f = D ( f l e l + . . . + f m e , , ) = d f l A e t +  +dfmAem, 

and the theorem then means that  

dfI ~ A... A d fiT,  '(RpIA (2 i)p -  jlZ;l 
IXl=p J 

It  follows from Remark 2 in Section 3 that  one can replace D by any Chern con- 
nection associated with some Hermitian metric, but unlike the case with a complete 
intersection, the theorem is (probably) not true with any (holomorphic) connection. 
In the case X = P  n and f is a homogeneous polynomials, a formula related to (1.5) 
appeared in [4]. 

The proof of Theorem 1.1 relies on the possibility to resolve singularities by 
Hironaka's theorem and the technique with toric resolutions developed in [3] and [9]. 
The start ing point in the proof of Theorem 1.1 is King's formula, [7], [5}, which states 

that  if f is as above and we have the trivial metric, then 

(1.6) (dd c log ]fl)Pl z = E aJ[ZP]- 
J 

Recently M~o, [8], proved (1.6) and some related formulas for an arbi trary 
Hermitian metric. As a by-product  of the proof of our main theorem we obtain 
new proofs of these results. We also introduce a meaning to the Monge-Amp~re 
expression (dd c log Ifl) k for any positive power k. and discuss its connection to the 
residue current R f as well as to some other related currents. In particular we have 
the factorization 

( dd c log I f ] )k l z  = R~'(  D f /27ci)k 
k~ 

for any k if the bundle F is trivial and equipped with the trivial nletric. 
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2. T h e  r e s idue  c u r r e n t  of  a h o l o m o r p h i c  sec t ion  

Given the vector bundle F--+X we consider the exterior algebra 

A-=A(T*(X)@F| 

Any section 3' of AT*(X)|174 induces a section ~ to A, just by identifying 
elements like {@r/with {At/and extending bilinearly (one just has to keep track of 
the order). A connection DF on F induces a natural connection D on A(F|  
and it induces a mapping on ~(X, A(T*(X)@F@F*)) which we also denote by D, 
via 

D ~ =  D'-~. 

It is an antiderivation, i.e., D(~AT1)=D~A~I+(-1)aeg~AD~h where deg~ refers to 
the total degree of ~ (with respect to both F, F*, and T*(X)). A form-valued 
endomorphism aeCk(X, End(F))  can be identified with 

Z . a =  a j k A e j A e k ,  
jk 

if ej is a local frame, e~ is its dual frame, and a=Y~jk ajk|174 k with respect to 

these frames. For instance, if I is the identity mapping on E, t h e n / : = ~ j  ej Ae~. If 
DEnd(F) denotes the induced connection on the bundle End(F),  then 

(2.1) (DEnd F a )  ~ ~- D~z. 

If O = D  2 is the curvature tensor, then by Bianchi's identity, DEnd FO=0.  Thus, 

(2.2) D~) = 0 and D/: = 0. 

Assume now that F is a Hermitian vector bundle and let D be the associated 
Chern connection. Given the holomorphic section f of F, we let 6i: E(X, Ak+IF*)--~ 
C(X, AkF *) be interior multiplication (contraction) with f .  It clearly extends to a 
mapping on C(X, A) and it anticommutes with o 6. If we let V~=61-06 we therefore 
have that  (V~) 2 =0. Let s be the section of F* that is dual to f with respect to the 
Hermitian metric, so that in particular als=ifl 2. Then 

8 8 8, AS,S 8A (58) rn-1 

v ~ s - I f l  2 k - ~ - - + . . . +  If12 m 

in X\Z.  Since (V~)2=O, 

f ~7~s = 1 
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in X\Z.  The form ]fl2~s/V'~s is well defined in X if Re A is large, it has an analytic 
continuation as a current to Re A>-E ,  see [1], and 

U s = Ifl2~ i ~ - ~  s 
~=0 

is a current extension of s/V':s across Z. Moreover, v~uf-=I-R f, where 

R:=g]fl2a A~7-: A=o v f s  

(therefore) is a current with support on Z, which we call the residue of f .  It turns 
out that  the components of degree less than (0,p) vanishes, so (1.2) holds, see [1]. 
It is also proved there that R : = R f m  is independent of the metric when f is a 
complete intersection. When the metric is trivial, R~, , ,  is the so-called Bochner-  
Martinelli residue current, and it was first proved in [9] that it coincides with the 
Coleff-Herrera current, i.e., (1.3). A simplified proof appeared in [1]. 

