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Residues of holomorphic
sections and Lelong currents

Mats Andersson

Abstract. Let Z be the zero set of a holomorphic section f of a Hermitian vector bundle.
It is proved that the current of integration over the irreducible components of Z of top degree,
counted with multiplicities, is a product of a residue factor Rf and a “Jacobian factor”. There
is also a relation to the Monge—Ampere expressions (dd° log |f|)¥, which we define for all positive
powers k.

1. Introduction

Let f=(f1,..., fm) be a holomorphic mapping on a complex manifold X of
dimension n and let Z={z: f(z)=0}. If f is a complete intersection, i.e., codim Z=
m, and

=~ 1 ~1
R = 8—~/\.../\8—]
ch [ fm fl

is the classical Coleff-Herrera current, then

(1.1) RM%:Z%[ZJJ,

where Z; are the irreducible components of Z and «; are multiplicities related to
the mapping f.

Let F— X be a holomorphic Hermitian vector bundle of rank m. Given fe
O(X, F), we defined in [1] the residue current R/, which is a section of

DX, A F)
!
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(considered as a subbundle of D'(X.A(T*(X)SF*))) with support on Z. If p=
codim Z, then

(1.2) R/ =RI+._+R/.
where R/ is the component in D), (X. AF*). see Section 2.
If f is a complete intersection, then locally

(1.3) Rf:R{nz[éi/\.../\éi] AEIA...Neb,
fm fl

if e; is a local holomorphic frame for F, e is the dual frame, and f=fie;+...4 frmem.
Notice that the duality of F and F* induces a duality between the exterior algebra
bundles A*F and A¥F*. If D is any connection on F. then the factorization (1.1)
can be written invariantly as

(14) M ZQJ

m!

In fact, in a local holomorphic frame Df=3" df;Ae;+O(f). the latter expression
denoting smooth terms that contain some factor f;: it is well known that ijf =0,
and so (1.4) follows from (1.1) and (1.3). (In [6] a factorization like (1.4) is found
when Z locally is a complete intersection but not necessarily the zero set of a
holomorphic section.)

Our main result is the following more general statement.

Theorem 1.1. Let f be a holomorphic section of the Hermitian vector bundle
F— X and let p=codim Z. If R/ is the residue current and D the Chern connection,
then

(15) Rf (Df/?m)p

—Z a;(27).

where Z;’ are the irreducible components of top dimension (codimension p) of Z
and a; are the multiplicities of Z%.

Let a be a given point on the regular part of some Z;’ . If fi...., fp are the
first p coefficients with respect to a generic holomorphic frame at a. then a; is the
multiplicity of the restriction of the mapping (fi..... f,) to a generic complex p-
plane through a (with respect to some local holomorphic coordinates), see. e.g., [5].
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Corollary 1.2. Under the hypothesis in the theorem it follows that Rgfp is not
identically zero.

Given a local frame e; and its dual frame e;, then

/
Ri =" (Rl)ihej A..Aej .
[Hl=p

If F' is a trivial bundle equipped with the trivial metric then
Df = D(f161 ++fmem) = dfl Aey ++dfm Nepm,

and the theorem then means that

PBRCHRE =2 alz)

e (2mi)P

It follows from Remark 2 in Section 3 that one can replace D by any Chern con-
nection associated with some Hermitian metric, but unlike the case with a complete
intersection, the theorem is (probably) not true with any (holomorphic) connection.
In the case X=P" and f is a homogeneous polynomials. a formula related to (1.5)
appeared in [4].

The proof of Theorem 1.1 relies on the possibility to resolve singularities by
Hironaka’s theorem and the technique with toric resolutions developed in [3] and [9].
The starting point in the proof of Theorem 1.1 is King’s formula, [7], [5], which states
that if f is as above and we have the trivial metric, then

(1.6) (dd°log | f)P1z =) 0;]Z7].

J

Recently Méo, (8], proved (1.6) and some related formulas for an arbitrary
Hermitian metric. As a by-product of the proof of our main theorem we obtain
new proofs of these results. We also introduce a meaning to the Monge-Ampere
expression (dd®log | f|)* for any positive power k. and discuss its connection to the
residue current Rf as well as to some other related currents. In particular we have
the factorization
R[-(Df/2mi)}

k!

for any k if the bundle F' is trivial and equipped with the trivial metric.