Now let 

V: = 5: - D. 

Since D is the Chern connection, 

see, e.g., [1], and it is also pointed out there that one can replace c~lfl 2~ by dlfl 2;~ 
in the definition of Rf; thus we have 

(2.3) Rf =dlf]2"~ A ~ f  s 9~=0" 

However, it is not t rue that  V~=0; in fact, [1], 

(2.4) V2fs=~(Df -O), 

where 5~ denotes contraction with s. Moreover, 

(2.5) Vf(Df-O)=O, V f _ T = - f ,  and ~ j = s .  
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3. P r o o f  o f  t h e  m a i n  t h e o r e m  

We are primarily interested in the current Rlp.p .(Df/27ri)p. but to begin with 

we have to consider a somewhat more general current. We let I,,, =Im/m! ,  and we 
use the same notation for other forms in the sequel. Any form c~ with values in A 
can be uniquely writ ten as a=CA]m+(V,  where a '  does not have full degree in ej 

and e~. If we define 

i (l ~ C. 

then this integral is of course linear and 

(3.1) d/o~ = fe Dc~ = -  fe Vfa. 

We can now define the current 

(3.2) 511 = i R I  Ae(DI-~)/27ri+i" 

Since 0 has bidegree (1, 1), a simple consideration of degrees, using (1.2), reveals 

tha t  
M I = M ~ + . . . + M ~ .  

where M [  is the (k, k)-current 

k 

l=p 

For degree reasons no factors ~) occur in the term ,~I~ and therefore 

(3.3) 

P r o p o s i t i o n  3.1.  
coefficients). 

Proof. Let 

Then each te rm is like 

hIfp = n [ , p .  ( D f /2~ri)p. 

The current AII is closed and has order zero (i.e., measure 

M~- f dlfl2)'A s /xe(DS_~)/2,,,+i - - s  ~ ~ . 

dlfl~x A sA(Os) ~-1 A(Df)  l Asmooth 
Ifl  2l 
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Locally we write f=}-~.j fjej as before in a local holomorphic frame ej, after an 
appropriate desingularization, using Hironaka's theorem and toric resolution, fol- 
lowing [3] and [9], we may assume that one of the functions fj divides all the other 
ones. Thus there is a holomorphic function f0 such that f= fo f '  where f '  is a non- 
vanishing holomorphic section. Then s=fos' and thus sA(6s)~-l=f~s'A(Os') l-1. 
Moreover, ( D f ) l =  f0z-la, where a is smooth, and I f l  = If0 [u, where u is smooth and 
strictly positive, so we get 

dlfou[ 2)~ A sm~ot h 

which is locally integrable for Re A>0 and a current of order zero when A=0. 
For large Re A we have, by (2.5), that 

d M  f = f dlf l2: ,AV: ( s "~ Ae(Dr 
J~ \ V s ]  

+ [ d[f[ 2~ A s Ae(D/_6)/2~i+i AI = I1 +/2- 
Je v s  

The expression/2 is a sum of terms like 

d l f l  ax A sA(Os) 1-1 A f A (D f )  l- 1 Asmooth: 

If121 

after the desingularization, f A (D f) t-: = f~ f '  A (Df') t- :. so the entire singularity in 
the denominator is cancelled and therefore 12 vanishes when A=0. Now, 

s s V}s = i s 6s(Df-~)) 
vs~-:: --: (vss): (vss)' 

by (2.4), so I1 gives rise to two terms. The first one contains no singularities at all 
and it therefore vanishes when A=0. The second term is 

f dIf IzxA ~ 6 ,  (D f -  6) Ae (Df-~))/2"ni+[ 
(vfs)  

= 27ri/" dlfl 2:' A ~ 6 , e  (D:-~)/2"i Ae ]. 
Je t V f  S ) 

where we have used (2.5) again. An integration by parts puts 5s on the factor 

e I, which yields a factor s, and thus the integral vanishes since sAs=0.  Thus 
dMf =dM~l,x=o=O as claimed. [] 

Remark 1. Let DF/S be the Chern connection on the vector bundle F/S--~ 
X \ Z ,  where F/S  is equipped with the induced metric, and let C(DF/s) be the 
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Chern form. It turns out that  its natural extension C=e(DF/s)lx\z  is locally 
integrable in X and that  

(3.4) 

Moreover, if 

(3.5) 

C = fe e(i/2rr)O+l+Df/2rri AfAU/" 

A = - f e (i/2rr)~+i+Dl/2rri AU I, 
, . ' e  

then d A = c ( D ) - C - M  I, i.e., dAk=ck(D)--Ck--Mfk, where ck(D) is the kth Chern 
form of D. Since cm(DF/s)=O we have that  Cm=0, so it follows in particular that  
Mira represents the top Chern class cm(F); this was proved already in [1]. Moreover, 
one can even find a current W such that  ddCW=(i/Tr)O6W=c(D)-C-M f. This 
is proved in [2]; the special case k=p of this formula is also obtained in [8]. It is 
also proved in [2] that  MI=limx_,o+(i/27r)A[fI2X-40[f[2AO[f[2AC, and that  M ] is 
a positive current if F* is negative in Nakano's sense. 

Let 
I - 2)t OIfl2A(OOIf[2) k-1 

Mk,x----0If ] A (2~ri)Plfl2k 

P r o p o s i t i o n  3.2. If the metric is trivial, then for any k, the form Af  x is 
locally integrable in X for each A>0, and 

M[ = n~.(Df /2~O ~ = lira A~, x. 
k! X-~o+ 

Since Ifl 2 is plurisubharmonic when the metric is trivial, it follows that M[ is 
a positive (k, k)-eurrent. 

Proof. Since 0- -0  for a trivial metric, Mfk=Rf.(Df/2~ri)k/k!. From (the proof 
of) Proposition 3.1 it follows that  

Is f sA(O*)k-1 (3.6) s k,x =Offl2~ A i l l 2  k A(Df /27ri)kA]m-k 

is locally integrable for each A>O and by definition M[=-Mf), x=0. Thus actually 

M[  =limx-+0 M[, x. If f = ~ j  fjej in a trivial holomorphic frame for F,  then 

(3.r) Os= e],Ae;, DS--Z S, Ae,, 
J J J 
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and 

( 3 . 8 )  Olfl2=~fjdfj, 501fl2-- y~ dLidfj. 
J J 

Moreover, a simple combinatorical argument yields that 

(3.9) J 
k--1 

3 

Combining (3.9) and (3.7) we get that 

(3.10) M~Ix =hlfl2ai ~j f~df~f(~ dfjidf~) k-1 
(27ri)klf] 2k 

In view of (3.8) we therefore have that 1li f _,~Y and hence the proposition 
k , A  - - " ~ k , A  ' 

follows, [] 

It is easy to see now that Mp y is positive even for a general metric and we give 
a direct argument here, although it is also a consequence of the main theorem. 

P r o p o s i t i o n  3.3. The current 21llp is positive (p=eodim Z as usual) for any 
HerTnitian metric. 

Proof. With ~;he formula (3.6) f o r / ' t I ~  it follows that /llpY=limA__,0+/l/pl.,x, cf., 
(3.3). In a neighborhood of a fixed point 0 we can choose a local holomorphic 
frame ej such that  the metric hj~(z) is 6jk+O(Izl2). Then s=y'~j f je~+O(Izl2).  
Moreover, D F = d + h - l O h = d + O ( I z l ) ,  and hence D F f = Y ~ j  d f jAej+O(Iz l ) .  Thus 

(3.10) holds at z = 0  (for k=p) as in the previous case, and therefore ]llpY.a is positive 
there. Since the point is arbitrary, the form is positive, and letting A--+0 we conclude 
that/~lp f is a positive current. [] 