(ddlog |f))*1y =
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2. The residue current of a holomorphic section

Given the vector bundle F— X we consider the exterior algebra
A=ANT*(X)DFaF™).

Any section v of AT*(X)Q(F®F*) induces a section ¥ to A, just by identifying
elements like £®7n with £ Ay and extending bilinearly (one just has to keep track of
the order). A connection Dr on F induces a natural connection D on A(F®F™),
and it induces a mapping on £(X,A(T*(X)® F®F*)) which we also denote by D,
via
DE = De.

It is an antiderivation, i.e., D(EAR)=DEAn+(—1)38EA D, where deg¢ refers to
the total degree of £ (with respect to both F, F*, and T*(X)). A form-valued
endomorphism a€&, (X, End(F)) can be identified with

a= Z ajxNejAeg,
ik
if e; is a local frame, €] is its dual frame, and a=}_ x4k ®e;®ep with respect to
these frames. For instance, if I is the identity mapping on E, then I ——-Z]. ejNe;. If
Dgna(ry denotes the induced connection on the bundle End(F), then

(21) (DEnd pa)N = Da.
If ©=D? is the curvature tensor, then by Bianchi’s identity, Dgng 7©=0. Thus,
(2.2) DO=0 and DI=0.

Assume now that F is a Hermitian vector bundle and let D be the associated
Chern connection. Given the holomorphic section f of F, we let 6;: (X, AFT1F*)—
E(X,A*F*) be interior multiplication {contraction) with f. It clearly extends to a
mapping on £(X, A) and it anticommutes with 9. If we let V}zé f —08 we therefore
have that (V'f')2:0 Let s be the section of F'* that is dual to f with respect to the
Hermitian metric, so that in particular §ys=|f|?. Then

_s__;e_+sA53+ Jrs/\(gs)’"“1
Vis IR0 e T 1f12m

in X\ Z. Since (V’f')2=0, ,

1
— =1
fon
st
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in X\ Z. The form |f|?*s/ V'is is well defined in X if Re X is large, it has an analytic
continuation as a current to Re A\>—¢, see [1], and

f_f122 A s
Ul =1

A=0
is a current extension of s/V’.s across Z. Moreover, V"/Uf=1— R/, where
f f

RF =8| f|P A=
|f| 7

A=0

(therefore) is a current with support on Z, which we call the residue of f. It turns
out that the components of degree less than (0, p) vanishes, so (1.2) holds, see [1].
It is also proved there that Rf =R/ , is independent of the metric when f is a

complete intersection. When the metric is trivial, R, ,, is the so-called Bochner-

Martinelli residue current, and it was first proved in [9] that it coincides with the
Coleff-Herrera current, i.e., (1.3). A simplified proof appeared in [1].
Now let

Vi=6;-D.
Since D is the Chern connection,

Ds=0s,

see, e.g., [1], and it is also pointed out there that one can replace 9|f|** by d|f]*}
in the definition of Rf: thus we have

S
(2.3) R =d|f|*n=——
st A=0

However, it is not true that V4=0; in fact, [1],
(2.4) V2s=0,(Df-6),
where 6, denotes contraction with s. Moreover,

(2.5) VHDf-0)=0, Vil=-f and §,I=s.
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3. Proof of the main theorem

We are primarily interested in the current le,_p-(D f/2mi),, but to begin with
we have to consider a somewhat more general current. We let I,=I™ /m!, and we
use the same notation for other forms in the sequel. Any form « with values in A
can be uniquely written as a=cAl,,,+a'. where o/ does not have full degree in e;
and €. If we define

[aze
€

then this integral is of course linear and

(3.1) d/ecx:/eDaz—/era.

We can now define the current
(3.2) Mf— / RI peDF=O)/2mit]

Since © has bidegree (1,1), a simple consideration of degrees, using (1.2), reveals
that
MS =M+ + M,

where M, ,{ is the (k, k)-current
* i
M= / WA(=0O) Ak
k /e; Bi n(Dff2minn (27r )k—l k
For degree reasons no factors © occur in the term M,{ and therefore
(3.3) M =R] - (Df/2xi),.