As was mentioned in the introduction, our proof of Theorem 1.1 will rely on 
King's formula which we now recall. Let d~=(i/2rr)(O-O). If we have the trivial 
metric, so that  log Ifl is a plurisubharmonic function, then it is well known that 
log Ifl(dd c log I f l )~ : - l l x \ z  is locally integrable for all k<p. and that 

(3.11) ddC(log [fl(dd ~ log [fl)k-X l x \ z  ) =(dd  c log [fl)~ l x x z  

for k<p. Moreover, for k=p  we have King's formula, [7] and [5], 

(3.12) ddr [f](dd ~ log [ f [ ) p - l i x \ z )  = (dd ~ log ]f])PXx\z + E  aj [zj], 
J 

where ZJ? are the irreducible components of Z of codimension p, and aj are the 
multiplicity numbers described after Theorem 1.1 above. 
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L e m m a  3.4. For the trivial metric we have that 

ddC(log [fi(dd c log Ifl)P-1)lz = lim A y . A" 
A_+O + t-, 

Proof. Since log lfl(ddClog I f l l x \ z ) p - l l x \ z  is locally integrable in X, and 
~(If l  2A-l) is increasing for A>0 we have by doxninated convergence that  

f log Ifl(dd ~ log If IF-' AddCo = ,~linol S ~ (I/12A- 1)(ddC log I/I) p-~ Add~O. 

The current (dd c log I f i )p - l l x \ z  is closed in the current sense according to (3.11), 

and an integration by parts  therefore gives 
(3.13) 

S S (~ ~ lim cSI/12~'A~A/"c~ 01/12 ~P--IAo-t- lim Ifl Ato ) A<~, 
),--,o+ ~r r i l f l  2 t, 2rc i l f l  2 ) A-+o+ 

which proves the lemma since the second term in (3.13) is precisely 

S ( dd c log IfDPl x \ z  Ao 

(the finiteness of the limit is ensured by King's fornmla). [] 

It  is now a simple mat ter  to obtain our main result. 

Proof of Theorem 1.1. Let Z p be the union of all irreducible components of Z 
of codimension p. Then Z \ Z  p is a union of regular submanifolds of codimensions 
more than  p. Since ]ffpY is a closed (p, p)-current of order zero it must vanish there, 

and thus / l ip  y has support  on Z p. Therefore. see. e.g.. [5], 

(3.14) MIp = E a~j[Z p] 
J 

for some nonnegative numbers a}. It is easy to see that  these numbers a j  are 

independent of the metric on F. In fact. the definition of M f  in a neighborhood of 
a given point only depends on the metric in that  neighborhood. In view of (3.14), 
Mp / will not be affected if we change the metric locally on some given irreducible 
component  Z p. Since we can choose a metric which is equal to any two prescribed 
metrics close to two given distinct points on Zj it follows that  actually (3.14) is 
independent of the metric. For a direct argument,  see Remark 2 below. However. 
when we have the trivial metric. Proposition 3.2. Lemma 3.4 and King's formula 
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together show that  a} actually are equal to the multiplicities Ozj. Thus the theorem 
is proved. [] 

Remark 2. Here we provide a direct argument for that  MYp=RYp.(Df/27ri)v is 

independent of the metric. Let /~f be the residue current with respect to another 

metric. It  is enough to show that  

A= f (Rf -fflfp)A(Df)pAi,,,_p=O. 
. 1 c  

Let U=8/~7f,3 (here Vf=af-O) and let ~ be the corresponding form with respect 
to the other metric. Then 

Rs-K: = Vs(alfl2~'AuA~)l~,=o 
t h e r e  I f l  can be the norm with respect to any metric), and therefore 

R f - ~ f  = gf(Slfl2)'AuAil)p+l.p]),=o 

(lower indices denote degrees in ej and d2,j, respectively). This is because terms 

of lower degree than p in dzj of the current oqlfl2~/xu/~lm=0 nmst vanish, see [1] 
Proposition 2.2. Therefore, 

A = .~ 6: (cSIfl 2x/~UA?~)p+l,p A (Df)pAL,,-p 

= f(Olfl  2x A~Afi)p+l.pA(Df)pAfA[m-p-x, 

where the equality follows from an integration by parts. After desingularization, 

(OIfl2XAuA~z)p+l,p is a smooth form times 81f12~/f~ +1. but on the other hand 
(Dr)pAl is like f0 p+I so the singularity is cancelled out. and hence the expression 
vanishes when A=0. 