Proposition 3.1. The current MY is closed and has order zero (i.e., measure
coefficients).
Proof. Let
s - N
arf =/d 205 0 pp(Df-O)/2mit ]
{=[drag

Then each term is like

sA(0s)IA(Df)! Asmooth
|fI%

d| I A
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Locally we write f=3_, f;e; as before in a local holomorphic frame e;, after an
appropriate desingularization, using Hironaka's theorem and toric resolution, fol-
lowing [3] and [9], we may assume that one of the functions f; divides all the other
ones. Thus there is a holomorphic function fy such that f=fof’ where f’ is a non-
vanishing holomorphic section. Then s= fys’ and thus sA(9s)! "1 =fis'A(Ds') L.
Moreover, (Df)'=fi"'a, where o is smooth, and | f|=|fo|u, where u is smooth and

strictly positive, so we get
2y . smooth
uf N ——

fo

which is locally integrable for Re A>0 and a current of order zero when A=0.
For large Re A we have, by (2.5), that

d| fo

de:/d!fF*/\V 5 Ae(Df—é)/?rrH-f
> e f(Vs)
+/d|f|2’\/\i/\e(Df‘é)/2”i+i/\f:Il+12.
e Vs

The expression I is a sum of terms like

sA(0s)' "' AfA(Df)' ! Asmooth
|f1% .

after the desingularization, fA(Df)'~t=flf'A(Df')'~1. so the entire singularity in
the denominator is cancelled and therefore I vanishes when A=0. Now,

dlfI** A

S 2 _; _"’
70 (7

S
=1—
VfoS

by (2.4), so I gives rise to two terms. The first one contains no singularities at all
and it therefore vanishes when A=0. The second term is

dlFI22A S i = (Df—6)/2mi+]
/e PN a8 (DI =B)ne
9 WA S 5 (Df-8)/2mip I
27rz/ed|f[ /\(vfs)Qése e,

where we have used (2.5) again. An integration by parts puts ds on the factor

el , which yields a factor s, and thus the integral vanishes since sAs=0. Thus
dMY =dM{|,_o=0 as claimed. O

Remark 1. Let Dp;s be the Chern connection on the vector bundle F/S—
X\Z, where F/S is equipped with the induced metric. and let ¢(Dp,s) be the
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Chern form. It turns out that its natural extension C=c¢(Dp/s)1x\z is locally
integrable in X and that

(34) C:‘-/C(i/Qﬂ)é+f+Df/2ﬂ/\f/\Uf.
€
Moreover, if

(3.5) A= /e(i/27r)é+i+Df/2m‘/\Uf’

then dA=¢(D)—~C~M/  ie., dAx=ck(D)—Cr— M/, where ci(D) is the kth Chern
form of D. Since ¢ (Dps)=0 we have that C,, =0, so it follows in particular that
M/, represents the top Chern class ¢,,(F); this was proved already in [1]. Moreover,
one can even find a current W such that dd*W =(i/m)80W =c(D)~C—MY. This
is proved in [2]; the special case k=p of this formula is also obtained in [8]. It is
also proved in [2] that M7 =limy_,o+ (i/27)A| |2} 28| fI2AD| FI2AC, and that M/ is
a positive current if F'* is negative in Nakano’s sense.
Let

f _5 S AQaIf1P)
A =012 A @ri)P|fF

Proposition 3.2. If the metric is trivial, then for any k, the form Ai)\ 18
locally integrable in X for each A>0, and

RLADf/2mi)t _ .~
- ke

F_
My = k! A0+

Since | f|? is plurisubharmonic when the metric is trivial, it follows that M kf is
a positive (k, k)-current.

Proof. Since ©=0 for a trivial metric, ]\[kszi «(Df/2ri)k/k!. From (the proof
of) Proposition 3.1 it follows that

(39 ML= [ ELOT A D 2w T

is locally integrable for each A>0 and by definition M f=M ,{ yIa=o- Thus actually
M =timy_o M{,. If f=3, fje; in a trivial holomorphic frame for ', then

(3.7) s=> fie;, ds=Y_dfjne}. Df=)_dfshe;
J J J
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and

(3.8) AP =" Fidf;, d0If>=>_dfjndf;.
J J

Moreover, a simple combinatorical argument yields that

k—1
/ije;/\(z:df_jm;) A(dejAej) Ak
k-1
:Zﬂ-dfjA(de}/\dfj) .
3

Combining {3.9) and (3.7) we get that
Zj f_jdfj/\(Zj dfj/\dfj)k_l
(2mi)*| fI2F '

In view of (3.8) we therefore have that J\[,{. /\=.A£‘ . and hence the proposition
follows. O '

(3.9)

(3.10) ML, =38|fP A

It is easy to see now that ‘Mz{ is positive even for a general metric and we give
a direct argument here, although it is also a consequence of the main theorem.