For any metric and any k, Rf.(Df/27ri)k/k! is a positive (k, k)-current (it is 

proved as Proposition 3.3) and AI[ is a closed (k, k)-current, but in general they do 
not coincide. 

It was recently proved by M6o, [8], that  (p=codim Z as usual) 

(3.15) ~-~aj[Zj]=ddC(loglfl(dd~loglfllx\z)P-1)lz = lira A{x  
~___+0 + r ,  

J 

for an arbi trary metric. In view of Theorem 1.1. they are also all equal to AIf. 
In the general case log Ifl is no longer plurisubharmonic so one cannot rely on the 
usual theory for the Monge-Ampbre operator  acting. In fact. it is not clear a priori 
that  any of the last two currents in (3.15) is well-defined, let alone positive. The 
equalities (3.15) are consequences of more general results in the next section. 
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4. The M o n g e - A m p ~ r e  operator and residue currents 

A crucial point in the proof of the main theorem was the relation between the 
currents (dd ~ log IfD p and Rip . (Df/27ri)p.  In this section we discuss their relation for 
general k. To begin with we introduce a meaning to the Monge-Amp~re expression 
(dd ~ log [fl)k for an arbitrary positive power k. 

Propos i t ion  4.1. Let f be a holomorphic section of a Hermit ian vector bundle 

F--+X and let Z = { z : f ( z ) = O } .  Then the form 

log Ifl( dd ~ log I f l ) k -  l l x \  z 

is locally integrable in X for any k, (dd c log [ f l ) k - l  l x \ z  is closed, and 

ddC(log Ifl( dd c log I f l l  x \ z )  k - l )  

is a current of order zero. Moreover, 

Af  A = cglf[ ~AA ~ 1 7 6 1 7 6  
, (2rri)klflZk 

is locally inte9rable in X for each A>O, and 

(4.1) ddC(log I f l (dd ~ log Ifl)k-~lxxz)lz = lira .Ak y A" 
A_+O + �9 

Proof. Since the statement is local in X we may assume that f = ~ j  f j e j  in 
some local holomorphic frame in U. By a desingularization we may assume that  
f = f o f f ,  where f0 is a holomorphic function and f i e 0 .  Then outside the zero set, 

dd c log I fl = ddc log I f ' l  

since dd ~ log Ifo[=O there. Therefore. outside the singularity we have that 

log I f l (dd ~ log Ifl) k-1 = (log If01 +log I f ' l ) (dd ~ log If'D k-1.  

The right-hand side is integrable since log If01 is integrable and log If'l is smooth. 
Since the desingularization is a biholomorphism outside a set of measure zero it 
follows that the original form is locally integrable as well. 

In particular, (dd c log I f l ) k - ~ l x \ z  is locally integrable, and in the desingular- 
ization it is just (dd c log If'l) k-1 outside the singularity, and therefore it is closed. 
It follows that (dd c log I f D k - l l x \ z  is closed in X. 
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We have that dd~(log [f[(dd ~ log [ f l ) k - l l x x z )  is equal to 

(4.2) 

dd~[(log If01 +log If ' l )(dd ~ log If'l) k- ' ]  = [fo = 0] A(dd ~ log If'l) k-1 +(dd c log I/'1) k, 

where [f0=0] =dd ~ log If01 is the current of integration over the zero set of f counted 
with multiplicities. Notice that 

~l f l2XAOif l2A(~Ol f l2)k_  1 =51f12xA Olf12 ( ~  Olfl 2 ~k-1 
(27ri)klf12k ~A~, ~ / /  , 

which in the desingularization becomes 

(4.3) cl(Ifol2Alf'12~)A \ 2 ~ 2 ( '  OIf~ -I 27rilf,12jOlf'12 ~ A (O Olf,12 k-~. 