Proposition 3.3. The current ]\[1{ is positive (p=codim Z as usual) for any
Hermitian metric.

Proof. With the formula (3.6) for AIF{A it follows that Mg:lim,\_,m A[lf_/\, cf.,
(3.3). In a neighborhood of a fixed point 0 we can choose a local holomorphic
frame e; such that the metric h;z(z) is §;+0O(|2|?). Then s=3", fje; +O(|z[?).
Moreover, Dp=d+h~'0h=d+O(|z|). and hence Dpf=3", df;Ae;+O(|z|). Thus
(3.10) holds at z=0 (for k=p) as in the previous case, and therefore Alzf./\ is positive
there. Since the point is arbitrary, the form is positive, and letting A—0 we conclude
that .Mg is a positive current. U

As was mentioned in the introduction, our proof of Theorem 1.1 will rely on
King’s formula which we now recall. Let d°=(i/2m)(0—9). If we have the trivial
metric, so that log|f| is a plurisubharmonic function. then it is well known that
log | fi{dd®log If})k‘llx\z is locally integrable for all k<p. and that

(3.11) dd°(log | f|(dd® log | f1)* 11 x\z) = (dd° log | f))* 1x\2
for k<p. Moreover, for k=p we have King’s formula, [7] and [5],

(812)  dd*(log|f|(dd°log ||} 1x\z) = (dd°log | f)"Lx\z+ ) as23];

J

where Z7 are the irreducible components of Z of codimension p, and a; are the
multiplicity numbers described after Theorem 1.1 above.
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Lemma 3.4. For the trivial metric we have that

dd*(1og ||(dd” og | f1) )17 = lim AL .

Proof. Since log|f|(dd®log|f|1x\z)? '1x\z is locally integrable in X. and
(| f|** —1) is increasing for A>0 we have by dominated convergence that

[ 1og1\da10g 1)~ nddco= tim [ S (L7~ 1)(dd og | )" Add,

The current (dd°log|f|)?~'1x\ 7z is closed in the current sense according to (3.11),

and an integration by parts therefore gives
(3.13)

2 _ 2 \p—1 alf12 YV
hm /3|f|2’\ a'{}P (52iL{}|2) Ao+ 111 /|f|2’\( 27r|zjlilf|2)/\¢"

which proves the lemma since the second term in (3.13) is precisely

/ (dd° log | f1)P 1\ 2 Ao

(the finiteness of the limit is ensured by King's formula). 0
It is now a simple matter to obtain our main result.

Proof of Theorem 1.1. Let ZP be the union of all irreducible components of Z
of codimension p. Then Z\ Z? is a union of regular submanifolds of codimensions
more than p. Since J\IZ{ is a closed (p. p)-current of order zero it must vanish there,
and thus M/ has support on ZP. Therefore. see. e.g.. [5].

(3.14) M=o [Z8)

for some nonnegative numbers of. It is easy to see that these numbers o; are
independent of the metric on F. In fact. the definition of A[z{ in a neighborhood of
a given point only depends on the metric in that neighborhood. In view of (3.14),
]\'Iz{ will not be affected if we change the metric locally on some given irreducible
component Zf . Since we can choose a metric which is equal to any two prescribed
metrics close to two given distinct points on Z; it follows that actually (3.14) is
independent of the metric. For a direct argument, see Remark 2 below. However,
when we have the trivial metric. Proposition 3.2. Lemma 3.4 and King’s formula
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together show that o’ actually are equal to the multiplicities o;. Thus the theorem
is proved. O

Remark 2. Here we provide a direct argument for that AII{:R£~(Df/27ri)p is

independent of the metric. Let B/ be the residue current with respect to another
metric. It is enough to show that

A:/(R}:—ﬁlf,)/\(Df)p/\fmAp:O.
Let u=s/Vys (here Vy=§;—0) and let @ be the corresponding form with respect
to the other metric. Then
R —RT =V (3| | Aunit)|r=o
(here | f| can be the norm with respect to any metric), and therefore
RS — RS =65(8] fI Aunit)pra pla=o

(lower indices denote degrees in €;

of lower degree than p in dz; of the current 9|f|** AuAti|y=o must vanish, see [1]
Proposition 2.2. Therefore,

and dZ;. respectively). This is because terms

A:/6f(5|f|2)\/\U/\ﬁ)lﬂ-l.p/\(Df)p/\fmkp

=/(fﬂfl“/\uAﬁ)p+1.pA(Df)p/\fAfm_p_1,

e
where the equality follows from an integration by parts. After desingularization,
(B1f1P AuA@)py1p is a smooth form times J|f|2*/f2*!. but on the other hand
(Df)pAf is like f§ *1 50 the singularity is cancelled out. and hence the expression
vanishes when A=0.

For any metric and any k, Rf-(Df/2ni)*/k! is a positive (k. k)-current (it is
proved as Proposition 3.3) and M ,{ is a closed (k. k)-current, but in general they do
not coincide.

It was recently proved by Méo, (8], that (p=codim Z as usual)

(3.15) Za: = dd*(log |f|(dd° og | {[1x\7)"")1z = lim A] ,

for an arbitrary metric. In view of Theorem 1.1. they are also all equal to ]Uz{ .
In the general case log|f| is no longer plurisubharmonic so one cannot rely on the
usual theory for the Monge—Ampeére operator acting. In fact. it is not clear a priori
that any of the last two currents in (3.15) is well-defined. let alone positive. The
equalities (3.15) are consequences of more general results in the next section.
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4. The Monge—Ampeére operator and residue currents

A crucial point in the proof of the main theorem was the relation between the
currents (dd®log | f|)? and RS -(Df/2xi),. In this section we discuss their relation for
general k. To begin with we introduce a meaning to the Monge-Ampere expression
(dd®log | f|)* for an arbitrary positive power k.

Proposition 4.1. Let f be a holomorphic section of a Hermitian vector bundle
F—X and let Z={z:f(2)=0}. Then the form

log | f|(dd®log | f)* " 1x\z
is locally integrable in X for any k. (dd®log|f|)*"'1x\z is closed, and
dd(log | f1(dd° log | f11x\2)" ")
15 a current of order zero. Moreover,

OS> A(@aIf1P)M !
(2mi)k| fI2*

ALx= A
18 locally integrable in X for each A>0, and

(41) dd* (log | f1(dd* log | /)" 1x\z)1z = lim A .

Proof. Since the statement is local in X we may assume that f=3> fje; in
some local holomorphic frame in U. By a desingularization we may assume that
f=fof', where fy is a holomorphic function and f'#0. Then outside the zero set,

dd* log | f| = dd" log | f'|
since dd¢log|fo|=0 there. Therefore, outside the singularity we have that

log | f|(dd” log | f)* " = (log | fo| +1og | £'|)(dd log | f')* 7.

The right-hand side is integrable since log | fo| is integrable and log|f’| is smooth.
Since the desingularization is a biholomorphism outside a set of measure zero it
follows that the original form is locally integrable as well.

In particular, (dd®log |f|)*"'1x\ is locally integrable, and in the desingular-
ization it is just (dd°log|f’])*~! outside the singularity, and therefore it is closed.
It follows that (dd°log|f[)*~'1x\z is closed in X.
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We have that dd(log|f|(ddlog | f|)*~!1x\ z) is equal to

(4.2)
dd®{(log | fol+log | f'[)(dd* log | f'|)*~"] = [fo = 0] A(dd" log | f'|)* " +(dd® log | f'])*,

where [fo=0]=dd" log| fo| is the current of integration over the zero set of f counted
with multiplicities. Notice that

A (90 £]?)*
(2mi)*|F1%*

k—1
a_|f|2>\/\a'.ﬂ alf|2 A (5 a|.f|2 ) i

_ 5 2
= 0lf] A27ri|f|2 omi| f|?

which in the desingularization becomes

_ , Afel> | AN, (A0 N
3 APl o) N (Omre)

It is locally integrable since

| fol2 A0 fol? _ dfondfo
| fol4=2A | fol2—22

(4.4)

is locally integrable for A>0. Moreover, it is well known that (4.4) tends to [fo=0]
when A—07, and hence (4.1) follows from (4.2) and (4.3). O

If we think of log|f| as being equal to zero on Z, then the proposition says
that the usual iterative definition

(dd° log| f|)* = dd(log | f|(dd" log | f)* 1)
can be extended to all k, and that

(dd*log |f1)" = (dd“log | f)*1x\z+ lim Ay

When we have the trivial metric, so that log|f| is plurisubharmonic, it follows that
(dd°log | f])* is a positive (k, k)-current.