It is locally integrable since 

(4.4) , F I . f o l 2 A O l f o l  2 _ dfoAdfo 
If014-2~ If012-2a 

is locally integrable for A>0. Moreover, it is well known that (4.4) tends to [f0=0] 
when A--~0 +, and hence (4.1) follows from (4.2) and (4.3). [] 

If we think of log Ifl as being equal to zero on Z. then the proposition says 
that the usual iterative definition 

(dd c log Ifl) k = ddC(log If l(dd ~ log Ifl) k- l )  

can be extended to all k, and that 

(dd ~ log Ifl) k = (dd c log Ifl)k l x \ z +  ~O~+ .Ak,a. 

When we have the trivial metric, so that log [fl is plurisubharmonic, it follows that 
(dd c log Ill) ~ is a positive (k, k)-current. 

Remark  3. There are other ways to express the residue current (rid ~ log [ f l ) k l z .  
With essentially the same proof it follows that 

A (OOlfl2) k 
Bs = ~If l2~'A (27ri)klf12k 
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is locally integrable for each A>0 and that (dd c log [fl)klz=lim:~_.o+ Bk, A.f One can 

also deduce the equality 

(4.5) lim .Ak,A = lim Bk.a 
A-+O + A-+O + 

directly, in the following elementary way. For large A we have 

Af,A_ ~ 51fl2A-2kAOIfl2A(~Olfl2) k-1 
.~ -  k ( 2~i  ) k 

_ 1 k~__(O(ifl2A_2kOlfl2/\(5Oifl2lk_ll_lfl~A_2~.(~Olfl2lk). (2~i) k - 

The second term within the brackets gives rise to the limit limA-+0+ 13k.A when 
A-+0 +. The first te rm is 0 of O()~)[f[2:~-2kO[f]2A(OO[f]2) k-1 and it follows easily 

by a desingularization that  this form tends to zero. Thus (4.5) follows. 

From Propositions 4.1 and 3.2 we get the following result. 

C o r o l l a r y  4.2. I f  the metric is trivial, then ( dd c log ]f[)k is a positive (k, k)- 

current for any k, and 

R f  .( D f /27ri) k 
(dd c log ] f])k lz  = k! 

It  is now easy to obtain (3.15). 

P r o p o s i t i o n  4.3. For any metric, if k = p = c o d i m  Z, then 

R : . (  D f /27ri) p 
( d d C l o g [ f [ ) P l z = E a j [ Z j ]  = p! 

J 

Proof. The second equality is precisely Theorem 1.1 so it remains to prove the 
first one. However, from Proposition 4.1 we know that (dd c log ]f])Plz is a closed 
(p,p)-current of order zero with support  on Z. and by the corollary the equalities 

hold when the metric is trivial. As in the proof of Theorem 1.1 we can vary the 
metric locally and conclude that  the equalities hold everywhere. [] 

The current (ddC log ]f]) k is robust and it can also be defined as a limit of 

smooth forms in the following way. 
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P r o p o s i t i o n  4.4. I f  f is as in Proposition 4.1, then 

(dd c log [fl)k = lira (dd c log(l/12+c)a/2) k. 
e--+0 + 

Proof. By a desingularization as before we may assume that f = f o f ' ,  where f0 
is holomorphie, even a monomial, and f '  is nonvanishing. In view of (4.2) we are 
to prove that  then 

(4.6) lim ( 1 - / '~ ~ o +  2~i  O01~ -- [/0 = O]A(dd c log [ f , [ )k- l+(dd  c log If'l) k. 

To simplify notation we let h = f o  and ~=lf'l 2. We will only use that a is a strictly 
positive smooth function. A straightforward computation gives that  

]h[20c~ aOlh] 2 
O01~ ~-glhl~a+ e 

(4.7) 81h[2 AOc~ c~aA0lh[2 Ih[2OOa Ih]48aA0a 
=e(Ih?o,+e)2+e(Ihl2~+e)2 + ih12~+------- 2 (lhl2~+e)2 

a d h A d h  
+r (Ihl2c~+z)2" 

Notice that  the last two terms on the second line are bounded. Some further 
calculations give 

(4.8) 

. . . . .  2 . , ,k  , ak lh l2k -2dhAdh  ( ~ )  k-1 Ih[ 2k (~cga)k 
(001og~.ln I (~+e)) =xe-(ihl2c~_t_e)k+ 1 A c9 q-(lhl2a+e)k 

Ihl2k+ 2 
-k  (i hl2G~e)k+ 10ak0ak (c~0a) k-1 

c~lhl2A0ct AO(1)+s  0lhl2Ac3ct 
+e(lh[2~+c)2 (Ihl2~+c)2 AO(1). 