Remark 3. There are other ways to express the residue current (dd° log | f|)*1 5.
With essentially the same proof it follows that

(9| f12)*

A
BI{,)\ = ElflnAW
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is locally integrable for each A>0 and that (dd® log | f])*1z=lim,_,o+ B,{.)‘. One can
also deduce the equality

(45) lim Ak,A = lim Bk./\
A—=07* A—0+
directly, in the following elementary way. For large A we have

_ A AP PRABI A fP) !
AT A=k (2mi )k

G i U 0U @O AP @11,

The second term within the brackets gives rise to the limit limy_,o+ Bi.x when
A—0". The first term is 8 of O(\)|f|**~2%|f|2A (99| f|2)¥~! and it follows easily
by a desingularization that this form tends to zero. Thus (4.5) follows.

From Propositions 4.1 and 3.2 we get the following result.

Corollary 4.2. If the metric is trivial. then (dd°log|f|)¥ is a positive (k.k)-
current for any k, and

f. Nk
(dd®log | f)*1z = w_g’_/ﬂ

It is now easy to obtain (3.15).

Proposition 4.3. For any metric. if k=p=codim Z, then

RI-(Df [2mi)P

(ddlog |f1)P1z = Z a;(Z;]= P!

J

Proof. The second equality is precisely Theorem 1.1 so it remains to prove the
first one. However, from Proposition 4.1 we know that (dd°log|f|)P1z is a closed
(p, p)-current of order zero with support on Z. and by the corollary the equalities
hold when the metric is trivial. As in the proof of Theorem 1.1 we can vary the
metric locally and conclude that the equalities hold evervwhere. U

The current (dd®log|f|)* is robust and it can also be defined as a limit of
smooth forms in the following way.
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Proposition 4.4. If f is as in Proposition 4.1, then

(dd®log Ifl)k =€1_i)r(§l+(ddc log(lf|2+€)1/2)k.

Proof. By a desingularization as before we may assume that f=fof’, where fy
is holomorphic, even a monomial, and f’ is nonvanishing. In view of (4.2) we are
to prove that then

1 - y .

(46)  lim ("‘Taalog(LfP<+€)) = [fo =0}A(dd® log | f'})*~* +(dd* log | '))*
e—0+ \ 271

To simplify notation we let h=fy and a=|f’|?>. We will only use that « is a strictly

positive smooth function. A straightforward computation gives that

|h28a = adl|h|?

[hl2a+e T |h]2ate

d|h|2 Ada dand|h?  |h[280a  |h|*Oanda
(hPate)? " “(hPate)?  [hPate (hPa+e)?
. adhAdh

(1Al2a+e)?”

00log(|h|*a+e)=0

(4.7) =

Notice that the last two terms on the second line are bounded. Some further
calculations give

(90 log(|h|?a+e))k = ke

kg |2k~2 47 k-1 2k _
a”|h| dh/\dh/\(ga_a) N [h| (500)*

(Ih]2a+e)k+t (1hl2ate)*
3 |h|2k+2 _ _ k1
(4.8) —kWaaAaaA(aaa)
AIh|2 N Oa d|h|2 Ada
—_— —_— 1).
“ThRaroz OV MpEaraz O

The last two terms vanish when ¢ tends to 0. and the terms on the middle line
tend to (9(0a/a))F =(2mi)k(dd¢ log | f'|)* by dominated convergence. Moreover, if.
say, h(z)=2]"" ...z, then terms occurring from dhAdh with “mixed variables” will
vanish when € —0. In view of the simple Lemma 4.5 below. the expression on the
first line tends to

(mi[z1 =0]+...4+my [z =0])A (a_%a)k_l,

and since a=log| f’|2, the equality (4.6) follows. This concludes the proof. O
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Lemma 4.5. If a is a strictly positive smooth function in C and h(z)=2",

then _
ek a*|h|*~2dhAdh

o Qhraserr ok

Proof. The form on the left-hand side is positive and tends to zero outside the
origin. Therefore it is enough to see that the total mass tends to 1. By the m-to-one
change of coordinates z—w=~h(z) in C we have that

k [ o*|n|** 2dhAdh k / a¥|w[**2dwAdw
———— — e = 1.__——
2w J, (Jh|2a+e)kt! 271t Jo  (JwPa+e)kt!