The last two terms vanish when c tends to 0. and the terms on the middle line 
tend to (6(0a/c~)) k = (2zri) k (dd ~ log tf 't) k by dominated convergence. Moreover, if. 
say, h ( z ) = z l  1 ... Zlm' , then terms occurring from dhAdh  with "mixed variables" will 
vanish when e--+0. In view of the simple Lemma 4.5 below, the expression on the 
first line tends to 

(ml[Zl=O]+...+r~ll[Zt = 0])A ( 0  

and since ~=log  If'l 2, the equality (4.6) follows. This concludes the proof. [] 
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L e m m a  4.5. If a is a strictly positive smooth function in C and h(z)=z m, 
then 

sk ak[h[2k-2dhAdh 
-~ m [01. 

27ri (Ihl2a+s) k+l 

Proof. The form on the left-hand side is positive and tends to zero outside the 

origin. Therefore it is enough to see that  the total mass tends to 1. By the m-to-one 

change of coordinates z~-+w=h(z) in C we have that  

k L aklhl2k-2dhAdh k L aklu:12k-2d~Adw 
2rri ( Ih l~a+s)  k§ = m S - ~ / .  (l~'pa+E) k§ 

The nonholomorphic change of variables w =  x/~ ( now gives 

k L ICI2k-2d~AdC m ~ /  (l<12+~)k+ 1 ~-O(c) = 1-I-C0(c), 

and thus the lemma follows. [] 

5. F u r t h e r  r e m a r k s  a n d  e x a m p l e s  

We begin with a simple example. 

Example 1. Suppose that  p =  1. that  we have the trivial metric and that  (locally 

somewhere) there is a function fo such that  f= fo f '  with f ' r  Thus the ideal is 

generated by f0. Now, s = ~  f jej=fos'  and 

, -  , l--1 X = O  = [~0/] A(58 ' ) / - 1  - 2 ~ s A ( O s )  s' 
n [ = O l f l  ,, ~ 8 A 1~1 ' 

where u=lf ' l  2. Since 

[ f0  = 0] - 

we have 

81 A (o~s ' ) t - lA / ,  A(dff)l-1 A i m - /  

e e "0'21 

If l = l  we get the current [f0=0] as expected. For higher 1 we find that  _hi[ is equal 
to [ f0=0]Aa I where a I is smooth. In view of (4.2) we have that  

c~ t = (dd c log If ' I)  l-1. 
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In general, ]t1J is nonvanishing on Z = Z  1 even for t>  1. If we take, for instance, 
f = ( z ,  zw), then fo=z  and I f ' [2= l+ lw[  2. Thus 

M f = [z =0]A dff;Adw 

and this current is nonvanishing on Z =  {(z, w):z=O}. 

The example shows that  2tt~ is not necessarily vanishing on Z p for k>p. When 
the metric is nontrivial it is not even positive in general. However, in X \ Z  u (recall 
that  Z p is the union of the irreducible components of Z of codimension p) we have 
that  Mp/+l is closed and positive by the same arguments as before. Therefore we 

can apply Theorem 1.1 in X \ Z  p and conclude that  A-lpf+l =]llfp+llx\z" is equal to 

~ j  ctP+I[zp+I]j L j j in X \ Z P .  In general, if we let 

M/~ - M~ l x\(z,uzp.lu. . .uzk-1),  

then ~'I[ is a positive closed (k, k)-current on X and more precisely 

~'~kf = E k k 

J 

where Z)  are the irreducible components of Z of codimension precisely k. From 
our previous results it follows that  

k k (dd c log Ifl)k l z ~ = Z o9 [Zj ]. 
J 

Thus we have a full description of current M f on X\(ZPkJZ p+IU.., uzk-1). 
Let I / be the ideal generated by f and let I f=J1N. . .AJN be a nfinimal de- 

composition of I f in primary ideals Jr. Then the prime ideals ~ and the COT- 
responding irreducible varieties Yj (i.e., their zero loci) are unique (except for the 
order). A primary ideal whose zero locus is a proper subvariety of some irreducible 
component Z~ is said to be embedded. 

Example 2. Again we take the trivial metric and let f = ( z  2, ZlZ2)~-Zl(Zl, Z2). 

Then the ideal (Zl 2, z2} is the intersection of the primary ideals (zl} and (z~, z2}. 
Let us determine M [  and 2lI~ by direct computation. 

Let U be a neighborhood of the origin in C 2 and let U be the blow up of U at 
the origin and let II: U--+U be the natural map. The manifold U is covered by the 
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coordinate  systems r] ,  T2 and 0-1. 0- 2, where zl -..--=TIT2, Z2 =T2 and z 1 =0-1, z2 =0.10.2. 

Notice tha t  in the T-coordinates,  

log III* f{ 2 = log IT~T21 +log(1 + IT~ 12), 

so tha t  

Thus  

g o  log IrI*fl  = 
2 T ' i  - -  IT1 = 0] if- 2 [T 2 = 01 q-  271"i 

g01og(1 +IT1] 2 ) 

u M [  Ar = f~, g o  log Ill 2 l z  A I P o  
27ri 

: s : : f .  0(0, 
2 

since the pullback of H*O to {T2=0} vanishes. Thus  M / = [ z l = 0 ] ,  which is in 

accordance with Theorem 1.1. 

To compute  M2 y we choose a test function o. Ill view of (4.2) we have 

/v~,I~r =/rT([T1 = 0] +2[T2 = 0])A ,L 
go  f log(1 + IT1 

O( T1T2 , r2) 
27ri 

= 20(0)  [ go log(1 + I~-i 12) = 2o(0) .  
27ri J~- 

and thus M f = 2 [ 0 ] .  

We do not  know if it is t rue for any embedded prime ideal with zero locus YJ 
and codimension k tha t  AI[=aIYJ  ] locally. 

R e f e r e n c e s  

1. ANDERSSON, M.. Residue currents and ideals of holomorphic functions. Bull. Sci. 
Math. 128 (2004), 481 512. 

2. ANDERSSON, l~{.. A generalized Poincar6 Lelong formula and explicit Green currents. 
Preprint, GSteborg, 2004. 

3. BERENSTEIN. C. A. and YGER. A.. Green currents and analytic continuation, J. 
Anal. Math. 75 (1998), 1 50. 

4. BERENSTEIN~ C. A. and YGER. A.. Analytic residue theory in the non-complete 
intersection case. J. Reine Angew. Math. 527 (2000). 203-235. 

5. DEMA]LLY, J.-P.,  Complex Analytic and Differential Geometry, Monograph. Greno- 
ble, 1997. 



Residues of holomorphic sections and Lelong currents 219 

6. DEMAILLY, J.-P.  and PASSARE, M.. Courants r6siduels et classe fondamentale, Bull. 
Sci. Math. 119 (1995), 85-94. 

7. KING, J. R., A residue formula for complex subvarieties, in Proc. Carolina Conf. 
on Holomo~phic Mappings and Minimal Surfaces (Chapel Hill, NC, 1970), 
pp. 43-56, Dept. of Math., Univ. of North Carolina. Chapel Hill, 1970. 

8. M~o, M., Courants r~sidus et formule de King, to appear  in Ark. fSr mat.. 
9. PASSARE, M., TSIKH, A. and YGER. A., Residue currents of the Bochner-Martinell i  

type, Publ. Mat. 44 (2000), 85-117. 

Received October 8, 2003 Mats Andersson 
Department of Mathematics 
Chalmers University of Technology 
and the University of GSteborg 
SE-412 96 G6teborg 
Sweden 
email: ma t sa~ma t  h.chalmers.se 