The nonholomorphic change of variables w=,/a { now gives

k[ I¢P-2dindg

> ¢ W+0(5):1+0(5),

and thus the lemma follows. O

5. Further remarks and examples
We begin with a simple example.

Ezample 1. Suppose that p=1. that we have the trivial metric and that (locally
somewhere) there is a function fy such that f=fof’ with f'#0. Thus the ideal is
generated by fo. Now, s=)_ f;er=fos' and

s'A(0s) !

_ _ A /-1
lezalflw\/\ s :0[11]/\5 (8«[9) 7
ol A=0 0 u
where u=|f'|?. Since
ddlog|fol> _ 4[ 1 -1 ;
[fo=0] g 0 7 Nfo  dfo/2mi

we have

S A(D) AL A i1 A
u21 .

le:/R,f/\(df/Qm)l/\fm_,:[fozo]/\/

If =1 we get the current [f,=0] as expected. For higher ! we find that ]Ulf is equal
to [fo=0]Aa! where o! is smooth. In view of (4.2) we have that

o' = (ddlog | /)"
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In general, Aﬁflf is nonvanishing on Z=2Z" even for > 1. If we take, for instance,
f=(z,zw), then fo=z and |f'|>=1+|w|?. Thus

dwNdw
]\[f _—
1= ()]/\27rz(1—f~[w|2)2

and this current is nonvanishing on Z={(z, w):2=0}.

The example shows that A{ kf is not necessarily vanishing on Z? for k>p. When
the metric is nontrivial it is not even positive in general. However, in X\ Z? (recall
that ZP is the union of the irreducible components of Z of codimension p) we have
that ZV[Z{ 11 is closed and positive by the same arguments as before. Therefore we
can apply Theorem 1.1 in X'\ Z? and conclude that ﬁ; ——-]\[p+11X\Zp is equal to
2 af“[Zf“] in X\ Z?. In general, if we let

]\/[lf :MI;;le\(ZPUZP*’lUA..UZ"_‘)t

then ﬁ,{ is a positive closed (k, k)-current on X and more precisely
k[ 7k
- Z ;[ Z5].
J

where Z J}” are the irreducible components of Z of codimension precisely k. From
our previous results it follows that

(dd°log |f))f1ze =) of[2)).
J

Thus we have a full description of current ]\ka on X\(Zruzrtiu...uzk1).

Let I/ be the ideal generated by f and let I/ =J,N...NJx be a minimal de-
composition of I/ in primary ideals .J;. Then the prime ideals v/Jx and the cor-
responding irreducible varieties Y; (i.e., their zero loci) are unique (except for the
order). A primary ideal whose zero locus is a proper subvariety of some irreducible
component ZJ’-C is said to be embedded.

Ezample 2. Again we take the trivial metric and let f=(2%.2120)=21(z1, 22).
Then the ideal (22, z) is the intersection of the primary ideals (z1) and (22, zp).
Let us determine Mj / and M; { by direct computation.

Let U be a neighborhood of the origin in C? and let U be the blow up of U at
the origin and let IT: U — U be the natural map. The manifold U is covered by the
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coordinate systems 7;. 7, and o,.09. where z; =772, 20=T9 and 21 =01. 22=0102.
Notice that in the 7-coordinates,

log |IT* f|* = log |71 73 | +log(1 +|71*).

so that a
00 log |TT* f|?

5810g(1+|7’1 |2)
2mi ’

:[T1:0]+2[T2:0]+ o

Thus

2
/[fA¢() /%t)ﬁum*o

/([TI ]+2[T2—-0] /\H* / ¢(0 7'2)
LT
since the pullback of I*@ to {r2=0} vanishes. Thus ]\I{:[zlz()]. which is in

accordance with Theorem 1.1.
To compute ]vI2f we choose a test function o. In view of (4.2) we have

5 2
/If¢ / 0]+2[m = 0])A@-b—g(élml¢(nrg,rz)
i
2
—26(0 / 00 log(1+|7| )”20(0).
27t

and thus MJ =2[0].

We do not know if it is true for any embedded prime ideal with zero locus Y7
and codimension k that M/ =a[Y/] locally.
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